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Abstract:  This study counted false rings in eastern redcedar samples to track growing conditions in the 

Cross Timbers of Oklahoma.  Using ArcGIS, this study expands on previous research that used 

comparison between two sites and examines trends across the Cross Timbers region of central 

Oklahoma.  Kriging analysis was used to compare atmospheric data from the Oklahoma Mesonet to tree 

core data.    False rings are a type of growth anomaly that occurs in certain species of trees, particularly 

evergreens.  These anomalies result from periods of water stress that cause the tree to begin forming 

late wood, followed by late season precipitation that causes the tree to revert to its normal growth 

pattern.  False rings can indicate areas prone to a high degree of climatic variation. The highest 

occurrence of false rings was found on the boundary between the driest and wettest regions.   These 

areas were not subjected to prolonged periods of drought, but did experience some degree of water 

stress.  This may be useful in identifying areas prone to sudden shifts in growing conditions and 

providing greater seasonal resolution of dendroclimatic models.  This trend was the strongest with 

vapor deficit, where the highest and lowest levels produced almost no false rings, but the mid-range 

levels produced large quantities of false rings.    False ring probabilities were tracked using 553 samples 

from eastern redcedars growing in eleven sites throughout central Oklahoma. The false ring records 

counted in these cores were compared to weather records collected through the Oklahoma Mesonet.  

Maps of weather averages were constructed using Kriging analysis on records from 1994 to 2008. 
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CHAPTER I  

INTRODUCTION 

The objective of this study is to identify patterns in the occurrence of ‘false ring’ growth 

anomalies in eastern redcedar (Juniperus virginiana) in the Oklahoma Cross Timbers region [Fig 

1].  The study presented here builds on false ring research conducted by Edmondson (2010) on 

eastern redcedar (ERC) at Keystone Ancient Forest Preserve in northeastern Oklahoma and 

Cedar Bluff Reservoir in central Kansas.  Although other studies (Copenheaver et al. 2010; 

Edmondson 2010) have investigated false rings using binary comparisons of sites in two discrete 

regions, there remains a lack of research investigating distribution of false rings across a 

contiguous region. This study seeks to fill that gap by comparing false ring distributions across 

the Cross Timbers forests to equivalent atmospheric data using archived samples collected for a 

previous study (DeSantis and Hallgren 2010).  
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Figure 1:  Map of Cross Timbers region.  University of Arkansas Tree-Ring Laboratory.  

http://www.uark.edu/misc/xtimber/map/ 

False rings 

False rings are anomalies in a tree’s growth patterns, produced by stress on the tree. 

Copenheaver et al. (2006) describe false ring morphology as follows:  

In conifers, false rings appear as a narrow band of thick-walled tracheids (latewood) 

surrounded on both sides by thin-walled, large diameter tracheids (earlywood).  The 

boundary between the earlywood cells that follow the false ring exhibits a more gradual 
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increase in cell diameter and decrease in cell wall thickness than the abrupt change in 

cell diameter associated with a true ring boundary.   

Tree rings are the result of variations in the growth of the cells in the cambium of a tree.  During 

the highly productive periods of the growing season, the tree produces large cells with relatively 

thin walls.  At the end of the growing season temperature and precipitation drop, in response 

the cells produced by the tree become smaller with thicker walls [Fig 2].  Water stress earlier in 

the growing season can produce similar growth responses, if the stressful conditions cease then 

the tree will resume its normal growth pattern leaving behind a false ring (Edmondson 2010;).  

Other anomalies such as frost damage and fire can be recorded in the rings of the tree.  Damage 

from herbivorous insects has been shown to contribute to false rings in some species of conifer 

(Gonda-King, Radville, and Priesser 2012).  The anatomical structures of the climate induced 

false rings are easily distinguished from frost and fire damage, while rings from insect damage 

can be ruled out through crossdating against other trees in the stand.   

 

Figure 2:  Image of annual ring (left) and false ring (right) 
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Eastern Redcedar 

 A member of the Cupressaceae family, ERC is the most common evergreen east of the Rocky 

Mountains (Lawson 2004).  The tree has a range that extends from the Atlantic Ocean to the 

Cross Timbers in Oklahoma and Texas.  Along the Atlantic, the trees can be found from the 

Carolinas to Nova Scotia and west into the Great Plains [Fig 3].  

