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Abstract 

In magnetic recording channels (MRCs) the readback signal is corrupted by many 

kinds of impairments, such as electronic noise, media noise, intersymbol interference 

(ISI), inter-track interference (ITI) and different types of erasures. The growth in demand 

for the information storage, leads to the continuing pursuit of higher recording density, 

which enhances the impact of the noise contamination and makes the recovery of the user 

data from magnetic media more challenging. In this dissertation, we develop advanced 

signal processing techniques to mitigate these impairments in MRCs. 

We focus on magnetic recording on perpendicularly magnetized media, from the 

state-of-the art continuous media to bit-patterned media, which is a possible choice for 

the next generation of products. We propose novel techniques for soft-input soft-output 

channel detection, soft iterative decoding of low-density parity-check (LDPC) codes as 

well as LDPC code designs for MRCs. 

First we apply the optimal subblock-by-subblock detector (OBBD) to nonbinary 

LDPC coded perpendicular magnetic recording channels (PMRCs) and derive a 

symbol-based detector to do the turbo equalization exactly. Second, we propose improved 

belief-propagation (BP) decoders for both binary and nonbinary LDPC coded PMRCs, 

which provide significant gains over the standard BP decoder. Third, we introduce novel 

LDPC code design techniques to construct LDPC codes with fewer short cycles. 

Performance improvement is achieved by applying the new LDPC codes to PMRCs. 

Fourth, we do a substantial investigation on Reed-Solomon (RS) plus LDPC coded 

PMRCs. Finally, we continue our research on bit-patterned magnetic recording (BPMR) 



 

xvi 
 

channels at extremely high recording densities. A multi-track detection technique is 

proposed to mitigate the severe ITI in BPMR channels. The multi-track detection with 

both joint-track and two-dimensional (2D) equalization provide significant performance 

improvement compared to conventional equalization and detection methods.    
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1 Introduction to Magnetic Recording Systems 

Today we are living in an information age. The need for information storage space is 

continuously increasing. Since the magnetic data storage systems are of low cost and high 

reliability, they have been the most popular high volume information storage systems. 

Among different kinds of magnetic recording systems, this dissertation focuses on 

magnetic hard disk drives (HDDs), though most of the techniques here can be applied to 

other magnetic recording systems straightforwardly. 

The first HDD was developed by IBM in 1956, and contained 50 disks and provided a 

data capacity of 5MB [1]. The areal data density of this HDD was only 2Kb/in2. After 

that people have never stopped inventing and applying new techniques to HDDs to 

increase areal data densities. The revolutionary improvements have been made on 

recording media, write heads, read heads, recording mode, signal processing techniques, 

error correction coding and many other aspects of the magnetic recording system. In the 

1970s and 1980s, the annual growth of the areal density was about 30%. From the 

beginning of the 1990s, the areal density growth rate was boosted up to 60% per year, by 

employing magnetoresistive (MR) heads and a new design for the read channel, the so 

called partial-response maximum likelihood (PRML) detection channel. In the late 1990s, 

this incredible growth rate was continued with the introduction of an advanced MR head, 

the giant magnetoresistive (GMR) head. In recent years, the conventional magnetic 

recording mode, longitudinal magnetic recording (LMR), has been replaced by a new 

recording mode, namely perpendicular magnetic recording (PMR), which lead to the 

increase of the areal density at the pace of 30%~50% per year. Finally, the up to date 
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areal data density already surpassed 400Gb/in2 [2].   

The basic idea of digital magnetic recording is to change the magnetic field on the 

media according to the user data; the stored information can be retrieved later on by 

detecting the remnant field on the magnetic media. A write head is driven by the data 

signal current to magnetize the media, while a read head is needed to sense the magnetic 

flux change from the media and convert it back to signal current. In both write and read 

processes, the heads are flying above the media and keep a relative movement at some 

velocity. In LMR, the regions of magnetization directions of the bit regions on media are 

aligned horizontally, parallel to the surface of the disk and the movement track of the 

heads. By contrast, in PMR, the magnetic orientations of the bit regions are aligned 

vertically, perpendicular to the disk. Fig 1.1 illustrates these two recording modes. 

S
 

N

Data 
 
 
 

Write current 
 
 
 

LMR 
 
 

PMR 

t 

-1         -1        +1       +1        -1       +1 

Tb 

 S→N S→N N←S N←S S→N N←S 
N
 

S

S
 

N

S
 

N

N 
 

S 

N
 

S

 

Fig. 1.1.  Longitudinal and perpendicular magnetic recording. 

In the first fifty years of the magnetic recording history of HDDs, LMR on continuous 

media was used exclusively. However, with the rapid increase in areal data density in the 

middle 2000s, this conventional recording technique approached its fundamental limit 
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due to its thermal instabilities, also called the superparamagnetic limit [3]. Finally, the 

highest areal data density achieved by LMR was around 100 Gb/in2. As an alternative to 

LMR, PMR significantly expands the density limit. PMR has many advantages over 

LMR, including stronger recording field, thicker recording layers, no demagnetizing field 

in bit transitions, higher readback amplitude and so on. However, the current PMR 

technique also has its superparamagnetic limit. Actually, as early as 2000, people have 

predicted that the highest areal density that can be achieved by PMR is to be about 

1Tb/in2. This areal density limit is less than twice of what is currently in use, and the 

limit is expected to be reached in the near future. Then what kind of technology can push 

the recording density beyond 1Tb/in2? So far the new techniques proposed include 

heat-assisted magnetic recording (HAMR) [4], bit-patterned magnetic recording (BPMR) 

[5] and two-dimensional magnetic recording (TDMR) [2], where BPMR is likely to be 

practically implemented in commercial products in the next few years. In bit-patterned 

media (BPM), as its name indicates, each bit is stored on an isolated perpendicularly 

magnetized island and the regions between islands are made of non-magnetic material. A 

simple illustration of a BPM HDD is given in Fig 1.2. Unlike the conventional 

continuous media, BPM is a radically redesigned media, which is capable of 

circumventing the superparamagnetic limit and eliminate the transition noise, a critical 

noise source in continuous media. In this dissertation, we make contributions on the 

signal processing of PMR, the current state-of-the-art technique as well as BPMR, the 

expected solution for the next generation of HDDs. 
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Fig. 1.2.  Bit-patterned media: one bit per island. 

1.1 Perpendicular magnetic recording channel 

1.1.1 Channel response 

In a magnetic recording channel (MRC), binary data (0 or 1) are recorded by 

magnetizing the storage media into two opposite directions. During the readback process, 

the read head senses the magnetic field of the storage media and outputs continuous time 

electrical signals according to the variation of the magnetization flux. Since there are only 

two magnetization directions on the media, flux changes are always caused by the 

switches of magnetization directions, or equivalently, the changes (0 1 or 1  0) in the 

recorded binary sequence. Therefore, the readback process can be characterized by a 1 − 

D differential unit and the read head response to an isolated magnetization transition, s(t), 

which corresponds to a single transition 0 1 in the data sequence or −1  1 in the 

modulated bipolar sequences ak {1 ,1-} א, at the input of the read channel. Shown in Fig. 

1.3 is the linear model for the readback process, where the readback signal r(t) is given 

by  
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r(t)
s(t) 

ak 
1-D 

r(t) 
h(t) 

ak
bk 

 

Fig. 1.3.  Use dibit response to express the linear channel. 

( ) ( ) ( )1( ) k k b k b
k k

r t a a s t kT b s t kT−= − − = −∑ ∑ ,              (1.1) 

where Tb is the bit interval and bk is simply the differential (or transition) sequence of ak. 

For PMR, the isolated transition response s(t) is often modeled as a hyperbolic tangent 

function [6], 

50

ln3( ) tanhps t V t
T

⎛ ⎞= ⎜ ⎟
⎝ ⎠

,                        (1.2) 

where Vp is the half amplitude of the waveform and T50 is the time width required for s(t) 

to rise from –Vp /2 to Vp /2, which is a fixed parameter for a given media. In the modeling 

of the read channel, it is useful to rewrite the readback signal r(t) in (1.1) by absorbing 

the 1 – D unit into the continuous time waveform, 

( )( ) k b
k

r t a h t kT= −∑ ,                        (1.3) 

where h(t) = s(t) – s(t – Tb), is named dibit response. The dibit response is the channel 

response to two consecutive magnetization direction switches: a positive transition 

followed by a negative transition, or equivalently, the response to the binary input of unit 

impulse (Kronecker delta) sequence. 

To measure how densely the data is recorded on the disk, a dimensionless parameter 

Dc = T50/Tb is defined as the recording density of the channel. Since T50 is a constant for a 

given media, higher recording density will cause more intersymbol interference (ISI). 
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Drawn in Fig. 1.4 are the isolated transition responses and dibit responses for recording 

density Dc = 1 and Dc = 2, where it is clear that increasing the recording density extends 

the span of waveforms over more bits and signal amplitude of the dibit response is 

attenuated due to the severe ISI. 
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Tb
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s(t) Dc=2

h(t) Dc=1
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Fig. 1.4.  Isolated transition responses and dibit responses of PMRCs. 

1.1.2 Noises 

In MRCs, the readback signal is corrupted by a variety of noise sources originated 

from the recording media, write and read heads, the head preamplifier and many other 

parts of the physical system. In this dissertation, we only consider electronic noise and a 

simple media noise component. 

As in other communication systems, electronic noise (or thermal noise) n(t) is always 

considered a noise component in the read channel of magnetic recording, which is 
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assumed to be an additive white Gaussian random process with single-sided power 

spectral density N0.  

Media noise is a dominant noise component in MRCs, which is caused by the 

granularity of the magnetic media. The transition noise is the major part of the media 

noise. Formed during the write process, the edges of the magnetic transitions are usually 

of zigzag patterns instead of clean and straight lines. In the subsequent read process, these 

imperfect transition boundaries lead to shifts of the readback signal position on the time 

axis and some variations on the width (T50) of the transition response. In this dissertation, 

we only consider the time shift effect caused by transition noise on the readback signal, 

which is also called position jitter noise; all other noise components of media noise are 

ignored. The time shift of the readback signal is denoted by jk and assumed to be a white 

Gaussian random sequence, which only happens where transitions occur. The readback 

signal corrupted by position jitter and electronic noises can be expressed as 

( )( ) ( )k b k
k

r t b s t kT j n t= − + +∑ .                      (1.4) 

However, this expression makes the simulation of the read channel very complicated. 

It will be more convenient if we can convert the contribution of jk into additive terms. 

Accurately, the isolated transition response with a time shift can be expanded as a Taylor 

series, 

( ) ( )

1
( ) ( )

!

n
k n

k
n

js t j s t s t
n

∞

=

+ = +∑ ,                      (1.5) 

where s(n)(t) is the n-th derivative of s(t) at time t. Given that the position jitter in the 

system is small enough, s(t) can be approximated very well by the first order expansion 

of its Taylor series, 
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( ) ( ) '( )k ks t j s t j s t+ ≈ + ,                         (1.6) 

where  

2

50 50

ln 3 ln 3'( ) sechps t V t
T T

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
.                      (1.7) 

Accordingly, the readback signal r(t) becomes 

( ) ( )( ) ' ( )k b k k b
k k

r t b s t kT b j s t kT n t= − + − +∑ ∑ .              (1.8) 

The models for readback signals r(t) in (1.4) and (1.8) are shown in Fig. 1.5. 

s(t+jk) 
ak 

1-D 
r(t)

s(t) 
ak

1-D

jk 
⊗

⊕ 

jk

s'(t) 
≈

n(t) 

⊕ 
n(t)

r(t)

 

Fig. 1.5.  The first order approximation of position jitter noise. 

To demonstrate the effect of the position jitter noise, an example is given in Fig. 1.6, 

where the bipolar input sequence ak , randomly generated jitter jk and the continuous 

readback signals at Dc = 1 are presented. Note that the electronic noise n(t) is not 

included. By comparing the waveforms in Fig. 1.6 (c), it is easy to see that large 

distortions happen with the occurrence of transitions in the input sequence. 

1.1.3 Sampling the readback signal 

The readback signal of a perpendicular magnetic recording channel (PMRC) is a 

continuous time waveform. It will be much easier to convert it into a discrete time signal 

and then deal with it with highly developed digital signal processing techniques. 
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(a) Input sequence ak 
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(b) Randomly generated position jitter input jk 
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(c) Readback signals r(t) 

Fig. 1.6.  An example of readback signals r(t), at Dc = 1. 
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Since the electronic noise n(t) is assumed to have infinite bandwidth, before the sampling, 

a low pass filter is necessary to filter the readback signal and make sure the sampler will 

generate discrete signals with finite power. In this dissertation, we choose a matched 

filter h(–t) = s(–t) – s(–t – Tb) and sample the continuous time signal at bit intervals 

(symbol rate). If the channel has only electronic noise, it is well known that the sampled 

signal is statistically sufficient with respect to the channel input sequence xn. However, in 

the presence of position jitter noise, the statistical sufficiency may not be valid any more, 

which will make the subsequent channel detection suboptimal. But we still use this 

matched filter and the symbol rate sampler, since this configuration has low complexity 

and is still the one often used in current research on PMRCs. 

1.1.4 Channel equalization  

As shown in Fig. 1.4, the read channel for PMR is characterized by severe ISI, 

especially at high recording densities. Consequently, sampled signals are also corrupted 

by fairly long ISI. To mitigate the impairment of ISI, a digital filter, called an equalizer, is 

usually employed to equalize the channel response to some short partial-response target. 

In the past, commonly used partial-response (PR) targets were of the form (1 – D) (1+D)m, 

such as PR4 (1-D2), EPR4 (1+D−D2−D3), E2PR4 (1+2D−2D3−D4), ME2PR4 

(5+4D-3D2-4D3-2D4), etc. [7]. However, PR target polynomials with integer coefficients 

do not have a perfect spectral match to the channel response, especially at high recording 

densities. Instead, a technique was proposed in [8] to design optimized non-integer PR 

targets, which are also called generalized PR (GPR) targets. It has been proved that the 

channels equalized with optimized GPR targets significantly outperform the channels 

equalized with the conventional integer PR targets. The application of the equalization 
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with GPR targets on PMRCs is considered in [9] and [10], while we also utilize this 

technique in this dissertation. 

( )r t

⊕ 

Detection w
ky

bt kT=
( )h t−⊕ 

( )n t (AWGN)

( )s t  

'( )s t× 

1 D−  
ka  

kj  
f ke

+
−

kb  kz  ˆka

 

Fig. 1.7.  Equalized PMRC with optimized GPR targets. 

Shown in Fig. 1.7 is the equalized PMRC with optimized GPR targets, where the 

equalizer w = [w−N, …, w0, …, wN]T is a 2N+1 taps finite impulse response (FIR) digital 

filter, and f = [f0, …, fL1−1]T is the GPR target with length of L1. Although the GPR target f 

could be anti-causal, we always use causal targets in this paper. Let Ry be the 

(2N+1)-by-(2N+1) autocorrelation matrix of yk, with Ry(i, j) = E{yk−i yk−j} for –N ≤ i, j ≤ N, 

Ra the L1-by-L1 autocorrelation matrix of ak, with Ra(i, j)= E{ak−i ak−j} for 0 ≤ i, j ≤ L1–1, 

Ry,a the (2N+1)-by-L1 cross correlation matrix with Ry,a(i, j) = E{yk−i ak−j} for –N ≤ i ≤ N 

and 0 ≤ j ≤ L1−1. Then the mean-squared error can be expressed as 

{ }2 T T TMSE kE e= = a y y,af R f + w R w - 2w R f .                    (1.9) 

By minimizing (1.9) and enforcing f0 = 1, the optimized GPR target and equalizer can be 

computed by 

T 1 1( )− −= λ −a y,a y y,af R R R R C ,                               (1.10) 

1−= y y,aw R R f ,                                             (1.11) 
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where C = [1, 0 …0]T is a vector of length L1, and  

                       T T -1 -1
a

1λ
y,a y y,a

=
C (R - R R R ) C

. 

1.1.5 Signal-to-noise ratio definition 

In the evaluation of different signal processing and coding techniques for MRCs, we 

would like to compare the bit-error-rate (BER) or sector-error-rate (SER) performance 

with different error correcting codes and coding strategies on a given magnetic recording 

system, where the media/head pair and the associated electronic circuits are fixed. Since 

in magnetic recording, any code rate change leads to a change in recording density, an 

appropriate signal-to-noise ratio (SNR) definition should be independent of the recording 

density. 

Traditionally, in a power-constraint additive white Gaussian noise (AWGN) channel, 

the SNR is defined as R*Eb/N0, where R is the code rate, Eb is the average energy for each 

information bit, and N0 is the single-sided noise spectral density height. This SNR 

definition is interpreted as a signal power to noise power ratio, by re-writing it as 

0

1SNR
2 2

b b

b

R E T
N T
⋅

=                          (1.12) 

where the factor 1/2 only causes a constant shift in logarithm domain, 10log10(SNR). In 

MRCs, the power-constraint is replaced with the transition response s(t), which is fixed 

for a give magnetic recording system. Then for an MRC with only the electronic noise 

n(t), we can define the SNR as 

0
SNR iE

N
=                              (1.13) 

where Ei is the average of each channel bit. However, since the energy of the transition 
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response s(t) of a PMRC is infinite, it is not easy to define the Ei perfectly. In [11], Ei was 

a bit arbitrarily defined as 

( )2
50 ( )iE T s t dt

∞

−∞

′= ∫ .                          (1.14) 

In [12], the integral is worked out to be  

2
50

4 ln 3
3i pE T V= .                          (1.15) 

With a fixed transition response s(t), the T50 and Vp are not varying with different 

recording densities; the Ei is also a constant in a given magnetic recording system. In 

other words, no matter how we define the Ei for a given magnetic recording system, 

distinct definitions only cause constant offsets in the logarithm domain. So a simpler 

definition of Ei is 

2
50i pE T V= .                           (1.16) 

If we use T50 as the time unit for all signals, i.e., T50 = 1, then (1.16) becomes 

 2
i pE V= ,                            (1.17) 

which has a unit of energy and hence makes the SNR dimensionless.  

With electronic noise only, the SNR definition in (1.13) is free of the recording density 

change, which is also wanted when we consider the jitter noise in the channel. For a 

MRC with electronic and jitter noise, we define the SNR as  

0 0

SNR iE
N M

=
+

,                         (1.18) 

where M0 is the average transition noise energy associated with an isolated transition. 

Because we have only include position jitter noise (there is no pulse broadening noise), 

M0 is actually the average position jitter noise energy associated with an isolated 
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transition. Note that we define M0 as a kind of “energy” on purpose; we want M0 to be a 

power spectral density just like N0, i.e., 

20 1 ( )
2 j

b b

M n t dt
T T

+∞

−∞

= ∫ ,                       (1.19) 

where nj(t) denotes the jitter noise voltage waveform associated with each transition. By 

assuming the jitter noise is statistically independent among transitions, the right hand side 

of (1.19) is actually the in-band jitter noise power. Given that M0 is considered a 

pseudo-power density height (single-sided) of the jitter noise, M0/(2Tb) is the integral of 

M0 from 0 to 1/(2Tb). In [11], this property of M0 is proved by simulations. That is, given 

a fixed variance of jk, 2
jσ , the simulated in-band jitter noise power increases linearly 

with Dc, and M0 could be the coefficient of Dc in this linear relationship.  

From (1.19) we can derive several equivalent expressions of M0. Let us list them 

below by the derivation order, 

2
0 2 ( )jM n t dt

+∞

−∞

= ∫ ,                                (1.20) 

2

1

12 lim ( , )
K

jK k
n k t dt

K

+∞

→∞
=−∞

⎡ ⎤
= ⎢ ⎥⎣ ⎦

∑∫ ,                   (1.21) 

{ } [ ]{ }222 ( ) ( )k kE b E s t s t t dt
+∞

−∞

= − + Δ∫ ,             (1.22) 

{ } { }222 ( ) ( )k kE b E s t s t t= − + Δ  ,                (1.23) 

{ } ( )22 22 '( )k jE b s t dtσ
+∞

−∞

≈ ∫ ,                      (1.24) 

where [ ]( , ) ( ) ( )j k b b kn k t b s t kT s t kT j= − − − +  and (1.24) is obtained by using the first 
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order position jitter approximation. Since ak {1 ,1-} א and bk = ak – ak–1, which gives 

{ }2 2kE b = , we have 

( )22
0 4 '( )jM s t dtσ

+∞

−∞

≈ ∫ ,                        (1.25) 

2
2

50

16 ln 3
3

p
j

V
T

σ= ,                           (1.26) 

where (1.26) is based on the integral result given in [12],  

( )
2

2

50

4 ln 3
'( )

3
pV

s t dt
T

+∞

−∞

=∫ .                       (1.27) 

With this SNR definition, the jitter noise percentage is defined as 

0

0 0

% 100%M
M N

α = ×
+

. Therefore, given a SNR and α%, we can compute the values of 

N0 and M0.  

1.2 Bit-patterned magnetic recording channel 

In high density BPM, the space between islands on both along-track direction and 

cross-track direction is very small. For example, given that the islands in BPM are 

squarely distributed, i.e., the bit period is equal to the track pitch, the track pitch should 

be about 25 nm to achieve an areal density of 1Tb/in2, and about 18 nm to achieve an 

areal density of 2Tb/in2. Due to the small track pitches, the read head flying above the 

media may not only sense the center track, which is the track under the center of the read 

head, but also the two tracks adjacent to the center track or even more tracks nearby. This 

phenomenon is called side reading or inter-track interference (ITI), which was usually 

ignored in PMR, where the track pitches are usually large enough. The ITI and ISI are 
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considered a two-dimensional (2D) interference in BPM, which needs to be modeled 

using the 2D response of an isolated island. In addition, there are specific noise sources in 

BPM, which make the modeling of BPMR channel more complicated than that of PMR. 

In this section, we introduce the method to model the 2D response of BPM as well as 

the BPM-specific noises. Due to the strong ITI, the equalization of the BPMR channel 

presents a new challenge and we will not discuss it here, but we will investigate it in a 

separated chapter later in this dissertation. 

1.2.1 Two-dimensional pulse response 

Fig. 1.8 illustrates the three-dimensional (3D) geometry of a shielded MR (or GMR) 

read head and a patterned magnetic medium, where square islands and a soft under layer 

(SUL) are assumed in the medium. The MR (or GMR) element (sensor) is of length L, 

width W, and semi-infinite height, which has unit magnetic potential. The shields of zero 

magnetic potential are away from the MR (or GMR) element by G nanometers and are 

also semi-infinite on both along-track and cross-track direction. The read head is flying 

by d nanometers above the perpendicular magnetized island, which is of length a and 

thickness δ. The readback voltage is proportional to the signal flux injected into the MR 

(or GMR) element at the air-bearing surface (ABS), while the 2D signal flux can be 

modeled by a 3D evaluation of the reciprocity integral [13] [14], 

0( , ) ( , , ) ( , , )y y

d

d
dx dy dz

μx z H x y z M x x y z z
i

δ
φ

∞ + ∞

−∞ −∞
⎡ ⎤= − −⎣ ⎦∫ ∫ ∫� � � � � � �� � ,       (1.28) 

where µ0 is the permeability of free space, i is the current in the imaginary coil, Hy is the 

read head magnetic field generated by the imaginary coil and My is the perpendicular 

magnetization of the medium. 
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Fig. 1.8.  Geometry of an MR/GMR read head and a patterned magnetic medium, where 

square islands and an SUL are assumed. 

Since the magnetic field is the gradient of the magnetic potential, the reciprocity 

integral in (1.28) can be re-written as in [14]        

0 ( , , )
( , ) ( , , ) y

d

d
dx dy dz

M x x y z zμx z x y z
i y

δ
φ

∞ + ∞

−∞ −∞

∂ − −⎡ ⎤
= ψ⎢ ⎥∂⎣ ⎦∫ ∫ ∫� � �

� � �
� � �

�
.       (1.29) 

Then to compute Ԅ(x, z) we need to find the head magnetic potential function ψ(x, y, z) 

for any point under the surface of the head, as well as the media magnetization My. To 

obtain ψ(x, y, z), it is necessary to approximate the magnetic potential on the ABS first, 

which is ψs(x, z) = ψ(x, 0, z). The ψ(x, y, z) could be predicted in turn as a functional of 

ψs(x, z) either in normal space [15] or in the Fourier transform domain [16]. Since the ψ(x, 

y, z) is very important and interesting in the literature of the magnetic recording, people 

keep trying to get more accurate predictions for ψ(x, y, z) [17]-[19].  

On the other hand, the media magnetization is easy to handle, given some appropriate 

assumptions. Assuming that the island is uniformly magnetized, i.e., the perpendicular 
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magnetization My(x, y, z) is a constant M in the range d ≤ y ≤ d + δ, −a/2 ≤ x, z ≤ a/2, the 

derivative of My with respect to y turns out to be two impulse functions [20]. In addition, 

the effect of the magnetic SUL can be simplified by assuming that it is semi-infinite with 

infinite permeability. Then the head magnetic potential ψ(x, y, z) in (1.29) need to include 

the magnetic potential of the image head, which is the mirror image of the real read head 

with respect to the boundary between the island and the SUL. So by considering a SUL, 

we can re-write (1.29) as [20] 

0 ( , , )
( , ) ( , , ) ( , , ) y

image

d

d
dx dy dz

M x x y z zμx z x y z x y z
i y

δ
φ

∞ + ∞

−∞ −∞

∂ − −⎧ ⎫
⎡ ⎤= ψ +ψ⎨ ⎬⎣ ⎦ ∂⎩ ⎭∫ ∫ ∫� � �

� � �
� � � �� �

�
. (1.30) 

By taking our assumption on My, the reciprocity integral in (1.30) simplifies to 

[ ]{ }( , ) ( , , ) ( , 2 , )( , ) dx dz M x x z z x y d z x y d zx z Cφ
∞ ∞

−∞ −∞
− − ψ = −ψ = + δ= ∫ ∫� � � � � �� � � � ,   (1.31) 

where C is a constant and M(x, z) = M for −a/2 ≤ x, z ≤ a/2, M(x, z) = 0 otherwise. Finally, 

the 2D readback voltage is computed as 

1( , ) ( , )V x z C x zφ= ,                        (1.32) 

where C1 is a constant. Since we always use the normalized readback voltage as the 2D 

pulse response of an isolated island, the constant C and C1 do not matter. 

In this dissertation, we will not make any contribution to improve the modeling of the 

BPM 2D response; we only use available or even simplified ones in our investigation of 

BPMR channels. But we would like to present a simple example to provide a clear 

understanding of the BPM 2D response modeling. 

