
BUILDING AN EXPERT DATABASE SYSTEM 

IN C USING CLIPS AND PARADOX 

BY 

DIPTI R. BHARGAVA 

Bachelor of Science 

Nagpur University 

Nagpur, India 

1986 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma state University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
July, 1993 



OKLc\HOlVfA STATE UJ\,TfVERSITY 

BUILDING AN EXPERT DAT~BASE SYSTEM 

IN C USING CLIPS AND PARADOX 

Thesis Approved: 

(l Thesis Advisor ;) 

_/;) . z ' !vk~L----~ 

Dean~f the Graduate College 

ii 



ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to my 

parents, to whom I dedicate this thesis, for having given me 

the opportunity to pursue higher studies in the us. Their 

love and support enabled me to accomplish this mission. 

Thanks also to my brothers, sisters and the rest of my 

family for their great love and moral support. 

Special thanks to my dear friend Ravi without whose 

constant nagging this thesis would never have been 

completed. Gratitude is due to my friends Shashi, Anu, 

Ganesh Sundaram, Mr. Larry Watkins of UCC, Elaine Burges and 

Regina Henry of ISS. 

My special thanks to my manager Maryanne Deaton at 

United Airlines for being so considerate and understanding 

during this effort. I also extend my thanks to my colleagues 

for their encouragement. 

My thanks to Dr. M. Samadzadeh for his valuable 

suggestions during this rather difficult process. 

Last but not least my thanks to my husband for being on 

my side. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION . 1 

Statement of the Problem. • . . . . . . . . 3 
Proposed Thesis . . . . . . . . . . 4 

II. LITERATURE REVIEW .••.. 5 

III. 

IV. 

Expert Systems. . ..... 
Expert System Facilities. • • • . . .. 
Analysis of Knowledge . . . . . . . . . 
Characteristics of an Expert system . • 
Database Management System. . . . . 
Architecture of a DBMS. . . • • • . . . 
Types of Databases ..•....•... 

Hierarchic DBMS. • . . . . . . . . . . 
Network DBMS . . . • . . . . • 
Relational DBMS ........... . 
Intelligent Database Systems • 
Main Memory Databases. 

Expert Database System. • • . . . • . . . • 

SYSTEM DESIGN AND IMPLEMENTATION . . 

Introduction to Paradox Engine. . 
CLIPS • . . . . . . . . . . . . 
Organization of Data and Knowledge. 
Interaction Between the Application, •..• 

CLIPS and Paradox . . • • . . . . 
Query Interface . . . . . . . . . . • • 
Guidelines in Constructing Query ... . 
Parsing of Queries ............ . 

SUMMARY AND CONCLUSIONS .. 

5 
7 
9 

10 
10 
12 
13 
13 
13 
13 
15 
16 
17 

19 

19 
20 
22 

26 
28 
28 
29 

30 

Adaptability to a New Knowledge Domain. 31 
Limitations of the Current System . 32 
Future Work . . . . . . . . . . 33 

BIBLIOGRAPHY ..... . 35 

iv 



Chapter 

APPENDIXES. 

APPENDIX A - LIST OF TABLES. 

APPENDIX B - LIST OF FIGURES 

v 

Page 

38 

39 

45 



Table 

1. 

2. 

3o 

4. 

5. 

6. 

7. 

8. 

9. 

LIST OF TABLES 

Fields of Flights.db • 

Fields of Acbasic.db . . . 0 . 0 0 . 0 0 

Fields of Acengine.db. . . . . . . . 0 . 
Fields of Acdimen.db . 0 0 . 0 0 

Flight Data Stored in Flights.db 0 . . . 
List of Noise Words used by the Query Parser 

Aircraft Engine Data Stored in Acengine.db . 
Attribute Values Stored in Acdimen.db. . . 0 