 

 
Figure 3:  Distribution of ERC from Forest Service silvics manual 
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The ERC has become notorious in the rangelands for its aggressive growth, encroachment into 

grassland, and rapid colonization.  ERC trees were once kept in check by fires, but human fire 

prevention methods have created an opportunity for ERC to become invasive in grasslands and 

oak forests (DeSantis et al. 2011).   

ERC is used in this study because it is the only abundant tree in the Cross Timbers that produces 

false rings (DeSantis et al. 2010).  Post oak (Quercus stellata) and blackjack oak (Quercus 

marilandica) are common in the Cross Timbers, but they do not produce easily identifiable false 

rings, making them less useful for tracking water stress.  Some conifers such as loblolly pine 

(Pinus taeda) are native to the Cross Timbers, but do not appear frequently enough to provide 

useable data.   

Cross Timbers   

  The Cross Timbers ecosystem is a patchy mix of forests and grasslands that occur between the 

high plains and the Ozark forests.  The Cross Timbers mostly occur in Oklahoma and extend into 

Kansas, Arkansas, and Texas [Fig 1].  ERC has become increasingly common in the xeric forests of 

the Cross Timbers as fire culling has become less prevalent.  This reduction of fire has shifted the 

proportion of Juniperus compared to the previously dominant Quercus species in the Cross 

timbers (DeSantis, Hallgren, and Stahle 2011).   

Objectives 
 



6 

Given the usefulness of false tree rings in Juniperus for recording droughts during the mid-

growing season (Edmondson 2010), this study encompassed the following objectives: 

● Analyze  Juniperus virginiana cores from the Oklahoma Cross Timbers, focusing on false-

ring events from 1998 to 2008 and comparing them to temperature, rainfall, and vapor deficit 

● Identify any regionality present in recorded false-ring events (esp. east-west variation) 

● Identify significant correlations with atmospheric measurements recorded by the 

Oklahoma Mesonet  
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Mesonet  

Activated in 1994, Oklahoma’s Mesonet system provides detailed records of weather events for 

the time that it has been operational.  The Mesonet includes at least one monitoring station for 

each county in Oklahoma.  The stations are able to monitor weather data including 

temperature, precipitation, and pressure.  Elevation 

 
Figure 4:  Elevation map of Oklahoma (meters) 
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Oklahoma’s elevation trends upward to the west.  The highest point is located at Black Mesa in 

Cimarron County, in the extreme west of the panhandle.  The lowest point is located just south 

of the Ouachita Mountains in the southeast corner of the state [Fig. 4].  The sample sites follow 

this east-west trend, with the western sample sites at noticeably higher elevations than the 

other sites (Appendix I).  
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CHAPTER II  

LITERATURE REVIEW 

 

Previous studies of the Cross Timbers have focused on ring samples from post oak (Quercus 

stellata) and blackjack oak (Quercus marilandica) (Clark and Hallgren 2004).  However, only ERC 

(Juniperus virginiana) provides clear false ring patterns.  Loblolly pines (Pinus taeda) and 

shortleaf Pine (Pinus echinata) are found in the southeastern corner of Oklahoma, but are not 

prevalent in the Cross Timbers.  Because of this limited variety, ERC is the only species useful for 

this study.          

Cross Timbers geography and ecology 

The Cross Timbers region is a patchwork of grass and xeric forests, primarily located in 

Oklahoma and Texas, and extending to Kansas and Arkansas [Fig. 1].  Historically the region was 

largely occupied by oak forest primarily comprised of post oak (Quercus stellata) and blackjack 

oak (Quercus marilandica).  In recent years, the composition of the Cross Timbers has shifted 

towards greater diversity, with post and blackjack oak becoming less prominent compared to 

species like ERC (DeSantis et al. 2010, DeSantis, Hallgren, and Stahle 2011).    
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Climate 

If you don’t like the weather in Oklahoma, wait a minute and it’ll change.   

-Will Rogers  

Oklahoma is known for unpredictable weather.  This is particularly true of the Cross Timbers 

region (Francaviglia 2000).  Peak rainfall occurs in late April and May, while highest 

temperatures occur in late July and August.  The highest temperatures in the study area 

occurred in 2006.  2006 and 2001 had notably low rainfall with 2006 being the slightly drier year.  