According to Fig. 1.8, we consider a medium-head pair with W = 15 nm, L = 4 nm, G 

= 6 nm, d = 10 nm, δ = 10 nm and a = 11 nm. As we discussed above, we need to start 

with a magnetic potential function on the ABS. In this example, we take the very simple 
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Fig. 1.9.  ψs(x, z) , the magnetic potential of double-shielded read head on ABS by 

simple linear assumption.  

one in [15], where potential distribution on the ABS is approximated by  

   for , ; 
2 2 2 2 2

1                            for  , ;
( , ) 2 2 2 2

    for , ;
2 2 2 2 2

0                            elsewhere.

s

L L W WLG x G G x z

L L W Wx z
x z

L L W WLG x G x G z

⎧⎛ ⎞+ + − − ≤ < − − ≤ ≤⎜ ⎟⎪⎝ ⎠⎪
⎪ − ≤ < − − ≤ ≤⎪ψ = ⎨
⎪⎛ ⎞+ − < ≤ + − ≤ ≤⎪⎜ ⎟
⎝ ⎠⎪
⎪⎩

       (1.33) 

This magnetic potential function is drawn in Fig. 1.9, where we can clearly see that the 

potential is assumed to be linearly attenuated between the MR element and the shields. 

Although it is specified in [15] that this read head is single-shielded (in two sides), the 

ψs(x, z) in (1.33) tells us that the read head is actually double-shielded (on four sides) [21]. 

Given that ψ(x, 0, z) = ψs(x, z), we can predict ψ(x, y, z), the magnetic potential at any 

point under the read head by a functional [15] 
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(a)                                          (b) 

Fig. 1.10.  (a) ψ(x, 10, z) , the magnetic potential on the plane of y = d = 10 nm.  (b) 

ψ(x, 30, z) , the magnetic potential on the plane of y = d + 2δ = 30 nm. 

3
2 2 2

( , )( , , )
2 ( ) , , ( )

s x z dxdzyx y z
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∞ ∞

−∞ −∞
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Ψ =

π ⎡ ⎤− −⎣ ⎦
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� �� �

� �
.              (1.34) 

Fortunately, for the simple ψs(x, z) in (1.33), the integral in (1.34) has a close form 

expression [22], 
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(1.35) 

where 2 2 2( ) ( )R x x y z z= − + + −� � . Then we draw ψ(x, 10, z), the magnetic potential on 

the plane y = d = 10 nm in Fig. 1.10 (a) and ψ(x, 30, z), the magnetic potential on the 

plane y =d + 2δ = 30 nm in Fig. 1.10 (b). Finally, the normalized signal flux Ԅ(x, z), 
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which is computed by the reciprocity integral in (1.31) is drawn in Fig. 1.11. To illustrate 

the ITI caused by high density BPM, we assume the islands are squarely distributed with 

the bit period and the track pitch of 18 nm and we draw the along-track pulse and the 

cross track profile as well as the pulse read back from the side tracks in Fig. 1.12. 

 

Fig. 1.11.  The normalized signal flux Ԅ(x, z). 

1.2.2 Noises 

Again, electronic noise (or thermal noise) is always considered a noise component in 

the read channel of any magnetic recording. But in high density BPMR channels, the 

there are several major noise sources which are BPM-specific and different from those in 

conventional magnetic recording systems. ITI (or side reading) is one of the 

BPM-specific noises which we have discussed earlier, while there are other two types of 

noises in BPMR channels: written-in errors and media noise. 
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Fig. 1.12  The along-track pulses and the cross-track profile. 

In BPMR, each magnetic island is used to store one bit and all islands are separated by 

non-magnetic material. So there is no transition noise and the 1 – D differentiation factor 

is gone. But during the write process, the write field needs to be carefully synchronized to 

make sure the write window is on the islands. However, in an actual medium, the islands 

may not be perfectly distributed and may not have uniform size and switching field. The 

island location fluctuations and the disturbing fields from neighbor islands may make an 

overwriting on one island and leave the island next to it unwritten [23], [24]. In addition, 

even if the time window for writing is perfectly on an island, the bit may not be 

successfully stored on the island when the switching field of the island is stronger than 

the head field. These errors occur during the write process and are called written-in errors. 

If we denote p as the probability of a bit after writing being different from the desired 

value, the written-in errors can be modeled by a binary symmetric channel [24]. 
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Imperfect fabrication of the BPM causes the media noise in BPMR systems, where the 

major noise sources of the media noise are the fluctuations of island location, size, height, 

shape and saturated magnetization. The island location jitter can occur in both 

along-track and cross-track directions. The variation on island size may change the 

amplitude, the pulse widths of the 2D response on both along-track and cross-track 

directions. To simplify the modeling of the media noise, analytic functions of form h(x, z) 

= hx(x)hz(z) could be used to approximate the actual 2D responses of the media, where 

hx(x) and hz(z) fit the along-track pulse and the cross-track profile, respectively. In [20], 

for a particular media-head pair, the 2D response is modeled by a 2D Gaussian pulse, 

2 2 2 2

2 2

1( , ) ( ) ( ) exp ,
2x z

x z

c x c zh x z h x h z A
w w

⎛ ⎞⎛ ⎞
= = − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

            (1.36) 

where A is the pulse amplitude, wx = PW50_along is the pulse width at half maximum on the 

along-track direction, wz = PW50_cross is the profile width at half maximum on the 

cross-track direction, 2 2 ln 2c = is a constant used to associate the PW50 to the standard 

deviation of the Gaussian function. By assuming the pulse amplitude, wx and wz are linear 

functions of the island size, the 2D response taking into account the fluctuations of island 

size and location can be expressed as [20] 

 
2 2 2 2

2 2

1 ( ) ( )( , ) ( ) exp ,
2 ( ) ( )x x z z

c x x c z zh x z A A
w w w w

⎛ ⎞⎛ ⎞+ Δ + Δ
= + Δ − +⎜ ⎟⎜ ⎟⎜ ⎟+ Δ + Δ⎝ ⎠⎝ ⎠

�             (1.37) 

which could be in turn approximated by the first order Taylor series expansion as      

( , ) ( , ) ( , ) ( , ) ( , )( , ) ( , ) .x z
x z

h x z h x z h x z h x z h x zh x z h x z x z w w A
x z w w A

⎡ ⎤∂ ∂ ∂ ∂ ∂
≈ + Δ + Δ + Δ + Δ + Δ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

�             

(1.38) 
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Since the modeling and equalization are complicated and depend on various conditions, 

we will not continue our discussion in this section. Later in this dissertation, we will 

investigate equalization and detection methods for BPMR channels, where appropriate 

models of the read channel will be considered. 

1.3 Magnetic recording system 

For different kinds of MRCs, such as LMR, PMR or BPMR channels, the readback 

signal is corrupted by noises, which could be electronic noise, ISI, ITI and media noise. 

To recover the user data from the readback signal, the read channel is usually coded and 

additional components, such as timing recovery and gain control, may be needed in a 

practical implementation. In this dissertation, we are considering the magnetic recording 

system from a signal processing point of view and perfect timing and gain control are 

assumed. Shown in Fig. 1.13 is the model for a simple magnetic recording system. 

ECC 
Encoder

Modulation 
Encoder Precoder 

Magnetic 
Recording 
Channel 

EqualizerChannel 
Detector 

ECC 
Decoder

1 +1 
0 −1  

User 
Data 

Recovered 
Data 

 

Fig. 1.13.  A model of magnetic recording system 

1.3.1 Channel detector 

We have introduced equalized MRCs in the previous sections. After we get the signal 

at the output of the equalizer, a channel detector is responsible for estimating the bits 

recorded on the magnetic media. The channel detector is implemented by a detection 
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algorithm working on the trellis constructed according to the PR target, while the 

detection algorithm could output hard decisions or soft information for the recorded bits. 

With a channel detector which gives hard decisions of bits, such as the Viterbi algorithm 

(VA) [25], the outer error correcting code (ECC) such as the Reed-Solomon code [26] 

can only perform the hard decoding. With a channel detector which provides soft 

information for the bits, such as the soft output VA (SOVA) [27] or the 

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [28], the outer ECC is capable of doing soft 

iterative decoding, which greatly enhances the BER and the SER performance of the 

magnetic recording system. Note that, for an ideal PR channel with AWGN, BCJR is 

considered a maximal a posteriori (MAP) detector, which is optimal in the sense of 

minimizing the probability of bit errors, while SOVA is a sub-optimal detector obtained 

as an extension of VA to provide soft output. For the perpendicular magnetic recording, 

the transition jitter noise is data dependent due to the differential factor 1 – D, which 

enables the use of the pattern-dependent noise predictive (DPNP) detector [29], [30], to 

further improve the detection and decoding performance. 

1.3.2 Modulation code and precoder 

At the input of the MRC, a modulation encoder is usually used to put some constraints 

on the input sequence for various purposes.  

One purpose of the modulation codes is to facilitate the timing recovery and improve 

the distance properties of PRML channels, where two classes of modulation codes are 

often used, namely run length limited (RLL) codes [31] and maximum transition run 

(MTR) codes [32]. RLL codes are characterized by two parameters d, and k, which 

constrain the number of nontransitions between any two transitions to be at least d and at 
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most k. A (d, k) RLL code with d > 0 helps reducing the impact of the noise caused by 

consecutive transitions, while the maximum run length parameter k guarantees an 

adequate transition frequency for synchronization of the read clock. On the other hand, 

MTR codes limit the maximum run lengths of both transitions and nontransitions. The 

constraint on the maximum number of consecutive transitions eliminates certain 

minimum-distance error events, while the limitation on run length of nontransitions is 

assisting with timing recovery, just like the k parameter in RLL code. 

Since the encoding of RLL codes and MTR codes are usually in 

non-return-to-zero-inverted (NRZI) space, where each 0’s stand for nontransitions and 

1’s stand for transitions, it is necessary to use a precoder to convert the NRZI sequence in 

to non-return-to-zero (NRZ) format. 

Another type of modulation codes shapes the channel input sequence into different 

distributions, where a typical example is the matched information rate (MIR) code 

proposed in [33]. The MIR code is a trellis code, which converts the independent 

uniformly distributed (i.u.d.) channel input into a sequence whose distribution mimics the 

distribution of the optimized Markov source, which achieves a higher information rate 

than the i.u.d. input on the PR channel. Since the MIR code encodes the input sequence in 

the NRZ space, no precoder is needed for this system. 

1.3.3 Error correcting code 

To overcome the noise and distortion in the read back signal and successfully recover 

the user data, ECCs are always considered in today’s magnetic recording systems. 

Although ECCs could be nonlinear, we only consider linear codes in this dissertation. A 

(n, k) binary linear code encodes k-bit long information words into n-bit long codewords, 
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giving a code rate of R = k/n. During the investigation of different ECCs for magnetic 

recording systems, it is necessary to keep the same user density, Du = R * Dc, which 

means that lower code rates correspond to higher recording densities. Since the increase 

of the recording density Dc boost up the ISI in MRCs, we need to keep the code rate 

above some level, which is typically 0.9. 

The Reed-Solomon (RS) code is a widely used ECC in current magnetic recording 

systems, and it guarantees the correction of up to a certain number of symbol errors. 

Nowadays, soft iterative decoding techniques are being considered for magnetic 

recording, namely low-density parity-check (LDPC) codes [34] decoded by massage 

passing algorithms, which have been proved to significantly outperform the RS codes on 

various MRCs. The soft LDPC decoder can take more information from the channel 

detector than the hard RS decoder. Moreover, the soft output of the LDPC decoder can be 

fed back into the channel detector to implement the so called turbo equalization. This will 

refine the soft information for the bits and the BER and SER performance of the system 

is further improved.  

1.4 Overview of the dissertation 

In this dissertation we develop new channel detection and LDPC coding techniques for 

magnetic recording systems to improve their BER and SER performance. In Chapters 

3−7, advanced channel detection, LDPC decoding algorithms and LDPC code design 

techniques are investigated for perpendicular magnetic recording systems, while a 

sophisticated channel detection method is proposed to mitigate the ITI in bit-patterned 

magnetic recording systems. 
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Before we present any contributions in this dissertation, the state-of-the-art channel 

detection and LDPC decoding techniques are described in Chapter 2, where we introduce 

the generic soft-input soft-output (SISO) channel detectors as well as the conventional 

message-passing decoding algorithms for binary and nonbinary LDPC codes,  

In Chapter 3, improved channel detectors for nonbinary LDPC coded PR channels are 

investigated. We apply a sophisticated channel detector, namely the optimal 

subblock-by-subblock detector [48], to nonbinary LDPC coded PMRCs. Moreover, we 

derive a new symbol-based BCJR detector to do the turbo equalization accurately, since 

the one in [48] is working with unnecessary approximations when the turbo equalization 

is implemented. 

In Chapter 4, an improved belief-propagation (BP) decoder is proposed for LDPC 

coded PR channels, where the new decoder takes into account the dependence between 

the channel messages produced by the channel detector. On LDPC coded PMRCs, the 

improved BP decoder provides significant gains over the standard BP decoder. 

Furthermore, this technique is extended to the decoding of nonbinary LDPC codes and 

additional gains are observed. 

In Chapter 5, advanced LDPC code design techniques are investigated. Since short 

cycles on the factor graphs of LDPC code may severely degrade the decoding 

performance of LDPC codes, we are aiming at constructing LDPC codes with fewer short 

cycles to get LDPC codes with better performance, especially at high SNRs. 

In Chapter 6, we investigate RS plus LDPC concatenated architectures for PMRC. By 

simulation, we find the optimal code rate and iterative scheme for the concatenated codes. 

The performance of the concatenated codes is compared in both random noise and media 
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defects. In addition, we estimate the performance of the concatenated codes whose inner 

LDPC codes have a column weight of two, at very high SNRs, where their error floors 

are found. 

In Chapter 7, advanced channel equalization and detection methods for BPMR 

channels are investigated, and then a multi-track detection technique is proposed. This 

technique works with the equalizers which equalize the read channel to 2D GPR targets. 

Moreover, we find the performance bounds of the multi-track detection technique and 

develop multiple detection strategies to achieve the bounds on BPMR channels. 

In Chapter 8, we give some conclusive discussions that can be drawn from our work 

and make some recommendations for future research. 
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2 Detection and Decoding of LDPC Coded PR Channels 

Fig. 2.1 shows a PR channel model, where f is the response of the channel, μk is the 

channel input, yk is the noisy channel output and the additive noise nk is usually assumed 

to be AWGN. The input-output relation of the PR channel can be written as 

k i k i k
i

y f nμ −= +∑ .                           (2.1) 

Since MRCs have long ISI, to mitigate the impairment of the ISI, the channels need to be 

equalized to short PR targets. The equalized MRCs are also PR channels, but the noise in 

the channels is not AWGN in general. It is easy to see that ak, zk and ek in Fig. 1.7 

correspond to μk, yk and nk in Fig. 2.1, respectively. Although the noise ek in equalized 

MRCs may not be white and Gaussian, it could still be treated as AWGN during channel 

detection. 

f μk ⊕ 

nk

yk
 

Fig. 2.1.  A PR channel model. 

In this dissertation, we are interested in LDPC coded MRCs with soft iterative 

decoding, which can be equivalently expressed by LDPC coded PR channels as in Fig. 

2.2, where the channel detector has soft input and soft output, and the LDPC decoder is 

implemented by a message passing algorithm. In the initial run of the channel detection, 

there is no a priori information available for the channel bits. The channel detector works 

on the trellis constructed according to the response (PR target) f and produces the channel 
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messages (the a posteriori probabilities) for channel bits. The LDPC decoder takes the 

channel messages as input and tries to find a valid codeword by iterating on the message 

passing algorithm. If the message passing algorithm converges to a valid codeword 

within a predefined maximum number of iterations in the LDPC decoder, the decoding is 

considered successfully completed. Otherwise, the soft information generated by the 

LDPC decoder will be fed back to the input of the channel detector to do the channel 

iteration, which is also called turbo equalization. Note that, in general, the message 

passed between the channel detector and LDPC decoder is extrinsic information; the 

extrinsic information sent to the decoder (or detector) does not contain the information 

sent from that decoder (or detector). For example, the extrinsic information generated by 

the channel detector is computed by dividing the a posteriori probabilities (APPs) by the 

a priori probabilities, while the division becomes subtraction in the logarithm domain. 

f 
μk 

⊕ 

nk

yk Channel 
Detector

LDPC 
Dec 

LDPC 
Enc 

Soft (ext.) 
information 

Soft (extrinsic) 
information  

Fig. 2.2.  A model for LDPC coded PR channel with soft iterative decoding. 

In this chapter, we introduce the BCJR and SOVA algorithms, the two generic SISO 

channel detectors, as well as the BP algorithms for binary and nonbinary LDPC decoding 

and the min-sum algorithm which is a low complexity approximation of the BP 

algorithm. 
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2.1 SISO channel detectors 

2.1.1 BCJR algorithm 

The BCJR algorithm [28] is a MAP detector for PR channels with AWGN, which is 

optimal in the sense of minimizing the symbol error probability. Since we are considering 

PR channels with binary input, the BCJR detector is minimizing the bit probability. 

Let the PR channel with v bits of memory be represented by a binary-input trellis 

without parallel transitions, with 2v states at each stage. For an input block of N 

bits, 1 1 2( , , )N
Nμ μ μ� "μ , the noisy channel output is 1 1 2( , , )N

Ny y y� "y , and the 

corresponding state sequence of the channel is represented by a finite vector 

0 0 1( , , , )N
Ns s s� "s , where the initial and final states, s0 = S0 and sN = SN, are known. The 

Markov model of the PR channel encoder can be represented 

as 1
0 1 1( | , ) ( | , )k k

k k k kP s P s s−
−= μs μ . The APP sought is P (μk| 1

Ny ) with 1 ≤ k ≤ N, which 

could be expanded as 

1

1

1
1

1

1 1
1

1 1
1
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( )
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1                ( , , , ),
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−

−
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−

=
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=
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yy
y

y
y

y
y

                 (2.2) 

where, the double sum becomes a single sum, due to the fact that there is exactly one 

stopping state ks , given the starting state 1ks −  and the input symbol μk. In addition, we do 

not need to consider the term 1( )NP y  which is a constant once the block of signal is 

received. By some derivations, the joint probability in (2.2) can be decomposed as 
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1
1 1 1 1 1 1( , , , ) ( , ) ( , , | ) ( | ),N k N

k k k k k k k k k kP s s P s P s y s P sμ μ−
− − − += ⋅ ⋅y y y         (2.3) 

where the three terms are named the forward state probability, the branch transition 

probability and the backward state probability, and denoted by αk–1(sk–1), γk(sk–1,sk) and 

βk(sk), respectively. The forward and backward state probabilities can be computed 

recursively as 

1

1 1 1 1( ) ( , ) ( ) ( , ),
k

k
k k k k k k k k

s
s P s s s sα α γ

−

− − −= ∑� y                (2.4) 

1

1 1 1 1 1( ) ( | ) ( ) ( , ).
k

N
k k k k k k k k k

s
s P s s s sβ β γ

+

+ + + + += ∑� y                            (2.5) 

The branch transition probability is calculated by 

1 1 1( , ) ( , , | ) ( ) ( | , , ),k k k k k k k k k k k ks s P s y s P P y s s− − −= ⋅�γ μ μ μ        (2.6) 

where P(μk) is the a priori information of the bit and 1( | , , )k k k kP y s s− μ  is the channel 

transition probability, which can be computed according to the noise distribution. 

Before we start the recursions to compute the forward and backward state probabilities, 

we initialize α0(s0 = S0) = 1 and α0(s0 ്  S0) = 0, βN(sN = SN) = 1 and βN(sN ്  SN) = 0. 

Usually, the BCJR algorithm is implemented in the logarithm domain, where the 

multiplications and additions in (2.2)−(2.6) become additions and log_sum_exp 

operations, log(ea + eb). 

In practice, it is convenient for sending the messages by converting the APPs to log 

likelihood ratios (LLRs), 

( ) ( )
( )

1

1

1|
log

1|

N
k

k N
k

P y
L

P y

μ
μ

μ

=
=

= −
.                       (2.7) 

Then the extrinsic information is simply obtained by 
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( ) ( ) ( ) ,e k k a kL L Lμ μ μ= −                         (2.8) 

where   

( ) ( )
( )

1
log

1
k

a k
k

P
L

P
μ

μ
μ

=
=

= −
                        (2.9) 

is the LLRs of the a priori information. 

2.1.2 SOVA 

The BCJR algorithm is optimal for PR channels with AWGN, but its high 

computational complexity increases the cost of its implementation in commercial 

products. SOVA [27] is a low complexity but sub-optimal channel detection algorithm, 

which is obtained by simply adding reliability computations into the original VA. 

Therefore, let us start from the VA and go to SOVA smoothly. 

VA is a PRML detector, or by another name, the maximum likelihood sequence 

detector (MLSD). From the maximum likelihood term, it is easy to understand that VA 

finds 

( ){ }
1

1

1 1 1

1

ˆ arg max |

     arg max | .

N

N

N N N

N

k i k i
ik

P

P y f μ −
=

=

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑∏

μ

μ

μ μy

                 (2.10) 

Given that the noise is AWGN with zero mean and a power of N0/2, (2.10) can be 

re-written as 

( )
1

2

2
1 0 0

1

ˆ arg max exp
N

NN
N

k i k i
k i

N y f Nπ μ −
=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑
μ

μ .       (2.11) 

Transforming (2.11) to the logarithm domain gives 
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        (2.12) 

where it is clear that the VA finds the data sequence 1ˆ
Nμ  which has minimum Euclidean 

distance from the actual transmitted sequence.  

To see how the VA works, let us define the branch metric first, 

( ) ( )2
1 0, ,k k k k ks s y x Nλ − = −                      (2.13) 

where xk = ∑i fi μk–i is the branch value for a particular transition from sk–1 to sk. Note that 

we keep the 1/N0 factor in (2.13), which is not useful for the VA but scales the LLRs 

computed by SOVA. During the detection on the trellis of a PR channel, each trellis state 

maintains a path of hard decisions and an accumulated path metric. A state sk at time k 

has two incoming paths, and the path with the minimum path metric is selected to survive 

and the path metric is updated as 

( ) ( ){ }
1

1 1 1min ( , )
k

k k k k k k ks
M s M s s sλ

−
− − −= + .                (2.14) 

The detection starts from a know state s0 = S0, and the path metric at time 0 is initialized 

as M0(s0 = S0) = 0 and M0(s0 ≠ S0) = −∞. The detection continues to the end of the block, 

where the end state is known as sN = SN, then the survivor path that ends at SN is 

considered the maximum likelihood (ML) path and the hard decisions on that path are the 

1ˆ
Nμ  in (2.10)−(2.12). In practice, we do not need to wait for the detection output after the 

end of the block is reached. Since all survivor paths at time k may merge at a particular 

state at some time k – D, the hard decision on ˆk Dμ −  can be made once all survivor paths 
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merge or the delay D is set to a large enough value. 

SOVA is simply doing some additional work on the VA to generate soft information 

for the bits. Again, there are two paths that end at a state sk at time k, via two states (1)
1ks −  

and (2)
1ks −  at time k – 1. According to [35], given that pc denotes the probability that the 

survivor path decision made on sk at time k is correct, the LLR log[pc /(1 – pc)] can be 

approximated by the difference metric 

( ) ( ) ( ) ( )(1) (1) (2) (2)
1 1 1 1 1 1, ,k k k k k k k k k k kM s s s M s s sλ λ− − − − − −

⎡ ⎤ ⎡ ⎤Δ = + − +⎣ ⎦ ⎣ ⎦ .        (2.15) 

Once all survivor paths merge at time k – D, or for a large enough delay D, we can 

choose the path with the lowest metric on sk as the pseudo-ML path. By tracing from the 

state sk at time k, along the pseudo-ML path, back to time k – D, there are D + 1 paths 

which did not survive and were discarded; there are also D + 1 difference metrics Δi for k 

– D ≤ i ≤ k computed. Then the LLR of μk–D is approximated by 

( ) { }1ˆ min , , ,k D k D k D k D kL μ μ− − − − +≈ ⋅ Δ Δ Δ" ,               (2.16) 

where the minimum is taken only over the non-survivor paths which have different 

decisions at time k – D from the ˆk Dμ −  on the pseudo-ML path. 

We have mentioned that SOVA is also a SISO channel detector as the BCJR algorithm. 

To take into account the a priori information in SOVA, the branch metric in (2.13) need 

to be redefined as 

( ) ( )2
1 0, log ( ).k k k k k ks s y x N Pλ μ− = − −                    (2.17) 

This branch metric is equivalent to the one in the BCJR algorithm, (see (2.6)), which 

makes SOVA an approximation to the MAP detector. More clearly, it has been shown in 

[36] that SOVA is closely related to the log-max-MAP algorithm, which is another 
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approximation to the BCJR algorithm. In addition, to facilitate the use of LLRs, the 

metric in (2.17) can be equivalently computed as [35] 

( ) ( )2
1 0

1, ( ).
2k k k k k k a ks s y x N Lλ μ μ− = − −                   (2.18) 

2.2 Low-density parity-check codes 

LDPC codes were initially invented by Gallager [34] in 1962 and the work of MacKay 

[37] made them widely available since 1995. Davey and MacKay [38], [39] further 

generalized binary LDPC codes to finite fields GF(q) where q = 2p. The use of BP 

decoding on binary LDPC codes has been shown to provide excellent performance over a 

wide variety of channels. Furthermore, nonbinary LDPC codes have been shown to 

perform even better than binary LDPC codes, albeit with higher decoding complexity, 

which was successfully lowered to a more tractable level by the use of a fast Fourier 

transform (FFT) in the BP decoder [39]-[41]. Both binary and nonbinary LDPC codes 

have been applied to magnetic recording channels, but nonbinary LDPC codes provide 

larger coding gains [42]. 

2.2.1 Introduction to LDPC codes 

An LDPC code is a linear block code defined by an M by N sparse parity-check matrix 

H, with M < N. A vector of length N, x = [x1, …, xN]T is a valid codeword if only if 

Hx = 0.                               (2.19) 

If the rank of H is L ≤ M, then the LDPC code encodes K = N – L information symbols in 

each codeword; the null space of H gives a (N, K) LDPC code, with a code rate of R = 

K/N. The symbols in LDPC codewords may or may not be binary. Since we are always 
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dealing with binary-input PR channels, we are particularly interested in the LDPC codes 

with symbols over GF(2p). When p = 1, it is a binary LDPC code and each symbol in x 

corresponds to a bit; when p > 1, it is a nonbinary LDPC code and each symbol in x 

corresponds to a vector of p bits. 

To facilitate the illustration of the iterative decoding of LDPC codes, the parity-check 

matrix H is usually represented by a bipartite graph, which is called a factor graph [43] or 

a Tanner graph [44]. The factor graph of an M by N parity-check matrix H has M check 

nodes and N variable nodes, which correspond to the M rows and N columns in H, 

respectively. The i-th check node and the j-th variable node is connected by an edge on 

the graph if only if there is an nonzero element at the intersection of the i-th row and the 

j-th column in H. Shown in Fig. 2.3 are a 3 by 6 parity-check matrix and its factor graph, 

where the variable nodes are denoted by circles and the check nodes are denoted by 

squares. 