Basic Aircraft Data Stored in Acbasicodb 0 0 

vi 

Page 

40 

40 

. . 41 

. . 41 

42 

42 

43 

. . 44 

. . 45 



LIST OF FIGURES 

Figure Page 

~- Logical Components of a Knowledge-Based. . 
System . . • • . lit • • • • • • • • 47 

2. Basic Concept of an Expert System. . 48 

3. Logical Architecture of a DBMS • . . 48 

4. Flowchart Depicting Overall Algorithm. 49 

5. Flowchart of Query Processing ..... 50 

vii 



CHAPTER I: 

INTRODUCTION 

The term 'expert database system' has been used to 

represent the confluence of concepts, tools and techniques 

from a number of areas including artificial intelligence, 

database management system, logic programming and 

information retrieval. 

Computerized databases are essential and inseparable 

components of the vast majority of contemporary information 

systems. Many such systems utilize general-purpose tools, 

called database-management systems (DBMS}, to provide an 

efficient and uniform access to, and control of, consistent 

information across single-user or multi-user 

environments[18]. A database management system is a generic 

tool in the sense that it is intended to support different 

kinds of databases, for a variety of application 

environments[18]. 

The functional capabilities of a database management 

system include: 

1. support the independent existence of a database, 

apart from the application programs and systems 

that manipulate it[25]; 
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2. provide a conceptual/logical level of data 

abstraction[34); 

3. support the query and modification of 

databases[26]; 
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4. accommodate the evolvability of ,both the 

conceptual structure and the internal organization 

of a database in response to changing usage and 

performance requirements[' 10] ; 

5. control a database in terms of semantic integrity, 

security, concurrence, and recovery[34]. 

The evolution of the database management system is in a 

sense analogous to the development of abstract data types in 

high-level programming languages: the goal is to provide 

general-purpose mechanisms that support a higher level of 

abstraction for application designers, implementors, and 

users[33]. Given a traditional database as a platform to 

store, organize, control, and access a database, the 

database designer should focus on creating application 

software to act as an interface between the user and the 

database management system[28]. 

In the recent past, database-intensive application 

areas have emerged other than those for which traditional 

DBMS facilities were intended. Such areas include computer­

aided design[JO], information and document retrieval 

systems[25], legal and environmental systems(?] etc. In 

order to help end users express their data manipulation 

requirements, database management systems provide a 
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user-friendly interface such as SQL ,to end users[32]. These 

modern applications operate on a huge central database, 

shared by many "clients", and require a more "intelligent" 

way of data manipulation[lB]. Apart from the standard 

database operations like insert, delete, update, and viewing 

records, these modern applications rrequire the data 

management system to logically deduce new facts ,from 

existing data, and respond to a wider varieties of queries. 

In other words, these systems not only store values, but 

11 chunks 11 of knowledge about the relationships between the 

various facets of data[B]. Adding logic capabilities to a 

database system provides an efficient way of dealing with 

facts and general rules. General rules used to represent 

knowledge is the application's domain at a high level of 

abstraction from a powerful modelling tool, as opposed to 

data representing specific facts that are handled by 

conventional database systems. Rules are easier to input, 

occupy less space, and are easier to change[22]. In an 

effort to meet modern database requirements, research is 

now focussing on these "intelligent" database systems termed 

"Expert Database Systems". 

statement of the Problem 

As mentioned before, an expert database system consists 

of a combination of the storage/retrieval capabilities of a 

database management system and the inferring capabilities of 

an expert system. This could be achieved by: 



1. incorporating inferring capabilities into a DBMS; 

2. embedding the data into the knowledge base of an 

expert system; 

3. developing an interface between the expert system 

and the database management system. 

All the above methods have their advantages and 

disadvantages. The problem then can be stated as follows: 

Is there a way to develop an integrated expert database 

system based on the combination of the above three 

techniques, using existing tools and systems? 

Proposed Thesis 

4 

This thesis presents a methodology to develop an 

integrated expert database system using CLIPS (a portable 

inference engine with c interface} and PARADOX (a portable 

networked database management system, again using C language 

interface) on a PC based environment. It demonstrates the 

methodology by applying it to a sample aircraft database. 