The climate that a tree is exposed to during the growing season is a major contributor to growth 

anomalies such as false or missing rings (Bogino and Bravo 2009).  Extreme temperatures, 

drought, or flooding can lead to such anomalies.   Cold temperatures can produce frost rings and 

sun scald.  Sun scald is a splitting of the bark on a young tree that is exposed to cold nighttime 

temperatures; when exposed to sunlight, the illuminated side of the tree warms and expands 

faster causing stress that splits the bark of the tree (Harvey 1923).  High temperatures and lack 

of rainfall contribute to false rings and fire damage.  Flooding can cause physical damage, 

encourage fungus, and interfere with gas exchange in root systems.  Microclimate plays a 

significant role in tree growth.  Copenheaver et al. (2005) found significant differences in the 

growth of ERC in the interior and on the edge of a stand.        

Bogino and Bravo (2009) found that January to November precipitation had a significant 

influence on the occurrence of growth anomalies in Pinus pinaster.  Edmondson (2010) found 

that, “significant false ring events . . . occurred when there was an intense heat wave and 
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drought during the mid-growing season, followed by an unseasonable cool-wet spell when daily 

maximum temperatures fell as much as 16˚C (29°F) and heavy rainfall often 

occurred”(Edmondson 2010: 31).   
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Soils and geology 

ERC is very well adapted to the prevalent conditions of the Cross Timbers region.  DeSantis, 

Hallgren, and Stahle (2011: 1834) report the Cross Timbers region as, “[f]ine-grained clay soils 

with limestone and shale parent material generally support grasslands and coarse-grained sandy 

soils with sandstone parent material generally support forests.”  However, Dirr (1998) reports 

that ERC also performs very well in limestone based soils.  In essence, while the two most 

important woody species of the Cross Timbers, blackjack oak and post oak prefer sandy soils, 

ERC can grow in most soil types. This adaptability is part of why ERC has been so successful in 

colonizing new areas and encroaching on existing xeric forest.  Most of the sites in the study are 

located on fluvial aquifers of the Canadian, North Canadian, and Cimarron rivers.  Three sites are 

located on the Garber-Wellington and Vamoosa-Ada aquifers [Fig 5].  These aquifers are 

principally comprised of Permian and Pennsylvanian sandstone, respectively (D’Lugosz and 

McClaflin, 1986; Mashburn et al. 2013)  
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Figure 5:  Map of aquifers in the study area 

 
 

ERC dispersal 

ERC (Juniperus virginiana) is the most common conifer in North America. It is considered a 

nuisance species in many grassland environments due to its tendencies towards aggressive 

colonization and providing a host for cedar-apple rust, a detrimental fungus for apple orchards.  
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The largest specimen in the United States is located at the Lone Hill United Methodist Church in 

Georgia, with a circumference of 234”, a height of 57’, and a crown diameter of 75’ (Georgia 

Forestry Commission, 2007).  The species is able to tolerate low water and high levels of CaCO3.  

ERC has been shown to effectively colonize stone cracks and other sheltered areas (Livingston 

1972).  The species manifests male and female specimens, differentiated by blue berry-like 

cones on the females and small brown pollen sacs on the males (Dirr 1998).   

The Cross Timbers ecosystem is a mix of grassland and forest.  The previously oak dominated 

forests of the Cross Timbers have shown an increase in woody plant diversity over the last 100 

years, largely due to fire suppression (Engle, Bidwell, and Moseley 1996; DeSantis et al. 2010; 

DeSantis, Hallgren, and Stahle 2011). Over 65% of ERC seed crops are dispersed away from the 

tree by songbirds (Chambers, Vander Wall, and Schupp 1999); cedar waxwings (Bombycilla 

cedrorum), robins (Turdus migratorius), and mockingbirds (Mimus polyglottus) are the primary 

dispersal agents (Phillips 1910; Horncastle et al. 2004).  These birds are one reason ERC are 

often clustered along fence lines, the birds perch on the fence and deposit the seeds.  These 

fence lines also provide some cover for saplings, by discouraging large grazing animals from 

trampling the saplings (Chambers, Vander Wall, and Schupp 1999).  ERC cones and seeds have 

also been recorded in the feces of raccoons (Procyon lotor), foxes (Vulpes spp.), bobcats (Lynx 

rufus), and various other small mammals (Phillips 1910).     
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Ring Anomalies 

The structure of a tree’s rings results from a mix of environmental and genetic factors.  The 

response to environmental conditions will differ between species.  Some species will produce 

unique patterns in response to outside influences.  However, there are different types of 

anomalies depending on the external factor influencing wood ring growth. The most common 

anomalies and their distinctive characteristics are described below. 