1   1   0   1   0   0
1   0   1   0   1   0
0   1   1   0   0   1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

H

1    2    3    4    5    6 

1    2    3  
 

Fig. 2.3.  Parity-check matrix (left) and its graph (right) 

The number of edges connected to a node is defined as the degree of that node. The 

degree of a variable node is the number of the nonzero elements in its related column, 

while the degree of a check node is the number of the nonzero elements in its related row. 

If on a factor graph, all variable nodes have the same degree and all check nodes have 



 

39 
 

also the same degree (which may be different from the degree of the variable nodes), then 

the related code is a regular LDPC code. Otherwise, it is an irregular LDPC code. 

2.2.2 Belief-propagation 

BP is a message passing algorithm on factor graphs and is considered a very effective 

decoder for LDPC codes due to its low complexity (compared with the MAP decoder of 

linear codes) and good error rate performance. 

The BP decoding of LDPC codes is executed iteratively, where each iteration consists 

of two steps: the checks-to-variables step (or the row step) and the variables-to-checks 

step (or the column step). Let a
n mq →  be the probability of xn = a, sent from variable node 

n to check node m and a
m nr →  be the probability of xn = a, sent from check node m to 

variable node n. N(i) denotes the neighbors of node i, i.e., the set of nodes directly 

connected to node i on the factor graph. If i is a variable node then N(i) is a set of check 

nodes; if i is a check node then N(i) is a set of variable nodes. 

At the beginning of the BP algorithm, the probability a
n mq →  is initialized by a

np , 

which is the local evidence of the variable node n. In the LDPC coded PR channel, a
np  

is a probability generated by the channel detector and used as the a priori information at 

the input of the BP decoder.  

After the initialization, each check node m collects information from all of its 

neighbors and sends a message to each of them; this is the so called checks-to-variables 

step. Assuming that that variable node n is a neighbor of the check node m, then the 

message sent from check node m to variable node n can be computed by 
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( )
{ : ( )\ } ( )\

{ } | , j

j

xa
m n j n j m

x j N m n j N m n

r P x x a q→ →
∈ ∈

= =∑ ∏H ,              (2.20) 

where N(m)\n includes all of the neighbors of node m except node n, and P({xj} | xn = a, 

H) is a indicator function, which is equal to one if the values of {xj} satisfy the 

parity-checks in H, given xn = a; otherwise, it is equal to zero. 

Next, in the variables-to-checks step, each variable node collects information from all 

check nodes connected to it and sends a message to each of them. The message sent from 

variable node n to check node m can be computed by 

( )\

a a a
n m nm n i n

i N n m

q p rα→ →
∈

= ∏ ,                     (2.21) 

where αnm is a normalization factor. 

Before the BP decoding goes back to the checks-to-variables step to start the next 

iteration, it is necessary to generate APPs for variable nodes to see if the decoding has 

been successful. The APP of variable node n is computed by 

( )

a a a
n n n i n

i N n

q p rα →
∈

= ∏ ,                       (2.22) 

where αn is also a normalization factor. Then the hard decisions are made on variable 

nodes according to their APPs. If all of the parity-checks in H are satisfied, then the 

decoding is successfully completed, and a valid codeword is found. Otherwise, the BP 

decoding continues to the next iteration. Usually we set a maximum number of BP 

iterations to prevent the algorithm from running forever. 

2.2.3 Log-BP for binary LDPC codes 

For binary LDPC code, the code symbols can only be zero or one; it is convenient to 

express their distributions by LLRs, where multiplications in (2.21) and (2.22) become 



 

41 
 

additions and the normalization factors are not needed. First, let us define the LLRs as 

( ) ( )0 1logn n nL p p p= , ( ) ( )0 1logm n m n m nL r r r→ → →= , ( ) ( )0 1logn m n m n mL q q q→ → →=  and 

( ) ( )0 1logn n nL q q q= . Then computations of the messages in (2.20) − (2.22) turn out to be 

( ) ( )( )1

( )\

2 tanh tanh 2m n j m
j N m n

L r L q−
→ →

∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ ,            (2.23) 

( ) ( ) ( )
( )\

n m n i n
i N n m

L q L p L r→ →
∈

= + ∑ ,                  (2.24) 

( ) ( ) ( )
( )

n n i n
i N n

L q L p L r→
∈

= + ∑ .                   (2.25) 

2.2.4 Min-sum decoding 

Although the implementation of the BP algorithm in the logarithm domain reduce the 

memory requirements and eliminate the normalization step, the evaluation of the 

hyperbolic tangent function is still of high computational complexity. To avoid the use of 

the hyperbolic tangent function and reduce the complexity as much as possible, an 

approximation can be made on the computation of the checks-to-variables messages, 

( ) ( )( ) ( )
( )\

( )\

sign minm n j m j mj N m n
j N m n

L r L q L q→ → →∈
∈

⎛ ⎞
≈ ×⎜ ⎟
⎝ ⎠
∏ .            (2.26) 

The sub-optimal decoding algorithm formed by (2.24) − (2.26) is the well known 

min-sum (MS) algorithm [45]-[47]. The MS algorithm is an approximation of the BP 

algorithm with very low complexity, since the multiplications of the signs {-1, +1} have 

trivial complexity; the only non-trivial operations in (2.26) are comparisons. 

It has been shown in [46] that the checks-to-variables LLR messages in the MS 

algorithm have the same sign as those in the BP algorithm, but with larger amplitude, 
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which makes the error rate performance of the MS algorithm inferior to that of the BP 

algorithm. Therefore, the error rate performance is ought to be improved if we can reduce 

the amplitude of the LLR messages calculated in (2.26). Intuitively, there are two ways to 

do this task, as shown below. 

( ) ( )( ) ( )
( )\

( )\

sign minm n j m j mj N m n
j N m n

L r L q L qα→ → →∈
∈

⎛ ⎞
≈ ×⎜ ⎟
⎝ ⎠
∏ ,            (2.27) 

( ) ( )( ) ( ){ }( )\
( )\

sign max min ,0m n j m j mj N m n
j N m n

L r L q L q β→ → →∈
∈

⎛ ⎞
≈ × −⎜ ⎟
⎝ ⎠
∏ ,     (2.28) 

where 0 < α < 1 and β > 0. The MS algorithm using (2.27) is the normalized MS 

algorithm, while the MS algorithm employing (2.28) is the offset MS algorithm. Both 

algorithms with fixed α and β can get remarkable improvement on error rate 

performance. 

2.2.5 FFT-BP for nonbinary LDPC codes 

For the decoding of nonbinary LDPC codes, the simplified methods we introduced for 

binary LDPC codes do not apply. Since the major complexity of nonbinary LDPC 

decoding is from the checks-to-variables step in (2.20), it is necessary to implement this 

step in a smart way.  

A forward and backward algorithm was proposed in [38] to compute the 

check-to-variable message with lower complexity. First, the forward and backward partial 

sums are define as 

: ( ), 
mn mj j

j j N m j n

h xσ
∈ ≤

= ∑ ,                       (2.29) 

: ( ), 
mn mj j

j j N m j n

h xρ
∈ ≥

= ∑ ,                       (2.30) 
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where hmj is the nonzero element at the m-th row and the j-th column in H. Then the 

distributions of the forward partial sums can be computed by a forward recursion. Given 

that i and j are adjacent indeces in N(m) and j > i, the distribution of σmj can be calculated 

by 

( ) ( )
{ , : }mj

c
mj mi j m

b c h c b a
P a P b qσ σ →

+ =

= = =∑ ,                (2.31) 

where a, b, c א GF(2p). The distributions of the backward partial sums can be computed 

in a similar way. Then the check-to-variable message is computed by 

( ) ( )( 1) ( 1)
{ , : 0}mn

a
m n m n m n

b c b c h a

r P b P cσ ρ→ − +
+ + =

= = =∑ .            (2.32) 

In [42], this forward and backward algorithm has been connected to the BCJR algorithm, 

where check m is looked at as a trellis with 2p states and radix-2p, in which the forward 

and backward partial sums are considered trellis states. 

In [40], Richardson and Urbanke point out that the forward and backward algorithm in 

(2.32) and (2.31) is doing convolutions of a number of distributions, and the convolutions 

can be done in the Fourier transform domain. More clearly, given the distributions pmf 

(Qi) for some random variables Qi over GF(2p), the distribution of the sum of the random 

variables can be computed by 

( )( )pmf IFFT FFT pmfi i
i i

Q Q⎛ ⎞⎛ ⎞ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∏ .               (2.33) 

Note that all random variables in the forward and backward algorithm are over GF(2p). 

So the FFT is not a simple 2p -point Fourier transform but a p-dimensional 2-point FFT 

[42]. In this dissertation, we always use FFT-BP to implement the decoder for nonbinary 

LDPC code, since FFT-BP is especially good for the decoding of high rate LDPC codes. 
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3 Improved Detectors for Nonbinary LDPC Coded PR Channels 

A magnetic recording channel can be modeled as a binary-input PR channel. An LDPC 

coded magnetic recording channel can be soft iteratively decoded, given that the channel 

detector is an SISO detector. Depending on the trade-off between complexity and 

performance, a decision can be made on whether or not to feed the soft output of the LDPC 

decoder back to the channel detector as a priori information. If the channel detector 

performs multiple iterations, this soft-iterative decoding is known as a turbo equalization 

system. 

Two commonly used SISO channel decoders are the BCJR algorithm and SOVA, 

which we have introduced in Chapter 2. The BCJR algorithm is an optimum 

symbol-by-symbol channel detection algorithm. By “symbol” here we refer to data 

symbol in the context of channel signaling, not the code symbol in the context of error 

correction coding. Applied to a binary-input PR channel, the BCJR algorithm becomes an 

optimum bit-by-bit channel detection algorithm, which minimizes the probability of bit 

error. In this situation, we refer to it as the bit-based BCJR algorithm. SOVA is a 

sub-optimum channel detector and also bit-based in the same scenario. 

For a binary LDPC decoder, the input probability information is either bit probabilities 

or LLRs. Using the output of the bit-based BCJR algorithm as the input information for 

the binary LDPC decoder is exactly the correct way to do turbo decoding. However, a 

nonbinary LDPC decoder needs the probabilities of nonbinary symbols in the codeword 

as the soft input. Since the probabilities for each symbol are actually the joint 

probabilities of p consecutive bits, they are usually generated by multiplying the bit 

probabilities at the output of the BCJR algorithm [38], [42]. However, the symbol 
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probability generated by multiplication of bit probabilities is only an approximation, 

which cannot be supported by theory. 

To get accurate probabilities for code symbols, a new channel detector need to be 

employed; we find that the optimal subblock-by-subblock detector (OBBD) proposed in 

[48] does just that. Indeed, Cheng et al. [49] noticed the same problem when they worked 

on soft-decision decoding of RS coded PR channels; they have already applied the 

OBBD in their systems to achieve some performance improvement. The OBBD generates 

the joint probabilities of the data symbols in each subblock. For channels with binary 

signaling, it produces the joint probabilities of consecutive bits, which happen to be the 

symbol probabilities needed in nonbinary soft-iterative decoding. 

However, this approach does not completely solve the problem. The OBBD takes bit 

probabilities as a priori information. If turbo equalization is implemented, all symbol 

probabilities output by the nonbinary LDPC decoder should be converted into bit 

probabilities before they are fed back to the input of the channel detector. Obviously, this 

is another unnecessary approximation. 

In this chapter, we apply the OBBD to nonbinary LDPC coded PMRCs to evaluate the 

gains over those with the standard BCJR algorithm. As we discussed, this architecture is 

appropriate without turbo equalization. Furthermore, we extend the BCJR algorithm, in a 

similar way as the OBBD, to obtain an optimal symbol-by-symbol channel detection 

algorithm whose a priori information input and a posteriori probability output are both 

symbol probability information, and hence allow us to do turbo equalization in an exact 

manner. In addition, the simplifications of the new algorithm on PR channels as well as 

their complexities will also be carefully investigated. 



 

46 
 

Note that, because we are focusing on binary-input PR channels, the term “symbol” 

usually refers to the code symbol and not the data symbol, unless otherwise stated. 

3.1 Application of the OBBD to nonbinary LDPC coded PMRCs 

In [48], Hoeher gives the derivation of the OBBD as well as its simplifications for PR 

channels. Before simulating the read channel, we would like to give the set of equations 

for the OBBD but skip the derivation details. For consistency, we will keep the same 

notation as in the introduction of the BCJR algorithm in Chapter 2, which are different 

from those in [48]. 

Let the PR channel with v bits of memory be represented by a binary-input trellis without 

parallel transitions, with 2v states at each stage. For an input block of N 

bits, 1 1 2( , , )N
Nμ μ μ� "μ , the noisy channel output is 1 1 2( , , )N

Ny y y� "y , and the 

corresponding state sequence of the channel is represented by a finite vector 

0 0 1( , , , )N
Ns s s� "s , where the initial and final states, s0 = S0 and sN = SN, are known. We use 

1
k
k p− +�μ μ  to denote the code symbol input at time k-p+1, which is mapped to the binary 

input sequence from time k–p+1 to time k. Then the probability distribution of a the 

subblock μ  is computed as 

1 1 1 1
1

1
1

1( | ) ( , ) ( , , | ) ( | )
( )

1               ( ) ( , , | ) ( ),
( )

k p

k p

N k p k N
k p k k p k p k kN

s

k
k p k p k k p k p k kN

s

P P s P s s P s
P

s P s s s
P

−

−

−
− − + − +

− − − + −

= ⋅ ⋅

= ⋅ ⋅

∑

∑α β

μ μ

μ

y y y y
y

y
y

        (3.1) 

where ( )k p k ps− −α and ( )k ksβ are the forward and backward state probabilities, 

respectively, which are calculated in the same way as in the standard BCJR algorithm. For 
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PR channels with v bits of memory, (3.1) is further simplified for two distinct cases: p>v 

and p≤v.  

For p>v, 

1 1
1

1( | ) ( ) ( '', , | ) ( ),
( )

N k
k p v k p v k k p v k p v k kNP s P s s s

P − + − + − + + − += ⋅ ⋅α βμ μy y
y

     (3.2) 

where 1'' k
k p v− + +�μ μ .  

For p≤v, 

( 1 )
1

{ | }1

1( | ) ( ) ( ),
( ) v p v

k k

N
k k k kN

s

P s s
P − + → =

= ∑ α β
μ

μ
s

y
y

                 (3.3) 

where ( 1 )v p v
k

− + →s are the latest p bits in the trellis registers at time k. These simplified 

versions of the OBBD expedite the channel detection significantly. 
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Fig. 3.1.  A nonbinary LDPC coded PMR system using OBBD as the channel detector. 

The system diagram of a nonbinary LDPC coded PMRC is shown in Fig. 3.1, where 

the turbo equalization is not implemented, since the OBBD is inappropriate for that, as 

we have discussed. We design a (911, 820) nonbinary LDPC code over GF(25) with rate 

0.90011, using the progressive edge-growth (PEG) algorithm [50]. This LDPC code is 

approximately regular, with constant column weight three and row weights 30 and 31. In 

this system, the additive noise is 10% AWGN and 90% jitter noise power. PR targets are 

optimized at different working SNRs and have a fixed length of four. That means that 

there are always three bit registers in this PR channel, i.e., v = 3. In addition, in order to 
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highlight the performance difference between the OBBD and the standard BCJR 

algorithm, severe intersymbol interference is expected. Therefore, we simulate the read 

channel at a high recording density of 1.3596. The LDPC decoder performs at most 50 

BP iterations. The simulation results are shown in Fig. 3.2, where the OBBD significantly 

improves the SER performance of the PMRC and achieves a SNR gain of more than 0.6 

dB over the standard BCJR algorithm. 
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Fig. 3.2.  Performance of nonbinary LDPC coded PMRCs with different channel 

detectors: BCJR and OBBD. 

3.2 A symbol-based detection algorithm 

Since the PMRCs using the OBBD cannot implement the turbo equalization exactly, it 

is necessary to design a new channel detector to do this job. In this section, we extend the 

BCJR algorithm, in a similar way as the OBBD, to derive a symbol-based channel 
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detection algorithm, which is optimal in the sense of minimizing the probability of code 

symbol errors for nonbinary coded PR channels. 

We follow the consistent notation in this dissertation and give a detailed derivation of 

the proposed algorithm. One of the key points is that the p bits mapped into one symbol 

cannot be treated as independent variables, when we are trying to compute their joint 

probability. We can only assume that each symbol is independent from all others. 

Therefore, the Markov model of the channel encoder can be represented 

as 1
0 1 1( | , ) ( | , )k k

k k kP s P s s−
−=μ μs , which is different from the model used in the original 

BCJR algorithm. 

The symbol a posteriori probability sought is the conditional probability: 

1
1

1

1
1

1
1

( , )
( | )

( )
1               ( , , , )

( )

1               ( , , , ).
( )

k p k

k p
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s s
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s
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−

−

−

=
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∑∑

∑

μ
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μ

μ

y
y

y

y
y

y
y

                  (3.4) 

In (3.4), the double sum becomes a single sum, because there is exactly one stopping 

state ks , given the starting state k ps −  and the input symbol μ . The summation over all 

starting states k ps −  is equivalent to the one over all the stopping states ks . In addition, 

we do not need to consider the term 1( )NP y  which is common for different inputs μ . 

The joint probability in (3.4) can be expressed as 

           
1

1 1 1

1 1 1 1 1

( , , , )

        ( , , , , , )

        ( | , , , , ) ( , , , , )

N
k p k

k p k N
k p k k p k
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P s s
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P s s P s s

−
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1 1 1 1

1 1 1

( 1, )

        ( | ) ( , , | , ) ( , )

        ( | ) ( , , | ) ( , )

        ( ) ( , ) ( ).

N k k p k p
k k k k p k p k p

N k k p
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− −
+ − + − −

−
+ − + − −
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μ

y y y y

y y y          (3.5) 

where ( )k p k psα − − is the forward state probability, ( )k ksβ is the backward state probability, 

and the term ( 1, ) ( , )k p k k p ks s− + −γ μ  is the branch transition probability associated with the 

branch from state k ps −  to state ks  with input μ . Again, we must clarify the concept of 

the Markov model used in the above and following derivations; that is, events after a 

input symbol μ  ( 1
k
k p− +�μ μ ) only depend on the stopping state ks ; we cannot say that 

events after a bit input at time k only depend on the stopping state ks , unless it is the last 

bit in a symbol. 

Let us see how to expand and calculate the forward and backward probabilities as well 

as the branch transition probability in this symbol-based algorithm. Starting with the 

forward probability 
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            (3.6) 

The calculation of the forward probability is recursive and its derivation is similar to that 

of the original BCJR algorithm. However, due to the symbol-based context, the second 
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summation term, which adds up the branch transition probabilities, is only over the 

symbols that connect the starting state k ps −  and the stopping state ks . Similarly, we 

expand the backward probability as 
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The branch transition probabilities can be computed in the same way as in Cheng et al. 

[49], 
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The term ( | , )k k pP s s −μ  is an indicator function, i.e., 

 1,      if  can reach  with input  ;
( | , )

  0,     otherwise.
k p k

k k p

s s
P s s −

−

⎧
= ⎨
⎩

μ
μ             (3.9) 
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The term ( )P μ  is the a priori probability of the symbol μ , and the term 

1( | , , )k
k p k p kP s s− + − μy  is the channel transition probability. For PR channels with additive 

white noise, the channel transition probability of one symbol can be computed by 

multiplying the noise probabilities of all the bits. For the AWGN case, it becomes 

( )

1

1
0

1 2

0
2

( | , , ) ( )

1                               exp ,
22

p
k
k p k p k n k i k i

pp
k i k i
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y x
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− −

= −

⎛ ⎞− −⎛ ⎞ ⎜ ⎟= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∏

∑
σπσ

μy

         (3.10) 

where 1 2( , , , )k p k p kx x x− + − + " are the noise free channel outputs corresponding to the input 

sequence μ . 

The derivation of the symbol-based detection algorithm is now completed. It is worth 

noting that for the first channel iteration, where the a priori probabilities are uniform, this 

symbol-based detection algorithm is equivalent to Hoeher’s OBBD. 

3.3 Simplified symbol-based detection for PR channels 

A binary-input PR channel can be treated as a rate-one non-recursive convolutional 

encoder, whose states are defined by a subsequence of the input bit sequence. Let v 

represent the number of shift registers in this convolutional encoder. Two simplified 

versions of the symbol-based detection algorithm, which we derived in the previous 

section, are derived for the cases where p>v and p≤v. 

3.3.1 Simplified algorithm for p>v 

The summation in the last step in (3.4) can be re-written as 
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where the input sequence μ   is divided into two parts 1' k p v
k p
− +
− +�μ μ  and 1'' k

k p v− + +�μ μ . 

Obviously 'μ  is equivalent to the state at time k-p+v, i.e., k p vs − + . The term ( )k ksβ  is 

the backward probability, which should be computed recursively using the method in 

Section 3.2. The other two terms can be expanded as follows: 
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where ( '' | ')P μ μ  can be computed as 
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= =
μ μ μ

μ μ
μ μ

                       (3.13) 
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The term 1( | , '', )k
k p v k p v kP s s− + + − +y μ  is the channel transition probability of ''μ , the 

subsequence of μ . It can be calculated in the same way as 1( | , , )k
k p k p kP s s− + −y μ  in 

Section 3.2. And 
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where ( )k p k psα − −  is the forward state probability, which can be computed as in the 

original method in Section 3.2. The branch transition probability '
( 1, ) ( , )k k v k k vs s+ + +γ μ  is 

similarly expressed as  
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Note that in the derivation of (3.14), we discarded the summation over 'μ  because 'μ  

is equivalent to the state at time k–p+v, namely, k p vs − + . 
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3.3.2 Simplified algorithm for p≤v 

When the number of shift registers in the encoder is equal or larger than the bit length of 

a symbol, after each p-bit symbol is encoded, the p bits of the symbol are stored in the latest 

updated p bit registers. Fig. 3.3 depicts the encoder state at time k, where ( )i
ks  represents 

the i-th bit register of the state ks . 

 

µk µk-1 …… µk-p+1 µk-p µk-p-1 …… µk-v+1 

( )v
ks  

( 1)v
ks − ( 1)v p

ks − + ( )v p
ks − ( 1)v p

ks − −
 

(1)
ks  

µ 

Bit input 

 
Fig. 3.3.  The encoder state at time k, i.e., ks . There are v bit registers (1 )v

k
→s , in which 

( 1 )v p v
k
− + → =s μ . 

As in (3.4), the probability we want is  

1 1
1

1( | ) ( , ).
( )

N N
NP P

P
=y y

y
μ μ                             

We do not need to consider the term 1( )NP y  which is common for different inputs u . 

The joint probability 1( , )NP yμ  can be expanded as follows: 
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where the joint probability is directly computed as 
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The terms ( )k ksα  and ( )k ksβ  are the forward and backward probabilities in Section 3.2. 

3.4 Complexity analysis 

In this section, we discuss the implementation of three different versions of the 

algorithm and compare their complexity. The symbol-based detection algorithm and its 

two simplified versions need to compute the same forward and backward probabilities, 

given by (3.6) and (3.7) respectively. The algorithm steps are 

1) Compute the channel transition probabilities 1( | , , )k
k p k p kP s s− + −y μ  for all 

symbols in the block. For multiple turbo iterations, the channel transition 

probabilities are calculated only once. 

2) Compute the branch transition probabilities ( 1, ) ( , )k p k k p ks s− + −γ μ  for all symbols 

in the block. They are simply the multiplication of a priori probabilities ( )P μ  

and the channel transition probabilities 1( | , , )k
k p k p kP s s− + −y μ . 

3) Compute the forward and backward probabilities ( )k ksα  and ( )k ksβ  using 

the branch transition probabilities ( 1, ) ( , )k p k k p ks s− + −γ μ . 

After the computation of the forward and backward probabilities, the symbol-based 

detection algorithm and its two simplified versions use different ways to calculate the a 

posteriori probability 1( | )NP yμ . Therefore, for different versions of the algorithm, we will 



 

57 
 

focus on the complexity analysis of the steps following the computation of the forward and 

backward probabilities.  

As the bit-based BCJR, the symbol-based algorithm can be implemented in the log 

domain, where multiplications become additions, divisions become subtractions and 

additions turn into log sum operations, which can be implemented by table lookup. The 

lookup table we are using is the one in [7], where eight positive real numbers divide all 

positive real numbers into nine groups. The steps of a table lookup are: 

1) Compare the two input values. 

2) Get the positive difference by subtracting the smaller number from the larger 

number. 

3) Fit the difference value into one of the nine real number groups.  

4) If the difference value was not fitted into the group containing the largest real 

numbers, the table lookup result is the summation of the larger input number 

and a predefined real number assigned to the particular group. Otherwise, the 

table lookup result is the larger input number. 

Assuming that the difference value would fall into nine groups with the same 

probability, a binary search could be a good choice for implementation of Step 3. Then 

Step 3 could be completed by three comparisons with probability of 7/9 or by four 

comparisons with probability of 2/9. To keep the analysis manageable, we approximate the 

complexity of Step 3 as three comparisons. Step 4 involves an addition with probability of 

8/9; we approximate the complexity of Step 4 as one addition. Therefore, one table lookup 

operation takes about four comparisons, one addition and one subtraction. Addition and 

subtraction have a similar time complexity. Although a real number comparison is usually 
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a little bit slower than an addition, we can reasonably assume that they have similar time 

complexity, especially because the eight numbers in the log sum table have only four 

decimal digits, which makes the comparison faster. (We verified this assumption by testing 

the operation speed on various computers with different processors.) In this section, we 

measure the time complexity of one table lookup operation as x additions, and x = 6 is a 

good approximation.  

3.4.1 Complexity of the symbol-based detection 

According to (3.4) and (3.5), the symbol-based detection algorithm computes the joint 

probability 

1 1

( 1, )

( , ) ( , , , )
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k p
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k p k
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∑β γ α

y y
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            (3.18) 

The encoder has 2v states. At each time k, μ  could be 2p possible symbols. For each 

possible symbol, it takes 12v+  additions and 2 1v −  table lookup operations to compute 

the joint probability in (3.18). 

3.4.2 Complexity of the simplified algorithm for p > v 

This version of the simplified algorithm involves more steps than the original 

symbol-based algorithm. The following new values must be computed in order: 

1) ( ') P μ  

2) 1( | , ', )k p v
k p k p k p vP s s− +
− + − − +y μ   

3) '
( 1, ) ( , )k p k p v k p k p vs s− + − + − − +γ μ  using (3.15) 
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4) ( )k p v k p vsα − + − +   using (3.14) 

5) ( '' | ')P μ μ   using (3.13) 

6) 1( | , '', )k
k p v k p v kP s s− + + − +y μ    

7) 1( '', , | )k
k k p v k p vP s s− + + − +yμ  using (3.12) 

8) 1 1( , ) ( , , , )
k p

N N
k p k

s
P P s s

−

−= ∑y yμ μ  using (3.11). 

