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A iHSTOCHEMICAL AND PHYSIOLOGICAL STUDY

OF PENTASTOIvjE NERVOUS SYSTEMS

CHAPTER I 

INTRODUCTION

The biological success of the endoparasitic helminths necessitates 

the existence of efficient and sophisticated sensory mechanisms. That 

such mechanisms exist is verified by phenomena such as; active 

positioning in the organs of the host i.e., the vertebrate gut, and 
larval migrations of many parasitic species. The functional nature of 

such nervous mechanisms is not well understood and investigations into 

the functioning of parasitic helminth nervous systems is just beginning.

The investigation into the adaptations and functioning of the nervous 

system in one group of parasitic helminths (Pentastomida) constitutes 

the subject of this work.
Biochemical and physiological investigations into the functions 

of parasite nervous systems have gained momentum in recent years. Mellanby 

(1955) identified and described the acetylcholine contents of three 
nematodes. Ascaris lumbricoides, Litomosoides carinii. and the 

microfilariae of Dirofilaria repens. Krotov (1957) demonstrated the 

sensory and motor nerves of Ascaris sp. to be highly sensitive to 

acetylcholine. A cholinesterase from Haemonchus contortus which
1
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hydrolyzed both acetyl and butyrylcholine was characterized and tested 

for its susceptibility to inhibition by organophosphorus substances by 

Lee and Hodsden (1963)o Finally, Sanderson (1969) reported a high 

specific activity for the acetylcholinesterase isolated from the 

infective and adult stages of the rat strongyle Nippostrongylus 

brasiliensis.
In mentioning noteworthy works on the nervous systems of the 

Trematoda one must consider the isolation and characterization of an 
acetylcholinesterase from Schistosoma mansoni which is similar to that 

occurring in the nervous tissue of vertebrates (Bueding, 1952). Bueding 

(1967) localized, by histochemical methods, the site of cholinesterase 

activity to the nervous system of this fluke, Pelper (1958) demonstrated 

acetylcholinesterase activity in the ova of tliis parasite, Lee (1962) 

employed cholinesterase histochemistry in a study of the cholinesterase 

activity of the nervous system and holdfast organ of Dinlostomum 

phoxini. Frady and Knapp (1967) measured the activity of a specific 
acetylcholinesterase from Fasciola hepatica by employing a radioisotopic 

assay method for acetyl-1 ̂ ^-choline iodide. The indoxyl acetate method 

for esterase activity was employed by Halton and Jennings (1964) as a 

means of detecting the site of activity in the nervous system of the 

monogenean Diplozoon paradoxum.

Among parasitic helminths the cholinesterases have been 
investigated most extensively among the cestodes, as exemplified by the 

work of lyikkU (1956) who demonstrated the presence of a specific 

acetylcholine hydrolyzing enzyme and an enzyme with the ability to split 

benzoylcholine in the tissues of Diphyllobothrium latum and Taenia
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saglnata» Lee et al. (1963) made a comprehensive histochemical examination 

of the cholinesterases in Hvmenolepis sp. and Hvdatigera sp., demonstrating 

activity to be localized in the nervous system. A similar investigation 

showed cholinesterase activity to be localized in the nerve cords and 

tegument of cyclophyllidean cestodes (Schardein and Waitz, 1965).
Wilson (1965) completed a similar work in which he showed 
acetylcholinesterase activity to be restricted to the nervous system of 

two hymenolepid cestodes, and Hart (196?) found cholinesterases to be 

present in the nervous system of tetrathyridian cestodes. Graff and 

Read (196?) isolated and characterized a specific acetylcholinesterase 

activity from the tissues of Hymenolepis diminuta. Most recently Shield 

(1969) employed histochemical methods to identify esterase activity in 

the nervous systems of other cyclophyllidean cestodes. The works reviewed 

strongly suggest a role of cholinesters as transmitter substances in the 

nervous systems of the parasites mentioned.

The role of catecholamines and indolalkylami nes in the 

functioning of parasite nervous systems is now beginning to be 

investigated. The lone work reported so far is on 5-hydroxytryptamine 

in Schistosoma mansoni (Bennet and Bueding, 1970).

Although considerable investigation into the functioning of 

parasite nervous systems appears to be underway, certain helminth groups 

have been neglected, e.g., the Pentastomida. Heymons (1935) in his 

monograph on the Pentastomida described in detail the nervous systems 

of several pentastomes, and Doucet (1965) reinforced the v/ork of Heymons 

with a histological and histochemical study. This study is the first 

to be made on the nervous systems of these helminths by biochemical and
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histochemical methods. Its purpose is to explain, in part, the functioning 

of the pentastome nervous system.



