
BUILDING AN EXPERT DATABASE SYSTEM

IN C USING CLIPS AND PARADOX

BY

DIPTI R. BHARGAVA

Bachelor of Science

Nagpur University

Nagpur, India

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma state University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1993

OKLc\HOlVfA STATE UJ\,TfVERSITY

BUILDING AN EXPERT DAT~BASE SYSTEM

IN C USING CLIPS AND PARADOX

Thesis Approved:

(l Thesis Advisor ;)

_/;) . z ' !vk~L----~

Dean~f the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my

parents, to whom I dedicate this thesis, for having given me

the opportunity to pursue higher studies in the us. Their

love and support enabled me to accomplish this mission.

Thanks also to my brothers, sisters and the rest of my

family for their great love and moral support.

Special thanks to my dear friend Ravi without whose

constant nagging this thesis would never have been

completed. Gratitude is due to my friends Shashi, Anu,

Ganesh Sundaram, Mr. Larry Watkins of UCC, Elaine Burges and

Regina Henry of ISS.

My special thanks to my manager Maryanne Deaton at

United Airlines for being so considerate and understanding

during this effort. I also extend my thanks to my colleagues

for their encouragement.

My thanks to Dr. M. Samadzadeh for his valuable

suggestions during this rather difficult process.

Last but not least my thanks to my husband for being on

my side.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Statement of the Problem. • 3
Proposed Thesis 4

II. LITERATURE REVIEW .••.. 5

III.

IV.

Expert Systems.
Expert System Facilities. • • •
Analysis of Knowledge
Characteristics of an Expert system . •
Database Management System.
Architecture of a DBMS. . . • • • . . .
Types of Databases ..•....•...

Hierarchic DBMS. •
Network DBMS . . . • •
Relational DBMS
Intelligent Database Systems •
Main Memory Databases.

Expert Database System. • • . . . • . . . •

SYSTEM DESIGN AND IMPLEMENTATION . .

Introduction to Paradox Engine. .
CLIPS •
Organization of Data and Knowledge.
Interaction Between the Application, •..•

CLIPS and Paradox . . • •
Query Interface • •
Guidelines in Constructing Query
Parsing of Queries

SUMMARY AND CONCLUSIONS ..

5
7
9

10
10
12
13
13
13
13
15
16
17

19

19
20
22

26
28
28
29

30

Adaptability to a New Knowledge Domain. 31
Limitations of the Current System . 32
Future Work 33

BIBLIOGRAPHY 35

iv

Chapter

APPENDIXES.

APPENDIX A - LIST OF TABLES.

APPENDIX B - LIST OF FIGURES

v

Page

38

39

45

Table

1.

2.

3o

4.

5.

6.

7.

8.

9.

LIST OF TABLES

Fields of Flights.db •

Fields of Acbasic.db . . . 0 . 0 0 . 0 0

Fields of Acengine.db. 0 .
Fields of Acdimen.db . 0 0 . 0 0

Flight Data Stored in Flights.db 0 . . .
List of Noise Words used by the Query Parser

Aircraft Engine Data Stored in Acengine.db .
Attribute Values Stored in Acdimen.db. . . 0

Basic Aircraft Data Stored in Acbasicodb 0 0

vi

Page

40

40

. . 41

. . 41

42

42

43

. . 44

. . 45

LIST OF FIGURES

Figure Page

~- Logical Components of a Knowledge-Based. .
System . . • • . lit • • • • • • • • 47

2. Basic Concept of an Expert System. . 48

3. Logical Architecture of a DBMS • . . 48

4. Flowchart Depicting Overall Algorithm. 49

5. Flowchart of Query Processing 50

vii

CHAPTER I:

INTRODUCTION

The term 'expert database system' has been used to

represent the confluence of concepts, tools and techniques

from a number of areas including artificial intelligence,

database management system, logic programming and

information retrieval.

Computerized databases are essential and inseparable

components of the vast majority of contemporary information

systems. Many such systems utilize general-purpose tools,

called database-management systems (DBMS}, to provide an

efficient and uniform access to, and control of, consistent

information across single-user or multi-user

environments[18]. A database management system is a generic

tool in the sense that it is intended to support different

kinds of databases, for a variety of application

environments[18].

The functional capabilities of a database management

system include:

1. support the independent existence of a database,

apart from the application programs and systems

that manipulate it[25];

1

2. provide a conceptual/logical level of data

abstraction[34);

3. support the query and modification of

databases[26];

2

4. accommodate the evolvability of ,both the

conceptual structure and the internal organization

of a database in response to changing usage and

performance requirements[' 10] ;

5. control a database in terms of semantic integrity,

security, concurrence, and recovery[34].

The evolution of the database management system is in a

sense analogous to the development of abstract data types in

high-level programming languages: the goal is to provide

general-purpose mechanisms that support a higher level of

abstraction for application designers, implementors, and

users[33]. Given a traditional database as a platform to

store, organize, control, and access a database, the

database designer should focus on creating application

software to act as an interface between the user and the

database management system[28].

In the recent past, database-intensive application

areas have emerged other than those for which traditional

DBMS facilities were intended. Such areas include computer­

aided design[JO], information and document retrieval

systems[25], legal and environmental systems(?] etc. In

order to help end users express their data manipulation

requirements, database management systems provide a

3

user-friendly interface such as SQL ,to end users[32]. These

modern applications operate on a huge central database,

shared by many "clients", and require a more "intelligent"

way of data manipulation[lB]. Apart from the standard

database operations like insert, delete, update, and viewing

records, these modern applications rrequire the data

management system to logically deduce new facts ,from

existing data, and respond to a wider varieties of queries.

In other words, these systems not only store values, but

11 chunks 11 of knowledge about the relationships between the

various facets of data[B]. Adding logic capabilities to a

database system provides an efficient way of dealing with

facts and general rules. General rules used to represent

knowledge is the application's domain at a high level of

abstraction from a powerful modelling tool, as opposed to

data representing specific facts that are handled by

conventional database systems. Rules are easier to input,

occupy less space, and are easier to change[22]. In an

effort to meet modern database requirements, research is

now focussing on these "intelligent" database systems termed

"Expert Database Systems".

statement of the Problem

As mentioned before, an expert database system consists

of a combination of the storage/retrieval capabilities of a

database management system and the inferring capabilities of

an expert system. This could be achieved by:

1. incorporating inferring capabilities into a DBMS;

2. embedding the data into the knowledge base of an

expert system;

3. developing an interface between the expert system

and the database management system.