For binary-input PR channels with AWGN, the channel transition probabilities 

1( | , ', )k p v
k p k p k p vP s s− +
− + − − +y μ  and 1( | , '', )k

k p v k p v kP s s− + + − +y μ  can be directly obtained during 

the computation of 1( | , , )k
k p k p kP s s− + −y μ  and do not take any additional operations. The 

marginal probabilities ( ')P μ  are calculated from the a priori probabilities ( )P μ , and 

their computation takes 2p-v-1 table lookup operations for each possible sequence of 'μ . 

For all 2p possible symbols of μ , there are totally 2v(2p-v – 1) table lookup operations 

needed.  

The computation of '
( 1, ) ( , )k p k p v k p k p vs s− + − + − − +γ μ  takes only one more addition from 

1( | , ', )k p v
k p k p k p vP s s− +
− + − − +y μ  and ( ')P μ . For all 2p possible symbols of μ , 

'
( 1, ) ( , )k p k p v k p k p vs s− + − + − − +γ μ  has to be calculated for 2v possible sequence of 'μ  and 2v 

states of k ps − , totally 22v additions. 

Then, according to (3.14), the computational complexity of ( )k p v k p vsα − + − +  for all 2v 

states is 22v additions and 2v (2v – 1) table lookup operations. 

For each possible symbol of μ , the computation of ( '' | ')P μ μ  requires one 
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operation in addition to ( ')P μ and ( )P μ ;  1( '', , | )k
k k p v k p vP s s− + + − +yμ  can be obtained with 

one additional operation from ( '' | ')P μ μ  and 1( | , '', )k
k p v k p v kP s s− + + − +y μ . With two more 

operations, 1( , )NP yμ  can be calculated from 1( '', , | )k
k k p v k p vP s s− + + − +yμ , ( )k ksβ  and 

( )k p v k p vsα − + − + . Therefore the total computational complexity for 1( , )NP yμ  is  

( )
( ) ( )

( )

1

2 2

2 1 2 1

( , )   

        4 2 2 1 2 2 2 2 1 2

        4 2 1 2 2 ,

N
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x x

x
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+ − − + −

⎡ ⎤= + − + + + −⎣ ⎦

= + + + −

yμ

 

where C(y) denotes the complexity of computing y. To compare the complexities of the 

original symbol-based algorithm and the first version of the simplified algorithm, we 

investigate their ratio, 

( )
( )

( )
( )

( )
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1

2 1 2 1

:
:

2 2 1
.

4 2 1 2 2

v v

v p v p v p

C Original  algorithm
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C Original  algorithm per possible symbol
     

C Simplified  algorithm  for p>v per possible symbol

x
     

x

+

+ − − + −

=

+ −
=

+ + + −

 

For x = 6, we compute the complexity ratios for different values of v and p in the upper 

right section of Table 3.1. When v = 1, the simplified algorithm requires more operations. 

Large ratios are only observed when v >>1 and p >> v. Given v > 1, p > v and x ≥ 0, it is 

easy to prove that 2v+1 ≥ (4+22v+1-p) and (2v -1) ≥ (1+ 22v-p - 2v+1-p), and hence the 

complexity ratio is greater than one. In other words, this simplification will always 

reduce the complexity as long as v > 1, no matter how one measures the complexity of a 

table lookup operation in terms of additions. However, we see that the simplified 

algorithm does not reduce the complexity significantly, because when we use (3.11) to 
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discard the summation of 1( , , , )N
k p kP s s− yμ  over k ps − , we need to take more steps to 

compute the marginal and conditional probabilities ( ')P μ  and ( '' | ')P μ μ  from ( )P μ  

and hence calculate ( )k p v k p vsα − + − + . 

Table 3.1  Complexity ratios for some values of v and p with x = 6 

p 
v 2 3 4 5 6 7 8 9 10 

1 0.83 0.91 0.95 0.98 0.99 0.993* 0.997* 0.998* 0.999* 

2 26 1.30 1.73 2.08 2.31 2.45 2.52 2.56 2.58 

3 7.25 58 1.61 2.52 3.52 4.38 4.99 5.36 5.57 

4 5.55 15.25 122 1.79 3.13 4.98 7.07 8.95 10.33 

5 5 11.36 31.25 250 1.89 3.52 6.17 9.90 14.18 

6 4.77 10.12 23 63.25 506 1.95 3.75 6.98 12.27 

7 4.67 9.60 20.36 46.27 127.25 1018 1.97 3.87 7.46 

8 4.62 9.37 19.26 40.84 92.82 255.25 2042 1.99 3.93 
* Using higher precision to show more details 

3.4.3 Complexity of the simplified algorithm for p ≤ v 

After the computation of the forward and backward probabilities is completed, only 

two terms need to be computed in order: 

1) 1( , )N
kP s y  using (3.17), and 

2) 1( , )NP yμ  using (3.16). 

The complexity of computing all 2v states of 1( , )N
kP s y  is 2v additions. For each 

possible symbol of μ , another (2v -1) table lookup operations are needed to 

calculate 1( , )NP yμ . 
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Compared to the original symbol-based algorithm, the complexity ratio is 

( )
( )

( )12 2 1
.

2 (2 1)

v v

v p v p

xC Original  algorithm
C Simplified  algorithm for p v x

+

− −

+ −
=
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Similarly, because 2v+1 ≥ 2v-p and (2v – 1) ≥ (2v-p – 1), this ratio is definitely greater 

than one, regardless of the complexity measurement of the table lookup operation. Some 

ratios calculated for x = 6 are posted in the lower left section of Table 3.1, which shows 

that this simplified version of the algorithm does reduce the complexity substantially. 

So far, we have already investigated and compared the complexity of different versions 

of the symbol-based algorithm. However, one might argue that our complexity comparison 

in this section excludes the computation of the forward and backward probabilities, and 

hence might not be meaningful. In fact, we are focusing on the symbol-based algorithm for 

the case of multiple turbo iterations. After the initial run, the channel transition probability 

1( | , , )k
k p k p kP s s− + −y μ  will not be re-computed, which means the computation of the 

forward and backward probabilities will become a small component of the overall 

computation after the second run. This fact makes the approximate analysis in this section 

meaningful. 

3.5 Simulations on PMRCs 

We employ the nonbinary LDPC coded read channel described in Section 3.1, but the 

turbo equalization is implemented in the recording system, as shown in Fig. 3.4. 
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Fig. 3.4.  A nonbinary LDPC coded PMR system with turbo equalization. 

The nonbinary LDPC coded system is simulated with three different channel detectors: 

the original bit-based BCJR algorithm, Hoeher’s OBBD, and the symbol-based algorithm 

derived in this chapter. The nonbinary LDPC BP decoder is set to perform at most 50 

iterations. For comparison, the system is simulated both with and without turbo 

equalization, which is implemented with at most three turbo iterations. As shown in Fig. 

3.5, the symbol-based algorithm provides a considerably large coding gain compared to 

the bit-based BCJR algorithm. The performance of Hoeher’s OBBD and the 

symbol-based algorithm running only once are identical, which verifies that, without 

turbo equalization, Hoeher’s OBBD is theoretically equivalent to our optimal 

symbol-based algorithm. With at most three turbo iterations, Hoeher’s OBBD does not 

improve the performance, while the symbol-based algorithm provides an additional 

coding gain. To further highlight the performance gap between the OBBD and the 

optimal symbol-based algorithm, we can reduce the maximum number of BP iterations 

and allow more channel iterations. Simulation results with at most ten BP iterations and 

six turbo iterations are shown in Fig. 3.6, where the symbol-based algorithm achieves 0.2 

dB gain over the OBBD. 
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Fig. 3.5.  Performance of nonbinary LDPC coded PMRCs with different channel 

detectors and a maximum of 50 BP iterations. 
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Fig. 3.6.  Performance of nonbinary LDPC coded PMRCs with different channel 

detectors and a maximum of 10 BP iterations. 
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4 Improved BP Decoders for LDPC Coded PR Channels 

The parity-check matrix of an LDPC code can be expressed as a factor graph [43], and a 

message passing algorithm, such as the BP algorithm, which finds the marginal 

probabilities of variable nodes on factor graphs, can be used as an efficient decoder for 

LDPC codes. It is well known that BP decoding is not optimal (or exact) unless two 

particular conditions are satisfied. One condition is that the factor graph must be tree-like, 

i.e., cycle-free. Unfortunately, finite length LDPC codes always have cycles on their factor 

graphs, making the messages passed on the graphs dependent on each other, after a few BP 

iterations. A common approach is to eliminate all short cycles plus those cycles that may 

have some harmful properties during code construction.  

The other necessary condition for optimal BP decoding is that the intrinsic information 

[51] of variable nodes should be independent of each other. The intrinsic information is 

called the initial information in [7], and is simply the soft information at the input of the BP 

decoder, which is continuously used in all BP iterations. Sometimes this condition is 

overlooked, and in some situations it may not be an issue. One such example is the LDPC 

coded AWGN channel, yi = xi + ni, with ni ~ N(0,σ2). It is well known that the channel 

messages, in terms of LLRs, Li = 2yi / σ2, are independent of each other. However, this is 

not the case for PR channels; the LLRs output by the channel detector are usually 

correlated, and this has been a source of concern for many years. Evidence to that effect is 

the OBBD we have discussed in Chapter 3, which generates the probability distributions 

for subblocks in the channel sequence. Therefore, for an LDPC coded PR channel, the BP 

decoder is passing correlated messages and becomes suboptimal from the very first 
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iteration, leading to a degradation of its decoding performance. 

One would expect to get some coding gains if we exploit the correlations between 

channel messages during BP decoding. Successful examples of such an approach are the 

use of the OBBD and the new symbol-based BCJR on nonbinary LDPC coded PR 

channels, which we introduced in Chapter 3. Each code symbol in a nonbinary LDPC 

codeword corresponds to a subblock of the binary channel sequence. The channel detector 

provides the probability distributions of code symbols for the nonbinary BP decoding, 

where bits in the same code symbol are always considered statistically correlated. 

However, bits in different code symbols are still assumed to be independent, which is not 

actually true. 

In this chapter, we introduce an improved BP (IBP) decoder to take into account the 

correlations between channel messages inspired by the coded modulation BP (CMBP) 

algorithm proposed in [52]. The CMBP algorithm is designed for an LDPC coded discrete 

memoryless channel (DMC) with a multilevel modulated signal (MMS). The nature of this 

channel makes the bits in the LDPC codewords independent, unless they are related to the 

same modulated channel symbol. One may argue that it would be better to code this 

channel with a nonbinary LDPC code, whose code symbol has the same size as the 

modulated channel symbol, but that is not the focus of this work. From our perspective, the 

most interesting part of the CMBP algorithm is that it modifies the binary BP algorithm to 

utilize the dependence between channel messages. We find that a similar idea can be used 

on PR channels where the channel messages are also correlated but not separated by code 

or modulation symbols. 

This chapter is organized as follows. In Section 4.1, we give a complete derivation of the 
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IBP decoder for binary LDPC coded PR channels. In Section 4.2, we apply the IBP 

decoder to an ideal PR channel, and investigate the relationship between the performance 

of the IBP decoder and the correlations among channel messages. In Section 4.3, we 

consider the application of the IBP decoder to PMRCs. In Section 4.4, we further extend 

the IBP algorithm to the decoding of nonbinary LDPC codes. In Section 4.5, we evaluate 

the performance of the improved nonbinary BP decoding on PMRCs. In Section 4.6, we 

investigate the implementation of turbo equalization for the IBP decoder, and we conclude 

this chapter with a discussion of the results in Section 4.7.   

4.1 Improved BP decoding 

Consider a block of N bits, 1 1 2( , , )N
N� "μ μ μμ , transmitted through a PR channel and 

the observed noisy channel output, 1 1 2( , , )N
Ny y y� "y . In order to get the minimum bit 

error rate, we use the BCJR algorithm as the channel detector. At the detector output, we 

obtain a sequence of soft channel messages (LLRs), 1 1 2( , , )N
NL L L� "L , corresponding to 

the bits in the input block. We assume that any pair of channel messages has a strong 

dependence only if they are within a relatively small distance; in other words, the 

dependence between channel messages vanishes, as they get far apart. This assumption is 

intuitively reasonable and will be validated in Section 4.2.  

Given that the channel input sequence is LDPC coded, when the LDPC decoder is 

handling a channel message Li, it is expected to consider the dependence of Li on the c 

channel messages before Li and the ac channel messages after Li, as shown in Fig. 4.1, 

where c stands for the causal length and ac for the anti-causal length. In other words, when 

the LDPC decoder is processing a channel message (except the ones near the block 
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boundary), there will be p = c+ac+1 channel messages considered at the same time. The 

dependence among the p consecutive channel messages will be used in LDPC decoding, in 

terms of the joint probability distribution of the corresponding p bits in the transmitted 

sequence. 

L1 … L1+ac … Li-c Li-c+1 … Li Li+1 … Li+ac Li+ac+1 … LN-c … LN

p LLRs for Li

p LLRs for Li+1 

ac+1 LLRs for L1 c+1 LLRs for LN
 

Fig. 4.1.  Dependence between channel messages (LLRs) is expressed as the joint 

distribution of p consecutive bits, i.e., the distribution of p-bit subblocks. These 

subblocks overlap and become shorter near the channel block boundaries. 

4.1.1 Improved BP algorithm for PR channels 

The IBP algorithm is essentially based on the same idea as the CMBP algorithm in [52], 

except that we always consider a channel message correlated with the ones before and after 

it, not just in the same modulation symbol. We also provide a detailed analysis and 

derivation, which clarifies the assumptions and approximations, used in the algorithm and 

make the later extension to the nonbinary BP decoder straightforward. 

Let 1
k
k p− +�μ μ  be the channel input subblock from time k–p+1 to time k, where the 

corresponding channel messages at the output of the channel detector are assumed to be 

dependent on each other. For convenience, we further use i
k p i− +� μμ  with { }1, ,i p∈ "  

to denote the bits in μ , and let ( )iμ stand for all bits in μ  except iμ . We are interested 

in the a posteriori probability (APP) for the particular bit 1c+μ : P( 1c+μ | 1
Ny , H), where H is 
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the parity-check matrix of the LDPC code. However, it is not easy to compute such APP 

for any bit conditioned on the whole parity-check matrix H; actually, BP is a way to get an 

approximation on such APP with the assumption that channel messages are independent. 

To make things easier but keep the channel message dependence within μ , we compute 

the APP P( 1c+μ | 1
Ny , z = 0) at each BP iteration, where z represents all parity-checks 

corresponding to the subblock μ , and zi denotes the parity-checks related to the bit iμ . 

Then this APP can be expanded as follows, 
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 (4.1) 

where ( )| 0i iP =μ z  is the APP for bit iμ computed in one BP iteration. Note that 

( ) ( )1
| 0 | 0p i i

i
P P

=
= = =∏μ μz z  is only true for the LDPC codes with tree-like graphs; 

but it is a good approximation given that there is no cycle-4 on the sub-graph 

corresponding to the subblock μ . During the derivation of (4.1), we made use of the 
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independence between 1
Ny  and z. In addition, we assume ( )p μ  to be uniformly 

distributed. Then the a posteriori LLR message for bit 1c+μ  can be expressed as 
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(4.2) 

where 1( )cL +μ � log [P( 1c+μ =0| 1
Ny )/P( 1c+μ =1| 1

Ny )]=Lk-p+c+1 is the channel message 

computed by the channel detector. 1( )cU +μ � log [P( 1c+μ =0| zc+1 = 0)/P( 1c+μ =1| z c+1 = 0)] 

= 1
1

( )
( )c

c
i N

U i+
+

∈
→∑ μ

μ , where 

( )
( ) 1

1 1

\

( ) 2 tanh tanh ( ) / 2
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U i V l i
+

+ −

∈
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→ ⋅ →⎜ ⎟⎜ ⎟

⎝ ⎠
∏�

μ

μ                  (4.3) 

is the information passed from check i to bit 1c+μ , and V(l→i) is the information sent from 
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bit l to check i. For l = 1c+μ , we have 

1 1 1( ) ( ) ( )c c cV i V U i+ + +→ − →�μ μ μ .                         (4.4) 

Note that, for convenience, we are abusing the bit index notation, i.e., “bit 1c+μ ” 

represents the same bit as “bit k−p+c+1”. As in the CMBP algorithm, the check-to-bit 

information here is computed in the same way as in the BP algorithm, while the 

dependence between channel messages is considered in the bit-to-check information. 

Clearly, if all channel messages are independent of each other, the first term in (4.2) is 

equal to zero and the iterative algorithm defaults to the original BP algorithm. 

The factorization in (4.2) is useful to understand the main idea of the IBP algorithm, but 

it is not computationally efficient. We note that ( )1, 1
| 0p j j

j j c
P

= ≠ +
= =∏ μ z  

( )( )1, 1
exp 1 ( )p j j

j j c
U

= ≠ +
−∑ αμ μ , where { }1, 1

1 exp ( )p j
j j c

U
= ≠ +

⎡ ⎤= + ⎣ ⎦∏α u   is 

independent of the sum over ( 1)c+μ . Given that the OBBD provides the 

distributions ( )1| NP μ y , the a posteriori LLR message of (4.2) can be more efficiently 

computed as 

( )
( ) ( )

( ) ( )

( 1)

( 1)

( 1) 1
1

1, 11 1

( 1) 1
1

1, 1

, 0 | exp 1 ( )
log ( ).

, 1| exp 1 ( )

c

c

p
c c N j j

j j cc c

p
c c N j j

j j c

P U
V U

P U

+

+

+ +

= ≠ ++ +

+ +

= ≠ +

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦= +
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑

μ

μ

μ μ μ μ
μ μ

μ μ μ μ

y

y
 (4.5)  

4.1.2 Channel detector for IBP 

In order to execute the IBP decoding algorithm, the channel detector must compute the 

distributions ( )1| NP μ y . Actually, the OBBD proposed in [48] does just that. Note that in 
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Chapter 3, the OBBD was used on nonbinary LDPC coded PR channels to generate 

probability distributions for separate subblocks; but for IBP, we want the probability 

distributions for overlapped subblocks. For example, for an N-bit channel block, 

probability distributions for at least N–p+1 overlapped subblocks will be computed, as 

shown in Fig. 4.1. (We may need additional probability distributions at block boundaries.) 

No matter what kind of distribution we want, for separate subblocks or for overlapped 

subblocks, its computation for a particular subblock is the same. One thing which needs 

to be pointed out is that the OBBD also needs to generate the LLR for each bit as in the 

original BCJR algorithm, because the IBP algorithm uses the channel message Ll to 

initialize the bit-to-check information V(l→i). 

4.1.3 Boundary management 

In the derivation of the IBP algorithm, we assume a channel message to be correlated 

with c + ac = p – 1 channel messages around it. Since the LDPC coded channel block is of 

finite length, the channel messages near the block boundaries may be dependent on fewer 

than p-1 other messages, as shown in Fig. 4.1. At the left boundary, Li with i<c only 

depends on {L1, …, Li-1} and {Li+1, …, Li+ac}. Similarly, at the right boundary, Li with 

i>N–ac only depends on {Li-c, …, Li-1} and {Li+1, …, LN}. We manage the OBBD to 

generate probabilities for superposed subblocks with lengths from ac + 1 to p at the left 

boundary and with lengths from p to c+1 at the right boundary. Meanwhile, the IBP 

iteration is modified to take fewer channel messages into account at the block boundaries, 

during the computation of (4.2). The modification is straightforward.  
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4.2 LDPC coded PR channel 

We design an LDPC code using the PEG algorithm [50]; the null space of a 456 by 4551 

parity-check matrix, with a constant column weight of four, gives a (4551, 4096) LDPC 

code. The code rate is around 0.9. The reason for choosing an LDPC code with such a high 

rate is that we are considering applying the IBP decoding to equalized PMRCs in the next 

section; for consistency, we will use the same LDPC code on both PR channels and 

PMRCs. We use a very simple detection and decoding architecture: for each sector, the 

channel detector runs only once, then the BP or IBP decoders operate on the information 

sent from the detector; no information is fed back to the channel detector. 

As mentioned at the beginning of this chapter, the channel messages for the PR channel 

are not independent. To investigate the dependence among them, we simulate the channel 

and estimate the autocorrelation sequence of the LLRs at the BCJR detector output, where 

the implicit assumption is that the blocks of channel messages are wide-sense stationary 

random sequences. However, we are not interested in proving the validity of the 

stationarity assumption. Our experiments will show whether the autocorrelation sequence 

is a valid indicator of the dependence between channel messages. 

We consider as an example the EPR4 channel with integer coefficients 1+D-D2-D3 on 

AWGN. This PR channel used to be one of the common equalization targets for 

longitudinal magnetic recording channels. The SNR is defined by SNR=∑k fk
2/σ2, where 

{fk} are the coefficients of the channel response and σ2 is the variance of the AWGN. The 

channel input bits are modulated as NRZ signals before transmission. For the LDPC coded 

EPR4 channel, we draw the autocorrelation sequences of the channel messages generated 

by the BCJR detector in Fig. 4.2. 
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Fig. 4.2.  Normalized autocorrelation sequences of channel messages for the LDPC 

coded EPR4 channel. 

We can see that the correlation between two channel messages is only significant within 

a small range; it vanishes with increasing time lag. This fact validates the assumption used 

in the derivation of the IBP algorithm. In addition, it is intuitive that the correlations are 

smaller for channel messages observed at higher SNRs; on a noise-free channel, the BCJR 

detector will give a white sequence of LLRs which are either negative infinity or infinity. 

We apply the IBP decoder with at most fifty iterations to an LDPC coded EPR4 channel 

with the expectation of getting better performance from the utilization of the correlations 

among channel messages. However, it is important to choose appropriate values for c and 

ac in the IBP algorithm. Since p=c+ac+1 determines the complexity of both the IBP 

decoder and the OBBD channel detector, we seek good performance with a relatively small 

p. Therefore, we design an experiment to test the performance of the IBP decoding with 



 

75 
 

different choices of p and c. As shown in Fig. 4.3, the channel is simulated at an SNR of 8.6 

dB, with p varying from 1 to 7 and c from 0 to p-1. Note that, for p=1, IBP decoding is the 

original BP algorithm. As expected, we always have a chance to get better performance 

with larger p. Note that for a given p the performance curve is symmetric, i.e., IBP 

decoders with c=i and c=p-i-1, with 0≤i<p give almost the same performance, which 

means that a channel message has the same correlation with messages at the same distance. 
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Fig. 4.3.  Performance test of LDPC coded and IBP decoded EPR4 channel. 

The non-monotonic performance behavior for different values of c with a given p is quite 

interesting, and can be explained by the autocorrelation sequence of the channel messages. 

For example, for p=3, we get much worse performance with c=1 than with c=0 or c=2. 

From Fig. 4.2, we can see that at SNR=8.6 dB, |R(2)|>|R(1)|, which means that a channel 

message has a weaker dependence on its adjacent messages than on the ones two bit 

intervals away from it. Therefore, for the IBP decoders with p=3, choosing c=0 or c=2 can 
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help the decoding algorithm take into account the more dependent channel messages, and 

hence achieve better performance. Another example is that for p=7, c=3 we get slightly 

worse performance than for c=2 or c=4, because |R(4)|>|R(3)|. Performance curves for 

other values of p can be explained similarly. Furthermore, it is intuitive that, in order to get 

good performance, it is necessary to let the sliding window of a channel message include 

the messages that have the strongest correlations. In Fig. 4.3, with p varying from 1 to 7, 

the largest performance improvements occur at p=3 with c=0 or c=2 as well as p=5 with 

c=2, since |R(2)|>|R(τ)| for all τ>0 and τ≠2. Finally, we plot the performance curves for the 

best choice for each value of p, in terms of sector (block) error rate (SER) in Fig. 4.4, and 

show that the IBP decoding provides gains as large as 0.7 dB over the original BP 

decoding. (We measure the performance gains at the SER of 10-5.) 
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Fig. 4.4.  Performance of LDPC coded and IBP decoded EPR4 channel. 
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Before we conclude this section, we would like to point out that we find the correlations 

among channel messages to be closely related to the response of the PR channel. Since 

equalized PMRCs have optimized generalized PR (GPR) targets with real coefficients and 

the magnitudes of the target responses usually decay with time, we consider another ideal 

GPR4 channel with a response 1+0.5D+0.2D2+0.05D3, which is assumed to be coded by 

the same LDPC code used for the EPR4 channel. We show the normalized autocorrelation 

sequences of the channel messages for the GPR4 channel in Fig. 4.5. For τ≤4, larger values 

of τ have weaker correlation, which means that the best performance of IBP decoding for a 

given p will always occur with c = ( )1 / 2p −⎢ ⎥⎣ ⎦ . We will not present performance results for 

the GPR4 channel here, because similar results are given in the next section. 
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Fig. 4.5.  Normalized autocorrelation sequences of channel messages for the LDPC 

coded GPR4 channel. 
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4.3 LDPC coded PMRCs 

In this section, we consider the application of IBP decoding to equalized PMRCs, coded 

with the same PEG-designed LDPC code as in Section 4.2. We use a mix of 90% jitter 

noise power and 10% electronics noise power in all simulations. This channel is equalized 

to optimized GPR4 targets. A low user density Du = 0.8741 and a high user density Du = 

1.2238 will be considered in this chapter. 

In this section, we are still using a simple detection and decoding architecture, in which 

there is no feedback from the LDPC decoder to the input of the channel detector, and we 

perform at most fifty BP or IBP iterations. As we did in Section 4.2, the autocorrelation 

sequences of the channel messages for both user densities are estimated first and drawn in 

Fig. 4.6. At SNR=4.5 dB for Du = 0.8741 and SNR=8.8 dB for Du = 1.2238 the 

performance of the traditional BP decoding is in the waterfall region. We will also test the 

performance results at these SNRs, later. In the relevant range (τ≤4) of Fig. 4.6, both 

autocorrelation sequences have decaying magnitude, which means c = ( )1 / 2p −⎢ ⎥⎣ ⎦ will 

always be the best choice for a given p. In addition, the channel messages on the channel 

with lower user density have relatively weaker correlations. Note that the PMRCs will 

never be perfectly equalized; at higher user density, the larger equalization error and 

stronger correlated and data dependent noise cause more severe intersymbol interference 

(ISI). It is reasonable that higher ISI lead to stronger correlations among channel messages. 

We test the performance of the channel with Du = 0.8741 at SNR=4.5 dB and show the 

results in Fig. 4.7. Since |R(τ)| with τ ≥2 in Fig. 4.6 is very small, for p=5 and c=2 and for 

larger values of p we only get marginal performance improvements and hence p=3 and 

c=1 is an appropriate choice for good performance and low complexity. We show the 
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Fig. 4.6.  Normalized autocorrelation sequences of channel messages for LDPC coded 

PMRCs. 
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Fig. 4.7.  Performance test of LDPC coded and IBP decoded PMRCs with Du=0.8741, at 

SNR=4.5dB. 
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performance of IBP decoding with p=2 and c=1, p=3 and c=1, p=5 and c=2, and p=7 and 

c=3 in Fig. 4.8, where the largest gain over BP is about 0.18 dB. Compared with the 

simulation for the EPR4 channel, it is clear that IBP decoding cannot provide large gains 

with weakly correlated channel messages. 