CHAPTER II 

LITERATURE REVIEW 

Expert Systems 

Expert systems or Knowledge-based systems is a branch 

of artificial intelligence that makes use of specialized 

knowledge to solve problems at the level of a human 

expert[23]. The British Computer Society's Committee of the 

Specialized Group on Expert Systems has produced the 

following definition for an expert system or knowledge-based 

system application: 

'the embodiment within a computer of a knowledge-based 

component from an expert system shell in such a form that 

the machine can offer intelligent advice or take an 

intelligent decision about a processing function'[l4]. 

The Butler Cox Foundation Report number 37 defined an 

expert system as: 

'a computer system containing organized knowledge, both 

factual and heuristic, that concerns some specific area of 

human expertise; and that is able to produce inferences for 

the user'[14]. Professor Edward Feigenbaum of Stanford 

University has defined an expert system as ' .•. an 

intelligent computer program that uses knowledge and 

inference procedures to solve problems that are difficult 

5 
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enough to require significant human expertise for their 

solution'[2]. To do so, it emulates the decision-making 

ability of a human expert. The term emulates means that the 

expert system is intended to act in all respects like a 

human expert[23]. Figure 1, in Appendix B, depicts the 

logical components of an expert system. 

The fundamental component of a expert systems is the 

knowledge-base. The knowledge-base contains the information 

required to emulate expertise, that will include some facts 

or data, and rules which express how the facts can be 

evaluated. 

The inference engine operates on the knowledge-base and 

applies laws of logical inference or reasoning to control 

the flow of making deductions and drawing conclusions. That 

is, it causes the facts to be instantiated while attempting 

to reach goals and conclusions. All of the facts may not be 

instantiated; only those which are required as part of the 

inferencing will have values. A number of control 

strategies such as forward chaining and backward chaining 

may be associated with the inference engine[16]. 

The working store, or memory, is used by an expert 

system to store transient and dynamic information, such as 

data values, which facts have been instantiated, which rules 

have been fired, etc[20]. 

The user interface provides the link with the outside 

world. The knowledge acquisition subsystem is used by the 

knowledge-based system application builder to add facts and 



process details to the knowledge-base. Some trace and 

debugging aids are usually provided to help validate and 

test the system. 
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The basic concept of an expert system is illustrated in 

Appendix B, figure 2. 

The user supplies facts or other information to an 

expert system and receives expert advice in response. 

Internally, the expert system consists of two main 

components. The knowledge-base contains the knowledge with 

which the inference engine draws conclusions. These 

conclusions are the expert system's responses to the user's 

queries. 

Expert System Facilities 

The following are the facilities provided by an expert 

system: 

1. Rules: provide the most common format for 

specification of knowledge and knowledge 

processing in a knowledge-base of an expert system 

application. Rules are declarative, stating what 

is to be done and not how it is to be done. 

2. Inference Mechanisms: The inference engine 

provided with each expert system tool is complex 

and employs a number of strategies for managing 

the use of knowledge-base components at run-time. 

The strategies determine the order in which the 

processing will be carried out. That is how the 



rules will be invoked and if there is a conflict, 

which rule will be fired and when it will be 

fired. 

Forward chaining, or data driven inferencing 

occurs when an attempt is made to reach a goal or 

conclusion using facts which have already been 

evaluated. All facts which can be derived, 

directly or indirectly, from some known facts are 

evaluated in an attempt to derive a goal value. 

This mechanism is commonly used when there is a 

very large number of possible solutions, given a 

large combination of possible fact values. 

Backward chaining or goal driven inferencing 

occurs when an attempt is made to evaluate a 

conclusion or goal by resolving or evaluating a 

limited number of facts relevant to a line of 

reasoning. Backward chaining is commonly used 

when values of some key facts eliminate the need 

to evaluate a number of other facts, and when 

there are fewer possible goal values. 