CHAPTIiE II 

MATERIAIS AND IffiTHODS 

Enzyme Assays

Porocephalus crotali and Porocephalus clavatus were reared in 

laboratozy white mice and recovered from the lower abdominal tissues four 

months after infection. They were washed in ice-cold phosphate buffered 

Ringer (pH 7.0), and all succeeding operations up to the enzyme assays 

were carried out at -2 to 4 C, Nymphs were homogenized in glass 

homogenizers containing 3 ml of 0,185 ionic strength saline (0,10 M NaCl, 

0,02 M IlgCl2, and 0,025 M NaHCO;)) for each 300 mg of tissue.
Unfractionated homogenates were used for manometric determinations of 

cholinesterase activity by the metliods of Nachmansohn and Rothenberg 

(1945), and Nachmansohn and Wilson (1955), while fractionated homogenates 

were obtained by refrigerated centrifugation at 16,000 rpm and 30,000 X 

gravity for 30 minutes. Dry weights of duplicate aliquots of homogenates 

or homogenate fractions were determined after heating to a constant weight 

at 103 0, Acetylcholinesterase activity was measured by manometric 

methods in a Schoelander respirometer under 95% N2 - 5% CO2 at 37 C,
After a 15 minute period of gas and temperature equilibration the 

tissue homogenate was added by means of a calibrated syringe through 

a vaccine port to achieve a final volume in the reaction vessel 

of 2,5 ml. Enzyme activity was recorded as microliters (ul) of

5
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CÛ2 evolved per mg dry weight during the initial 15 minutes of 

assay.
The supernatant from fractionated homogenates was analyzed for 

nonspecific cholinesterase activity by the spectrophotometric technique 

of Rappaport et al, (1959)« Control tests were performed using mouse 
serum instead of pentastome supernatant, A standard curve was constructed 

for pentastome supernatant and mouse serum.
Specific activity for the enzyme assays was read in terms of 

change in optical density and extrapolated from the above standard curve 

into millimoles of the substrate broken down per unit time by a definite 

dry weight amount of serum or supernatant.

Nervous System Histochemistry 

Parasites were prepared for histochemical analysis by removal 

from the hosts and washing in Ringer solution at 23 C, Some were 

dehydrated in alcohol, embedded in Paraplast (Sherwood Medical Industries 

Inc,, M,P, 56-57 C,) using standard techniques, and sectioned at 6 u. 

Others were embedded in 0.0,T, (Ames Co,), quick frozen with CO2, 

sectioned at 15 u on a cryostat and mounted on microscope coverslips.

Catecholamine Histochemistry 
Pentastomes were taken from buffered saline and treated using 

the following histochemical procedures: (1) cryostat cold sections were

placed on chloroform cleaned coverslips, treated for catecholamine 

chromaffin reactions according to the technique of Hillarp and Hokfelt 

(1955)j (2) whole nymphs were fixed in 40* formaldehyde according to the 

fluorescence method for noradrenaline (Eranko, 1955); and (3) other
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pentastome tissues were fixed in Zenker's fixative (12 hrs), paraffin 

infiltrated, sectioned at 6 u, and examined for adrenochrome (chromaffin) 

reactions by utilizing the Giemsa method (Sevki, 1934)» Mouse adrenals 

were used as controls in all catecholamine and indolalkylamine histochemical 

experiments.

Cholinesterase Histochemistry 

Histochemical tests for cholinesterase activity in P. crotali and 

P. clavatus nymphs were performed on cryostat sections by employing the 

acetylthiocholine iodide method of Koelle (1950 and 1951)• Sections were 
incubated 45 minutes at 37 C in ten ml of Gomori medium as detailed by 

Pearse (1966). Coverslips were mounted on microscope slides with glycerol 

gelatin. Mouse brain sections, similarly treated, vrere used for controls. 

Heat treated mouse brain sections failed to give positive results.

Physiology Experiments 
Solutions of adrenaline, noradrenaline, 5-hydroxytryptamine, and 

dopamine were prepared by dissolving the appropriate amounts of dry 

powder in ten ml of 0.9^ phosphate buffered (pH 7.0) sodium chloride 

solution to give a 10”^ M concentration of the catecholamine, Eserine 
sulfate was dissolved in saline to give a. 10-4 M solution. Portions 

(10 ml) of these solutions were placed in separate containers; adult and 

nymph P. crotali were placed in these solutions and their behavior was 

observed for one hour.



CHAPTJiR III 

RESULTS 

Enzyme Assays
In Graph 1 it is evident that the pentastome tissues did not 

hydrolyze the acetylcholine chloride. Throughout the assay period 

pentastome tissue homogenates failed to evolve any gas (COg) beyond the 

nonspecific level regardless of the substrate concentration, whereas 

both the mouse brain and tapeworm tissue (Hymenolepis microstoma) yielded 

considerable CO2.
Mouse brain homogenates (Graph t) incubated in increasing 

molarity of substrate for fixed time periods revealed an initial low 

activity, then activation of the enzyme at the intermediate substrate 

concentrations followed by the characteristic substrate inhibition at the 

greater substrate concentration levels. The tapeworm tissues showed 

(Graph 1 ) similar phenomena but with a reduced magnitude of hydrolysis, 
while pentastome nymphs failed to hydrolyze any substrate as evidenced by 

their failure to evolve CO2. Samples of 8,2 mg/0,1 ml of pentastome 
tissue evolved 36,8 ul/hr of 002»while samples of 16.3 mg/̂ 0,1 ml evolved 