False Rings 

False rings are often considered “noise” when performing dendrochronological analysis; studies 

have been conducted comparing false rings between two different sites (Copenheaver et al. 

2010, Edmondson 2010).  False rings are also referred to as ‘double rings,’ (Douglass 

1928) ’multiple growth layers,’ (Glock 1955) ‘intra-annual growth bands,’ (Fritts 1976) ‘and intra-

annual density fluctuations’ (Campelo et al. 2006).  Other studies have investigated causes of 

these rings.  Gonda-King, Radville, and Preisser (2012) found that infestation by herbivorous 

insects, namely Hemlock woolly adelgid (Adelges tsugae Annand) and elongate hemlock scale 

(Fiorinia externa Ferris) may cause an increased incidence of false rings in American Hemlock 

(Tsuga Canadensis (L.) Carrière).  False ring studies have been performed on trees in the genus 

Pinus (Campelo et al. 2006; Oberhuber and Gruber 2010, Marchand and Fillion 2012).  Wimmer, 

Strumia, and Howlawe (2002) found that false rings in Austrian pines (Pinus nigra) relate to low 

precipitation in May, particularly when high rainfall occurred in April and June.  Copenheaver et 

al. (2006) found no significant climatic influence in the formation of false rings in Pinus 
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banksiana, but deemed the anomalies useful for reconstructing factors such as stand density 

and canopy formation.   

 

Frost Rings 

Frost rings were observed in a small number of samples from this study.  These are layers of 

ruptured cells, similar to desiccation rings that are produced when late frosts occur in the early 

growing season after the tree has come out of its dormant state causing the water in the xylem 

to freeze and ruptures the cells (Stahle 1990).  Since these event occur early in the growing 

season, they appear near the latewood of the previous year’s growth.       
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CHAPTER III 

 METHODOLOGY 

In order to demonstrate a trend in growth anomalies relative to temperature, precipitation, and 

vapor deficit, it is necessary to compare the pattern of false rings to trends in meteorological 

records.  A control site is unfeasible, so it is necessary to compare sites around the state that 

have been subjected to different conditions to identify trends and patterns.  Vapor deficit is the 

strongest representative for drought stress, but it is worth investigating precipitation and 

temperature patterns.  By examining the timing and distribution of these conditions, we may 

establish a correlation between false ring occurrence and specific climatic patterns during the 

growing season.     

Data Sources 

This study used archival atmospheric data and tree core samples collected for another study.  

The climate data is taken from the Oklahoma Mesonet.  The mesonet was selected due for its 

statewide coverage and high resolution.  The tree core samples stored in the Forest Ecology lab 

at Oklahoma State University were originally collected by Dr. Ryan DeSantis for his PhD research 

(DeSantis et al. 2010; DeSantis, Hallgren, and Stahle 2011) , and reanalyzed for this study with 

permission.   

This study focuses on climatic influences during the growing season, so atmospheric values for 

the sample sites use the Mesonet records from March 1 to September 30 values from 1994 to 

2008.  The stations in Vanoss and Tulsa were omitted due to lack of data for the study period.  
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The stations in the Oklahoma panhandle (Slapout, Beaver, Hooker, Goodwell, Boise City, and 

Kenton) were too remote to significantly affect the calculations for the study area, but would 

result in distorted maps with a misleading degree of homogeneity in North Texas [Fig 6].   

 
Figure 6:  Map of Mesonet stations used in and omitted from atmospheric calculation 

 

Samples 

The samples collected by DeSantis include post oak, blackjack oak, black walnut, birch, and ERC.  

These samples are from 11 sites around the Cross Timbers [Fig 7].  The juniper samples include 
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334 cores and 219 disks.  The locations used in this study were originally studied by Rice and 

Penfound (1955, 1959) and revisited in 2008 and 2009 (DeSantis et al. 2010; DeSantis, Hallgren, 

and Stahle 2011). 

 
Figure 7:  Location of study sites. 