3. Demons, or event driven actions: are available to 

be executed at any time and can interrupt 

processing. A condition associated with each 

demon determine when it should be executed by the 

inference engine. 

4. Hypothetical Reasoning: Some expert system tools 

allow a nurr~er of options to be explored 

8 
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simultaneously in order to arrive quickly at a 

solution. Multiple hypothetical situations can be 

explored and the software maintains a number of 

states. 

5. Backtracking: is a feature of Prolog or Prolog 

systems. Such systems instantiate facts once and 

use this value whenever the fact is referenced, 

unless instructed to find an alternative value for 

a fact, in which case backtracking may be used. 

Backtracking consists of reviewing what has been 

done (in terms of satisfying goals) and attempting 

to re-satisfy the goals. 

Analysis of Knowledge 

There are many components of the knowledge that is the 

source of an expert's ability to perform[5]. They may be 

viewed generally as: 

1. Facts: are statements that relate some element of 

truth regarding the subject domain, for example: A 

Boeing 747 has four engines. 

2. Procedural rules: are well-defined rules that 

describe fundamental sequence of events and 

relations relative to the domain[31]. 

3. Heuristic Rule: are general rules that suggest 

procedures to be followed when procedural rules 

are not available[l2]. The presence of heuristics 

contributes greatly to the power and flexibility 
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of expert systems and tends to distinguish expert 

systems from traditional software(9J. 

Characteristics of an Expert system 

An expert system is usually designed to have the 

following general characteristics: 

1. High Performance: The system must be capable of 

responding at a level of competency equal to or 

better than an expert in the field[21]; 

2. Adequate Response Time: The system must also 

produce solutions in a reasonable time, comparable 

to or better than the time required by an expert 

to reach a decision[l4]; 

3. Good Reliability: The expert system must be 

reliable and not prone to crashes[23]; 

4. Flexibility: Because of the large amount of 

knowledge that an expert system may have, it is 

important to have an efficient mechanism for 

adding, changing, and deleting knowledge[21]. 

Database Management system 

There are numerous definitions of a database, including 

the following given by James Martin; 

"A database is a collection of inter-related data stored 

together with controlled redundancy to serve one or more 

applications in an optimal fashion; the data is stored so 



that it is independent of programs which use that 

data"[1,14]. 
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The data is controlled by a database management system 

which is a proprietary software for handling the storage and 

retrieval of data. One can define a database management 

system as a software tool for developing applications 

requiring access to shared information[14]. A database 

management system provides the following: 

1. data independence. The DBMS separates 

specification of processing from the data. 

Processing works on the logical view of the data 

and the DBMS maps the logical view on to the 

physical representation of the data[6]; 

2. data integrity. Checks on the consistency of the 

data[14]; 

3. data concurrency and consistency. Since the 

database is a shared resource the DBMS allows a 

number of users to access the database 

concurrently. The DBMS can inhibit concurrent 

access to the same data instances by setting locks 

on the data(29]; 

4. recovery. The DBMS logs changes made to the 

database by all users; if a user aborts the 

current transaction then all changes made within 

it are automatically undone by the DBMS. A DBMS 

also provides facilities to backup the 

database(14]; 
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5. access control. The DBMS controls who can access 

what parts of the database and in what mode. 

Access control is important when all data is held 

as one logical unit[l4]; 

6. data maintenance. Facilities to unload and 

reload, reorganize and re-structure data are 

generally supplied with a DBMS[l4]. 

Architecture of a DBMS 

An overview of the architecture of a DBMS is shown in 

Appendix B, figure 3. There are three logical views of the 

data in a database. 

1. Internal View: defines the physical structure of 

the data, specifying where records should be 

placed, clustered, etc., across physical files and 

how they should be physically accessed, such as by 

using an index or a serial search[34]. 

2. Global View: provides a logical view of the 

database, specifying such things as record 

layouts, data item definitions. There is a 

mapping between the internal view and the global 

view[34]. 