39,8 ul/hr of CO2, Samples incubated with medium alone evolved 38,5 ul/hr 

of CO2. This indicates that regardless of the concentration of pentastome 

tissue in the incubation medium the 00^ evolved over a 15 minute period

8
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was not greatly different from the nonspecific gas evolution of the 

medium without the tissues. Mouse brain homogenates of 16,3 mg/0,2 ml 

gave off large volumes of CO2» 514 ul/hr. Under identical conditions 
nymph tissue failed to hydrolyze either acetylcholine chloride or 

butyrylcholine iodide. Mouse brain homogenates demonstrated a preference 

for the acetyl ester (8,49 ul/mg dry wt/1 $ min) rather than the butyryl 

ester (1,32 ul/mg dry wt/15 min); this is characteristic of specific 

acetylcholinesterase (Nachmansohn and Wilson, 1955)»
The clear fractionated supernatant from P, crotali nymphs was 

assayed for nonspecific cholinesterase activity by the modified 

spectrophotometric method of Rappaport et al, (1959), Graph 2 indicates 

that the pentastome nymph supernatant did not hydrolyze the 0,08 M 

acetylcholine chloride substrate,while mouse serum at 37 C produced rapid 
hydrolysis of this substrate. The time assay illustrates a rectangular 

hyperbola for mouse serum hydrolysis of this substrate. Hydrolysis 

was essentially linear with respect to time for the initial ten 

minutes of hydrolytic activity.

Nervous System Histochemistry

Catecholamine Histochemistry 
When the tissues of P, clavatus adults were treated by the 

histochemical methods of Hillarp and Hokfelt (1955) (hereafter designated 
as the "Greaction") to determine the presence of chromaffin the reaction 

was judged to be poor when compared to that of the mouse adrenal gland 

control. All of the major areas of interest in the pentastome nervous 

system gave what was considered to be marginal or negative reactions to
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this method of treatment, while the controls showed dark brown coloration 

in the medulla of the adrenal gland with yellowish-brown cortical 

responses both of which are characteristic of adrenaline producing 

cells.
The nervous system of P. clavatus nymphs, treated by the 

histochemical methods of Sevki (hereafter referred to as the "QA reaction") 

for the presence of chromaffin gave a general positive response when 
compared to mouse adrenal gland controls (Figure 1), This reaction varied 

in intensity depending upon the location in the pentastome nervous system. 

The most intense reaction was in the axon portion of neurons forming 

synaptic junctions of what was considered to be sensory nerves terminals. 

These sensory nerve terminals included many of the neurons of the anterior 

and posterior nerve tracts emanating from the supra and subesophageal 

ganglia which gave chromaffin positive responses. The synaptic termini 

of the third and fourth ganglionic pair innervate the muscles of the 

hooks, buccal cavity, and cephalic hypodermal sensory cells. The termini 

of the fifth, sixth, and seventh ganglionic pairs supply neurons to the 

lateral hypodermis and muscles, gut, genital organs, and diffuse posterior 
nerve net. All of the above mentioned neurons gave a weak chromaffin 

positive response to the "GA reaction". The terminal sensory knobs 

(hereafter referred to as "SK cells") as figured by Heymons (1935) 

surrounding the anus and vaginal orifice were not visible. In the area 

of these orifices were numerous nerve endings which gave positive results 

with the "C and GA reactions",

P, crotali adult tissues were treated with the "C reaction" and 

giemsa stained. The terminal nerve endings in the muscles at the base of
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the hooks gave a chromaffin positive reaction as did the nerve endings to 

the buccal cavity. Figure 2-A demonstrates chromaffin positive granules 

in the axons of nerves ending in muscles (Figure 2-B) at the base of a 

hook. The supraesophageal ganglia gave weaker chromaffin reactions than 

did the hook region or the buccal cavity neurons. The neuropile of the 

supra and subesophageal ganglia v;as only slightly positive when treated 

vâth the "C reaction" and stained with Giemsa, In the hypodermis 

(Figure 3) numerous small delicate sensory cone cells (hereafter designated 
as "SDS cells") and sensory cones (hereafter designated as "SC cells") 

were chromaffin positive. This is also true for the synaptic junctions 
(Figure 4) of multipolar neurons in the subhypodermal region of the 