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
10-6

10-5

10
-4

10-3

10-2

10
-1

100

SNR

S
E

R

BP
p2c1
p3c1
p5c2
p7c3

 

Fig. 4.8.  Performance of LDPC coded and IBP decoded PMRCs with Du = 0.8741. 

For the PMRC with Du = 1.2238, we do the performance test at SNR=8.8 dB and show 

the results in Fig. 4.9, where the relationship between the autocorrelation of channel 

messages and the performance of IBP decoding is verified once again. We show the 

performance of IBP decoding with p=2 and c=1, p=3 and c=1, p=5 and c=2, and p=7 and 

c=3 in Fig. 4.10, and IBP decoding provides gains as large as 0.6 dB over BP decoding. 

Our understanding is that high correlations among channel messages due to higher user 

density make it possible for IBP decoding to provide larger gains. 
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Fig. 4.9.  Performance test of LDPC coded and IBP decoded PMRCs with Du=1.2238, at 

SNR=8.8 dB. 
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Fig. 4.10.  Performance of LDPC coded and IBP decoded PMRCs with Du = 1.2238. 
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4.4 Improved nonbinary BP decoding 

It is well known that nonbinary LDPC coded channels can outperform binary LDPC 

coded channels [38], especially for those with severe ISI [53], [54]. We expect to get 

additional gains by extending the IBP technique to nonbinary BP decoding. 

4.4.1 Improved nonbinary BP algorithm for PR channels 

Consider a binary-input PR channel, where the channel inputs are nonbinary LDPC 

codewords. Given that the nonbinary LDPC code is over GF(q) with q=2p, each code 

symbol consists of p consecutive bits; and each N-bit-long codeword contains Ns=N/p code 

symbols, which are denoted by 1
SNx � (x1, …, xNs), where xn= ( 1) 1

np
n p− +μ . The channel 

message for the code symbol xn is represented by ( )Ch
nq , which is a probability distribution 

of xn. As in the binary case, we assume that the channel message for a code symbol is 

correlated with the c' messages before it and the ac' messages after it, and hence there are 

p'=c'+ac'+1 channel messages considered at the same time. Let x '
'

n ac
n c
+
−� x  denote the p' 

code symbols in the sliding window for xn, xi� xn-c'+i with i א{0, …, p'-1} be the i-th symbol 

in x, and x(i) represent all symbols in x except xi. We use zm to represent the m-th 

parity-check in the parity-check matrix and z to stand for all parity-checks related to the 

symbol subblock x. In addition, zi denotes the parity-checks related to the code symbol xi. 

In the nonbinary BP algorithm [38], rm→n is the probability distribution sent from check m 

to symbol n, and qn→m is the probability distribution sent from symbol n to check m. 

Particularly, a
m nr →  and a

n mq →  are the probabilities for xn = a , with a א GF(q), in the 

distributions rm→n and qn→m, respectively. 
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Since the nonbinary BP algorithm is a generalization of the binary case, it is sometimes 

called q-ary BP (QBP) decoding, which becomes binary BP with q=2. Similarly, the 

improved nonbinary BP decoding can be also called “improved q-ary BP (IQBP) 

decoding”.  

In the initialization step of the IQBP decoding, we set qn→m = ( )Ch
nq for all n. Then the 

row step is identical to the row step of the QBP algorithm: 

( )
{ }1

1
( )\|

0 | , GF( ).js

Ns
n

xNa
m n m j m

j N m nx a

r P z q a q→ →
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x

x              (4.6) 

In this chapter, we implement the row step using a fast Fourier transform (FFT) [39], [40]. 

In the column step, the APP distribution of symbol n is computed in a similar way as in 

(4.2): 
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where P(x) is always assumed to be uniformly distributed; the distribution P(xn | 'cz = 0) is 

calculated as 

( )'

( )

| 0 , GF( ).c a
n n j n

j N n

P x a r a q→
∈

= = = ∀ ∈∏αz                   (4.8) 

Similarly, P(xi
 | iz = 0) is calculated as 

( ) ( ' ) '
( ' )

| 0 , GF( ).i i a
n c i j n c i

j N n c i

P a r a q− + → − +
∈ − +

= = = ∀ ∈∏αx z            (4.9) 

Finally, the probability distribution sent from symbol n to check m is computed by 
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, GF( ).a a a
n m nm n m nq q r a q→ →= ∀ ∈α                         (4.10) 

Note that, in (4.8) - (4.10), αn, αn-c'+1 and αnm are normalization factors. Equation (4.10) is 

conceptually correct, but divided-by-zero errors may occur during the computation of 

qn→m. In our implementation, we actually calculate the distribution qn→m by an alternate 

way, which is  
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               (4.11) 

where the summation part is exactly the same as the one in (4.7) and does not need to be 

re-computed. 

4.4.2 Channel detector for IQBP 

Since the OBBD cannot work with the IQBP decoder, we need to modify the original 

OBBD to get a new detector. On the one hand, the APP distributions ( )Ch
nq  need to be 

generated by the channel detector. We can manage the OBBD in the same way as in [53], 

where the probability distributions of non-overlapped p-bit-long subblocks are computed 

by the detector. On the other hand, we also need P(x | 1
Ny ) in (4.7), which actually are the 

APP distributions of overlapped (p·p')-bit-long subblocks, where the sliding window 

moves forward in p-bit (one code symbol) steps. Meanwhile, the channel detector will not 

output the bit LLRs, because they are not needed in the IQBP algorithm. These 

modifications of the OBBD are straightforward; for any particular subblock, the 

probability distribution can still be computed by (3.1), (3.2) and (3.3).  
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4.4.3 Boundary Management 

At block boundaries, we manage the channel detector and IQBP decoder in a similar way 

as in Section 4.1. The channel detector generates probabilities for superposed subblocks 

covering from ac' to p' code symbols on the left boundary, and covering p' to c' code 

symbols on the right boundary. The IQBP decoder is also modified to take fewer channel 

messages into account at the block boundaries, during the computation of (4.7).   

4.5 Nonbinary LDPC coded PMRCs 

In this section, we evaluate the performance of IQBP decoding on nonbinary LDPC 

coded PMRCs, and compare the performance of IBP with conventional nonbinary BP 

decoding, where we still run the channel detector only once for each sector and perform at 

most fifty QBP or IQBP iterations. 

We design a nonbinary LDPC code using the PEG construction method; the null space 

of a 114 by 1138 parity-check matrix over GF(16), with a constant column weight of three, 

gives a (1138, 1024) nonbinary LDPC code. Each nonbinary LDPC codeword encodes 

4096 user bits, as in the binary LDPC code in Section 4.2, and both codes have similar code 

rate. 

Before we simulate the IQBP decoder on PMRCs, the decoder parameters p' and c' need 

to be carefully determined by analyzing the dependence between channel messages, as we 

did in Sections 4.2 and 4.3. However, the channel messages for IQBP decoding are 

probability distributions, and their correlations cannot be measured by a simple 

autocorrelation sequence. Fortunately, the channels investigated in this paper have binary 

inputs. No matter how the channel is encoded, the bit LLRs can always be utilized to 
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investigate the correlations among channel messages. Keeping in mind that a code symbol 

corresponds to p consecutive bits, if an LLR is strongly dependent on the l LLRs 

immediately before it and the l LLRs immediately after it, then a code symbol is also 

strongly dependent on the l LLRs before the symbol and the l LLRs after the symbol. 

Therefore, c'= ac'= /l p⎡ ⎤⎢ ⎥  is enough for the IQBP decoder to cover all significantly 

dependent channel messages.  

As in Section 4.3, we consider two nonbinary LDPC coded PMRCs with Du = 0.8741 

and Du = 1.2238, respectively. From Fig. 4.6, we find that l = 4 is enough to cover the most 

significant LLRs for both PMRCs. Given that the nonbinary LDPC code is over GF(16), 

i.e., p=4, c'= ac'=1 is sufficient for the IQBP decoder. Actually, for complexity reasons, 

p'=3 is the largest value we can use in our simulations. We show the simulation results in 

Figs. 4.11 and 4.12, and observe additional gains. Again, it is clear that the small gain for 

the low density channel is due to the weaker dependence between channel messages. For 

the high density channel, the gain over QBP is larger than 0.1 dB, which is a small gain but 

still significant, because it is very difficult to get gains over nonbinary LDPC coded and 

QBP decoded PMRCs. In addition, the performance of binary LDPC coded PMRCs with 

IBP decoders is very close to that of nonbinary LDPC coded and QBP decoded PMRCs. 

This shows that, for perpendicular magnetic recording, the error correction capability of 

binary LDPC codes is comparable to that of nonbinary LDPC codes. 
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Fig. 4.11.  Performance of nonbinary LDPC coded and IQBP decoded PMRCs with Du = 

0.8741. 
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Fig. 4.12.  Performance of nonbinary LDPC coded and IQBP decoded PMRCs with Du 

= 1.2238. 
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4.6 Turbo equalization 

So far, we have shown that the improved BP decoding outperforms the original BP 

decoding when the channel detector is used only once. However, it is well known that the 

decoding performance of LDPC coded channels can be improved by turbo equalization, 

which performs multiple channel iterations (or turbo iterations) by feeding the extrinsic 

information generated by the LDPC decoder back to the input of the channel detector. It is 

interesting to compare the performance of BP and IBP algorithms with turbo equalization. 

In this chapter, we will limit the investigation of turbo equalization to binary LDPC coded 

channels. 

For the original BP decoding, the implementation of turbo equalization is easy. Since 

the messages transferred between the BCJR channel detector and BP decoder are LLRs for 

bits, the extrinsic information is obtained simply by subtracting the a priori LLRs from the 

a posteriori LLRs. However, for IBP decoding, it is a bit more complicated. The OBBD 

channel detector takes in LLRs for bits, but outputs both bit-LLRs and probability 

distributions for overlapped subblocks. The extrinsic bit-LLRs could be computed as 

usual; but we need to carefully consider the calculation of the extrinsic information for 

subblocks. A straightforward way is subtracting (in the logarithm domain) the a priori 

distributions of subblocks from the a posteriori distributions, where the a priori 

distributions of subblocks could be computed from the LLRs at the input of the OBBD. We 

show the diagram of such a turbo equalization method in Fig. 4.13(a).  

This equalization method looks good but it has a subtle problem. Due to the nature of the 

detection on the trellis, the OBBD generates consistent soft information, i.e., the bit 

probabilities are equal to the probabilities marginalized from the distributions of  
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(b) Compute extrinsic information for bits by marginalization. 

Fig. 4.13.  Skewed turbo equalizations for IBP decoding. 

corresponding subblocks. In other words, the APPs of the channel detector are always 

consistent. However, when we subtract the a priori information from the APPs as in Fig. 

4.13 (a), the consistency is broken; the extrinsic information for bits is different from that 

marginalized from the extrinsic information of subblocks. The theoretical proof of this 

inconsistency is straightforward, and we have a skewed turbo equalization method.  

One may want to solve the inconsistency problem in such a way that the extrinsic 

information for bits is marginalized from the extrinsic information of subblocks, while the 

bit LLRs given by OBBD are discarded, as shown in Fig. 4.13(b). However, since the 

subblocks are overlapped, it is easy to prove that soft information on a given bit, 

marginalized from different subblocks will not necessarily be the same. Therefore, this 

turbo equalization is still a skewed one and more complicated than the turbo equalization in 



 

90 
 

Fig. 4.13(a) due to the extra marginalization step. We will use the skewed turbo 

equalization in Fig. 4.13(a), even though we cannot measure the impact of the 

inconsistency.  

A couple of iterative schemes for both BP and IBP decoding are tested on the PMRC 

with Du = 1.2238. For the standard BP decoding, we use ten BP (local) iterations, which is 

a typical choice, but we find that more turbo (global) iterations continually improve 

performance. We show the SER for BP decoding with at most 6, 8 and 10 turbo iterations 

in Fig. 4.14, where we achieve a gain of more than 0.5 dB over BP decoding with at most 

50 BP iterations, but without turbo equalization. We observe that more than ten turbo 

iterations give further but marginal performance improvement. For IBP decoding, the 

reference curve is the one for p=5 and c=2, with fifty IBP (local) iterations and without 

turbo equalization, which we have shown in Section 4.3. The performance with at most ten 

turbo iterations and ten local iterations is worse than IBP decoding without turbo 

equalization, which means that the turbo iterations are not as helpful as in standard BP 

decoding. We then increase the number of local iterations from ten to fifty, and test the 

performance with at most three and five turbo iterations. From Fig. 4.14, we see that these 

two iterative schemes have almost the same performance, and give only a small gain over 

the reference IBP decoder. It is clear that the (skewed) turbo equalization for IBP works, 

but it cannot provide significant additional gains. An interesting observation is that 

standard BP decoding with turbo equalization achieves a comparable performance to IBP 

decoding. 
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Fig. 4.14.  Performance of turbo equalized BP and IBP decoding on a PMRC with Du = 

1.2238. Note that the curves for p5c2-T3IBP50 and p5c2-T5IBP50 almost overlap and 

are not distinguishable. 

We also implement the turbo equalization for a PMRC with Du = 0.8471, and present the 

results in Fig. 4.15, where the turbo equalization provides a small performance 

improvement for both BP and IBP decoding.  

Given two methods with comparable performance, the choice will hinge on complexity. 

However, since soft iterative decoding is a dynamic process (the actual number of 

iterations is random), and different implementations of the same algorithm will give 

distinct complexities, we will not provide an operation count for the algorithms. Instead, 

we use a simple analysis to highlight the complexity difference between BP and IBP 

decoding. The standard BCJR algorithm and the OBBD perform the same computation of 

the channel metric, forward and backward recursions, and the output LLRs for bits. But the 
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OBBD needs to calculate the probability distributions for overlapped subblocks, whose 

complexity increases exponentially with the subblock length p, in terms of both 

computational time (time complexity) and memory usage (space complexity). Similarly, 

the IBP decoding algorithm does the same check-to-bit step as in BP, but a far more 

complicated bit-to-check step, whose time and space complexities also increase 

exponentially with the subblock length p. For standard BP, additional turbo iterations may 

increase the time complexity but it still has an advantage in terms of space complexity over 

IBP decoding. 
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Fig. 4.15.  Performance of turbo equalizations of BP and IBP decoding on the PMRC 

with Du = 0.8471. 

Finally, we would like to give some quick guidance on the time complexity of BP and 

IBP decoding. All of our simulations run on the same type of platform. By measuring the 

running speed (blocks per second) of BP and IBP on a PMRC with Du = 1.2238, we find 
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that, at SNR = 9.1dB, the BP decoded channel with at most ten turbo iterations (T10BP10) 

is 35% faster than IBP with p=5 and c=2, but without turbo equalization. As another 

example, note that from Figs. 4.10 and 4.14, the performance of IBP decoding with p=3 

and c=1 is slightly better than BP decoding with at most six turbo iterations (T6BP10). At 

SNR = 9.2dB, we observe that the IBP decoded channel is 11% faster. 

4.7 Discussion 

Without turbo equalization, IBP decoding exhibits significant performance gains over 

the standard BP decoding. Our channel detectors are implemented using BCJR-based 

forward and backward algorithms, but other detectors with lower complexity could be 

considered, such as the SOVA and the forward maximum a posteriori probability 

(forward-MAP) algorithms proposed in [55]. The IBP decoders are capable of providing 

gains over the standard BP decoder even with these simpler channel detectors, given that 

the channel messages generated by these detectors are always correlated. In addition, the 

IBP decoding is also expected to work with noise-predictive detectors [56], [57], although 

we did not include it in this work. The noise-prediction whitens the noise at the receiver, 

but the channel messages are still severely correlated. The investigation on the EPR4 

channel with AWGN in Section 4.2 backs up this assertion. 

Turbo iterations substantially improve the performance of BP decoding making it 

comparable to IBP decoding, but do not help significantly the IBP decoder. Generally 

speaking, turbo equalization is a method to iteratively get more information from the 

channel detector for the benefit of the LDPC decoder. Since, with turbo equalization, IBP 

and BP decoding exhibit comparable performance, it appears that the role of the turbo 
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iterations might be to extract information about the correlations among channel messages. 

If this is the case, then the IBP decoder provides an alternative way of harvesting the 

performance gain, which was previously done by turbo equalization of the standard BP 

decoder. 

 



 

95 
 

5 Constructing LDPC Codes for Magnetic Recording with Fewer 

Short Cycles 

BP decoding of LDPC codes has been shown to provide excellent performance on a 

wide variety of channels. Although the presence of cycles on the factor graphs [43] of 

LDPC codes makes the BP decoder sub-optimal, it is believed that shorter cycles are more 

harmful than longer ones. The shortest cycles defined on the graphs of LDPC codes are of 

length four, hereby referred to as cycle-4’s, which have been avoided in all known code 

construction techniques. Furthermore, since the largest number of independent BP 

iterations is limited by the girth of the LDPC code [34], [50], it is desirable to construct 

LDPC codes with girths as large as possible [50], [58], not just free of cycle-4’s, where the 

girth of an LDPC code is defined as the length of the shortest cycle on its graph. 

The length of LDPC codes designed for magnetic recording matches the sector size, 

e.g., 512 bytes, and their rate is very high, around 0.9, to avoid severe channel density 

penalty, which means that the size of the parity-check matrix H of the code is essentially 

fixed. Given that the column weight of H is not smaller than three, the largest girth that can 

be achieved is also determined. If we use either the PEG algorithm [50] or the integer 

lattice construction [58] to design LDPC codes for magnetic recording, the largest girth we 

can get is only six. We also note that so far there are no reports of girth-eight LDPC codes 

in the literature for the set of parameters of interest. However, to further improve the design 

of LDPC codes for magnetic recording, we would like to reduce the number of the shortest 

cycles (cycle-6’s) during code construction. It has been shown in [59] and [60] that the 

dominant trapping sets of an LDPC code are closely related to the shortest cycles. 
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Therefore, reducing the number of shortest cycles may eliminate some dominant trapping 

sets and improve the decoding performance of LDPC codes, especially at high SNR. 

In this chapter, we introduce some methods to minimize the number of shortest cycles 

during LDPC code construction, and then verify the performance of the constructed LDPC 

codes on PMRCs. We consider both random and deterministic constructions of LDPC 

codes. In Section 5.1, we discuss a simple modification of the PEG algorithm to reduce the 

number of short cycles. In Section 5.2, we apply the modified PEG (MPEG) algorithm to 

the random construction of quasi-cyclic (QC) LDPC codes. We present the simulation 

results of the constructed LDPC codes on PMRCs in Section 5.3. We introduce a 

deterministic code construction technique based on a rectangular integer lattice and 

evaluate the performance of the LDPC codes designed in Section 5.4. Finally, we provide a 

brief discussion of the proposed code construction techniques and draw some conclusions 

in Section 5.5. 

5.1 The modified PEG algorithm 

In this section, we briefly review the PEG algorithm presented in [50] and then 

introduce a simple modification that leads to the construction of LDPC codes with fewer 

shortest cycles. On the bipartite graph of an LDPC code, let Vc denote the set of all check 

nodes, Vs the set of all symbol nodes and E the set of all edges. For a given symbol node 

js , a tree could be expanded to a depth of l. Define 
j

l
sN  as the set consisting of all 

check nodes reached by this tree and 
j

l
sN  as its complementary set, i.e., \

j j

l l
s c sV=N N . 

The PEG algorithm constructs the graph of an LDPC code one edge at a time. When a 

new edge is added to a symbol node, the algorithm maximizes the local girth of the node. 
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We repeat here the pseudo-program of the PEG algorithm given in [50] for constructing a 

bipartite graph with m check nodes and n symbol nodes, where dsj is the degree of symbol 

node sj. 

Progressive Edge-Growth (PEG) Algorithm [50] 
for j =0 to n – 1 do 
begin 
 for k = 0 to dsj– 1 do 
 begin 
  if  k = 0 

0
jsE  edge (ci, sj), where 0

jsE  is the first edge incident to sj, and ci is a check 
node having the lowest check degree under the current graph setting 

0 11 js s sE E E
−

∪ ∪ ∪" . 
else 

expanding a tree from symbol node sj up to depth l under the current graph 
setting such that the cardinality of 

j

l
sN  stops increasing but is less than m, or 

j

l
s ≠ ∅N  but 1

j

l
s
+ = ∅N , then 

j

k
sE  edge (ci, sj), where 

j

k
sE  is the k-th edge 

incident to sj and ci is one check node picked from the set 
j

l
sN  having the 

lowest check node degree. 
end 

end 

In the PEG construction, when multiple check nodes with the same lowest degree are 

available in N
j

l
s , one of them is randomly chosen to connect to the symbol node js . To 

reduce the number of short cycles, a simple modification is made for cases where k > 0 

and 
j

l
s ≠ ∅N  but 1 .

j

l
s
+ =∅N   For these cases, the number of occurrences of each 

check node in N
j

l
s  at the depth l + 1 of the tree is recorded and denoted as the 

multiplicity Mi. Connecting a check node in N
j

l
s  to js  will generate exactly Mi short 

cycles with length 2(l + 2). In the proposed modification, when multiple check nodes 

having the same lowest degree are available in N
j

l
s , those with the lowest multiplicity 
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are preferred. In this situation, if we still have more than one choice, one of them will be 

randomly selected. 

Using both the PEG algorithm and the MPEG algorithm proposed in this section, we 

design LDPC codes for magnetic recording, where their parity check matrices have 456 

rows and 4560 columns with constant column weight of three. For each algorithm, we 

perform ten trials and select the code with the smallest number of shortest cycles. We 

obtain a girth-six PEG-LDPC code with 24445 shortest cycles (cycle-6's), and a girth-six 

MPEG-LDPC code with 10617 cycle-6’s. Apparently, this simple modification on the 

PEG algorithm is very effective in reducing short cycles in this example.  

In addition, we attempt to further improve the MPEG algorithm by applying a similar 

modification to the look-ahead-enhanced version of the PEG algorithm in [50]. In the 

look-ahead-enhanced version of the MPEG algorithm, we follow the MPEG algorithm as 

usual, except when there are several choices for placing the k-th edge. For each candidate 

check nodes, the largest depth l and the smallest multiplicity of check nodes in N
j

l
s  are 

evaluated on the tree expanded from js  given that an edge is temporarily put on the 

graph to connect the candidate check node with js . Among the candidate check nodes 

having the same largest depth l, we randomly pick one with the smallest multiplicity. This 

enhanced version of the MPEG algorithm tries much harder to find better LDPC codes. 

However, with our design parameters (the size and the column weight of H), it cannot 

construct an LDPC code with fewer than 10617 cycle-6’s after ten trials. This 

enhancement of the MPEG algorithm does not lead to any obvious improvement in the 

design of LDPC codes for magnetic recording, although it may work better for 
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constructing LDPC codes with lower rates and sparser parity-check matrices. 

5.2 Constructing quasi-cyclic LDPC codes with the MPEG algorithm 

QC-LDPC codes have low encoding complexity as well as low decoding complexity.  

In this section we present a design method, which solely aims to reduce the number of short 

cycles during code construction. In other words, we are interested in the minimum number 

of short cycles, which can be achieved in light of the quasi-cyclic structure. 

5.2.1 Cycles in QC-LDPC codes 

A QC-LDPC code has a special parity-check matrix consisting of small square blocks, 

which are the zero matrix or circulant permutation matrices. The circulant weight of the 

permutation matrix is defined as the column weight (or equivalently the row weight) of the 

permutation matrix. Our discussion is limited to QC-LDPC codes, which have permutation 

matrices with unit circulant weight. Let Pa with 0 ≤ a < L be the circulant permutation 

matrix obtained by shifting the L ൈ L identity matrix I to the right a times. To simplify the 

notation, the L ൈ L zero matrix is denoted by P∞. Then an mL ൈ nL parity-check matrix of 

the QC-LDPC code can be expressed as 

111
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                              (5.1) 

Depending on the values of the aij’s in (5.1), the QC-LDPC code could be regular or 

irregular. Especially, when all aij’s take finite values from {0, 1, … , L-1}, the H represents 

an (m, n)-regular LDPC code, whose rank is no more than mL െ m ൅ 1, and whose girth is 

at most twelve for any m ൒  2 and n ൒  3. There are many interesting properties of 
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QC-LDPC codes investigated in [61]-[64], which readers are referred to for more details. 

Here, we only introduce one important cycle property of QC- LDPC codes, which will be 

used in our code design. 

We can construct an m ൈ n matrix M(H) for the H in (5.1), which is called the mother 

matrix of H in [64], by substituting “0” for each L ൈ L zero matrix and “1” for each L ൈ L 

circulant permutation matrix. Then the cycles in M(H) are identifying the block-cycles in 

H. The block-cycles do not necessarily generate cycles in H, but cycles in H must be 

caused by block-cycles. Therefore, the number of shortest cycles in H is a multiple of L. A 

block-cycle with a length of 2l can be expressed by the chain 1aP → 2aP →  … 

→ 2 laP → 1aP , which will lead to cycles of length 2lb, if b is the least positive number such 

that 

( )
2

1

1

1 0 mod 
l

i
i

i

b a L−

=

⋅ − =∑ .                              (5.2) 

The proof of (5.2) is given in Proposition 3 in [64]. 

5.2.2 Constructing QC-LDPC codes with fewer short cycles 

To design QC-LDPC codes with fewer short cycles, we apply the MPEG algorithm to 

the random construction of QC-LDPC codes. For convenience, S(H), a simplified 

representation of H, is defined in (5.3) and will be utilized in our code design. 
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                                (5.3) 

Given the values of L, m, n and the desired girth g, the procedure for the construction of 

a QC-LDPC code with the MPEG algorithm is hereby referred to as Algorithm 5.1, and 
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described as follows. 

Algorithm 5.1 

1) Construct the m ൈ n mother matrix M(H) using the MPEG algorithm to reduce the 

number of short block-cycles. 

2) Initialize the m ൈ n matrix S(H) with infinities “∞”. Then for each location of a “1” in 

M(H), a finite value ai א{1 ,0, … , Lെ1} is assigned to the same location in S(H) in the 

following way. 

for i = 1 to n do 
begin 
    k = 1; 
 for j = 1 to m do 

begin 
if  M(H) (i, j) = 1 

 if  k = 1 
S(H) (i, j) ← a , which is randomly chosen from {0, 1, … , L−1} 

else 
S(H) (i, j) ← a = 0. Then list all block-cycles no longer than g, which are 
going through position (i, j) and formed by elements with finite values in 
S (H). Vary the value of a from 0 to L−1 and evaluate these block-cycles 
using (5.2). 
if all values in {0, 1, … , L−1} lead to cycles shorter than g, the 

construction failed. 
else if there are values of a do not lead to any cycles in the list of 

block-cycles.  Then S(H)  (i, j) ← a , which is randomly chosen 
from these values. 

else if there are values of a which only lead to cycles with length g in the 
list of block-cycles. Then S(H)  (i, j) ← a , which cause the 
smallest number of cycles of length g. 

k = k + 1; 
end 

end 

3) Construct the mL ൈ nL parity-check matrix H according to S(H). 