3. External View: provides an access control 

mechanism for processing, since only those data 

items which are essential for an application to 

function are included in the definition to be 

used. All the other data items and record types, 
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which are not included in the view, are hidden and 

unavailable to the application(34). 

Users and applications access data through an external 

view using a DBMS specific language, generally termed a data 

manipulation language. Some databases have a language which 

has unique syntax, but most relational databases have 

standardized on the database language SQL. 

Types Of Databases 

This section describes some of the kinds of databases. 

Hierarchic Database. This DBMS has a number of data 

units organized in tree structures, each data unit has one 

and only one owner, but it may have one or more member 

units. IBM's Information Management System/Virtual Storage 

(IMS/VS) is an example of such a DBMS[14]. 

Network DBMS. Network DBMS implements a network view 

of the data. Records can be inter-connected in general 

networks as well as hierarchies, thereby providing a more 

flexible structure[l4]. 

Relational Database. Relational DBMS is perceived to 

hold data in a series of two dimensional rows (record 

occurrences) and columns (attributes) [3]. Relationships 

between rows in different tables are represented by the 

storage of attributes from other tables within a table. Now 

tables can be formed by selecting rows or columns from 



existing tables or by joining tables[3]. As a canonical 

example of a relational database, consider the database, 

named COMPANY, of an enterprise where information is kept 

about employees and the departments in which they work. 

Such a database may consist of the following relations: 

EMP(eno, ename, age, salary, edna); 

DEPT(dno, dname, floor, mgrno) 
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EMP and DEPT are two relations, with five and four 

attributes respectively, whose intended meaning is rather 

straight forward from their names. In this database, the 

EMP relation will contain one tuple for each employee and 

the DEPT relation will contain one tuple for each department 

of the enterprise. Queries on this database may involve one 

relation, where operations belong to {=, <>, <=, >=} 

for example salary > 30K or may combine two relations for 

example edna = dna. 

Thus the relational database theory incorporates 

1. a model of data; 

2. an algebra for manipulating that data: 

3. a calculus for expressing requirements of 1 and 2. 

Each relation can be supported by at most one primary 

index and an arbitrary number of secondary indices, which 

are built based on the values of the relation tuples for 

some attribute(s) [36]. Such a variety of indices give the 

system the ability to accelerate the processing of queries. 

oracle and Ingres are two of the best known relational 

database products. 



Intelligent Database Systems. There are essentially 

three ways to provide intelligent database system 

capabilities. These are: 

1. add logic/inference capability to a DBMS; 

2. couple together a database system with a logic­

programming system; 
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3. add DBMS facilities to a logic-programming system. 

Research work has tackled all three possibilities. 

Option 1 involves the addition of an inference engine and 

additional data constructs to a DBMS. 

For second option consider the Prolog system. A Prolog 

system uses an existing DBMS a backend server. The 

methodology is to modify the processing of a Prolog program 

so that it collects together, unevaluated subqueries that 

access data stored in the relational DBMS. The subqueries 

are then translated into the query language of the DBMS and 

sent to it for processing. 

Option 3 would require significant amounts of 

development effort since the natural data constructs 

associated with logic programming do not lend themselves to 

efficient handling of simultaneous multi-user access. 

Main Memory Databases. In a main memory database 

system data resides permanently in main physical memory in a 

conventional database system it is disk resident[ll]. In a 

conventional database system, disk data may be cached into 

memory for access; in a main memory database system the 
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memory resident data may have a backup copy on disk. So in 

both cases, a given object can have copies both in memory 

and on disk. The key difference is that in main memory 

database system the primary copy lives permanently in 

memory( 11]. 

As semiconductor memory becomes cheaper and chip 

densities increase, it becomes feasible to store larger and 

larger databases in memory, making main memory database 

systems a reality. Because data can be accessed directly in 

memory, main memory database systems can provide better 

response times and transaction throughputs, as compared to 

conventional database systems[ll]. 