 

Sample processing/Data Collection 

The core samples were mounted and sanded with progressively finer abrasive paper, until the 

cell structure was visible through magnification.  This processing was done for the original 

studies by DeSantis, however this project required higher magnification in order to confidently 
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identify xylem morphology so additional sanding was necessary.  Improperly mounted samples 

were removed from the data set.      

The false rings in each sample were counted and logged in an Excel spreadsheet.   Only 

anomalies showing a progressive increase and decrease in cell density were counted as false 

rings.  Frost rings, fire damage, and light rings were ignored.   The number of false rings in each 

year was counted, and then the probability of any false rings in a particular year was calculated 

[Table 2].  

Table 1:  Ratio of false ring samples to total samples by year and site 

Site 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 

66 42/56 21/56 33/56 21/56 23/56 36/56 49/56 40/56 36/56 38/56 32/56 

73 09/50 22/50 13/50 18/50 28/50 17/50 34/50 35/50 19/50 26/50 15/50 

78 13/52 17/52 11/52 09/52 13/52 17/52 12/52 19/52 12/52 13/52 10/52 

89 23/53 25/53 68/53 37/53 13/53 27/53 28/53 23/53 21/53 23/53 41/53 

96 08/49 15/49 14/49 16/49 05/49 07/49 13/49 11/49 11/49 08/49 11/49 

97 20/49 19/49 20/49 26/49 19/49 25/49 21/49 23/49 20/49 22/49 31/49 

121 23/73 26/73 23/73 21/73 11/73 28/73 33/73 23/73 20/72 14/71 19/71 

122 20/58 35/58 15/58 22/58 09/58 11/58 20/58 06/58 10/58 20/58 30/58 

124 06/23 22/23 10/23 04/23 03/23 02/23 02/23 04/23 01/23 13/23 14/23 

127 37/65 24/65 55/65 32/65 15/65 11/65 02/65 09/65 07/65 18/65 26/65 

130 40/64 46/64 37/64 40/64 31/64 27/64 39/64 38/64 52/64 40/64 36/63 
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Analysis 

False ring data from each site was calculated by year and compared to false ring values from 

other sites by year.    A Pearson’s r value was calculated for each pair of sites.  Correlations to 

weather records at nearby Mesonet stations were also calculated for each site by year.  These 

correlations were entered into ArcMap to check for spatial clustering using visual analysis.  

Calculations 

In order to account for different sample sizes across differing years and sites, the percentage of 

false rings was calculated using the number of samples with false rings for a given year at a 

particular site divided by the total available samples for the given year at that site [Table 2]. 

Tree-ring data similarities between sites was tested using the Pearson correlation and chi-square 

tests.  SPSS 19 was used to sort and conduct first and second order analyses on the Mesonet 

and false ring data.  Maps were constructed in ArcMap 10 using the Kriging tool.   

Interpolation 

Temperature, precipitation, and vapor deficit maps for the study area were constructed using 

Mesonet data.  Maps were constructed using kriging analysis in ArcMap.  These maps were used 

to demonstrate spatial distribution of climatic trends, not for statistical tests which instead used 

an unweighted average from mesonet sites within 30 miles of each sample site.     

Correlation/ Limitations 

While the study includes over 500 individual samples, there are only 11 core sites, limiting the 

options for statistical analysis such as p-test and limiting the options for multivariate analysis 
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such as Nearest Neighbor Analysis.  Pearson correlations were used to test for spatial clustering 

in the occurrence of false rings and for correlation to Mesonet records.     
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CHAPTER IV 

 RESULTS 

There is a spatial trend in the similarity and occurrence of false rings in the ERC of the Oklahoma 

cross timbers.  Two patterns appear when the data is mapped.  The similarity between the 

samples seems to correlate with latitude.  A Pearson correlation showed two distinct groupings 

in the northern and southern sites of the study area [Fig 8].   

   

 
Figure 8:  Pearson correlation between sample sites 

The raw false ring count is noticeably lower in the western sites.   There does not appear to be a 

strict correlation with longitude as site 130 has a relatively high percentage of false rings and the 

sites in the east are fairly varied [Fig 9].   
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Statistical test 

The distribution of false rings was tested using chi-square (χ2), pearson correlation, and binary 

regression tests to determine the value.    A binary regression analysis comparing false ring totals 

to averages of vapor deficit from the Mesonet sites within 30 miles of the sample site produced 

no significant results.  The χ2 tests presented here demonstrate that although the samples used 

for this study are not truly random, they are diverse enough to mitigate concerns about 

selection bias in the sample set.        