forebody.
Neurons were frequently seen to end in close proximity to 

the hypodermal "SDS cells" (Figure $-A) in a fashion similar to that 

described by Barrington (196?) for the echinoderms. Adult and nymphal 

Kiricephalus pattoni were observed to give faint chromaffin positive 

reactions at the basal portion of these "SDS cells" near the "secretory 

cells" of the nymphal hypodermis (Figure 5-B) when treated by the Sevki 

method. Chromaffin granules were not observed in the "SK cells" of the 

anterior end of the nymph (Figure 6), The nerve endings in the buccal 

cavity and hooks were minimally chromaffin positive suggesting the 

presence of catecholamine in the terminal neurons of the anterior supra 
and subesophageal ganglionic masses. The nerve endings in the neuropile 

of the supraesophageal ganglionic mass were chromaffin positive (Figure 

8-A) with granules presait in the nerve ends (synaptic junctions?) and 

cell bodies of the area immediately under the perineurium (Figures 8-B
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and 9-B). Figure 9-A indicates the origin of the posterior nerve tracts 

from the brain. The posterior sixth or seventh nerve tract may be seen 

directed toward the genital organs and posterior body, while the anterior 

fourth and fifth nerve tract is seen to innervate the muscles of the 
posterior hooks and anterior "SK cells" (Figure 8-C). These are probably 

mixed nerve tracts. At least some of the cell bodies in the ganglionic 

masses are motor ganglion cells and others are sensory ganglion cells.
The "SDS cells" of the hypodermis, mentioned earlier in the 

reference to Barrington (1967), were observed to form a close association 

with the subhypodermal neurons (Figures 5-A and 5-B), Granules appearing 
to be chromaffin in nature were aggregated along the basal portion of 

the hypodermal cell membrane surface (Figure 5-B), The granules were 

visibly paler than others and heui absorbed some of the azure blue 

component of the Giemsa stain. No nerve connection to the reproductive 

system was observed in either the adults or the nymphs and only small 

neurons which were chromaffin negative were associated with the genitalia, 

Raillietiella orientalis adults were examined for catecholamine 

by the "GA reaction". The nervous system of R, orientalis, as tested 

here, was chromaffin negative. In Bambonia sp, the nervous system of 

the nymphs resembled that of the porocephalids with chromaffin positive 

material being deposited in only a few neurons innervating hook muscles 

of specimens treated with the "GA reaction",
P, crotali nymphs were treated by the fluorescence method of 

Erankb (1955) (hereafter designated the "F reaction") and the only area 
of strong fluorescence was associated vrith the gut. House adrenals 

fluoresced intensely in the medulla.
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Cholinesterase Histochemistry 
The acetyl and butyrylthiocholine method for cholinesterase 

activity applied to adults and nymphs of P. crotali and P. clavatus 
yielded consistently negative results. Control tests applied to sections 

of mouse brain gave positive results (Figure 7).

Physiology Experiments 
P, crotali nymphs and adults were emersed in 10”3 m solutions 

of suspected transmitter substances; adrenaline, noradrenaline, 

5-hyroxytryptamine, and dopamine and their behavior observed visually 

for one hour. Their behavior in adrenaline and dopamine was similar to 

that of pentastomes in buffered saline at room temperature. Activity 

consisted of mild contractions and undulations at 10-15 second intervals. 

Adult and nymphal worms in noradrenaline and 5-hydro::q/tryptamine began 

rhythmic contractions and rapid undulations (one every 2-3 seconds) 

about ten minutes after being emersed in these solutions. This activity 

persisted throughout the one hour study. Removal of these pentastomes 

to buffered saline resulted in normal activity after 20-30 minutes.

Nymphs and adults of P, crotali emersed in 10"^ M eserine 

sulfate solution, a specific cholinesterase inhibitor, became increasingly 

active after approximately ten minutes emersion. After 5-10 minutes of 
increased contractile activity the parasites exhibited complete tetanus, 

contracting to one-half their original length. This condition was 
irreversible indicating that the inhibitor had completely and irreversibly 

blocked the vital functioning of the parasite.
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PIATE I

Figure 1. A cross section through the mouse adrenal gland (40QX), 

Tissue treated by the Sevki method for catecholamines.

The arrow indicates chromaffin granules.

Figure 2, A longitudinal section through the hook region of a

Porocephalus crotali adult (1,000X). The tissue was treated 

by the Hillarp and Hokfelt method for catecholamines,
A, Chromaffin positive granules in the axons of nei*ves 

innervating the muscles of the hooks,

B, Striated muscle of the hooks.

Figure 3, A cross section through the midbody of a Porocephalus 

clavatus adult (40CfX), The tissue was treated by the 

Hillarp and Hokfelt method for catecholamines. The arrow 

marks a small delicate sensory cell.

Figure 4, A cross section through the midbody of a Porocephalus

clavatus adult (1,00QX), The tissue was treated by the 

Hillarp and Hokfelt method for catecholamines,

A, A multipolar subhypodermal cell body with numerous 

chromaffin positive granules,
B, An axonal junction with a chromaffin positive granule,

C, The hypodermis just beneath an invisible cuticle.
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PIATii II

Figure 5. A longitudinal section through a Kiricephalus pattoni nymph 

(400X), treated by the Sevki method for catecholamines,

A, A subhypodermal nerve,
B, A sensory cone cell,

C, A "secretory cell".