All the above methods have their advantages and

disadvantages. The problem then can be stated as follows:

Is there a way to develop an integrated expert database

system based on the combination of the above three

techniques, using existing tools and systems?

Proposed Thesis

4

This thesis presents a methodology to develop an

integrated expert database system using CLIPS (a portable

inference engine with c interface} and PARADOX (a portable

networked database management system, again using C language

interface) on a PC based environment. It demonstrates the

methodology by applying it to a sample aircraft database.

CHAPTER II

LITERATURE REVIEW

Expert Systems

Expert systems or Knowledge-based systems is a branch

of artificial intelligence that makes use of specialized

knowledge to solve problems at the level of a human

expert[23]. The British Computer Society's Committee of the

Specialized Group on Expert Systems has produced the

following definition for an expert system or knowledge-based

system application:

'the embodiment within a computer of a knowledge-based

component from an expert system shell in such a form that

the machine can offer intelligent advice or take an

intelligent decision about a processing function'[l4].

The Butler Cox Foundation Report number 37 defined an

expert system as:

'a computer system containing organized knowledge, both

factual and heuristic, that concerns some specific area of

human expertise; and that is able to produce inferences for

the user'[14]. Professor Edward Feigenbaum of Stanford

University has defined an expert system as ' .•. an

intelligent computer program that uses knowledge and

inference procedures to solve problems that are difficult

5

6

enough to require significant human expertise for their

solution'[2]. To do so, it emulates the decision-making

ability of a human expert. The term emulates means that the

expert system is intended to act in all respects like a

human expert[23]. Figure 1, in Appendix B, depicts the

logical components of an expert system.

The fundamental component of a expert systems is the

knowledge-base. The knowledge-base contains the information

required to emulate expertise, that will include some facts

or data, and rules which express how the facts can be

evaluated.

The inference engine operates on the knowledge-base and

applies laws of logical inference or reasoning to control

the flow of making deductions and drawing conclusions. That

is, it causes the facts to be instantiated while attempting

to reach goals and conclusions. All of the facts may not be

instantiated; only those which are required as part of the

inferencing will have values. A number of control

strategies such as forward chaining and backward chaining

may be associated with the inference engine[16].

The working store, or memory, is used by an expert

system to store transient and dynamic information, such as

data values, which facts have been instantiated, which rules

have been fired, etc[20].

The user interface provides the link with the outside

world. The knowledge acquisition subsystem is used by the

knowledge-based system application builder to add facts and

process details to the knowledge-base. Some trace and

debugging aids are usually provided to help validate and

test the system.

7

The basic concept of an expert system is illustrated in

Appendix B, figure 2.

The user supplies facts or other information to an

expert system and receives expert advice in response.

Internally, the expert system consists of two main

components. The knowledge-base contains the knowledge with

which the inference engine draws conclusions. These

conclusions are the expert system's responses to the user's

queries.

Expert System Facilities

The following are the facilities provided by an expert

system:

1. Rules: provide the most common format for

specification of knowledge and knowledge

processing in a knowledge-base of an expert system

application. Rules are declarative, stating what

is to be done and not how it is to be done.

2. Inference Mechanisms: The inference engine

provided with each expert system tool is complex

and employs a number of strategies for managing

the use of knowledge-base components at run-time.

The strategies determine the order in which the

processing will be carried out. That is how the

rules will be invoked and if there is a conflict,

which rule will be fired and when it will be

fired.

Forward chaining, or data driven inferencing

occurs when an attempt is made to reach a goal or

conclusion using facts which have already been

evaluated. All facts which can be derived,

directly or indirectly, from some known facts are

evaluated in an attempt to derive a goal value.

This mechanism is commonly used when there is a

very large number of possible solutions, given a

large combination of possible fact values.

Backward chaining or goal driven inferencing

occurs when an attempt is made to evaluate a

conclusion or goal by resolving or evaluating a

limited number of facts relevant to a line of

reasoning. Backward chaining is commonly used

when values of some key facts eliminate the need

to evaluate a number of other facts, and when

there are fewer possible goal values.

3. Demons, or event driven actions: are available to

be executed at any time and can interrupt

processing. A condition associated with each

demon determine when it should be executed by the

inference engine.

4. Hypothetical Reasoning: Some expert system tools

allow a nurr~er of options to be explored

8

9

simultaneously in order to arrive quickly at a

solution. Multiple hypothetical situations can be

explored and the software maintains a number of

states.

5. Backtracking: is a feature of Prolog or Prolog

systems. Such systems instantiate facts once and

use this value whenever the fact is referenced,

unless instructed to find an alternative value for

a fact, in which case backtracking may be used.

Backtracking consists of reviewing what has been

done (in terms of satisfying goals) and attempting

to re-satisfy the goals.

Analysis of Knowledge

There are many components of the knowledge that is the

source of an expert's ability to perform[5]. They may be

viewed generally as:

1. Facts: are statements that relate some element of

truth regarding the subject domain, for example: A

Boeing 747 has four engines.

2. Procedural rules: are well-defined rules that

describe fundamental sequence of events and

relations relative to the domain[31].

3. Heuristic Rule: are general rules that suggest

procedures to be followed when procedural rules

are not available[l2]. The presence of heuristics

contributes greatly to the power and flexibility

10

of expert systems and tends to distinguish expert

systems from traditional software(9J.

Characteristics of an Expert system

An expert system is usually designed to have the

following general characteristics:

1. High Performance: The system must be capable of

responding at a level of competency equal to or

better than an expert in the field[21];

2. Adequate Response Time: The system must also

produce solutions in a reasonable time, comparable

to or better than the time required by an expert

to reach a decision[l4];

3. Good Reliability: The expert system must be

reliable and not prone to crashes[23];

4. Flexibility: Because of the large amount of

knowledge that an expert system may have, it is

important to have an efficient mechanism for

adding, changing, and deleting knowledge[21].

Database Management system

There are numerous definitions of a database, including

the following given by James Martin;

"A database is a collection of inter-related data stored

together with controlled redundancy to serve one or more

applications in an optimal fashion; the data is stored so

that it is independent of programs which use that

data"[1,14].

11

The data is controlled by a database management system

which is a proprietary software for handling the storage and

retrieval of data. One can define a database management

system as a software tool for developing applications

requiring access to shared information[14]. A database

management system provides the following:

1. data independence. The DBMS separates

specification of processing from the data.