χ2 test 

χ2 tests were performed on the age of the samples and the frequency of false rings in order to 

confirm that the sample sets were heterogeneous [Table 3].    The number of years displaying 

false rings was counted and second order values calculated.  The mean for samples across all 

sites from 2008 to 1903 was 6.24 with a standard deviation of 4.48.  Samples were divided into 

four categories (A, B, C, D) based on the number of false rings present, using the mean and the 

positive/negative value of one standard deviation as break points.  The results of this test 

indicate the probability of a Type 1 error at < 0.001, rejecting the null and indicating that there is 

a significant heterogeneity in the samples.   

Sample age 

The ERC samples varied in discernable age from 8 to 105 years old.  This age was based on the 

pith or oldest visible ring.  Mean pith date of the samples was 1978.265.  Median pith date was 
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1978.  The oldest tree was found at site 73.   The mean year of pith (age) for the sampled trees 

across all 11 sites was 1978 with a standard deviation of 10 years.  The trees were divided into 

groups based upon the standard deviation from the mean (e.g., -2 s.d. =pre-1965, -1 s.d= 1965-

1974, within 1 s.d +/-= 1975-1983, +1 s.d=1984-1993, and +2 s.d= post-1994.)  The χ2 test 

produced a p value < 0.001 thus allowing us to reject the null hypothesis. 

 

Table 2:  Chi-square test results for the sample sites 

Site 
No. 

66 73 78 89 96 97 121 122 124 127 130 

Chi2 14.25 332.56 39.40 45.04 21.28 31.67 26.58 35.96 14.95 7.60 12.51 

df 30 38 39 32 32 29 37 42 25 39 40 

Sig. .993 .000 .452 .063 .925 .335 .898 .732 .942 1.000 1.000 

 

False Ring Totals 

The percentage of false rings was highest in the center of the study area, while the lowest 

percentages of false rings occurred in the westernmost sites [Fig. 9].  False rings as total of 

annual rings were ranked by dividing the number of sample years with false ring by the total 

number of sample years (Copenheaver et al. 2010 p.551). 
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Figure 9:  Ranking of total false rings by site 

 

GIS modelling  

There is a high degree of positive correlation between the northern sites.  There is only a weak 

or even negative correlation between the northern and southern sites [Fig 10].   
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Figure 10:  Site correlations compared to 1994 to 2008 average rainfall and average max temperature 

and 1997 to 2008 vapor deficit 
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Temperature 

Temperatures in the Cross Timbers frequently exceed 100°F in July and August and may drop 

below freezing in December and January.  The highest temperature was 110.77 °F, recorded on 

9 September, 2000 in Kingfisher (KING). The warmest year in the study area from 1998 to 2008 

was recorded at Bowlegs in 2003.  The warmest site in the study area was Bowlegs (BOWL) with 

an average temperature of 82.6˚F and a maximum monthly average of 94.6˚F.  The coolest site 

was Lahoma (LAHO) with an average of 79.7˚F though the lowest minimum temperature 

occurred at Byars (BYAR) with a minimum of 63.4˚F.  

All study sites show a significant spike in temperature in 2006 and to a lesser extent in 2003 [Fig 

11].   
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Figure 11:  1997 to 2008 maximum temperature by sample site (°F).  Averaged from all Mesonet sites 

within 30 mi 

The driest part of the state during this time period was its southwest corner.  All of the sampled 

sites experienced average growing season temperatures below 81.75 °F but above 80.75°F [Fig 

12].   
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Figure 12:  Average maximum growing season temperatures for 1994 and 2008 

 

Rainfall 

Rainfall in the Cross Timbers during the 1994-2008 period averages around 23” per year, with 

wetter weather in the east and dryer in the west [Fig 14].  Oklahoma displays a high spatial 

variance in rainfall with the western panhandle averaging 17” and the Ouachita Mountains 

averaging 56” (Oklahoma Climatological Survey 2012).  While peak thunderstorm activity occurs 

in May, precipitation is fairly regular with the exception of dry periods in July and August 
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(Oklahoma Climatological Survey 2012).  The driest year during this period was 2006, and the 

wettest was either 2007 or 2008 depending on the site [Fig 13].   