Figure 6, A longitudinal section through a Kiricephalus pattoni adult 

(1,00CK), treated by the Sevki method for cat echo] amines.

The arrow marks a sensory knob.

Figure 7* A cross section through mouse brain (400X), treated by the 

Koelle method for cholinesterases. The sites of activity 

are the dark deposits.

Figure 8. A longitudinal section through a Kiricephalus pattoni nymph 

(40QX), treated by the Sevki method for catecholamines,

A, The posterior nerve tracts of the ganglionic mass leading 

to the genital organs, lateral nerves, and posterior body,

B, Synaptic junctions where the posterior nerves enter the 

ganglionic mass,
C, The anterior nerve tracts to the hooks and anterior sensory 

knobs.

Figure 9, A longitudinal section through area B, of Figure 8 (1,00QX),

A, The posterior nerve tracts,

B, Chromaffin positive granules in synaptic junctions.
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GRAPH 1

The Hydrolysis of Acetylcholine Chloride Demonstrated 

by a Manometric Method

Effect of substrate concentration on the cholinesterase activity 

of mouse brain, tapeworm, and pentastome tissue using unfractionated 

homogenates. Each point represents a mean of five values.
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GRAPH 2

The Hydrolysis of Acetylcholine Chloride Demonstrated 

by a Spectrophotoraetric Method

The hydrolysis of 0,08 I! acetylcholine chloride by mouse serum 

and pentastome supernatant as a function of time. Each point represents 

a mean of three values, Reading were made at 440 mu.
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CHAPTER IV 

DISCUSSION

The occurrence of choHnesterases in the nervous tissue of 

parasitic helminths appears to be ubiquitous as demonstrated by the 

works of Bueding (1952), Kellanby (1955), Pylkkd (1956), Krotov (1957), 

Pelper (1958), Lee (1962), Lee et al, (1963), Lee and Hodsden (1963), 

Halton and Jennings (1964), Schardein and Waitz (1965), Wilson (1965), 

Bueding et al. (1967), Frady and Knapp (1967), Graff and Read (1967), 

Hart (1967), Sanderson (1969), and Shield (1969). According to Florey 
(1966), cholinergic nervous systems are common to the animal kingdom; 

the sensory neurons of invertebrates (arthropods) are cholinergic, but 

not those of the vertebrates. According to Krotov (1957), acetylcholine 

and cholinesterase have been found in the tissues of all free-living 

invertebrates which have a nervous system and in numerous animals which 

lead a parasitic existence.

As shown in Graph 1 mouse brain homogenates and homogenates of 

Hymenolepis microstoma demonstrated maximal hydrolysis of acetylcholine 

chloride at 60 and 12 ul of C02/rag dry wt/15 min, respectively. The 
latter figure does not differ significantly from the figure of 7 ul of 

C02/mg dry wt/l$ min for H. diminuta which was obtained by Graff and 

Read (1967). Pentastome tissues so treated failed to evolve CO2 showing
22
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they did not hydrolyze significant quantities of the substrate. A 

twofold increase in the concentration of the pentastome tissue from 

8,2 mg/0,l ml to 16,3 mg/0.1 ml did not change significantly the COg emitted 

from that which was evolved by tubes incubated in buffer and substrate 

alone. When near equal quantities of mouse brain homogenate were 

utilized (16,3 mg/0,2 ml) the rate of substrate hydrolysis was high 

(514.0 ul/hr) in comparison to the tapeworm tissues. Increased carbon 

chain length of the choline ester did not alter the hydrolysis situation 

vdth respect to pentastome homogenates.

The results of spectrophotometric assays of the fractionated 

supernatant from pentastome homogenates (6,1 mg dry wt/0,2 ml) shown in 

Graph 2 indicates no hydrolysis of the 0,08 M acetylcholine chloride 

substrate, while mouse serum (16,6 mg dry wt/O.2 ml) effectuated 

significant hydrolysis,

Pentastome tissues analyzed using standard raanoraetric and 

spectrophotometric enzyme assay techniques failed to give any indication 

of cholinesterase activity. When v;hole adult and nymphal P, crotali were 

emersed in 10”^ M eserine sulfate solutions (a cholinesterase inhibitor) 

a marked increase in activity was noticed after ten minutes emersion and 

was followed by complete tetanus after 15 minutes of emersion. Although 

cholinesterase activity was not detected by biochemical and histochemical 

assay techniques the behavior of intact living pentastomes in the inhibitor 
solution suggested the presence and functioning of cholinesterase in these 

parasites. It must be concluded that the specific activity of 

cholinesterases in P, crotali and P, clavatus nymphs though quite low 

may occur as indicated by the response to the cholinesterase inhibitor.
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The esterase activity appears to be low and could not be detected by 

standard biochemical assay techniques or conventional histochemical 

methods.