Processing works on the logical view of the data

and the DBMS maps the logical view on to the

physical representation of the data[6];

2. data integrity. Checks on the consistency of the

data[14];

3. data concurrency and consistency. Since the

database is a shared resource the DBMS allows a

number of users to access the database

concurrently. The DBMS can inhibit concurrent

access to the same data instances by setting locks

on the data(29];

4. recovery. The DBMS logs changes made to the

database by all users; if a user aborts the

current transaction then all changes made within

it are automatically undone by the DBMS. A DBMS

also provides facilities to backup the

database(14];

12

5. access control. The DBMS controls who can access

what parts of the database and in what mode.

Access control is important when all data is held

as one logical unit[l4];

6. data maintenance. Facilities to unload and

reload, reorganize and re-structure data are

generally supplied with a DBMS[l4].

Architecture of a DBMS

An overview of the architecture of a DBMS is shown in

Appendix B, figure 3. There are three logical views of the

data in a database.

1. Internal View: defines the physical structure of

the data, specifying where records should be

placed, clustered, etc., across physical files and

how they should be physically accessed, such as by

using an index or a serial search[34].

2. Global View: provides a logical view of the

database, specifying such things as record

layouts, data item definitions. There is a

mapping between the internal view and the global

view[34].

3. External View: provides an access control

mechanism for processing, since only those data

items which are essential for an application to

function are included in the definition to be

used. All the other data items and record types,

13

which are not included in the view, are hidden and

unavailable to the application(34).

Users and applications access data through an external

view using a DBMS specific language, generally termed a data

manipulation language. Some databases have a language which

has unique syntax, but most relational databases have

standardized on the database language SQL.

Types Of Databases

This section describes some of the kinds of databases.

Hierarchic Database. This DBMS has a number of data

units organized in tree structures, each data unit has one

and only one owner, but it may have one or more member

units. IBM's Information Management System/Virtual Storage

(IMS/VS) is an example of such a DBMS[14].

Network DBMS. Network DBMS implements a network view

of the data. Records can be inter-connected in general

networks as well as hierarchies, thereby providing a more

flexible structure[l4].

Relational Database. Relational DBMS is perceived to

hold data in a series of two dimensional rows (record

occurrences) and columns (attributes) [3]. Relationships

between rows in different tables are represented by the

storage of attributes from other tables within a table. Now

tables can be formed by selecting rows or columns from

existing tables or by joining tables[3]. As a canonical

example of a relational database, consider the database,

named COMPANY, of an enterprise where information is kept

about employees and the departments in which they work.

Such a database may consist of the following relations:

EMP(eno, ename, age, salary, edna);

DEPT(dno, dname, floor, mgrno)

14

EMP and DEPT are two relations, with five and four

attributes respectively, whose intended meaning is rather

straight forward from their names. In this database, the

EMP relation will contain one tuple for each employee and

the DEPT relation will contain one tuple for each department

of the enterprise. Queries on this database may involve one

relation, where operations belong to {=, <>, <=, >=}

for example salary > 30K or may combine two relations for

example edna = dna.

Thus the relational database theory incorporates

1. a model of data;

2. an algebra for manipulating that data:

3. a calculus for expressing requirements of 1 and 2.

Each relation can be supported by at most one primary

index and an arbitrary number of secondary indices, which

are built based on the values of the relation tuples for

some attribute(s) [36]. Such a variety of indices give the

system the ability to accelerate the processing of queries.

oracle and Ingres are two of the best known relational

database products.

Intelligent Database Systems. There are essentially

three ways to provide intelligent database system

capabilities. These are:

1. add logic/inference capability to a DBMS;

2. couple together a database system with a logic­

programming system;

15

3. add DBMS facilities to a logic-programming system.

Research work has tackled all three possibilities.

Option 1 involves the addition of an inference engine and

additional data constructs to a DBMS.

For second option consider the Prolog system. A Prolog

system uses an existing DBMS a backend server. The

methodology is to modify the processing of a Prolog program

so that it collects together, unevaluated subqueries that

access data stored in the relational DBMS. The subqueries

are then translated into the query language of the DBMS and

sent to it for processing.

Option 3 would require significant amounts of

development effort since the natural data constructs

associated with logic programming do not lend themselves to

efficient handling of simultaneous multi-user access.

Main Memory Databases. In a main memory database

system data resides permanently in main physical memory in a

conventional database system it is disk resident[ll]. In a

conventional database system, disk data may be cached into

memory for access; in a main memory database system the

16

memory resident data may have a backup copy on disk. So in

both cases, a given object can have copies both in memory

and on disk. The key difference is that in main memory

database system the primary copy lives permanently in

memory(11].

As semiconductor memory becomes cheaper and chip

densities increase, it becomes feasible to store larger and

larger databases in memory, making main memory database

systems a reality. Because data can be accessed directly in

memory, main memory database systems can provide better

response times and transaction throughputs, as compared to

conventional database systems[ll].

A concept used in rapid handling of large volumes of

textual data was proposed by Marguerite F. called KWIC and

KWOC by the author. This method is based on indexing of

essential keywords in the data instead of concepts[17]. A

KWIC (keywords in context) index uses essential keywords

found in the current context. A KWOC (keywords out of

context) index lists essential keywords used out of the

current context and is designed to complement the KWIC

index[15].

Expert Database System

An expert database system(EDBS) can be defined as

a system for developing applications requiring

knowledge-directed processing of shared information[l3]. In

Freundlich's view an expert database system is a database

17

that stores not only values but "chunks of knowledge 11 [B].

Zari describes traditional database management systems as

passive, that is queries on transaction are executed only

when explicitly requested. On the other hand, he describes

a database augmented by transaction-triggered processing

capabilities as an "active database, and he classifies

expert database system into the category of active

databases[34].

An expert database system architecture comprises of two

major components. It involves a data-management system, and

an expert system[9,27]. The data concerning the application

resides in a database, the storage and retrieval of which is

handled by the database management system. The expert

system is used to perform intelligent processing of this

data.

An expert database system supports applications that

require knowledge directed processing of shared information.

This definition allows us to envision a wide spectrum of

architectures for such systems. They may be loosely coupled

as for e.g, an expert system which retrieves data from a

database. They may be tightly coupled in that either the

expert system or the database system or both "understand"

how the other functions and can take advantage of their

knowledge to improve the performance of the expert database

system[l3]. In its most advanced form a tightly coupled

system may embody, in an integrated fashion, characteristics

found in both the expert systems and the database management

18

systems. Loose coupling means that both the expert system

and the database management system will maintain their own

functionality and will communicate through a well-defined

interface. The database may be viewed as a data server for

the expert system. For example, an expert system may send

SQL queries to the database system to obtain needed data.