   

Figure 13:  1995 to 2008 mean rainfall for each sample site (inches).  Averaged from all Mesonet stations 
within 30 mi. 

 

Average precipitation is generally higher in the southeastern corner [Fig 14], but during the 

period of interest for this study, the highest rainfall was registered in the north central area of 
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the state, near the northernmost sample sites [Fig 15]. It should be noted that figure 14 

incorporates snowfall into the total, while the time frame used in figure 15 excludes the winter 

months when snowfall generally occurs.     

 
Figure 14:  1981 to 2010 average annual rainfall 
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Figure 15:  Average growing season precipitation for 1994 to 2008 

   

Evapotranspiration 

High temperatures increase evapotranspiration, which increases water stress on a tree, 

particularly during dry periods.  This was measured using average daily vapor deficit, measured 

in millibars (Mesonet).  Mesonet calculates vapor deficit as the difference between the 

saturation vapor pressure (calculated from air temperature) and the current vapor pressure 

(calculated from dew point temperature).  As with temperature, there is a pronounced peak in 

2006 [Fig 16].   
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Figure 16:  Vapor deficit by sample site (millibars).  Averaged from all Mesonet stations within 30 mi 

 
Vapor deficit shows a pronounced difference between the western and eastern study sites [Fig 

17].  The western side of the study area was subjected to much higher vapor deficit, suggesting 

much more severe drought conditions.   
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Figure 17:  Average vapor deficit during the growing season for 1994 to 2008 
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Samples v. Climate correlation 

The distribution of the sites and their false ring percentages suggests that there is not a linear 

correlation between false ring occurrence and precipitation totals with moist areas showing 

sites like 96 and 130 with low and high percentages of false rings and similar patterns in dry 

areas with sites 121 and 66 [Fig 18].          

 

 
Figure 18:  1994 to 2008 average rainfall compared to % of cores displaying false rings 
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A plot of the sites sorted by false ring occurrence and temperature shows the lowest number of 

false rings occurring in the area with exceptionally low/high temperatures [Fig 19]. 

 
Figure 19: Scatter plot of Maximum Temperature vs. average years with false rings 

 

The comparison between false ring probabilities and temperature suggests a stronger 

correlation than false rings and precipitation.  The sites with the highest and lowest probabilities 

for false rings appear the areas of lowest average temperature during the growing season [Fig 

20].  It is possible that the areas with higher average temperature were subjected to periods of 

prolonged high temperatures during the growing season.  This observation supports trends 

observed by other authors (Rigling et al. 2002; Camarero et al. 2010; Copenheaver et al. 2010; 

Edmondson 2010) where false rings increased with variability of climatic conditions.   
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Figure 20:  1997 to 2008 average max temperature compared to % of cores displaying false rings.  

 

Precipitation shows a higher occurrence of false rings in areas with extremely high or low rainfall 

during the growing season, and low occurrence of false rings in areas with moderate rainfall [Fig 

21].   
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Figure 21:  Scatter plot of Precipitation vs. average years with false rings 

 

Vapor deficit shows the strongest spatial correlation with false ring probability and average 

growing season conditions.  There is a noticeably lower total of false rings at the sites subject to 

high vapor deficit [Fig 21].  This higher occurrence of false rings in areas of mid-range vapor 

deficit support the conclusion that these areas have been subject to high degrees of variation.   
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Figure 22:  1997 to 2008 average vapor deficit compared to % of cores displaying false rings 

 

Like temperature, the false rings have lower occurrence at areas of notably high or low vapor 

deficit, and higher occurrence at moderate levels of vapor deficit [Fig 23]. 
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Figure 23:  Scatter Plot of Vapor Deficit in millibars vs. average number of years displaying false rings 

 

 

Spatial Distribution 

The strongest correlation of false ring occurrence was between sites 73 and 127 (-72.7%) and 

had a confidence of 99.8%.  The strongest positive correlations all involved site 124 and 

exceeded 95% confidence.  Sites 122 (61.2%), 96 (56.6%), and 130 (56.1%) are all located 

towards the northern end of the study area [Table 4; Fig 16].   
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Table 3:  Correlation of false ring occurrences between sites for 1994 to 2008 