The evaluation given below for the (nor-) adrenergic nature of 

pentastome nervous systems is not conclusive. It is apparent from the 

evidence gathered that chromaffin positive granules are most frequently 

visible in the synaptic junctions of the neuropile area of the 

supraesophageal ganglionic mass of K, pattoni adults and nymphs (Figures 

8 and 9)j in the axons of possible sensory nerves near the hypodermis; 

and in the motor end-plates and axons of nerves ending in striated muscles 

of P. crotali (Figure 2), Nerve cells in the subhypodermal area of adult 

P. clavatus. which resembled multipolar ganglion cells of the echinoderms 

(Barrington, 196?), contained granules in their axonal processes (Figure 

4). The interpretation of this evidence is that catecholamine and 

indolaUqrlamine substances (=chromaffin granules) are present and probably 

act as transmitter substances. These results were not observed in the 

tissues of Raillietiella orientalis adults and Sambonia sp. nymphs.

The sensory knobs (van Hafner and Heymons, 1935) in the area of 

the anus and head of porocephalid pentastomes were not seen in this work 

after a diligent search through hundreds of stained sections. There is 

some question as to whether such structures exist in the porocephalids.

One note of interest is the obvious close association between 

nerve termini and the basal portion of some hypodermal cells. This 

anatomical relationship suggests a possible sensory nature for this layer 

of cells. The sensitivity of this layer to touch is easily demonstrated
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when pentastomes respond to probing with undulations and by contraction, 

indicating the cuticle of pentastomes is thigmotactic.

The fluorescence of catecholamines and indolalkylamines when 

treated with concentrated formalin or paraformaldehyde fumes was first 

demonstrated by Eranko (1955)î the techniques of fluorescence microscopy 

have been revised by Falck et al, (1962), Fluorescence was observed 

throughout the midgut of P. clavatus and P, crotali whole mounted nymphs, 

but significant fluorescence of the nervous tissue was not observed. The 

results obtained are e^qjlained by the fact that pentastomes feed on 

the host's blood and the red blood cells are known to be fluorescent. 

Fluorescent particles of less than 1 u diameter were observed on sections 

of P. crotali nymphs which were treated by the ”F reaction" and viewed 

under oil emersion on a fluorescent microscope. Although fluorescent 

particles were observed they could not be associated with certainty to 

any part of the pentastome nervous system.
The fluorescence histochemical tests preclude any chromatographic 

separation of catecholamines or indolalkylamines from the parasites, i.e,, 

fluorescent host material found in the gut and pseudocoelomic fluid of 

the parasite would have masked any fluorescent material of the parasite 

nervous system.

According to Florey (1966), catecholamines and indolalkylamines 

are suspected transmitter materials in the nervous systems of many 
animals. These compounds occur throughout the neuron and it is generally 

assumed that they accumulate in the nerve endings; they are presumed to 

be released from the nerve endings upon stimulation and apparently 

diffuse to the subsynaptic membranes ", , , producing specific, rapid, and
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transient permeability changes in subsynaptic membranes.” Vlith respect 

to vertebrate nervous systems the (nor-) adrenergic nerve cell manufactures, 

stores, and releases the (nor-) adrenaline or 5-hydroxytryptamine to the 

subsynaptic membrane and it then causes the (nor-) adrenoceptive or 

"tryptaminoceptice” cells to respond to this released material. The same 

is true for (nor-) adrenaline or 5-hydroxytryptamine applied to the 

subsynaptic membrane.
These compounds have an effect on the behavior of pentastomes 

as indicated by their differential response to 10"^ M solutions of 

adrenaline, noradrenaline, 5~hydroxytryptamine, and dopamine. The first 

three chemicals have been suspected as transmitters in vertebrate and 

invertebrate nervous systems (Florey, 1966),
When adult and nymphal P, crotali were emersed in these solutions 

no change in activity of the parasites was observed in adrenaline and 

dopamine solutions. This indicates these substances have no such effect 

on the symaptic membranes as described above. When noradrenaline and 

5-hydroxytryptamine were used, a definite increase in motor activity was 

observed which subsided shortly after the parasites were removed from 

these solutions to the saline. This indicates these materials have the 

ability to act as exciters of the pentastome nervous tissue and possibly 

function in the manner described by Florey (1966),

On the basis of the histochemical evidence and the pentastome*s 

reaction to the catecholamine (noradrenaline) and indolalkylamine 

(5-hydroxytryptamine) one must conclude that such compounds play a 

significant role in the permeability of cell membranes and possibly 

function in the transmission of stimuli from the environment to the
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ganglionic neuropile and frwn the ganglionic synaptic centers of the 

neuropile to the effector organs (e.g., striated muscles of the hooks).
Cholinesterase activity in the porocephalids could not be 