5.2.3 Constructing QC-LDPC codes for magnetic recording  

For magnetic recording, the code rate should be around 0.9, while the information 
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encoded is no less than 4096 bits for standard size sectors. We choose mL = 456 and nL = 

4560 to keep the information overhead as low as eight bits, while the overhead may be 

larger when H is not full rank. By varying L from one to 152, there are 14 combinations of 

L, m and n to satisfy the conditions, which are given in Table 5.1. For each combination, we 

design a QC-LDPC code with column weight three by performing ten trials of Algorithm 

5.1, and the minimum number of shortest cycles (cycle-6’s) is computed and also listed in 

Table 5.1.  

Table 5.1  QC-LDPC codes for magnetic recording with column weight three  

L m n Total # of cycle-6’s Total # of cycle-8’s 

1 456 4560 10617 1577808 
2 228 2280 15366 1571800 
3 152 1520 17556 1544238 
4 114 1140 18640 1525880 
6 76 760 18510 1529658 
8 57 570 17120 1554584 
12 38 380 15924 1547292 
19 24 240 14668 1543522 
24 19 190 13944 1547784 
38 12 120 12502 1558760 
57 8 80 11742 1594689 
76 6 60 10488 1581712 
114 4 40 9462 1626552 
152 3 30 7752 1693128 

 

We can see that all constructions in Table 5.1 give LDPC codes with fewer cycle-6’s 

than the code designed by the original PEG algorithm, which has 24445 cycle-6’s. Note 

that the LDPC code constructed by the MPEG algorithm is treated as a special case of a 

QC-LDPC code with L = 1. In addition, when L = 152, M(H) is an all one matrix; the 
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MPEG construction in the first step of Algorithm 5.1 is trivial. 

5.2.4 Simulations and discussion 

The PMRC considered is equalized to GPR4 targets, while a mix of 90% jitter noise 

power and 10% electronics noise power is assumed in all simulations.  

To evaluate the performance of the LDPC codes with different number of shortest 

cycles (cycle-6’s), we simulate the PEG-LDPC code designed in Section 5.1, which has 

24445 cycle-6’s, and four QC-LDPC codes constructed by Algorithm 5.1 with L = 1, 4, 38 

and 152, which are highlighted in Table 5.1. Note that the LDPC codes with L = 38 and 152 

are strictly regular, while other codes are approximately regular, i.e., only of constant 

column weight three. In addition, all parity-check matrices of these LDPC codes have full 

rank, except the one with L =152, which has a rank of 454, that is the theoretical upper limit 

for this case. In other words, the LDPC code with L = 152 has a code rate higher than 0.9, 

while the rate of other codes is exactly 0.9. Usually, a higher code rate will lead to a smaller 

channel density penalty in a MRC. However, we always assume that there are only 4096 

user information bits, while all other (overhead) information bits are dummy bits. 

Therefore, for fair comparison, all LDPC codes (which have the same length) are simulated 

at the same channel density. 

Shown in Fig. 5.1 are the simulation results at Dc = 0.9713 with at most 50 BP iterations 

of LDPC decoding, where the LDPC codes with fewer cycle-6’s exhibit better 

performance. The explanation for this illustrative result is two-fold. On one hand, the 

dominant trapping sets, which are making the major contribution at high SNR, are closely 

related to the short cycles in the LDPC code [59], [60]. On the other hand, the SNRs 

simulated are high enough, since all performance curves tend to have relatively flat tails, 
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i.e., they are going into the error floor. 
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Fig. 5.1.  Performance of LDPC codes with different number of cycle-6’s at channel 

density 0.9713. 

However, the performance pattern changes with increased channel density. As shown in 

Fig. 5.2, the LDPC codes with fewer cycle-6’s do not necessarily provide better 

performance at channel density 1.3598. Higher channel density leads to stronger 

correlations between bits and hence cycles larger than six may contribute more to the 

decoding performance in the simulations. Therefore, we compute the number of cycle-8’s 

for all LDPC codes we designed, while the PEG-LDPC code has 1457622 cycle-8’s and 

the number of cycle-8’s for all other LDPC codes is listed in Table 5.1. Clearly, when we 

minimize the number of cycle-6’s using Algorithm 5.1, the number of cycle-8’s is boosted. 

(Although there are a few small deviations, the general trend is clear.) In particular, the 

LDPC code with L = 152 has a very small number of cycle-6’s but many more cycle-8’s 
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than other codes. In this work, we did not have enough computational power to check the 

number of cycles longer than eight. But note that Step 2 of Algorithm 5.1 does not take care 

of cycles longer than the girth of the code being designed, while the MPEG algorithm is 

supposed to reduce the number of short cycles in a more general sense. Therefore, this 

could be the reason that the LDPC code constructed by the MPEG algorithm (L = 1) 

provides the best performance in this case. 

 

Fig. 5.2.  Performance of LDPC codes with different number of cycle-6’s at channel 

density 1.3598. 

So far, our simulations illustrate very well the effect of short cycles in LDPC codes on 

PMRCs. The MPEG algorithm and Algorithm 5.1 can also be used to construct LDPC 

codes with higher column weight. However, although we can easily design LDPC codes 

with column weight four, we will have difficulty verifying the effect of short cycles, 

because we cannot simulate the codes at high enough SNRs. In other words, it is difficult to 



 

106 
 

reach the error floor of LDPC codes with column weight of four by simulation. But it is 

reasonable to expect that reducing the number of short cycles by the MPEG algorithm and 

Algorithm 5.1 could be always helpful. 

One thing we need to point out is that the number of short cycles may not be the only 

factor affecting the performance of LDPC codes. Identifying the structural features, which 

determine the performance of LDPC codes, is still an open problem in error correcting 

coding. We purposefully kept a randomness element in all code constructions presented 

and we believe that this helps the MPEG algorithm and Algorithm 5.1 translate fewer short 

cycles into a performance gain without much change in other structural features of the 

LDPC codes.  

5.3 Lattice construction of QC-LDPC codes 

In this section, we investigate a deterministic construction technique for LDPC codes 

for magnetic recording based on rectangular integer lattices [58], while reducing the 

number of cycle-6’s. The lattice construction method proposed in [58] generates 

QC-LDPC codes with prime L’s. After a brief review of this technique, we indentify the 

cycle-6’s on the lattice and generalize the construction method to the case where L is not a 

prime and then introduce a method to construct lattice-LDPC codes for magnetic recording 

with fewer cycle-6’s. 

5.3.1 Lattice construction of LDPC codes 

Shown in Fig. 5.3 is a rectangular integer lattice LA = {(x, y): 0 ≤ x ≤ K − 1, 0 ≤ y ≤ L –  
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Fig. 5.3.  A rectangular integer lattice with L=5 and K=3, where lines with slopes 0, 1 

and 2 are depicted and a triangle is highlighted. 

1} for K = 3 and L = 5, where 0 < K ≤ L and L is a prime. The points on the lattice LA are 

labeled by a one-to-one mapping function l (x, y). For easy understanding, we use the same 

mapping function as in [58], where l (x, y) = L·x + y + 1. A set of K points {(x, a + sx mod 

L): 0 ≤ x ≤ K − 1} for any fixed a in {0, …, L െ 1} is called a line with slope s, where 0 ≤ s 

≤ L – 1. For a given L and any 0 < K ≤ L, if two lines have no common points, they are 

referred to as parallel. On a lattice, there are exact L lines for each slope and they are 

parallel. The set of points on parallel lines of slope s can be mapped on to an incidence 

matrix Hs of dimension KL ൈ L. Then the KL ൈ L2 matrix H = [H0 H1, …, HLെ1] defines a 

(K, L)-regular QC-LDPC code. The binary image of the H matrix for the lattice in Fig. 5.3 

is given in [65] and [66]; we will not repeat it here. Instead, a more intuitive expression of 
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 ,                       (5.4) 

where aP−  with 0 ≤ a < L is the circulant permutation matrix obtained by shifting the L ൈ 

L identity matrix I to the left a times. This definition of aP−  is consistent with the one for 

aP  in Section 5.2 and hence it is still valid to judge block cycles using (5.2). Each block 

column in H is related to a slope while each block row is related to a value on the x-axis of 

the lattice. 

For a given column weight K, to design a parity-check matrix H given by (5.4), one 

needs to find a set of slopes, which generate the smallest number of shortest cycles. It is 

extremely hard to design high rate LDPC codes this way. Instead, we consider a revision of 

this lattice construction proposed in [65], where the transpose of a sub-matrix of H in (5.4) 

is used to define a (M, K)-regular QC-LDPC code, where 0 < M ൑ L is the number of slopes 

selected, and is given by 
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.                           (5.5) 

During the design of a code for magnetic recording, to find the set of M slopes, which 

gives the smallest number of cycle-6’s, requires that all such cycles be identified on the 

lattice. 

Proposition 5.1: Let H be the incidence matrix of lines on a rectangular integer lattice LA 
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= {(x, y): 0 ≤ x ≤ K − 1, 0 ≤ y ≤ L − 1}. Then each cycle-6 in H can be mapped to a unique 

triangle on the lattice. 

Proof: Without loss of generality, we assume the incidence matrix H is of the form in 

(5.5). As discussed in Section 5.2, all cycles in an H with such structure come from their 

related block cycles. By picking up an arbitrary nonzero element from each of the six 

blocks which form a block cycle of length six, we have six points on the lattice: (x1, a1 + 

s1x1 mod L), (x1, b1 + s2x1 mod L), (x2, b2 + s2x2 mod L), (x2, c1 + s3x2 mod L), (x3, c1 + s3x3 

mod L) and (x3, a2 + s1x3 mod L). To form a cycle-6, two elements with the same xi must be 

in the same column, i.e., a1 + s1x1 = b1 + s2x1 mod L, b2 + s2x2 = c1 + s3x2 mod L, and c1 + 

s3x3 = a2 + s1x3 mod L; two elements with the same slope si must be in the same row, which 

gives a1 = a2, b1 = b2, and c1 = c2. Therefore, this arbitrary cycle-6 is only related to three 

lines on the lattice: y = a1 + s1x mod L, y = b1 + s2x mod L, y = c1 + s3x mod L, which have 

common points (x1, a1 + s1x1 mod L), (x2, b1 + s2x2 mod L), and (x3, c1 + s3x3 mod L) and 

hence form a triangle. 

On the other hand, to prove the proposition from the reverse direction, we can pick an 

arbitrary triangle on the lattice. Assume that there are three lines y = a + s1x mod L, y = b + 

s2x mod L and y = c + s3x mod L, which have common points (x1, y1), (x2, y2) and (x3, y3), 

where s1 ്  s2 ്  s3 and x1 ്  x2 ്  x3. Since y1 = a + s1x1 mod L = b + s2x1 mod L, y2 = b + s2x2 

mod L = c + s3x2 mod L, and y3 = c + s3x3 mod L = a + s1x3 mod L, we have s1x1 + s2x2 + s3x3 

= s2x1 + s3x2 + s1x3 mod L, which satisfies (5.2) in Section 5.2. Therefore, the triangle 

formed by the three lines can be mapped to a cycle-6 in H, which is in the block cycle-6 

1 1s xP − → 2 1s xP− → 2 2s xP− → 3 2s xP− → 3 3s xP− → 1 3s xP− .                                       

A triangle is highlighted in Fig. 5.3. Note that Proposition 5.1 is true regardless of the 
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value of L, which could be prime or not. 

5.3.2 Lattice construction with nonprime L 

For magnetic recording, we need LDPC codes with appropriate length to encode data 

sectors. So, it is necessary to extend the lattice construction technique to nonprime L. As 

mentioned in [66], on the lattice with nonprime L, slopes s should be 0 or co-prime to L 

such that the lines y = a + sx mod L can reach all L values of y with x increasing from 0 to 

Lെ1. But it is not enough. To prevent the cycle-4’s during lattice construction, we need to 

make sure any two lines starting from the same point (0, a) have no common points except 

(0, a), if they are of different slopes. 

Proposition 5.2: On a rectangular integer lattice LA = {(x, y): 0 ≤ x ≤ K − 1, 0 ≤ y ≤ L − 

1}, two lines y = a + s1x mod L and y = a + s2x mod L with s2 > s1 have no common points 

other than (0, a), if (s2 െ s1) is co-prime to L. 

Proof: Let y1 = a + s1x + r1L and y2 = a + s2x + r2L. For a common point, y1 = y2 gives (r1 

െ r2) = (s2 െ s1) x / L. If (s2 െ s1) is co-prime to L, the only solution for x א {1 ,0, …, L െ 1}, 

which makes (r1 െ r2) be an integer, is x = 0.                                           

Remark 5.1: If L is an even number, the slopes co-prime to L are odd numbers. However, 

the difference of any two odd numbers is an even number, which cannot be co-prime to L.  

Taking the slope s = 0 into account, we conclude that, to construct a lattice LDPC code 

with column weight equal to or greater than three, L can only be an odd number. 

5.3.3 Constructing lattice LDPC codes for magnetic recording 

In this chapter, we are interested in the LDPC codes, which have column weight three 

and rate around 0.9. In other words, we need three slopes on a lattice with K = 30. To 
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encode 4096-bit long sectors, the smallest odd number that L can be is 153. Then, on the 

rectangular integer lattice with L = 153 and K = 30, we search the three slopes which 

provide the smallest number of triangles (cycle-6’s) by the following procedure. 

1)  Find the slope set S1, which include the slope 0 and all slopes co-prime to L. Then the 

differences of any two slopes in the set S1 are examined, while a pair of slopes is 

recorded in the set Sp, whenever the absolute value of their difference is co-prime to L. 

2)  For each pair of slopes (s0, s1) in Sp: 

a)  Find all slopes s2, such that the absolute values of (s2 – s0) and (s2 – s1) are 

co-prime to L, and record them in the set S2. Then setup and initialize a counter for 

each slope in S2, which will count the number of triangles generated by each 

three-slope combination (s0, s1, s2). 

b)  Let l0 be a line with slope s0 and l1 a line with slope s1. For each pair of lines (l0, l1): 

i)  If l0 and l1 do not have a common point, which means that they cannot generate 

any triangles, then try the next pair of (l0, l1). 

ii)  Otherwise, for any point p0 on l0 and any point p1 on l1, where p0 ് p1, 

compute the slopes of the lines passing p0 and p1, if any. (The method to 

compute the slopes for any two points on the lattice will be discussed later.) If 

the slopes for (p0, p1) are in the set S2, then increment the related counters by 

one. 

c)  After all pairs of (l0, l1) have been examined; the number of triangles for slope 

combinations (s0, s1, s2) will be transferred from the counters for S2 to an output 

buffer. 

3)  After all pairs of slopes (s0, s1) in Sp have been examined; the slope combination, 
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which produces the smallest number of triangles, will be selected from the output 

buffer. Finally the H matrix in (5.5) will be constructed for the chosen slopes. 

Note that this algorithm may compute the triangles for some slope combinations (s0, s1, 

s2) more than one time; but it is still very efficient.  

Now let us discuss the calculation of slopes 0 ൑ s ൑ L െ 1 in the Step 2-b. Let (x1, y1) and 

(x2, y2) be two points on the lattice, where x2 > x1. The slopes of the lines passing through 

these two points are computed by s = (y + rL) / x, where y = (y2 െ y1) mod L and x = (x2 െ 

x1) > 0. 

Proposition 5.3: In the calculation of slopes using s = (y + rL) / x, there is exactly one 

solution for s if x is co-prime to L; there are multiple solutions for s if GCD (x, L) > 1 and y 

is divisible by GCD (x, L); there is no solution for s if GCD (x, L) > 1 and y is not divisible 

by GCD (x, L). 

Proof: Let y = Qx + R, where 0 ൑ R ൏ x. Then s = (Qx + R + rL) / x = Q + (R + rL) / x. If 

x is co-prime to L, rL mod x can be any value in {0, 1, …, x െ 1} with appropriate choices 

of r. Thus, there are integer solutions for s given appropriate choices of r. On the other hand, 

given s1 = (y + r1L) / x is an integer, s2 = (y + (r1+r2) L) / x = s1 + r2L / x. If x is co-prime to 

L, s2 is an integer if and only if r2 is a multiple of x, which means s1 = s2 mod L. Thus, there 

is exactly one solution for s in {0, 1, …, L െ 1}, if x is co-prime to L. 

Given a = GCD (x, L) > 1, L and x could be expressed as L = ab and x = ac. If y is 

divisible by a, i.e. y = Qa, then s = (Qa + rab) / ac = (Q + rb) / c. Since b is co-prime to c, s 

has exactly one solution s1 in {0, 1, …, b  െ  1}, while si = s1 + r1b < L with r1 > 0 are also 

solutions of s. 

Similarly, given a = GCD (x, L) > 1, L and x could be expressed as L = ab and x = ac. If 
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y is not divisible by a, i.e. y = Qa + R, where 0 ൑ R < a, then s = (Qa + R + rab) / ac = ((Q 

+ rb) a + R) / ac. Obviously for any value of r, (Q + rb) a + R cannot be a multiple of a, and 

hence there is no solution for s.                                                         

On the lattice with L = 153, K = 30, we find that the smallest number of triangles is 

20502 and there are 288 three-slope combinations which give the smallest number of 

triangles, while {0, 1, 26} is one of such slope combinations. The 459 ൈ 4590 parity-check 

matrix H constructed from slopes {0, 1, 26} gives a (4590, 4133) (3, 30)-regular 

QC-LDPC code. Although there are 37 bits of overhead, it is the best we can do by lattice 

construction. 

5.3.4 Simulations 

To compare the code performance, we need to design a PEG-LDPC code whose 

parity-check matrix is of the same size as that of the lattice LDPC code. After ten trials of 

the PEG algorithm, a 459 ൈ 4590 parity-check matrix with column weight three is 

constructed, which has 24395 cycle-6’s and gives a (4590, 4131) PEG-LDPC code. 

Shown in Figs. 5.4 and 5.5 are the simulation results for the PEG-LDPC code and the 

lattice LDPC code at channel densities 0.9713 and 1.3598. Although the lattice LDPC code 

has fewer cycle-6’s, its performance is much worse than the PEG-LDPC code. Actually, 

there are a lot of undetected errors in the simulation of the lattice LDPC code, which lead to 

a very high error floor. The reason for the poor performance of the lattice code may have 

something to do with its deterministic structure, which causes the small minimum distance 

of the LDPC code, but we are only interested in the number of short cycles in this work. We 

find that the lattice LDPC code has 2887722 cycle-8’s, while the PEG-LDPC code has only 

1458723 cycle-8’s. We believe that the huge number of cycle-8’s in the lattice code plays a 
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Fig. 5.4.  Performance of the lattice LDPC code with L = 153 at channel density 0.9713. 
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Fig. 5.5.  Performance of the lattice LDPC code with L = 153 at channel density 1.3598. 
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role in determining its poor performance. On the other hand, so many cycle-8’s could also 

be an expression of other unknown bad features of the code structure. 

5.4 Conclusion 

In this chapter, we designed LDPC codes for magnetic recording with many fewer short 

cycles. The LDPC codes constructed by the MPEG algorithm and Algorithm 5.1 provided 

remarkable performance improvement over the PEG-LDPC code, and we believe this is 

due to the fewer short cycles and the randomness of the code construction technique. In 

addition, we also constructed LDPC codes with fewer cycle-6’s based on rectangular 

integer lattices, using a deterministic construction method. Although we were able to 

design a lattice LDPC code with fewer cycle-6’s than the PEG-LDPC code with a 

parity-check matrix of the same size, it exhibited a huge number of cycle-8’s, which 

severely degraded its performance. The investigation of the role of code structure features 

other than short cycles and the connections between other structural features and short 

cycles is a current area of active research. 
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6 RS Plus LDPC Codes for Perpendicular Magnetic Recording 

It is well known that LDPC codes significantly outperform the traditional RS codes on 

MRCs. However, there are two difficulties with the replacement of the RS codes. First, we 

have not only random noise, but also media defects that cause burst errors. While RS codes 

are guaranteed to correct a fixed maximum number of symbol errors of both types, LDPC 

codes are usually designed to correct random errors, and they cannot give any assurance on 

correcting a given number of errors and hence are considered unreliable for media defects. 

Second, the SER required for MRCs is around 10-15, and LDPC codes may exhibit error 

floors at high SNRs; their coding gains over RS codes may vanish with increasing SNR 

before the target SER is achieved. Recently, the use of outer RS codes concatenated with 

inner LDPC codes has been suggested to get better performance and better reliability [65], 

[67]. 

In this chapter, we investigate RS plus LDPC architectures for PMRCs. We consider the 

concatenation of outer RS codes with different error correction capabilities and inner 

LDPC codes with various column weights and code rates. To achieve the best decoding 

performance with a reasonable complexity, we find an optimal iterative decoding scheme, 

which consists of a maximum number of inner (LDPC decoder) iterations and a maximum 

number of outer (turbo) iterations. At a fixed user density, the code rate determines the 

tradeoff between the error correction capability and the channel density penalty.  For the 

optimal iterative scheme, we get the optimal code rates for the concatenated codes by 

simulation, and evaluate the performance of the concatenated codes in the waterfall region 

in both random noise and in a media defect scenario. We identify the respective 
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contributions of the outer RS and inner LDPC codes and observe that the outer RS codes 

are lowering the error floors of the inner LDPC codes. It is of interest to find the error 

floors of the concatenated codes, however, the performance estimation of the concatenated 

code in the error floor region is difficult to compute. At present, we cannot do it for all 

concatenated codes, but we are able to estimate the error floors for those with inner LDPC 

codes of column weight two, using the microscopic method proposed in [68]. 

In Section 6.1, we specify the channel model and the system diagram. In Section 6.2, we 

design a group of concatenated codes with different combinations of outer RS codes and 

inner LDPC codes. We find the optimal iterative scheme and code rates in Section 6.3, and 

compare and discuss the waterfall region performance of the coded channels in Section 6.4. 

In Section 6.5, we estimate the error floors of the concatenated codes which have inner 

LDPC codes with column weight of two. Finally, we conclude the paper with a summary of 

the results and suggestions for additional work in Section 6.6. 

6.1 Channel model 

In this chapter, we still use the PMRC model and the corresponding SNR definition 

specified in Chapter 1, while we consider a mix of 50% jitter noise power and 50% 

electronics noise power in the read channel. Note that we are purposely using a channel 

with a low percentage of jitter noise power to mimic a channel with a high percentage of 

jitter noise power but with a data-dependent noise predictive detector [69]. In this chapter, 

we only consider channels with a moderate user density of 1.049. 

We show in Fig. 6.1 the system diagram of the coded PMRC, where SOVA is utilized 

for channel detection, and the normalized MS algorithm [45]-[47], [70], implements the 
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LDPC decoder. The outer RS code is decoded by hard decision decoding. 
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Fig. 6.1.  System diagram for an RS plus LDPC coded PMRC. 

Table 6.1  RS Plus LDPC Codes 

t of outer 
 RS code 

Inner LDPC 
code rate (≈) 

Inner LDPC 
(n, k) 

Overall  
code rate 

16 

0.84 (5262, 4420) 0.7792 

0.86 (5140, 4420) 0.7977 

0.88 (5023, 4420) 0.8162 

0.90 (4911, 4420) 0.8349 

20 

0.84 (5357, 4500) 0.7654 

0.86 (5233, 4500) 0.7835 

0.88 (5114, 4500) 0.8017 

0.90 (5000, 4500) 0.8200 

24 

0.84 (5452, 4580) 0.7520 

0.86 (5326, 4580) 0.7698 

0.88 (5205, 4580) 0.7877 

0.90 (5089, 4580) 0.8057 

6.2 Concatenated code design 

We design (442, 410), (450, 410) and (458, 410) shortened RS codes over GF (210) as 

outer codes, which we denote by RS (t = 16), RS (t = 20) and RS (t = 24) respectively, 

where t is the error correction capability. For each outer RS code, inner LDPC codes with 
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different rates (R = 0.84, 0.86, 0.88 and 0.9) are designed by the PEG algorithm [50]. For 

each inner code rate, we construct two LDPC codes, with parity-check matrices of constant 

column weight two (Wc = 2) and three (Wc = 3), respectively. We list the concatenated 

codes designed in Table 6.1, where the information word lengths of the inner LDPC codes 

match the lengths of the outer RS codes. 

6.3 Optimal iterative scheme and code rate 

We use turbo equalization to improve decoding performance, and simulate the 

concatenated codes at appropriate SNRs under various iterative schemes, where each 

iterative scheme consists of a particular combination of the maximum number of inner and 

outer iterations. In Fig. 6.2 we show the iterative scheme test for the RS (t = 16) + LDPC 

(R=0.88, Wc=2) code at SNR=8 dB. We observe that additional outer iterations always 

improve performance, while more than six inner iterations only give a marginal 

improvement. All other concatenated codes in this work, for different t, R, and Wc, have 

similar graphs as in Fig. 6.2. Therefore, given that the decoding complexity of the system 

needs to be kept at a reasonable level, we chose the iterative scheme with at most six outer 

(turbo) iterations and six inner iterations, denoted by T6MS6, as the one for all 

concatenated codes. 

At a fixed user density, lowering the code rate may enhance the error correction 

capability of the codes, but increases the channel density penalty. To find the optimal 

tradeoff, we vary the inner code rates for each outer RS code and measure their decoding 
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Fig. 6.2.  Performance of RS (t = 16) + LDPC (R=0.88, Wc=2) code at SNR=8 dB, 

under different iterative schemes. 
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Fig. 6.3.  Performance of RS (t = 16) + LDPC codes with different code rates and 

column weights. 
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performance under the selected iterative scheme (T6MS6). We show in Fig. 6.3 the 

performance curves for RS (t = 16) + LDPC codes with different rates and column weights 

for the inner LDPC codes. We can see that, for each column weight, the inner LDPC code 

with a rate around 0.88 exhibits the best performance, and further increasing the inner code 

rate severely degrades their error correction capability. For the concatenated codes with RS 

(t = 20) and RS (t = 24), this is also the case, although we are not presenting those 

simulation results. In other words, the optimal code rates of the concatenated codes solely 

depend on the inner code rate: given a pair of t and Wc, the concatenated codes with inner 

code rate of 0.88 always provide the best performance. 

6.4 Performance of RS plus LDPC codes 

With the optimal iterative scheme (T6MS6), we simulate concatenated codes with inner 

code rate of 0.88 on PMRCs with both random noise and media defects. The media defects 

here consist of 50 bits of half erasure and their locations are assumed to be known and 

available to the decoder. For comparison purposes, we design two (4655, 4096) LDPC 

codes of rate 0.88, which have constant column weights of two and three, respectively. We 

simulate the two LDPC-only coded PMRCs with the same iterative scheme (T6MS6) and 

use them as base lines.  