 66 73 78 89 96 97 121 122 124 127 130 

66 1 -.059 -.120 -.040 -.316 -.032 .369 -.329 -.409 -.045 .022 

73  1 .290 -.331 .079 -.043 .151 -.211 -.024 -.727 -.121 

78   1 -.129 -.233 -.182 -.242 -.072 .197 -.282 .172 

89    1 .437 .341 .065 .142 .376 .455 -.040 

96     1 .391 .471 .315 .566 .406 .412 

97      1 .097 .167 .274 .075 .043 

121       1 .031 .040 .070 .211 

122        1 .612 .278 .306 

124         1 .404 .561 

127          1 .397 

130           1 

 

 

Latitude/Longitude 

The sites display a strong degree of positive correlation based on the latitude of the site.  The highest 

correlations occur between sites at the northern end of the study area, while the weakest occur 

between northern and southern sites [Fig 10, Table 4].  This trend appears in both the 1984-2008 series 
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and the 1994-2008 series of correlations.  This suggests that there is an underlying spatial factor 

influencing the occurrence of false rings in ERC.    
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CHAPTER V  

DISCUSSION & CONCLUSIONS 

The false rings in the cores from the ERC samples show a stronger correlation to vapor deficit than 

temperature or precipitation.  The western part of the study area showed limited number of false rings 

while the percentage of false rings was highest in the center of the study area.  Scatterplots show a 

curvilinear trend in false rings that appears strongest with vapor deficit.  Based on this spatial 

distribution and previous research (Copenheaver et al. 2006; Copenheaver et al. 2010; Edmondson 

2010) false rings are representative of average but highly variable water stress.    

Observed Patterns 

 False rings appear less frequently in areas of extreme temperature and vapor deficit.  This supports the 

theory that false rings are the result of variability in local atmospheric phenomena.  The sites with high 

percentages of false rings occur east of the boundary between moderate and high vapor deficit, while 

areas west of the boundary show low occurrences of false rings [Fig 21].   

Weather Inferences 

The strongest numerical correlations in false ring probability was moderate vapor deficit.  At this scale 

drought and false rings do not appear to have a strong correlation.  False rings seem more common in 

areas where the rainfall is in the middle of the range for the state.  The occurrence of false rings appears 

to correlate to the variability of precipitation.   



45 

The spatial distribution of false rings suggests that areas of consistently wet or dry conditions are less 

prone to false ring formation.  Areas with high degree of vapor deficit have relatively low probability of 

false rings, while areas of moderate to low vapor deficit form more false rings.  These area of low vapor 

deficit are linked, but not synonymous, with precipitation and temperature.  Vapor deficit represents 

the combination of temperature and humidity that promotes evaporation.  As the vapor deficit 

increases, the trees will transpire more.  The scatter plots comparing false rings to each atmospheric 

variable suggest a curvilinear correlation, with temperature and vapor deficit producing fewer false rings 

at the extreme high and low ends of the scale while extremely high/low precipitation produces more 

false rings.  This discord between the precipitation maps and scatter plots may be due to the tendency 

for the Cross Timbers to receive a majority of annual precipitation during large infrequent 

thunderstorms rather than consistent light rainfall.  More investigation at different time scales is 

necessary.          

Future Research 

The use of archived samples in this study leaves uncertainty regarding the influence of microclimate on 

false rings, due to gaps in the metadata.  Copenheaver et al. (2005) demonstrated that the location of a 

particular tree relative to other specimens in the stand can affect the growth of the tree.  Therefore, a 

follow up study using primary samples with associated location data is desirable.  Additionally, this study 

could be supplemented with samples from the high rainfall areas in Garfield and Grant counties.  Adding 

ERC from other sites to obtain an adequate sample size to use more powerful statistical analyses 

methodology such as regression analysis or p-test or ANOVA, etc. 
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APPENDICES 

 

Site  Elevation (m) UTM E UTM N Region 

66 337 662430.12 3875569.19 South Central 

73 283 714128.52 3868055.27 South Central 

78 277 740023.25 3862987.94 South Central 

89 338 655473.60 3960852.00 North Central 

96 301 682027.48 4001657.22 North Central 

97 267 707251.57 3985995.03 North Central 

121 460 559845.98 3959764.72 North West 

122 498 545782.68 3991712.85 North West 

124 624 487814.30 3975592.60 North West 

127 576 498296.58 4017473.33 North West 

130 422 561188.61 4030296.26 North West 

  Location data of sample sites.  Provided by Dr. Ryan DeSantis (personal communication) 
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