measured by the standard manometric and spectrophotometric methods 

employed, but it is apparently functioning as indicated by the inhibitor 

study. The nature of the mechanism of operation remains obscure, but 

the inhibitor study suggests that the cholinergic mechanism is operable, 

as demonstrated by the complete tetanus of the poisoned worms.
Pentastomes, like most parasitic helminths, are capable of only 

feeble movements, and motor neuron activity is limited. Pentastomes, 

like all other helminths, must have well developed sensory mechanisms 

which enable them to sample substrates and actively position themselves 

in the proper biotope. The paucity of cholinergic activity, and motor 

capacity of the porocephalids is in stark contrast with that of their 

suggested ancestors, the arthropods and annelids. The arthropods and 

annelids have active cholinesterases and high concentrations of 

acetylcholine in their nervous systems (Prosser and Brown, 1962), whereas 

the pentastomes, as shown by this work, have low cholinesterase activity. 

This condition indicates a supression of cholinesterase biosynthesis in 

the porocephalids suggesting a loss of genetic capacity as described by 

Fairbaim (1970),

The histochemical evidence presented here indicates that the 

pentastome nervous system has adapted to the parasitic mode of existence 

by relying upon the catecholamines and indolalkylamines as transmitter 

substances. The diminution of the "cholinergic" mechanism in favor of 

an "adrenergic" mechanism of nerve transmission in the porocephalids
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shows a selective advantage of the latter over tlae former possibly 

suggesting an epigenetic adaptive process as described by Fairbaim (1970).



CHAPTER V 

SUimRY
The biological success of the pentastcanida necessitates the 

existence of a sophisticated nervous system; the subject of inquiry in 

this work is the mechanistic operation of such a nervous system in 

pentast (mes
Manometric and spectrophotometric enzyme analyses for 

acetylcholinesterase activity in Porocephalus crotali and Porocephalus 

clavatus nymphs yielded negative results, while emersion of adult and 

nymphal P, crotali in 10“^ H solutions of eserine sulfate (a 

cholinesterase inhibitor) resulted in complete tetanus of the worms. Thus 

porocephalids possibly have cholinesterase activity at a level not 
detectable by standard assay techniques, Cholinesterase histochemistry 

of porocephalids gave negative results.
Catecholamine and indolalkylamine histochemistry revealed 

positive granular deposits (chromaffin granules) in the nervous systems 

of P. crotali. P. clavatus, and Kiricephalus pattoni. but not in 

Rail1ietiella orientalis or Sambonia sp. Adults and nymphs of P. crotali 

were stimulated to greater activity by 10“^ M noradrenaline and 

5-hydroxytryptamine but not by 10“^ M adrenaline or dopamine.
Therefore, the role of noradrenaline and 5-hydroxytryptamine as transmitter 

substances in the porocephalid and kiricephalid nervous systems is

29
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strongly suggested.
The Pentastoroida would be expected to have mixed nervous systems 

with highly active cholinergic and adrenergic mechanisms of impulse 

transmission because of their theorized common ancestry with the 

Arthropods and Annelida, Cholinesterases appear to be nonfunctional in 

the porocephalids studied, while the adrenergic nature of the porocephalid 

and kiricephalid nervous systems was demonstrated. The reduced cholinesterase 
activity is viewed as a loss of genetic capacity, possibly through 

suppression of genetic information, while the apparent dependency 
on catecholamines is viewed as an epigenetic adaptive phenomenon.



UTliRATURE CITED

Barrington, E. J. W. 1967. Invertebrate structure and function,
Houghton Mifflin Co. Hew York, 549 p.

Bennet, J,, and E. Bueding, 1970. Histochemical localization of the
biogenic amines and 5~hydraxytryptamine in Schistosoma mansoni.
J, Parasitol, 56:(4), section II, part 1, resume 49, p. 28,

Bueding, E, 1952, Acetylcholinesterase activity of Schistosoma mansoni,
Brit, J, Pharmacol, 7:563-566.

Bueding, E,, S. L, Everett, and J, G, Bourgois, 1967. Some physiological, 
biochemical, and morphologic effects of tris (p-aminophenyl) 
carbonium salts (TAC) on Schistosoma mansoni. Amer, J, Trop,
Med, Hyg, 16;500,

Doucet, J, 1965, Contribution a 1'etude anatomique histologique et 
histochiraique des pentastomes. Office de la recherche 
scientifique et technique outre-mer, Paris, France, I50 p,

Eranko, 0, 1955, Distribution of adrenaline and noradrenaline in the
adrenal medulla. Nature, 175:88.