Conversely, the database system might send messages to the

expert system, placing data onto its blackboard or working

memory. In addition, the database management system could

pose questions to the expert system in much the same way a

user might consult an expert system[l3].

Generis is an integrated system encompassing database,

expert system technology. This is a commercially available

product. Generis has evolved from the FACT System which is

claimed to be the world's first Intelligent Knowledgebase

Management System, that uses the Generic Associative

Technique to 'combine the power of relational database

technology with user-defined inference and action rules

which are held in the same database'. Data can be viewed in

tables or in frames based on a subject. The system links

all tables in an application into a network.

CHAPTER III

SYSTEM DESXGN AND XMPLEMENTATION

In this chapter, the design and implementation of a

composite Expert Database System is presented. As mentioned

before, the basic tools used are as follows:

1. Paradox relational database management system:

used as a repository for context independent data;

2. Paradox ENGINE: used as a C language interface to

the Paradox database management system;

3. CLIPS {ver. 5.1): used as the forward chaining

inference engine to deduce context-based facts

from rules defined in the knowledge base;

4. C programming language.

The methodology is demonstrated by applying it to a

sample aircraft database. In the present work, twelve

flights and fourteen aircraft are considered. This is

solely with the aim of demonstrating the methodology and is

not to be considered a limitation on the size of databases

the methodology can handle.

Introduction to Paradox Engine

Powerful database applications have historically been

difficult and slow to learn and use[19]. Paradox provides a

19

2(

contradiction to this by proving to be powerful and complex

yet simple and easy to learn. Paradox(ver. 3.5) is a full

featured relational database management system, made

commercially available by Borland International. It

operates both in a single-user stand alone system and in a

multi-user networked environment.

Paradox 3.5 also has the capability to provide access

to data stored on Structured Query Language(SQL) database

servers through the SQL link. This could be an extremely

useful feature for the development of Expert Database

Syst.ems.

Paradox Engine is a comprehensive library of C

functions and Pascal procedures and functions that can be

invoked by application programs written in c and Pascal.

The Paradox Engine also allows the manipulation of data

residing in Paradox tables in both single-user and multi­

user environments.

For more information on this refer to the Paradox

manuals[l9].

CLIPS

CLIPS is an acronym for C Language Integrated

Production system. CLIPS is a forward chaining rule based

language that has inferencing and representation

capabilities. CLIPS was designed at NASA/Johnson Space

Center. It was designed to be highly portable and easily

integrable with external systems at a relatively low cost.

21

Because of its high portability CLIPS has been

installed on a wide variety of computer systems ranging from

PC's to CRAY supercomputers(23].

CLIPS comprises of three basic elements:

1. fact-list: global memory for asserted facts;

2. knowledge-base: rules governing the facts;

3. inference engine: controls how knowledge is

manipulated and facts are inferred.

CLIPS is based on a very fast pattern-matching algorithm

known as the RETE algorithm(24]. The basic premise of this

algorithm is outlined below.

The inference engine typically makes inferences by

deciding which rules are satisfied by facts in the current

context, prioritizes the satisfied rules, and executes the

rule with the highest priority. A rule is said to be

satisfied when the pattern on the LHS of a rule match with

existing facts. The other satisfied rules are placed in a

list called the agenda.

As each of the rules on the agenda are executed, new

facts may be created andjor old facts deleted. This in turn

might lead to some rules which are not on the agenda to be

satisfied and some rules on the agenda to be unsatisfied.

The list of satisfied rules must therefore be dynamically

maintained and updated in an efficient manner.

If a rule is satisfied the entire process of matching

facts and rules is repeated. This method in which the rules

dictate the search process for facts, becomes very

inefficient as the number of rules increases.

22

The Rete's algorithm is based on the paradigm of facts

directing the search process for rules that are satisfied.

Typically very few facts in an expert system change in one

execution cycle, which in turn implies that only a small

subset of rules would be affected by the changes in facts.

This property is known as Temporal Redundancy[24]. The

Rete's algorithm exploits this property by saving the state

of the matching process from cycle to cycle and recomputing

· the changes in this state only for the changes that occur in

the list of facts.

organization of Data and Knowledge

Context-independent data about aircraft configuration

and flights are stored in Paradox database files in the form

of tables. The rules which govern this data and help in

inferring context-dependent facts are stored in a knowledge

base file.

Two different classes of data are stored in the Paradox

files as four tables. The first class stored in

"Flights.db 11 , consists of the fields shown in table 1,

Appendix A. It contains information about different Flight

Numbers and the class of flight. Allowable classes are 'A',

'B', and 'C'. If a flight's class is 'A', then aircraft

which can carry more than 350 passengers and cargo weighing

more than 100,000 lbs can execute these flights. Aircraft

23

which accommodate more than 150 and less than orequal to

350 passengers, while carrying cargo loads between 40,000

lbs and 100,000 lbs can execute flights of Class 'B'. All

other aircraft can execute flights of Class 'C'. It is

worth noting that Flight numbers are unique and they form

the primary search key for this table. Also, this table of

records does not store any references to aircraft.

The other class of data pertains to different types of

Aircraft and their configuration parameters. These

parameters (totally 22 in number are distributed into

three tables, namely 11 Acbasic.db", "AcEngine.db 11 and

11 Acdimen.db "· As the names of these tables suggest, basic

parameters like Passenger and Crew capacities, maximum

flying altitudes etc., are stored in" Acbasic.db ", engine

type, number of engines, etc., are stored in 11 Acdimen.db 11

The field names and types for each of these tables are

presented in Appendix A, tables 2 through 4. Note that in

all the three tables, the field 11 Aircraft-type " is present

as the Primary key. This is to facilitate the relational

linkage of the three tables.

The actual data stored in each of these tables is

depicted in Appendix A, tables 5, 7, 8 and 9.

Functions that interact with the Paradox engine are

implemented in a systematic way as outlined below:

1. The Paradox engine is started and initialized;

2. The desired table is opened;

3. A record buffer is dynamically allocated;

24

4. Fields of the record needing access are defined;

5. Necessary operation(s) are carried'out;

6. The record buffer is freed;

7. The opened table is closed;

8. The Paradox Engine is shut down.

The abstract rules which govern the inferencing

capabilities of the Expert Database system are stored in a

knowledge base file. CLIPS requires that these rules (and

certain "facts") be stored in file with a 11 .CLP" extension.