We can see in Figs. 6.4 and 6.5 that the concatenated codes provide remarkable gains 

over the RS-only (t = 24) code in both noise environments, and that the LDPC code with 

lower column weight exhibits better performance. Due to the severe channel density 

penalty, stronger outer RS codes lead to worse performance in the simulation range 

considered. However, the advantage of the concatenated codes is also obvious. On the one 
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Fig. 6.4.  Performance of RS + LDPC (R=0.88) codes in random noise for different RS 

and LDPC codes. 
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Fig. 6.5.  Performance of RS + LDPC (R=0.88) codes with media defects for different 

RS and LDPC codes. 
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hand the LDPC-only code with column weight of two exhibits a high error floor, and so do 

the inner LDPC codes with column weight of two. Since the concatenated codes always 

have sharp curves in our simulations, it is clear that the outer RS codes are lowering the 

error floors caused by the inner LDPC codes. Similarly, the concatenated codes have 

shaper curves than the LDPC-only codes with column weight of three, and the 

concatenated codes are expected to have better performance than LDPC-only codes at high 

SNR. On the other hand, the concatenated codes achieve larger coding gain over the 

RS-only (t = 24) code in the presence of media defects than in random noise, while the 

coding gains of the LDPC-only code over the RS-only (t = 24) code become smaller in the 

presence of media defects. In other words, the concatenated codes are the most robust 

codes and exhibit a smaller performance degradation in the presence of media defects than 

the LDPC-only and RS-only codes. 

6.5 SER estimation of RS plus LDPC codes 

From Figs. 6.4 and 6.5, we note that the best performance is obtained for the LDPC-only 

code with column weight three. But as mentioned in the introduction, LDPC codes may 

have error floors at high SNR. To do a complete evaluation, the performance of the 

LDPC-only code and concatenated codes should be compared at higher SNRs, where very 

low SERs are expected. Unfortunately, at present, we cannot estimate the performance of 

the LDPC-only (Wc=3) code at high SNRs, especially under this complicated iterative 

scheme. For the concatenated codes, the multinomial model is widely used to estimate the 

SER at the output of RS decoder [71], [72], but we find that the multinomial model cannot 

give an accurate estimation for the RS plus LDPC codes. Recently, Kuznetsov et al. 
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proposed a microscopic approach [68] to estimate the SER of RS-plus codes more 

accurately, based on the distributions of both error event weight and the number of error 

events in a sector. 

6.5.1 Microscopic method 

In this subsection, we briefly review the basic concept of the microscopic method. Let 

lp  denote the probability of an error event that contains l RS symbol errors. We can 

estimate lp  by simulation, which we denote as ˆ lp , with l = 1, …, L. Then we use a 

Markov chain of order M to model the probability mass function (PMF) ˆ lp  and then 

generate lp , and optimize the model parameters by minimizing the Kullback–Leibler 

distance between the PMF ˆ lp  and the weight distribution produced by the model. Using 

the Markov chain model, it is easy to compute the conditional word failure rate ρW(t, k), 

which is the probability of the occurrence of more than t RS symbol errors in a sector, 

given that there are k error events observed.  

We then model the distribution of the number of error events in a sector by tail fitting. At 

first, one can get a PMF Q(k) of the number of error event k by simulation, where Q(k) = 0 

for k greater than some value J, due to limited simulation time. For an LDPC code, we use 

an exponential function ˆ ( ) kQ k e−= λα  with k > J to re-construct the missing tail of Q(k). 

The tail-fitting finds the values of α and λ which minimize the quantity 

( )
0

2ˆ ˆ( ) ( ) ( )
J

k k

Q k Q k Q k
=

−∑ ,                             (6.1) 

where 0 < k0 ≤ J. Then ( )Q k� , the distribution of the number of error events, is made by 

combining Q(k) and ˆ ( )Q k  together, where ( ) ( )Q k Q k=�  for k ≤ J and ˆ( ) ( )Q k Q k=�  for k 
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> J. Finally, the SER of RS plus LDPC codes is computed by 

( ) ( )
0

( ) ,W W
k

t Q k t k
∞

=

=∑ �ρ ρ .                              (6.2) 

6.5.2 SER estimation 

To accurately estimate the SER of RS plus LDPC codes by the microscopic method, it is 

necessary to obtain enough number of error events by simulation to find the distributions 

ˆ lp  and Q(k). Unfortunately, we cannot get enough error events for RS + LDPC (Wc=3) 

codes; at this time, we are only able to estimate the SER for RS + LDPC (Wc=2) codes by 

the microscopic method. We have shown in Section 6.4 that RS + LDPC (Wc=2) codes 

provide remarkable coding gains over the RS-only code. It is interesting to verify if these 

gains vanish at high SNR.  

By simulating the RS + LDPC (Wc=2) codes in a wide SNR region, we obtain enough 

number of error events to draw PMFs ˆ lp  and Q(k). However, we find that Q(k) may not 

have a simple exponential tail. For example, we show in Fig. 6.6 the distributions Q(k) for 

the RS (t = 16) + LDPC (Wc=2) code at different SNRs. At 7.6 dB, Q(k) has two corners 

which separate the distribution curve into a sharp left region, a flat middle region and a 

sharp tail region, where the fluctuation in the sharp tail region is caused by the big 

estimation variation at large k. At higher SNRs, we lose track of the sharp tail region and 

we are also gradually missing the flat middle region. At very high SNRs (higher than 9 dB), 

we are only able to detect the head region of Q(k), which exhibits a zigzag pattern just as 

mentioned in [68].  

Since Q(k) does not have a simple exponential tail, the tail-fitting using (6.1) may not 

lead to an accurate estimation of the SER. However, we note that ρW(t, k) is a 
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non-decreasing sequence with k going to infinity. If we do the exponential tail fitting only 

for the head region and ignore the flat middle region of Q(k) at high SNR, we get an 

estimator, which gives a lower bound on the decoding performance. Since the existence of 

the flat middle region is assumed but cannot be proved in this work, the lower bound 

generated by this estimator is only a reasonable conjecture. 
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Fig. 6.6.  PMFs Q(k) for RS (t = 16) + LDPC (R=0.88,Wc=2) code at different SNRs 

and ( )Q k� by exponential tail-fitting at SNR=9.5 dB. 

We show in Fig. 6.7 the SER estimates for RS (t = 16, 20, 24) + LDPC (Wc=2) codes. 

The estimator provides accurate results at low SNRs and is expected to give a lower bound 

at high SNRs. We expect these concatenated codes to have flat error floors, because their 

inner LDPC (Wc=2) codes also have flat error floors. In addition, the concatenated codes 

with larger t exhibit a lower error floor, which explains the contribution of the outer RS 
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codes. We also observe that the performance lower bounds are above the SER of 10-15; if 

the target working SER of the system is 10-15, then RS (t = 16, 20, 24) + LDPC (Wc=2) 

codes may not be good choices. 
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Fig. 6.7.  SER estimation for RS (t = 16, 20, 24) + LDPC (R=0.88, Wc=2) codes. 

6.6 Conclusion 

In this chapter, we investigate RS plus LDPC architectures for PMRCs in great detail, 

and find the best iterative scheme and code rate. We compare the waterfall region 

performance for various RS plus LDPC codes in both random noise and with media defects, 

and estimate the error floor for the RS + LDPC (Wc=2) codes. The interesting question of 

estimating the performance of both LDPC-only and the RS + LDPC (Wc=3) codes at high 

SNR and compare them with our simulation results remains open. 



 

128 
 

7 Multi-Track Detection for Inter-Track Interference Mitigation 

To keep up with the increasing demand for data storage, the recording density of future 

storage systems needs to continue to increase. Continuous media PMR has physical and 

engineering limitations, which prevents its use at extremely high recording densities. 

BPMR is a promising technology which is expected to enable the high density recording up 

to four Terabits per square inch (Tb/in2). However, while BPMR offers some advantages 

over the conventional PMR currently in use, it also presents new challenges from the 

read-channel design perspective and specific impairments, such as write errors, side 

readings, island size, location, and shape variations. 

High recording density is achieved by reducing the inter-track distance, which causes 

side reading and the associated ITI becomes a major BPMR-specific impairment. Attempts 

to mitigate the impact of ITI on the sector error rate performance, include the joint-track 

equalization proposed in [73], which optimizes a one-dimensional (1D) equalizer with a 

2D GPR target, which was shown to provide some gain over the conventional single-track 

equalization (with 1D GPR targets), in the presence of strong ITI. Although the 

investigation of the joint-track equalization in [73] was done for continuous media, we 

believe it to be applicable to BPMR channels as well. Another approach considered in [74] 

is 2D equalization, where a 2D equalizer and a 1D GPR target are simultaneously 

optimized. Although the 2D equalization has been shown to achieve significant gains over 

single-track equalization, we note that none of these two equalization methods takes full 

advantage of the channel detection with 2D GPR targets, which we consider a very useful 

technique to mitigate the impact of ITI.  
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In this chapter, we revisit the equalizer and 2D GPR target design for both joint-track 

and 2D equalizations. By investigating the detection with 2D GPR targets from a new point 

of view, we find that during detection on a desired track, it is necessary to estimate the data 

on the side tracks to fully benefit from the equalization with 2D GPR targets, and this can 

be accomplished by using multi-track detection. 

The rest of this chapter is organized as follows. In Section 7.1, we describe the BPMR 

channel model used. Before investigating any advanced equalization techniques, we 

introduce the single-track equalized BPMR channel in Section 7.2. In Section 7.3, we 

investigate the joint-track equalized BPMR channel as well as the detection on the trellis of 

a 2D GPR target. Then we explain the relationship between detection performance and 

mean-squared equalization error, from a new perspective. In Section 7.4, we propose a 

multi-track detection technique and apply it to the joint-track equalized channel. In Section 

7.5, we use the proposed technique on a 2D equalized BPMR channel. In Section 7.6, we 

obtain the performance bounds for multi-track detection for channels with joint-track and 

2D equalizations. Then we propose an extension of the multi-track detection technique to 

achieve the performance bounds. In Section 7.7, we perform simulations on media with 

two different island distributions to further validate the proposed techniques. We conclude 

this chapter with a brief discussion of the main results in Section 7.8.   

7.1 Channel model 

The BPMR channel is characterized by the replay response to an isolated magnetic 

island, which is affected by different media types and geometric characteristics of the 

island and the read head. In this chapter, we only consider perpendicular patterned media 
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with soft underlayers. In [13], [75] and [76], Nutter et al. simulated the 2D replay response 

of a single island by a 3D reciprocity integral, which takes into account  the 3D geometry 

of the island. Using this simulation method on a perpendicular patterned medium with a 

soft underlayer, as shown in [76], the replay response of a square island with length a = 

12.5 nm has a pulse width (at half maximum) PW50_along = 21.2 nm on the along track 

direction and a PW50_cross = 31.2 nm on the cross track direction, where the film thickness is 

δ = 10 nm and the giant-magnetoresistive (GMR) read head has dimensions: sensor width 

W = 20 nm, sensor length L = 4 nm, shield-to-sensor spacing G = 6 nm, and a fly height d = 

10 nm. Nabavi et al. use a similar but different way to simulate the 2D response of a 

perpendicularly magnetized island [14], [20]. As in [20], the replay response of a square 

island with length a = 11 nm has PW50_along = 19.5 nm and PW50_cross = 24.7 nm, where the 

employed medium and read head dimensions are δ = 10 nm, W = 15 nm, L = 4 nm, G = 6 

nm, and d = 10 nm. 

During the modeling of the read channel, we need a high resolution replay response. The 

simulation methods proposed by Nutter et al. and Nabavi et al. have high computational 

complexity, especially when media noises are considered [14], [20]. For modeling 

simplicity, a 2D replay response can be approximated by a close form function as h(x, y) = 

hx(x)hy(y), where hx(x) and hy(y) are the analytic functions assumed on the along-track 

direction and the cross-track direction, respectively. In [77], Keskinoz uses Nutter et al.’s 

read head and medium (with square island a = 12.5 nm) as we mentioned above; but the 

cross-track profile hy(y) is simplified to a Lorentzian pulse. Similarly, Nabavi notes that the 

replay response of the square island a = 11 nm with the read head and medium 

configuration in [20] can be well fitted by Gaussian pulses on both along-track and 
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cross-track directions. 

Throughout this paper, we employ Nabavi’s medium and read head in [20] and the 

replay response of an isolated square island with a = 11 nm is simplified to a 2D Gaussian 

pulse,   

2 2 2 2

2 2

1( , ) ( ) ( ) exp ,
2 19.5 24.7x y

c x c yh x y h x h y A
⎛ ⎞⎛ ⎞

= = − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

                (7.1) 

where A=1 is the peak amplitude; 2 2 ln 2c =  is a constant used to associate the PW50 to 

the standard deviation of the Gaussian function. We arrange the islands on rectangular 

grids and vary the island periods Tx on the along-track direction and Ty on the cross-track 

direction to achieve different areal densities. To facilitate the explanation and illustration 

of the equalization and detection techniques investigated in this paper, we carefully choose 

the track pitch Ty so that ITI is mostly caused only by the two nearest side tracks.  
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Fig. 7.1.  BPMR channel model for single track reading and detection. 

Therefore, we obtain a very simple model for the BPMR channel, as shown in Fig. 7.1, 

where ak are the data on the desired (center) track; bk and ck are the data on the two side 

tracks; ak, bk and ck are +1 or −1. There is no media noise included in this model. The 

electronic noise n(t) is additive white Gaussian with double sided power density height of 

σ2, and the SNR is defined as 1/σ2. The low pass filter h(−t, 0) matches the response on the 

center track h(t, 0) = hx(t). Since the 2D Gaussian pulse h(x, y) in (1) is symmetric on both 



 

132 
 

x and y directions, we have h(−t, 0) = h(t, 0) = hx(t) and h(t, Ty) = h(t, −Ty) = hy(Ty)hx(t) = 

hy(Ty)h(t, 0). So the response of the side tracks is simply a scaled version of the center track 

response. To measure the level of ITI in the read channel, we define As = hy(Ty) as the side 

track amplitude. In addition, to clearly show the extent of ISI on the along-track direction, 

we define the normalized pulse width PWN = PW50_along / Tx, so that larger PWN means 

stronger ISI in the read channel.  

Finally, please note that the diagram given in Fig. 7.1 is only for single-track reading 

and detection, which is applicable to single-track equalization and to joint-track 

equalization. However, 2D equalization requires multi-track reading; we will build up a 

more complicated channel model for 2D equalization, using the one in Fig. 7.1 as the very 

basic component. 

7.2 Single-track equalization 

The single-track equalization with optimized GPR targets was initially proposed by 

Moon et al. in [8] and later applied to PMR channels in [9], which is the GPR target 

equalization method we have introduced on PMRCs in Chapter 1. Recently, Nutter et al. 

[76] use this technique to equalize BPMR channels. It has been proved that the channels 

equalized with optimized GPR targets, which have non-integer coefficients, significantly 

outperform the channels equalized with the conventional integer PR targets. In this 

chapter, we also consider the single-track equalized BPMR channel and use it as the base 

line in the performance comparison of different equalization-detection techniques. 
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Fig. 7.2.  Single-track equalized BPMR channel with optimized GPR targets. 

The diagram of the single-track equalized BPMR channel is drawn in Fig. 7.2, where the 

equalizer w = [w−N, …, w0, …, wN]T is a 2N+1 taps FIR digital filter, and f = [f0, …, fL1−1]T 

is the GPR target with length L1. Although the GPR target f could be anti-causal, we always 

use causal targets in this work. Let Ry be the (2N+1)×(2N+1) autocorrelation matrix of yk, 

with Ry(i, j) = E{yk−i yk−j} for –N ≤ i, j ≤ N, Ra the L1×L1 autocorrelation matrix of ak, with 

Ra(i, j)= E{ak−i ak−j} for 0 ≤ i, j ≤ L1–1, Ry,a the (2N+1)×L1 cross correlation matrix with 

Ry,a(i, j) = E{yk−i ak−j} for –N ≤ i ≤ N and 0 ≤ j ≤ L1−1. Then the mean-squared error (MSE) 

can be expressed as 

{ }2 T T T
SEMSE kE e= = a y y,af R f + w R w - 2w R f .                  (7.2) 

By minimizing (7.2) and enforcing f0 = 1, the optimized GPR target and equalizer can be 

computed as 

T 1 1( )− −= λ −a y,a y y,af R R R R C ,                            (7.3) 

1−= y y,aw R R f ,                                          (7.4) 

where C = [1, 0 …0]T is a vector of length L1, and  

                             T T -1 -1
a

1λ
y,a y y,a

=
C (R - R R R ) C

. 

We take N =10 to setup an equalizer with 21 taps. Actually we use 21 taps filters as 
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equalizers not only in the single-track equalization but also for the joint-track equalization 

and each dimension of the 2D equalization, because 21 taps are large enough to avoid 

affecting the design of the equalizer and the GPR target, and in addition it is a fair 

comparison of different recording systems.  

7.3 Joint-track equalization 

Joint-track equalization [73] is a single-track reading and detection technique, where the 

equalizer is still 1D, just like the single-track equalization. However, this technique 

equalizes the channel with an optimized 2D GPR target, i.e., GPR targets for center and 

side tracks are designed, which achieve a smaller MSE than that of single-track 

equalization, but need a complicated channel detector. After giving a brief review of the 

joint-track equalization technique, we will put forward a new interpretation of this well 

known approach. 

⊕ 

n(t)

h(t, 0) ak h(−t, 0)
yk

w
bk 

h(t, Ty) 

zk

ck 

h(t, Ty) 

Tb

Detection 
(BCJR) 

ˆka
● 

f ⊕

●

ˆkz − ek 
+

● 

● 

⊕ g

⊕
dk

 

Fig. 7.3.  Joint-track equalized BPMR channel with optimized 2D GPR target and 1D 

equalizer. 

7.3.1 Joint-track equalized BPMR channel 

The diagram of the joint-track equalized BPMR channel is shown in Fig. 7.3, where we 

express the data on the two side tracks, bk and ck as dk = bk + ck, given the equivalent 
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contributions of bk and ck in the channel. To facilitate the derivation of the joint-track 

equalization, we need to define the target and some statistical quantities related to the input 

dk, besides extending the notation for single-track equalization. Let g = [g0, …, gL2−1] be the 

GPR target for the side tracks, Rd the L2×L2 autocorrelation matrix of dk, with Rd(i, j)= 

E{dk−i dk−j} for 0 ≤ i, j ≤ L2–1, Ra,d the L1×L2 cross correlation matrix, with Ra,d(i, j)= 

E{ak−i dk−j} for 0 ≤ i ≤ L1–1 and 0 ≤ j ≤ L2–1, Ry,d the (2N+1)× L2 cross correlation matrix 

with Ry,d(i, j) = E{yk−i dk−j} for –N ≤ i ≤ N and 0 ≤ j ≤ L2−1. Then the MSE can be expressed 

as 

{ }2
JE

T T T T

T

MSE

           

              

kE e=

= a d a,d y

y,a y,d

f R f + g R g + 2f R g + w R w

- 2w (R f + R g).

                 (7.5) 

By minimizing (7.5) and enforcing f0 = 1, the optimized 2D GPR target and 1D equalizer 

can be computed as 

1 1
1 1 2 2( )− −= λ −f A B A B C                                 (7.6) 

1
2 2
−= −g A B f                                            (7.7) 

1( )−= +y y,a y,dw R R f R g                                  (7.8) 

where C = [1,0 …0]T is a vector of length L1, as in the single-track equalization, and  

                             T 1 1
1 1 2 2

1
( )− −λ =

−C A B A B C
, 

                  T 1
1

−= −a y,a y y,aA R R R R ,      T 1
1

−= −a,d y,a y y,dB R R R R , 

                  T 1
2

−= −d y,d y y,dA R R R R ,      T T 1
2

−= −a,d y,d y y,aB R R R R . 

This design of the joint-track equalizer has a different expression from that in [73], but 

they are essentially equivalent, except that we emphasize that the target lengths L1 and L2 
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are not necessarily the same.  

7.3.2 Detection on the trellis of a 2D GPR target 

Based on the 2D GPR target, a trellis with multiple inputs needs to be constructed for 

joint-track detection. But we have choices here: the trellis could have either three binary 

inputs ak, bk and ck, or one binary input ak and one ternary input dk. Since bk and ck have a 

statistically identical contribution in the channel and hence have the same optimized GPR 

target, the trellises with these two kind of inputs, {ak, bk, ck} and {ak, dk} are equivalent 

with respect to the detection of ak. With an input of {ak, bk, ck}, each trellis state needs L1–1 

bits of memory to store {ak−1, …, ak−L1+1} and another 2(L2–1) bits memory for {bk−1, …, 

bk−L2+1} and {ck−1, …, ck−L2+1}. Therefore such a trellis has 2(L1–1)×4(L2–1) states, and each 

state has eight outgoing branches corresponding to the eight possible combined inputs of 

{ak, bk, ck}. On the other hand, the trellis with input {ak, dk} needs only 2(L1–1)×3(L2–1) states, 

and each state has six outgoing branches corresponding to the six possible combined inputs 

of {ak, dk}. Therefore, we consider the simpler trellis with the input {ak, dk} in the 

following investigation. 

A couple of detection methods on a trellis of a 2D target were discussed in [10]. In this 

chapter, we only consider the optimal detector based on the BCJR algorithm [28], which is 

named joint-BCJR in [10]. On the trellis with the input {ak, dk}, the forward and backward 

recursions of the joint-BCJR have the same expressions as those of the standard BCJR 

algorithm, 

1

1 1 1( ) ( ) ( , ),
k

k k k k k k
s

s s s s
−

− − −= ⋅∑α α γ                           (7.9) 

1 1 1( ) ( ) ( , ),
k

k k k k k k
s

s s s s− − −= ⋅∑β β γ                          (7.10) 
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where ( )k ksα and ( )k ksβ are the forward and backward state probabilities, respectively. 

The branch transition probability 1( , )k ks s−γ is computed by 

1 1( , ) ( , ) ( | , , , ),k k k k k k k k ks s P a d P z s a d s− −= ⋅γ                  (7.11) 

where the a priori probability P(ak, dk) = P(ak)P(dk) , and P(dk) is related to P(bk) and P(ck) 

by P(dk=−2) = P(bk=−1)P(ck=−1), P(dk =2) = P(bk =1)P(ck =1) and  P(dk =0) = P(bk 

=−1)P(ck =1) + P(bk =1)P(ck =−1). Then the APP is computed as 

1

1 1 1
1( , | ) ( ) ( , ) ( ),
( )

k

k k k k k k k k
s

P a d s s s s
P

−

− − −= ⋅ ⋅∑α γ βz
z

            (7.12) 

where z is a block of the received signal. Finally, the desired APP for ak is obtained by 

marginalization, 

( | ) ( , | ).
k

k k k
d

P a P a d=∑z z                               (7.13) 

7.3.3 Performance and mean-squared error 

As shown in Figs. 7.2 and 7.3, the single-track equalization simply treats the ITI as an 

additive noise, while the joint-track equalization designs an optimized PR target for side 

tracks, given that the input distribution of side tracks is known, which is expected to be 

very useful information to the receiver. Now we would like to do some simulations to see if 

the joint-track equalization can achieve significant gains over the single-track equalization 

on BPMR channels. 

In this section, we choose an arrangement of islands with Tx = 13 nm, Ty = 18.82 nm, 

which gives an areal density of 2.64Tb/in2; such a bit-patterned medium is characterized by 

strong ISI and ITI, where the normalized pulse width is PWN = 1.5 and the side track 

amplitude is As = 0.2. We simulate the uncoded read channels of both equalization methods 
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with 4096-bit sectors, where the single-track equalized channel has GPR3 targets and the 

joint-track equalized channel has a GPR3 target for the center track and GPR2 targets for 

the side tracks. We use shorter targets on the side tracks to reduce the detection complexity, 

while we find that targets longer than two taps for side tracks give only negligible 

improvement on the minimum MSE (MMSE) and the bit-error-rate (BER) performance. 

We present the simulation results in Fig. 7.4, and it is a bit surprising that the two 

equalization methods provide similar BER performance, since we observe that joint-track 

equalization has a much smaller MSE than single-track equalization. 
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Fig. 7.4.  Performance of single-track and joint-track equalized BPMR channels. 

To understand this phenomenon, let us re-consider the relation between equalization 

methods and the associated detection. The single-track equalization minimizes the mean 

square error MSESE = E{ek
2}, with ek = zk − ∑l fl ak-l, which is with respect to ak. Since ak is 

the desired data, MSESE should be a good proxy metric for BER performance of the 
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single-track equalization. The joint-track equalization minimizes the mean square error 

MSEJE = E{ek
2}, with ek = zk − ∑l fl ak-l − ∑l gl dk-l, where both ak and dk are treated as desired 

sequences, and hence MSEJE is with respect to ak and dk. Since the joint-track equalization 

utilizes the distribution of dk on {–2 , 0, +2}, it can achieve a smaller MSE than the 

single-track equalization, i.e., MSEJE < MSESE. However, during the detection on the 2D 

trellis, the APPs P(ak, dk | z) are computed and then marginalized to get the desired APPs 

for ak, P(ak | z). Thus, dk is indeed not the desired data. In the process, the detection of dk 

increases the uncertainty of the detection of ak , just like ek which is assumed to have a 

Gaussian distribution during detection. Therefore, it is appropriate to look at ∑l gl dk-l as an 

additional noise. Since MSEJE is the MSE with respect to both ak and dk, it obviously is not 

a good metric for detection performance. Instead, the detection performance of ak should 

be related to the MSE with respect to ak. In other words, what the joint-track equalization 

minimizes is not exactly the quantity desired by the detector. 

We define the MSE with respect to ak as the effective MSE (EMSE). For the joint-track 

equalization, EMSEJE = E{(ek')2}, where ek' = zk − ∑lflak-l  = ek + ∑lgldk-l. The effective 

MSE is computed as 

EMSEJE = fTRaf + wTRyw – 2wTRy,af,                    (7.14) 

which has exactly the same expression as (7.2), the MSE of the single-track equalization; 

but (7.14) is not the quantity to be minimized in joint-track equalization. Note that, from 

the definition of EMSE, it is clear that EMSEJE ≥ MSEJE and EMSESE = MSESE. 

We show in Fig. 7.5 the MSEs and EMSEs for single-track and joint-track equalized 

BPMR channels simulated in this section. We see that joint-track equalization has much 

smaller MSE but larger EMSE than single-track equalization. We argue that it is the large 
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EMSEJE that causes the poor performance of the joint-track detection, which was expected 

to be better, given the small MSEJE.  
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Fig. 7.5.  Mean-squared errors of single-track and joint-track equalizations. 