Fairbaim, D, 1970, Biochemical adaptation and loss of genetic capacity 
in helminth parasites, Biol, Rev, 45:29-72,

Falck, B,, N.Â, Hillarp, G, Thieme, and A, Torp, 1962, Fluorescence of
catecholamines and related compounds condensed with formaldehyde, 
J, Histochem, Cytochem, 10:348,

Florey, E, 1966, General and comparative animal physiology, W, B. 
Saunders Co,, Philadelphia, Pa, 713 p,

Frady, G. H,, and S, E, Knapp, I967, A radioisotopic assay of
acetylcholinesterase in Fasciola hepatica, J, Parasitol, 
53:298-302,

Graff, D, J,, and C. P, Read, 1967. Specific acetylcholinesterase 
in Hymenolepis diminuta, J, Parasitol, 53:1030-1031,

31



32
Halton, D. VI,f and J, B. Jennings. 1964. Demonstration of the nervous

system in the monogenetic trematode Diplozoon paradoxum Nordmann 
by the indoxyl acetate method for esterases. Nature, Lond, 
202:510-511.

Hart, J. L. 196?. Studies on the nervous system of Tetrathyridia 
(Cestoda: Hesocestoides), J. Parasitol. 53^1032-1039.

Heymons, R. 1935. Pentastomida, 1, Buch., In H. G. Bronns, Klassen und 
ordnungen des Tierreichs. Akaderaisch Verlagsgesellschaft.
268 p.

Hillarp, N-A., and B. Holcfelt. 1955. Histochemical demonstration of 
noradrenaline and adrenaline in the adrenal medulla. J. 
Histochem. Cytochem. 3:1.

Koelle, G. B. 1950. The histochemical differentiation of types of
cholinesterases and their localizations in tissues of the cat.
J. Pharmacol. Exp. Therap. 100:158-179.

Koelle, G. B. 1951. The elimination of enzymatic diffusion artifacts
in histochemical localization of cholinesterases and a survey of 
their cellular distributions. J. Pharmacol. Exp. Therap. 
103:153-171.

Krotov, A. I. 1957. (Content of acetylcholine-like substances and
cholinesterase in Ascaris tissues). (In Russian). Byull.
Eksp. Biol. Med. Moscow. 43:95-97.

Lee, D. L. 1962. Studies on the function of the pseudosuckers and
holdfast organ of Diplostomum phoxini Faust (Strigeida, 
Trematoda). Parasitology. 52:103-112,

Lee, D. L., A, H. Rothman, and J. B. Senturia. 1963. Esterases in
Hymenolepis and in Hydatigera. Exp. Parasitol. 14:285-295.

Lee, R. M,, and M. R. Hodsden. 1963. Cholinesterase activity in
Haemonchus contortus and its inhibition by organophosphorus 
anthelmintics. Biochem. Pharmacol. 12:1241-1252,

Mellanby, H. 1955. The identification and estimation of acetylcholine
in three parasitic nematodes (Ascaris lumbricoides. Mtomosoides 
carinii. and the microfilariae of Dirofilaria repens). 
Parasitology. 45:287-294.

Nachmansohn, D., and M. A. Rothenberg. 1945. Studies on cholinesterases. 
J. Biol. Ghem. 158:653-666.

Nachmansohn, D., and I. B, Wilson. 1955. Acetylcholinesterase, p. 642- 
651. In Methods in enzymology. I., Academic Press Inc., New 
York,



33

Pearse, A. G. E, 1961. Histocheniatry theoretical and applied* Little, 
Brown, and Co., Boston. 996 p.

Pelper, W. J. 1958. Histochemical demonstrations of an
acetylcholinesterase in the ova of Schistosoma mansoni. J, 
Histochem. Cytochem, 6:139-141.

Prosser, C, L., and F. A. Brown Jr. 1962. Comparative animal phyaiolotCf. 
2nd ed., W. B. Saunders Co., Philadelphia. 688 p.

Pylkko, 0. 0. 1956. Studies on the acetylcholine content and
cholinesterase activity of the human pathogenic fish tajwwom 
(Diphyllobothrium latum). Ann. Med, Lxp, Biol, renniae, 34: 
(suppl. 8), 81.

Rappaport, F., J, Fischl, and N, Pinto. 1959. An improved method for 
the estimation of cholinesterases in serum. Clin. Chim, Acta, 4:227-230.

Sanderson, B. E. 1969. Acetylcholinesterase activity in Nippostrongylus 
brasiliensis (Nematoda). Comp. Biochem. Physiol, 29:1207-1213.

Schardein, J, L., and J, A. Waitz. 1965. Histochemical studies of
esterases in the cuticle and nerve cords of four cyclophyllidean 
cestodes, J. Parasitol. 51:356-363.

Sevki, K. 1934* Uber eine besondere granulation der chromaffinen
raarkzellen der nebenniere, irhe beziehung zur chromaffinitat 
und ihr vorkoramen im phaochromozytom. Virchows Arch. 294:65-71*

Shield, J. 1969* Histochemical studies on cholinesterases of the 
cyclophyllidean cestodes Djpylidium caninum, Echinococcus 
granulosus, and Hydatigera taeniaeformis* Exp. Parasitol, 
25:217-231*

Wilson, V, C, L. C. 1965* The localization and distribution of
acetylcholinesterase in two species of hyiaenolepid cestodes.
M, S. Thesis, The Johns Hopkins University School of Hygiene 
and Public Health.