Facts in the context of knowledge base of a regular expert

system are 11 chunks" of information. However, those facts

that are context-free are stored in the database of an EDBS

as far as possible. Facts that are dynamic in nature and

are added or removed in a specific context (agenda) are used

in a knowledge Base of an EDBS. A fact in CLIPS consists of

one or more fields enclosed in matching left and right

parentheses. Good programming style dictates that facts be

represented as (<relation name> <valuel> ...••• <valueN>)

which explicitly declare the relationships between various

values.

An example follows:

(is-class-of-aircraft B)

Rules in any EDBS are necessary to infer new facts from

the data in the database. CLIPS requires that these rules

follow the following syntax :

(defrule <rule name> [<optional comment>]

<<patterns>> ; Left - Hand Side (LHS) of the rule

25

=> THEN arrow

<<action>> ; Right - Hand Side (RHS) of the rule

The group of all facts known to CLIPS is stored as a

list known as a fact-list. New facts can be added or

removed from the fact-list using the CLIPS function assert

or retract, on the RHS of the rule, respectively.

Variables within CLIPS rules are always written in the

syntax of a question mark followed by a symbolic field name.

The 'bind' function can be used to bind the value of a

variable to that of an expression.

Comments in a rule begin with a semicolon and can

continue until the end of the line.

An example of a simple rule follows:

(defrule calc_cargo_volumes "Calculate cargo Volumes"

IF forward and rear cargo volumes of an aircraft is
known

(vol_of_cargo_compts ?aircraft ?forward vol ?rear vol)

=> ;THEN
Assert total cargo volume as sum of forward and rear

: cargo volumes

(bind ?total val (+ ?forward val ?rear_vol))

(assert (total_cargo_volume ?aircraft ?total_vol)))

In the present work, CLIPS is embedded within the

application. Calls to CLIPS are made like any other

function call. Embedding CLIPS involves the following

steps.

1. The application provides a main program, and

includes 11 stdio.h11 and 11clips.h" in the main

program file;

26

2. CLIPS is initialized by the main function prior to

loading rules;

3. Application defined functions which are to be

called by CLIPS, are also made known to CLIPS in

the main program file;

4. The header files are customized to the

applications operating environment(including

memory usage, specialized functions, etc.);

5. The applications code is then compiled and linked

with all CLIPS files except the object version of

the CLIPS main program file.

Interaction Between the Application,

CLIPS and Paradox

The flowchart depicting the overall algorithm of the

application is presented in Appendix B, figure 4. Since

CLIPS is used in an embedded form, CLIPS is initialized as

the first step in the main function. The rules in the

knowledge base file are then loaded. The main menu is

displayed. The main menu entries are classified into two

categories:

1. Entries to view, insert or delete records in the

conventional database;

27

2. Entry to allow users to pose queries to the

inference engine and get solution, if any exist.

As already mentioned, entries in category 1 above

bypass CLIPS and interact directly with the Paradox Engine

functions and the Paradox data files. Deletion of a record

in the database for example, would involve determining the

primary key identifying the record and calling the

appropriate function to delete the record.

The query entries in category 2 interact with CLIPS

which, if required, interact with the application functions

that deal with the Paradox engine and the Paradox database

files. The following exampl e outlines the interactions

involved in a typical query solving process.

Assume that the user poses the query "Compare the

engine weights of Boeing 747 and DClO". Processing proceeds

as follows:

1. Based on the query, facts are asserted in CLIPS.

In this example, the fact "comp-attr engine-

weight DClO BOEING-747" is asserted in the CLIPS

knowledge base;

2. CLIPS inference engine is then invoked;

3. Depending on the rules in the knowledge base and

currently available facts, rule(s) are fired. In

this example, one of the rules fired would have

the following pseudo-code:

(if(comp-attr ?attr ?al
get-value of attr of
get-value of attr of

?a2} is defined then
?al as ?vall
?a2 as ?val2

28

if ?vall > ?val2 then
print ?al is more than ?a2

else
print ?a2 is more than ?al

) :

4. If Paradox functions need to be called by CLIPS

during the inferencing process, they are invoked.

In this example, the firing of the above rule

involves the invocation of Paradox function to

determine the engine weights of DC10 and Boeing

747, this is done through the use of application's

function 'get-value':

5. The solutions, if any, are printed. In our

example the reply, "BOEING 747 has more engine

weight than DClO" would be printed to the screen.

Query Interface

The ease with which a user can query an Expert Database

System helps determine its widespread usability. Ideally,

users would prefer to pose queries in a natural language

like English without having to phrase their queries in a

specified manner. Flowchart for query parsing is as shown

in Appendix B, figure 5.

The query parsing mechanism implemented for the present

system allows users to pose queries in a restricted form of

the English language.

29

Guidelines in constructing Query

The user poses a query to the EDBS in plain English in

the context of aircraft based on the following guidelines:

1. Queries can be in upper or lower case;

2. Queries should not contain any characters other

than alpha-numeric characters;

Parsinq Of Queries

When a query is specified by the user, the keyword in

the query string is determined and removed. The noise words

in the query string are then eliminated. The noise words

were chosen such that parsing of the query is simplified.

These words can be typically categorized as words not adding

any information to the query understanding. Table 6, in

Appendix A, lists the noise words in the present system.

This query is then parsed by a Finite State Recognizer.

As the query is parsed, a query structure identifying the

relevant query construct is built.

CHAPTER IV

SUMMARY AND CONCLUSIONS

An Expert Database System(EDBS) for a sample aircraft

database was successfully developed and tested, using the

methodology described in chapter III. The system was

developed using the C programming language in a single-user

PC environment. Context independent data about aircraft was

stored in Paradox database files. The Paradox engine was

used to develop the interface between the Paradox database

files and the system. CLIPS (ver 5.0) was used for its

efficient inference engine. Rules constituting the EDBS's

knowledge base were stored in a CLIPS knowledge base file.

The main features of the methodology adopted in

developing the above system are:

1. the use of a widely-used conventional programming

language like C;

2. the use of a highly versatile relational database

management system like Paradox, with conventional

programming language interface to the database

files (like Paradox engine)~

3. use of an efficient inference engine like CLIPS;

4. use of an efficient query-parsing mechanism

(designed to interpret queries posed in a natural

30

language such as English) independent of the

relational database system or the inference

engine;

5. enmeshing the inference engine with the database

management system.