However, if the performance of the joint-track detection is related to the EMSEJE, how 

can we explain the similar performance for the two equalization methods with EMSEJE ≥ 

MSESE? We think that joint-track equalization definitely has an advantage over 

single-track equalization. In [10], a simple joint-track model was investigated, which is 

shown in Fig. 7.6, where nk is AWGN; f and g are FIR filters with g = αf and α is a scalar 

(attenuation factor). The signal at the input of the detector can be written as 

zk = ∑l fl ak-l + ∑l gl bk-l + nk .                           (7.15) 

If we treat ∑l gl bk-l + nk as noise and do detection on the trellis constructed with target f, 

then the model shown in Fig. 7.6 is a single-track model with ITI. Otherwise, if nk is 
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considered the only noise and the detection is running on the trellis based on a 2D target of 

f and g, the model shown in Fig. 7.6 becomes a joint-track model. Given that the 

attenuation factor 0 < α ≤ 0.2, it has been proved that the information rate of the joint-track 

model is greater than that of the single-track model, where all information rates are with 

respect to ak. We note that the single-track model has the same MSE with respect to ak as 

the joint-track model, which is equivalent to the case MSESE = EMSEJE. It is well known 

that it is necessary to have a powerful error correcting code to achieve the information rate; 

the information rate may not be a good indicator of BER performance for the uncoded 

channel. However, the better information rate offers the possibility of improving the BER 

performance of the uncoded channel. 

⊕
nk

f ak 

bk g

zk
Detection

ˆka

 

Fig. 7.6.  A simple channel model for the investigation of single-track and joint-track 

equalizations. 

In summary, the performance of the joint-track equalized BPMR channel cannot be 

simply predicted by MSEJE or EMSEJE. The large EMSEJE negatively impacts the 

detection performance, while joint-track equalization has the advantage on information 

rate. We believe a compromise between these two points leads to the joint-track equalized 

channel exhibiting a similar performance to the single-track equalized case. 

7.4 Multi-track detection 

According to our analysis, joint-track equalization provides much smaller MSE but 
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larger EMSE. Is it possible to reduce the impact of EMSEJE and take advantage of the small 

MSEJE? We note that if the data on the side tracks were perfectly known, then the noise ek' 

has a mean of ∑l gl dk-l, and its variance var{ek'}= E{ek
2}=MSEJE, i.e., the noise variance 

with respect to ak reduces to MSEJE. Since MSEJE is much smaller than MSESE, we expect 

that joint-track equalization with known dk will provide a significant gain over single-track 

equalization. Of course, in an actual channel, the data on the side tracks are usually 

unknown; but we think that having some a priori information about the data on the side 

tracks during joint-track detection is still equivalent to reducing the noise variance with 

respect to ak from EMSEJE to some smaller value which is greater than MSEJE. 

Therefore, we propose a multi-track detection technique. The basic idea is that, before 

we detect the center track, the two side tracks will be detected first and the APPs of bk and 

ck are obtained, which we use in turn as the a priori information during detection on the 

center track. To further clarify the idea, we give the equations below to take into account 

the a priori information of bk and ck in the joint-BCJR detection on the {ak, dk} trellis. 

Following the discussion in Section 7.3.2, and given that the detector is implemented in the 

logarithm domain, we have 

log(P(ak = −1, dk = −2)) = A, 

log(P(ak = −1, dk = 0)) = log (exp(Lbk) + exp(Lck))  + A, 

log(P(ak = −1, dk = 2)) = Lbk + Lck + A, 

log(P(ak = 1, dk = −2)) = Lak + A, 

log(P(ak = 1, dk = 0)) = Lak + log (exp(Lbk) + exp(Lck))  + A, 

log(P(ak = 1, dk = 2)) = Lak + Lbk + Lck + A, 

where Lak, Lbk and Lck are log-likelihood ratios (LLRs) with Lak = log(P(ak =1) / P(ak = 
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−1)) and similarly for Lbk and Lck; A = − log(1+exp(Lak)) − log(1+exp(Lbk)) − 

log(1+exp(Lck)) is a constant for different combinations of  {ak, dk} and hence could be 

ignored in the detection. Note that there is still no a priori information for ak, i.e., Lak = 0, 

during center track detection. 
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Fig. 7.7.  Performance of multi-track detection with joint-track equalization. 

We give the BER performance of the multi-track detection on the joint-track equalized 

BPMR channel in Fig. 7.7, where we achieve a gain of about 6 dB over the single-track 

equalized channel at the BER of 10-5, which is consistent with our analysis. In our 

simulation, we assume that sectors on all three tracks are synchronized, i.e., sectors always 

begin and end at the same time ticks on all tracks. Indeed, this assumption is not necessary; 

but the sector offset must be known if there is any. In addition, to apply multi-track 

detection, only the center track needs to be equalized to a 2D PR target; it is acceptable to 

use any other equalization and detection method on the side tracks, if a different equalizer 
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and detector can be implemented in the same system. For example, we can use single-track 

equalization and use the standard BCJR detection on the side tracks, while the center track 

remains joint-track equalized. The performance of such a hybrid system is also shown in 

Fig. 7.7, where the hybrid system clearly provides almost the same performance as the 

joint-track equalized channel with multi-track detection, but has lower computational 

complexity. 

Furthermore, it is obvious that the detection of side tracks introduces a delay in the 

system. But we think that, in practice, a forward only detection algorithm can be used on 

the side tracks or even on all three tracks to allow the parallel implementation of detection 

on all tracks. 

Before we conclude this section, we need to clarify our terminology to avoid 

confusion. First, detecting a track means we are running a detection algorithm and 

generate an estimate of the data on that track; any sensing or even reading back signals 

from a track is not considered detection, unless there is a detector running on that track. 

Second, the multi-track detection introduced in this paper aims at data recovery on the 

center track only; all estimates of the data on side tracks are discarded. In other words, we 

are not using this technique to recover data from multiple tracks simultaneously. 

7.5 2D equalization 

As we have emphasized, the key point is that the center track must be equalized to a 2D 

GPR target, which allows us to capitalize on the smaller MSE. Actually, besides the 

joint-track equalization, there is another way to equalize read channels to 2D GPR targets, 

namely a 2D equalization technique [74]. The 2D equalization technique employs a 2D 
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equalizer to mitigate the impact of ITI, by equalizing the readback signals from multiple 

tracks. To avoid the use of complicated detection algorithms, the GPR targets for 2D 

equalization in [74] are constrained to be 1D. 2D equalization with a 1D GPR target, 

denoted by 2D1D equalization, provides significant gains over the single-track 

equalization on high-density BPMR channels. However, with a 2D GPR target, the 2D 

equalization technique is expected to give an MSE (denoted as MSE2D2D) smaller than 

MSE2D1D. If it is true, then we may use multi-track detection to achieve additional gains, 

just like what we did for the joint-track equalization case. 

7.5.1 BPMR channel with 2D equalization 

The BPMR channel with 2D equalization is shown in Fig. 7.8, where five tracks {–2, –1, 

0, 1, 2} have been sensed; three heads read back the signal on three tracks {–1, 0, 1}; the 

data on the center track, a0,k, are detected. The equalizers on the three tracks are w–1 = 

[w–1,–N, …, w–1,0, …, w–1,N]T, w0 = [w0,–N, …, w0,0, …, w0,N]T and w1 = [w1,–N, …, w1,0, …, 

w1,N]T, where we take N = 10 as in other equalization methods. The PR targets for the three 

tracks are t–1 = [t–1,0, …, t–1,L2–1]T, t0 = [t0,0, …, t0, L1–1]T and t1 = [t1,0, …, t1,L2–1]T. Define 

vectors, w = [w–1
T

  w0
T

  w1
T]T, t = [t–1

T  t0
T  t1

T]T; y–1 = [y–1,k+N, …, y–1,k−N]T, y0 = [y0,k+N, 

…, y0,k−N]T, y1 = [y1,k+N, …, y1,k−N]T and y = [y–1
T y0

T y1
T]T; a−1 = [a−1,k, …, a−1,k− L2+1]T, a0 = 

[a0,k, …, a0,k− L1+1]T, a1 = [a1,k, …, a1,k− L2+1]T and a = [a−1
T a0

T a1
T]T. Then the equalization 

error ek can be expressed as    

ek = wTy – tTa.                                 (7.16)  

With Ry = E{yyT}, Ra = E{aaT} and Ry,a = E{yaT}, the mean-squared error can be 

expressed as 
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Fig. 7.8  A 2D equalized BPMR channel model. 

{ }2 T T T
2DMSE kE e= = a y y,at R t + w R w - 2w R t .               (7.17) 

By minimizing (7.17) and enforcing t0,0 = 1, the optimized GPR target and equalizer can be 

computed by 

T 1 1( )− −= λ −a y,a y y,at R R R R C ,                          (7.18) 

1−= y y,aw R R t ,                                         (7.19) 

where C = [0 … 0,1,0 …0]T is a vector of length L1 + 2L2, and  

                             T T -1 -1
a

1λ
y,a y y,a

=
C (R - R R R ) C

. 

Since we use 1D vectors to express 2D signals and filters, the design of 2D equalization 

follows the same method of the single-track equalization; (7.17)−(7.19) resemble 

(7.2)−(7.4). In [74], the 2D equalizer, 2D target and the read back signals from three tracks 

are expressed as a matrix and the filter input-output relations are written as 2D 
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convolutions, which give a more compact description of the system. However, our 

decomposed expressions and derivations provide a better understanding of the 2D 

equalized BPMR channel. In addition, in [74], to get different target lengths for the center 

and side tracks or even 1D target, a special constraint matrix E needs to be constructed and 

used in the minimization of MSE2D to force some target coefficients to zero. But our 

interpretation of the 2D equalization technique naturally avoids such a problem; simple 

adjustment on L1 and L2 can implement targets with different lengths; to design a 1D target, 

all we have to do is to set t = t0 and a = a0. As in the joint-track equalization, the symmetry 

of the channel model makes the same equalizers and targets on side tracks numbered -1 and 

1, i.e., w–1 = w1 and t–1 = t1, and hence the detection can be on the trellis with inputs {a0,k, 

a–1,k + a1,k}. In addition, the additive white Gaussian noises n–1(t), n0(t) and n1(t) are 

assumed to be independent of each other and have the same double sided power density 

height of σ2. We define the SNR as 1/σ2, which is consistent with the SNR definition in the 

single-track and joint-track equalized channels. 

7.5.2 Performance of 2D equalized BPMR channels 

We simulate the 2D equalized channels on the same medium used in Section 7.3 and 7.4. 

In the 2D1D equalization, the channel is equalized to GPR3 targets, while in the 2D2D 

equalization, we choose L1=3 and L2=2; longer PR targets for side tracks give only 

negligible improvement on MMSE2D2D and the BER performance. We show the simulation 

results in Fig. 7.9, where the 2D1D equalized channel exhibits an excellent performance, 

with about a 5-dB gain over the single-track equalized channel at a BER of 10-5, which is 

only 1 dB worse than the joint-track equalized channel with multi-track detection. 

However, the 2D2D equalized channel has poor performance, which is even worse than the 
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single-track equalized channel at low SNRs. This time, this is not surprising. Let us take a 

look at the EMSE of the 2D2D equalizer, which is computed by 

EMSE2D2D = t0
TRa0t0 + wTRyw – 2wTRy,a0t0,                   (7.20) 

where Ra0 = E{a0a0
T} and Ry,a0 = E{ya0

T}. We show the MSEs of different equalizations 

in Fig. 7.10. First, the MSE2D1D is much smaller than MSESE, which explains the large gain 

achieved by 2D1D equalization over single-track equalization. Second, the EMSE2D2D is 

the worst among all equalization methods, which could be related to the poor performance 

of the 2D2D equalized channel. Finally, MSE2D2D is even slightly smaller than MSEJE, 

which lets us expect an additional gain by using multi-track detection with 2D2D 

equalization.  

7.5.3 2D equalization with multi-track detection 

We give the BER performance of multi-track detection on the 2D2D equalized BPMR 

channel in Fig. 7.11, where the 2D2D equalized channel aided by multi-track detection 

outperforms the 2D1D equalized channel, but is still worse than the joint-track equalized 

channel with multi-track detection. Given that MSE2D2D ≤ MSEJE in Fig. 7.10, we still 

expect that 2D2D equalization can perform better. We notice that 2D2D equalization has 

the worst performance in Fig. 7.9, which means that in the multi-track detection of the 

2D2D equalized channel, the APPs of the data on the side tracks may not be reliable. Just 

as we discussed in Section 7.4, it is possible to employ different equalization methods on 

the side tracks. Given that 2D1D equalization provides very good performance, we choose 

this method to equalize the side tracks and keep the 2D2D equalization for the center track. 

We present the simulation results in Fig. 7.11, where this hybrid 2D equalization system 
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Fig. 7.9.  Performance of the 2D equalized BPMR channels. 
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Fig. 7.10.  Mean-squared errors for three different equalizations. 



 

150 
 

6 8 10 12 14 16 18 20
10-6

10
-5

10-4

10
-3

10-2

10-1

SNR

B
E

R

SE GPR3
M-JE f3g2
2D1D
2D2D
M-2D2D
M-2D2D(2D1D side)

 
Fig. 7.11.  Performance of the 2D equalized BPMR channels with multi-track detection. 

aided by multi-track detection gives the best performance.  

7.6 Performance bounds for multi-track detection techniques 

As we discussed in Section 7.4, multi-track detection provides probability information 

for the data on side tracks to be used for center track detection, which is considered 

equivalent to bringing the EMSE closer to the MSE. On the other hand, better BER 

performance on side track detection improves the detection performance on the center 

track. If the detection on side tracks is error free or equivalently, the data on the side tracks 

are known, then EMSE = MSE and the detection on the center track will have the best 

performance, which can be treated as a performance bound for multi-track detection 

techniques. 

We have introduced the detection on the trellis of a 2D PR target in Section 7.3.2. 
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However, given that the data on the side tracks are known, the trellis and the detection 

method are much simpler. On the trellis with input {ak, dk}, if dk is known, the trellis will 

have the same number of states and state transition relations as the one constructed on the 

1D target for ak; the contribution of dk and its PR target remains only in the computation of 

the branch values.   

We do the simulation on the same medium as in previous sections. We show the 

performance bounds for joint-track and 2D2D equalized channels in Fig. 7.12, where the 

two performance bounds are very close, which is reasonable due to the small difference 

between MSEJE and MSE2D2D. It is interesting to note that the hybrid 2D equalization with 

multi-track detection approaches the performance bound at medium and high SNRs, while 

the joint-track equalization with multi-track detection does not. Obviously, the joint-track 

equalization with multi-track detection needs a better detection performance on the side 

tracks to reach the performance bound. An available choice is 2D1D equalization for the 

side tracks, which is expected to lead to another high performance hybrid system, just like 

the hybrid 2D equalization proposed in Section 7.5.3. However, there may be some 

difficulties in implementing different equalizers in one system. To avoid constructing 

hybrid systems, we consider a simple extension of the multi-track detection technique. 

To improve the detection performance on side tracks, we can apply the multi-track 

detection technique on the two side tracks of the center track, from which we are retrieving 

data; then the tracks adjacent to each side track need to be detected first. Given that the 

center track is numbered 0, and other tracks are numbered in order as {…, −2, −1, 0, 1, 

2, …}, the tracks −2, 0 and 2 are detected at first; then the detection on tracks −1 and 1 will 

be aided by the probability information from tracks −2, 0 and 2. In this way, the detection 
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performance on tracks −1 and 1 will be improved, and hence the BER performance of the 

center track (track 0) is expected to achieve the performance bound. Note that there are a 

total of five tracks, which have been detected. This extension of the multi-track detection 

technique only requires one equalization method in the system and can be applied with 

both joint-track and 2D equalizations. 
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Fig. 7.12.  Performance bounds for joint-track and 2D2D equalization. 

We present in Fig. 7.13 the performance of the hybrid system with joint-track equalized 

center track and 2D1D equalized side tracks, as well as the performance of the extended 

multi-track detection with five joint-track equalized tracks. Clearly, both of them achieve 

the performance bound. We apply the extended multi-track detection technique to the 2D 

equalized channel; we show the simulation results in Fig. 7.14, where the performance 

bound is also achieved. 
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Fig. 7.13.  Achieving the performance bound for multi-track detection with joint-track 

equalization. 
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Fig. 7.14.  Achieving the performance bound for multi-track detection with 2D 

equalization. 
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7.7 Simulation with other island distributions 

In previous sections, we have investigated the proposed techniques on a bit-patterned 

medium which is characterized by strong ISI and ITI (PWN = 1.5 and As = 0.2). In this 

section, we provide simulations on the other two typical media to further validate the 

analysis presented. 

First, we consider a bit-patterned medium with strong ISI and weak ITI. We choose an 

arrangement of islands with Tx = 13 nm, Ty = 24.7 nm, which gives an areal density around 

2Tb/in2, where the normalized pulse width is PWN = 1.5 and the side track amplitude is As 

= 0.0625. The simulation results are shown in Fig. 7.15, where the performance bounds 

only outperform the single-track equalized channel by around 1.3 dB; the simple 2D1D 

equalization harvests most of the gain. The multi-track detection technique was proposed 

to mitigate ITI; it is to be expected that this technique is not effective on the channel with 

weak ITI. 

Second, we consider a bit-patterned medium, in which the islands are squarely 

distributed with Tx = Ty = 18 nm. This medium gives an areal density also around 2Tb/in2 

and the related read channel has weak ISI and strong ITI (PWN = 1.083 and As = 0.2294). 

We show the simulation results in Fig. 7.16, where the multi-track detection with both 

joint-track and 2D equalizations, provide significant gains over the single-track 

equalization. However, we see that there are still visible gaps between the performance 

bounds and the best performance given by the hybrid systems. Again, we use the extended 

multi-track detection to obtain better detection performance on the two side tracks. We 

present the simulation results in Fig. 7.17, where the performance bounds are finally 

achieved. 
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Fig. 7.15.  Simulations on BPMR channels with strong ISI and weak ITI. 

7.8 Conclusion 

In this chapter, we provide new insights into equalization methods with 2D GPR targets, 

and propose multi-track detection techniques that can achieve the performance bounds. 

Simulations on bit-patterned media of three typical island distributions fully validate our 

analysis. Finally we point out that multi-track detection complicates the implementation of 

a practical system and introduces time delay during user data retrieval. We argue that using 

forward-only detection on the side tracks (or even on all tracks) makes it possible to do 

detection on all tracks in parallel and hence avoiding the time delay. In addition, joint-track 

equalization with multi-track detection has similar performance as 2D equalization, with 

fewer track readings and hence lower complexity.  
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Fig. 7.16.  Simulations on BPMR channels with weak ISI and strong ITI. 
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Fig. 7.17.  Achieving the performance bound on BPMR channels with weak ISI and 

strong ITI. 
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8 Epilogue 

In this dissertation, we investigated advanced signal processing techniques for 

magnetic recording channels, and proposed novel methods for channel detection, LDPC 

code design and decoding. In this chapter, we conclude the investigation, outline the 

contributions in this dissertation and give suggestions for future work. 

8.1 Conclusions 

At the beginning of this dissertation, we clearly introduced the basics of modern 

magnetic recording systems. The equalization method and an appropriate SNR definition 

given in Chapter 1 are employed in the investigation of PMRCs in Chapters 3−6, which 

make the results of our simulations comparable across chapters. In addition, we also 

introduced a new technique for the next generation of magnetic recording system, 

investigated the new bit-patterned media and replay response and outlined the challenges 

of this novel recording technique. Then we made the following contributions on both 

PMRCs and BPMR channels in Chapters 3−7. 

1)  A symbol-based BCJR algorithm is proposed in Chapter 3, by which we can 

implement turbo equalization for nonbinary LDPC coded PR channels exactly. 

   Furthermore, the simplified versions of the symbol-based BCJR algorithm 

are derived for PR channels and their computational complexities are 

calculated and compared. The simulations on PMRCs show that the proposed 

algorithm significantly outperforms the conventional methods.  
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2)  An improved BP (IBP) decoder for LDPC coded PR channels is proposed in 

Chapter 4, which makes use of the correlations between the channel messages 

in the BP decoding. 

   The IBP decoder is thoroughly investigated on LDPC coded PR channels; 

it turned out to achieve better performance with stronger correlations between 

channel messages. The simulations on PMRCs further validate this 

investigation. Without the turbo equalization, the IBP decoder provides very 

large gains over the standard BP decoder. Additional research shows that the 

turbo iterations do not help the IBP decoder very much but significantly 

improve the performance of LDPC coded channels with the standard BP 

decoder. We conjecture that the standard BP decoder may obtain and use the 

correlations between channel messages by turbo iterations; our algorithm 

provides another way to harvest the gain. Finally, the IBP decoder is further 

extended for the nonbinary LDPC coded PR channels. 

3)  In Chapter 5, we introduced several new methods to design LDPC codes for 

magnetic recording, where we are aiming at reducing the number of short 

cycles on the factor graphs of LDPC codes. 

   First, a modified PEG (MPEG) algorithm is proposed to do the LDPC code 

construction. Then we applied the MPEG algorithm and the lattice construction 

technique to the design of QC-LDPC codes. QC-LDPC codes with fewer 

shortest cycles were obtained. Meanwhile, we find that only reducing the 

number of the shortest cycles may boost the number of the longer cycles in the 

code, which may offset the performance improvement. Finally, we point out 
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that the MPEG algorithm itself not only eliminates the shortest cycles but also 

reduces the number of larger short cycles in a more general sense, and hence 

always gives LDPC codes with good performance. 

4)  In Chapter 6, we made a substantial investigation of the RS plus LDPC coded 

PMRCs, which is presently used in commercial implementations. 

   After designing a group of inner LDPC codes with various code rates and 

column weights, we evaluate the SER performance of the concatenated codes 

with different iterative schemes. Given a fairly good iterative scheme, we find 

the optimal code rates of the concatenated codes by simulation. Then the 

contributions of the outer RS codes are validated by simulations in both 

random noise and media defects. In addition, we utilized a recently developed 

technique, the microscopic method to estimate the error floors of the 

concatenated codes whose inner LDPC codes have column weight of two. 

5)  Advanced equalization and detection methods for BPMR channels are 

investigated in Chapter 7, where we proposed a multi-track detection technique 

to mitigate the ITI. 

   The proposed technique can take full advantage of equalization methods 

with 2D GPR targets. The multi-track detection with both joint-track or 2D 

equalization provides significant performance improvement compared to 

conventional equalization and detection methods. Furthermore, various 

detection strategies based on the multi-track detection, including several hybrid 

detection methods and the extended multi-track detection technique, are 

introduced to achieve the performance bounds. 



 

160 
 

8.2 Future work 

Based on the work carried out in this dissertation, we list some possible issues which 

could be addressed in future. 

• The IBP decoder introduced in Chapter 4 has very good performance. But in 

practice, noise predictive detectors are used in magnetic recording systems. 

Although we have mentioned that the advantage of the IBP decoder still holds 

with noise prediction, the performance of IBP needs to be re-evaluated. Note that 

designing the noise-predictive channel detector for IBP decoding is also a 

challenge. 

• The IBP decoder has higher computational complexity than the standard BP 

decoder. But by using the forward-only channel detector and a simplified 

decoding algorithm such as Min-Sum, it is possible to design a reduced 

complexity decoder based on IBP. As we see in Section 4.6, although the IBP 

decoder has a comparable performance with the standard BP decoder with turbo 

equalization, the IBP decoder can run faster than the standard BP decoder, 

because no turbo iterations are needed for IBP. Therefore, it is interesting to 

compare the performance and complexities of the IBP and BP decoders with a 

more practical magnetic recording system. 

• In Chapter 6, we estimated the error floors of RS plus LDPC coded PMRCs, 

where the inner codes have column weight of two. But it would be interesting to 

find the error floors or estimate the performance at high SNRs for codes with 

higher column weights. In addition, it is also important to estimate the 

performance of LDPC-only coded MRCs at high SNR, which will make the 
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investigation in Chapter 6 more meaningful and attractive. However, the error 

rate estimation is still a big challenge for LDPC coded MRCs. 

• BPMR for high recording density is a new recording technique. Before it is 

implemented in products, there are still a lot of BPM-specific challenges that 

need to be overcome. What we did in Chapter 7 is only the beginning of this 

work, where only the ISI, ITI and electronic noise are included in the channel; 

written-in errors and media noises such as island location and size fluctuations 

also need to be considered in the future. In addition, with extremely high 

recording density, the ITI may be caused by more than two side tracks, which 

will make the multi-track detection more complicated to implement. One way to 

reduce the complexity is keeping the 2D target for only the center and the nearest 

two side tracks, but the performance of this technique need to be re-investigated. 

• To mitigate the ITI in BPMR channels, we considered to re-design the equalizer 

and channel detectors. But it is possible to reduce the impairment of high density 

BPMR channels by error correcting coding. Although we have not done any 

work in this area, we are aware of that it is an important topic and some progress 

has been made by other researchers [78]-[80]. 
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Appendix A – List of Acronyms and Abbreviations 

2D Two-Dimensional 

3D Three-Dimensional 

ABS Air-Bearing Surface 

APP a posteriori Probability 

AWGN Additive White Gaussian Noise 

BCJR Bahl-Cocke-Jelinek-Raviv 

BER Bit-Error Rate 

BP Belief-Propagation 

BPM Bit-Patterned Media 

BPMR Bit-Patterned Magnetic Recording 

CMBP Coded Modulation Belief-Propagation 

DMC Discrete Memoryless Channel 

ECC Error Correcting Code 

EMSE Effective Mean-Squared Error 

FFT Fast Fourier Transform 

FIR Finite Impulse Response 

GMR Giant Magnetoresistive  

GPR Generalized Partial-Response  

HAMR Heat-Assisted Magnetic Recording 

i.u.d. independent uniformly distributed 
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IBP Improved Belief-Propagation 

ISI Intersymbol Interference 

LDPC Low-Density Parity-Check 

LLR Log Likelihood Ratio 

LMR Longitudinal Magnetic Recording  

MAP Maximal a posteriori 

MIR Matched Information Rate 

ML Maximum Likelihood 

MLSD Maximum Likelihood Sequence Detector 

MMS Multilevel Modulated Signal 

MMSE Minimum Mean-Squared Error 

MPEG Modified Progressive Edge-Growth 

MR Magnetoresistive  

MRC Magnetic Recording Channel 

MS Min-Sum 

MSE Mean-Squared Error 

MTR Maximum Transition Run 

NRZ Non-Return-to-Zero 

NRZI Non-Return-to-Zero-Inverted 

OBBD Optimal Subblock-by-Subblock Detector 

PDNP Pattern-Dependent Noise Predictive 

PEG Progressive Edge-Growth 
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PMF Probability Mass Function 

PMR Perpendicular Magnetic Recording 

PMRC Perpendicular Magnetic Recording Channel 

PR Partial-Response 

PRML Partial-Response Maximum Likelihood 

RLL Run Length Limited 

RS Reed-Solomon 

SER Sector-Error Rate 

SISO Soft-Input Soft-Output 

SNR Signal-to-Noise Ratio 

SOVA Soft Output Viterbi Algorithm 

SUL Soft Under Layer 

TDMR Two-Dimensional Magnetic Recording 

VA Viterbi Algorithm 

 