The EDBS has a menu-driven user-interface. It allows

the user to insert, delete, or view records in the

relational database files. It also allows users to pose

31

, queries in English. An ambiguous query causes the system to

prompt the user for clarification as far as possible.

Adaptability to a New Knowledge Domain

The methodology used in developing the present system

could easily be used in developing an Expert Database system

for any knowledge domain. However to make the system more

efficient, some code segments are domain-specific. Major

modification of this system to operate in a d i fferent

knowledge domain would involve the following changes:

1. creating the Paradox database files and storing

context-independent data about the domain in these

files~

2. Modifying the funct i ons, written using Paradox

engine's routines which assist in interfacing with

the Paradox database files. This is necessary

since the functions take into account the type of

data stored in the database files, like int, char

strings, etc;

3. Developing the CLIPS rule base for the desired

knowledge domain;

32

4. Changing the CLIPS-Paradox interface functions to

be useful with the new interface;

5. Modifying the query parsing structure and

functions to incorporate the parsing of all

possible queries in the new domain. This includes

modification of the list of noise words and the

list of synonyms.

Limitations of the current system

Following are the limitations of the current system:

1. The current system does not deal with a very large

database. In very large databases, efficient

access of secondary storage becomes a crucial

factor. This issue has not been dealt within the

current system;

2. The current system also uses a small

representative knowledge base. As the number and

complexity of rules in the CLIPS knowledge base

increases the memory requirements for rule

processing would also increase. While the current

hardware technology has made memory economically

cheap, memory availability would still be a factor

in very large systems. Proper ordering of the

patterns of rules could help restrict the memory

crunch in such systems. These techniques have not

been consciously used in developing the current

system.

33

3. This system is implemented in a single-user PC

environment. Typically, large databases are

accessed across a network of machines by multiple

user. Issues such as data integrity, updates,

etc. would then have to be considered. While

Paradox and CLIPS are designed for a single-user

and a multi-user environment this system is

limited to operate in a single user environment;

4. The current system is limited by the 640KB memory

barrier encountered in personal computer.

FUture Work

The fo l lowing are some of the areas where future work

on the current system is suggested:

1. Linking the SQL database server to the current

system would greatly enhance the usability of the

system;

2. Expanding the current system to work in a

networked PC environment andjor Unix workstations;

3. Expanding the knowledge and database of the

current system to aid in solving a variety of

airline industry related problems;

4. overcoming the limitation of 640KB real memory

availability in PC's. This could be done by using

tools to map the executable to the protected

memory area.

34

BIBLIOGRAPHY

[1) Amit B., Rafiul A. ~ Using a Relational Database to
Support Explanation in a Knowledge-Based system, IEEE
Transactions on Knowledge and Data Engineering, Vol. 4,
No. 6, December 1992, pp 572-581.

[2] Andriole s., Hopple G. ; Applied Artificial
Intelligence: A Source Book, 1991.

[3] Gautam B., Gadia S. K. ; Relational Database systems,
IEEE Transactions on Knowledge and Data Engineering,
Vol 5., No. 5, February 1993, pp 76-87.

[4] Brodie M., Jarke M. ; on Integrating Logic Programming
and Databases, 1989.

[5] Charles R., Richard c.w. ; Knowledge Intensive Software
Engineering Tools, IEEE Transactions on Knowledge and
Data Enginering, Vol. 4, No. 5, October 1992,
pp 424-430.

[6] Cheong Y., Hyoung-Joo K. ; Lawrence J. H.,
Classification and Compilation of Linear Recursive
Queries in Deductive Databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 1, February
1992, pp 52-67.

[7] Di Giorgi R.M., E.Fameli, R.Nannucci ; Expert System
and Database Interaction in the legal Domain, 1990.

[8] Freundlich Y. ; Knowledge Bases and Databases
Converging Technologies, Diverging Interests, IEEE
Computer Science Press, Washington D.C., 1990,
pp. 51-57.

[9] Gunther o. ; Implementation of Heuristic Search in an
Expert Database System, in Decision Support Systems 7,
1991, pp. 233-240.

[10) Jiawei H., Yandong c., Nick c. ; Data-Driven Discovery
of Quantative Rules in Relational Databases, IEEE
Transactions on Knowledge and Data Engineering, Vol. 5,
No. 1, February 1993, pp 29-40.

35

36

[11] Hector G., Kenneth S. ; Main Memory Database Systems:
An Overview, IEEE Transactions on Knowledge and Data
Engineering, Vol. 4, No. 6, December 1992, pp 509-516.

[12] Heildelberg and Kaiserslautern ; current developments
in knowledge Acquisition :EKAW'92 :6th European
Knowledge Acquisition Workshop, May 1992.

[13] Kershberg L. ; Expert Database Systems: Proceedings
from the Second International conference, April 1988.

[14] Kerry R. ; Integrating Knowledge-Based and Database
Management Systems, 1990.

[15] Larry A. ; KWOC Indexes and Vocabulary Comparisons of
Summaries of LC and DC Classification Schedules,
Journal of American Society for Information Science,
September-October 1971, pp 322-325.

[16] Luger George F., William A. s. ; Artificial
Intelligence: structures and strategies for complex
problem solving, 1993.

[17] Marguerite F. ; The KWIC Index Concept: A
Retrospective View, American Documentation, April
1966, pp 57-70.

[18] Mcleod D. and Yanover P. ; Expert Database Systems:
Proceedings from the Second International Conference,
January 1990, pp. 245-253.

[19] Paradox Refernce Manual, Borland.

[20] Patterson D.W. ; Introduction to Artificial
Intelligence and Expert systems, 1990.

[21] Pilkington, Rachel M. ; Intelligent help: Communicating
with knowledge-based system, May 1992.

[22] Ramirez R., Dattero R., Choobineh J ; Representing
Generalizationsand Exceptions in Expert Database
Systems, in Decision Support Systems 6, 1990,
pp. 29-44.

[23] Riley G. ; Expert Systems: Principles and Programming,
1989.

[24] Riley G. ; CLIPS Reference Manual, July 1989.

[25] Scheugraf E. J., M.F. van Bommel ; Automatic Indexing
of Document Da taba s es by Cooperating Expe rt Sys tems ,
1990.

[26] Silberchatz Av, et al : Database Systems: Achievments
and Opportunities, October 1991, Vol 34, No. 10.

37

[27] Smith J.M. ~ Expert Database Systems: A Database
Perspective, Expert Database Systems: Larry Kershberg,
Editor, 1986, pp. 4-15.

[28] Michael S. ; The Integration of Rule and Database
Systems, IEEE Transactions on Knowledge and Data
Engineering, Vol. 4, No. 5, October 1992, pp 415-423.

[29] Subrata D. K. : Deductive databases and logic
programming, 1992.

[30] Sycheyder E.C. ; Relational Database Applications in
Manufacturing System Design, 1990.

(31] Tjoa A.M., Wagner ; Database and Expert Systems
Applications, 1990.

(32] Tzy-Hey c., Edwards. ; A Universal Relation Data Model
with Semantic Abstractions, IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 1,
February 1992, pp 23-33.

[33] Xu Wu, Tadao I. ; KDA: A Knowledge-Based Database
Assistant with a Query Guiding Facility, IEEE
Transactions on Knowledge and Data Engineering, Vol. 4,
No. 5, October 1992, pp 443-453.

[34] Yannis E.I., Saulys T., Whitsitt A.J. : Conceptual
Learning in Database Design, ACM Transactions on
Information Systems, Vol 10, No. 3, July 1992,
pp. 265-293.

[35] Zarri G.P. ; A Proposal of Integrating AI and DB
technique in Database and expert System Applications,
August 1990, pp. 307-314.

[36] Zhu J., Maier D., Abstract Objects in an Object­
oriented Data Model, in Expert Database Systems:
Proceedings of the Second International Conference,
April 1988, pp. 73-106.

APPENDIXES

38

APPENDIX A

LIST OF TABLES

39

40

TABLE I

FIELDS OF FLIGHTS.DB

FIELD FIELD FIELD LENGTH PRIMARY
NUMBER NAME TYPE KEY

1 FLight No Nuneri c N/A

2 Class Alphabet j

TABLE II

FIELDS OF ACBASIC.DB

FIELD FIELD NAME FIELD LENGTH PRIMARY
NUMBER TYPE KEY

1 Aircraft type Alphabet 28 *
2 No crew Nuneric N/A

3 No of bag COII"pt Nuneric N/A

4 No passengers Nuneric N/A

5 Max takeoff ld Nuneric N/A

6 Max cargo ld Nuneric N/A

7 Max altd fly Nuneric N/A

8 Max_cspeed Nuneric N/A

41

TABLE Ill

FIELDS OF ACENGINE.DB

FIELD FIELD NAME FIELD TYPE LENGTH PRIMARY
NUMBER KEY

1 Aircraft type Alphabet 28 *
2 Engine type Alphabet 31

3 No of engines N~.m~eri c N/A

4 Wt_engine N~.m~eri c N/A

TABLE IV

FIELDS OF ACDIMEN.DB

FIELD FIELD NAME FIELD TYPE LENGTH PRIMARY
NUMBER KEY

1 Aircraft type Alphabet 28 *
2 Cabin Length N~.m~eri c N\A

3 Cabin width N~.m~er ic N\A

4 Cabin height N~.m~er i c N\A

5 Acraft length N~.m~er i c N\A

6 \.ling Span N~.m~eric N\A

7 Cargo_ Vol N\.llleric N\A

FLIGHTS

1

2

3

4

5

6

7

8

9

10

TABLE V

FLIGHT DATA STORED IN
FLIGHTS.DB

FLIGHT CLASS
NUMBER

112 c

173 A

179 A

456 A

790 B

889 A

1132 B

1190 c

1234 A

8812 B

TABLE VI

LIST OF NOISE ~ORDS USED BY
THE QUERY PARSER

A AN AIRCRAFT AIRCRAFTS ALL
AND AIRPLANES APPLICABLE
CRUISING COMPARTMENTS DURING FOR
FLYING HAS HAVE HAVING EACH IS
KNO~ OF OFF NUMBER OR TO THAN
SIZE SPAN PLANES ~ITH THE
RESPECT VALUE

42

AIRCRAFT
TYPE

AIRBUS

BOEING 707

BOEING 717

BOEING 727

BOEING 737

BOEING 747

BOEING 757

BOEING 767

DC 10

DC 7

DC 8

DC 9

LOCKHEED JETSTAR

LOCKHEED TRISTAR

TABLE VI I

AIRCRAFT ENGINE DATA STORED
IN ACENGINE.OB

ENGINE TYPE

GENERAL ELECTRIC CF6-50C

PRATT & YHITNEY JT3D-3

PRATT & IJHITNEY JT3D-7

PRATT & YHITNEY JTB0-7

PRATT & YHITNEY JTBD-7

PRATT & YHITNEY JT9D-3

PRATT & IJHITNEY JTB0-9

PRATT & YHITNEY JTB0-9

GENERAL ELECTRIC
CF6·50A

PRATT & YHITNEY
JT3D-1

PRATT & YH ITNEY
JT3D-7

PRATT & YHITNEY
JT80·9

PRATT & YHITNEY
JT12A-8

ROLLS ROYCE
RB21 1-228 '

43

OF \.IT. OF
ENGINES ENGINE

2 51000

4 18000

4 19000

3 14000

2 14000

4 43500

3 14500

2 14500

3 49000

4 17000

4 19000

2 14500

4 33000

3 38000

TABLE VIII

ATTRIBUTE VALUES STORED IN ACDIHEN.DB

AIRCRAFT TYPE CABIN CABIN CABIN
LENGTH IJIDTH HEIGHT

AIRBUS 175.09 28.06 17.07

BOEING 707 104.10 11. 08 7.07

BOEING 717 111.06 11.08 7.07

BOEING 727 72.08 11.08 7.02

BOEING T57 62.02 11.06 7.02

BOEING 747 185.00 20.00 11.04

BOEING 757 92.08 11 . 08 6.11

BOEING 767 68.06 11.06 7.02

DC 10 150.00 18. 00 10.90

DC 7 102.01 11.06 7.03

DC 8 100.00 10.00 6.09

DC 9 100.00 10.00 6.09

LOCKHEED JETSTAR 128.02 6.02 6.00

LOCKHEED TRISTAR 135 .11 18. 11 7.11

AIRCRAFT lo/ING
LENGTH SPAN

147.12 147.12

145.01 130.10

152.11 145.09

133.02 108.01

94.00 93.00

231.04 195.08

153.00 108.00

100.00 93.00

181.04 161.04

150.06 142.05

187.05 148.05

125.07 93.05

60.05 54.05

178.08 155.04

CARGO
VOLUME

4869

1665

1775

900

650

5190

1485

875

6000

1390

2500

1019

2000

2528

~
~

AIRCRAFT CREII I OF BAGGAGE
TYPE SIZE ca4PARTHENTS

AIRBUS 5 3

BOEING 707 4 2

BOEING 717 5 2

BOEING 727 3 2

BOEING 737 2 2

BOEING 747 3 2

BOEING 157 3 2

BOEING 767 2 2

DC 10 5 3

DC 7 5 1

DC 8 5 1

DC 9 2 1

LOCKHEED JETSTAR 2 t

LOCKHEED TRISTAR 5 1

TABLE IX

BASIC AIRCRAFT DATA STORED
IN ACBASIC.DB

I OF MAX. TAKEOFF
PASSENGERS LOAD

331 302000

181 257000

219 333600

131 160000

115 105000

500 mooo
189 190500

130 115500

380 555000

179 325000

259 350000

125 114000

10 42000

. 200 430000

MAX. CARGO Al TITUOE
LOAD

70020 35000

46849 42000

53900 39000

34500 36500

32100 360bo

164745 45000

41000 33500

35700 34000

104913 32700

34360 36500

6ms 35100

34195 34000

2926 37400

86183 42000

CRUISING
SPEED

582

618

605

607

553

600

599

576

570

580

600

561

570

550

~
U1

APPENDIX B

LIST OF FIGURES

46

Knowledge
Acquisition
Subsystem

User interface

(Knowledge Bast)

Working Store

Knowledge-based system tool

Debugging
aids

Qnterence Engine)

Interface with other
systems

Figure 1. Logical Components of a Knowledge-Based
system

47

48

.-------
I Knowledge-Base I

f12cts ..._-- - - -· - --.J

' User /
/

"' Expertise r- --- --,
I Inference Engine I
L-- -- - ___,

Expert System

Figure 2. Basic Concept of an Expert System

I User 1j I user 2! I User 3·j ••••. 1 User n I Users or Appllc~tlons

~SOL J /. J,
I VIew 1j . I VIew Z I I Vlr:w n I External views

~ .j, ~ExtemaHo-global mappings

~~Jvicw j ·
1' Glbb81-to-lnternal

~ m~pplng ~
Internal view I< .)~

Figure 3. Logical Architecture of a DBMS

Figure 4.

!Go To Display INc c-­
Uenu & Reed
u,era Choler:

Flowchart Depicting Overall Algorithm

~
\0

PARSE QUERY &·ALL UP
QUERY .STRUCTURE

ASSERT APPROPRIATE FACTS DEPENDING
ON QUERY lYPE TO ARE APPROPRIATE RULES

CUPS INFERENCE ENGINE TAKES OVER­
FROM ASSERTED FACTS TRIES TO AND
SOLUTION INTERACTING. IF NECESSARY.

Willi PARADOX DATABASE

N

Figure 5. Flowchart of Query
Processing

50

VITA ')_

DIPTI R. BHARGAVA

Candidate for the Degree of

Master of Science

Thesis: BUILDING AN EXPERT DATABASE SYSTEM IN C USING CLIPS
AND PARADOX

Major Field: Computer Science

Biographical:

Personal Data: Born in Ahmedabad, India, May 12, 1966,
the daughter of Rameshwarnath Bhargava and
Chandrakanta Bhargava.

Education: Received Bachelor of Science Degree from
Nagpur University, Nagpur, India in May, 1986;
received Master of Science in Mathematics from
Bombay university, Bombay, India in May, 1988;
completed requirements for the Master of Science
degree at Oklahoma State University in July, 1993.

Professional Experience:

Operations Research Analyst, United Airlines, 1200
East Algonquin Road, Elk Grove Village, Chicago,
Illinois, February, 1992, to present.
Research Assistant, University Computer Center,
Oklahoma State University, August, 1991, to
January, 1992.
Research Assistant, Department of Business
Administration, Oklahoma State University, May,
1990, to May, 1991.

	Thesis-1993-B575b_Page_01
	Thesis-1993-B575b_Page_02
	Thesis-1993-B575b_Page_03
	Thesis-1993-B575b_Page_04
	Thesis-1993-B575b_Page_05
	Thesis-1993-B575b_Page_06
	Thesis-1993-B575b_Page_07
	Thesis-1993-B575b_Page_08
	Thesis-1993-B575b_Page_09
	Thesis-1993-B575b_Page_10
	Thesis-1993-B575b_Page_11
	Thesis-1993-B575b_Page_12
	Thesis-1993-B575b_Page_13
	Thesis-1993-B575b_Page_14
	Thesis-1993-B575b_Page_15
	Thesis-1993-B575b_Page_16
	Thesis-1993-B575b_Page_17
	Thesis-1993-B575b_Page_18
	Thesis-1993-B575b_Page_19
	Thesis-1993-B575b_Page_20
	Thesis-1993-B575b_Page_21
	Thesis-1993-B575b_Page_22
	Thesis-1993-B575b_Page_23
	Thesis-1993-B575b_Page_24
	Thesis-1993-B575b_Page_25
	Thesis-1993-B575b_Page_26
	Thesis-1993-B575b_Page_27
	Thesis-1993-B575b_Page_28
	Thesis-1993-B575b_Page_29
	Thesis-1993-B575b_Page_30
	Thesis-1993-B575b_Page_31
	Thesis-1993-B575b_Page_32
	Thesis-1993-B575b_Page_33
	Thesis-1993-B575b_Page_35
	Thesis-1993-B575b_Page_36
	Thesis-1993-B575b_Page_37
	Thesis-1993-B575b_Page_38
	Thesis-1993-B575b_Page_39
	Thesis-1993-B575b_Page_40
	Thesis-1993-B575b_Page_41
	Thesis-1993-B575b_Page_42
	Thesis-1993-B575b_Page_43
	Thesis-1993-B575b_Page_44
	Thesis-1993-B575b_Page_45
	Thesis-1993-B575b_Page_46
	Thesis-1993-B575b_Page_47
	Thesis-1993-B575b_Page_48
	Thesis-1993-B575b_Page_49
	Thesis-1993-B575b_Page_50
	Thesis-1993-B575b_Page_51
	Thesis-1993-B575b_Page_52
	Thesis-1993-B575b_Page_53
	Thesis-1993-B575b_Page_54
	Thesis-1993-B575b_Page_55
	Thesis-1993-B575b_Page_56
	Thesis-1993-B575b_Page_57
	Thesis-1993-B575b_Page_58
	Thesis-1993-B575b_Page_59