A concept used in rapid handling of large volumes of 

textual data was proposed by Marguerite F. called KWIC and 

KWOC by the author. This method is based on indexing of 

essential keywords in the data instead of concepts[17]. A 

KWIC (keywords in context) index uses essential keywords 

found in the current context. A KWOC (keywords out of 

context) index lists essential keywords used out of the 

current context and is designed to complement the KWIC 

index[15]. 

Expert Database System 

An expert database system(EDBS) can be defined as 

a system for developing applications requiring 

knowledge-directed processing of shared information[l3]. In 

Freundlich's view an expert database system is a database 
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that stores not only values but "chunks of knowledge 11 [B]. 

Zari describes traditional database management systems as 

passive, that is queries on transaction are executed only 

when explicitly requested. On the other hand, he describes 

a database augmented by transaction-triggered processing 

capabilities as an "active database, and he classifies 

expert database system into the category of active 

databases[34]. 

An expert database system architecture comprises of two 

major components. It involves a data-management system, and 

an expert system[9,27]. The data concerning the application 

resides in a database, the storage and retrieval of which is 

handled by the database management system. The expert 

system is used to perform intelligent processing of this 

data. 

An expert database system supports applications that 

require knowledge directed processing of shared information. 

This definition allows us to envision a wide spectrum of 

architectures for such systems. They may be loosely coupled 

as for e.g, an expert system which retrieves data from a 

database. They may be tightly coupled in that either the 

expert system or the database system or both "understand" 

how the other functions and can take advantage of their 

knowledge to improve the performance of the expert database 

system[l3]. In its most advanced form a tightly coupled 

system may embody, in an integrated fashion, characteristics 

found in both the expert systems and the database management 
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systems. Loose coupling means that both the expert system 

and the database management system will maintain their own 

functionality and will communicate through a well-defined 

interface. The database may be viewed as a data server for 

the expert system. For example, an expert system may send 

SQL queries to the database system to obtain needed data. 

Conversely, the database system might send messages to the 

expert system, placing data onto its blackboard or working 

memory. In addition, the database management system could 

pose questions to the expert system in much the same way a 

user might consult an expert system[l3]. 

Generis is an integrated system encompassing database, 

expert system technology. This is a commercially available 

product. Generis has evolved from the FACT System which is 

claimed to be the world's first Intelligent Knowledgebase 

Management System, that uses the Generic Associative 

Technique to 'combine the power of relational database 

technology with user-defined inference and action rules 

which are held in the same database'. Data can be viewed in 

tables or in frames based on a subject. The system links 

all tables in an application into a network. 



CHAPTER III 

SYSTEM DESXGN AND XMPLEMENTATION 

In this chapter, the design and implementation of a 

composite Expert Database System is presented. As mentioned 

before, the basic tools used are as follows: 

1. Paradox relational database management system: 

used as a repository for context independent data; 

2. Paradox ENGINE: used as a C language interface to 

the Paradox database management system; 

3. CLIPS {ver. 5.1): used as the forward chaining 

inference engine to deduce context-based facts 

from rules defined in the knowledge base; 

4. C programming language. 

The methodology is demonstrated by applying it to a 

sample aircraft database. In the present work, twelve 

flights and fourteen aircraft are considered. This is 

solely with the aim of demonstrating the methodology and is 

not to be considered a limitation on the size of databases 

the methodology can handle. 

Introduction to Paradox Engine 

Powerful database applications have historically been 

difficult and slow to learn and use[19]. Paradox provides a 

19 
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contradiction to this by proving to be powerful and complex 

yet simple and easy to learn. Paradox(ver. 3.5) is a full 

featured relational database management system, made 

commercially available by Borland International. It 

operates both in a single-user stand alone system and in a 

multi-user networked environment. 

Paradox 3.5 also has the capability to provide access 

to data stored on Structured Query Language(SQL) database 

servers through the SQL link. This could be an extremely 

useful feature for the development of Expert Database 

Syst.ems. 

Paradox Engine is a comprehensive library of C 

functions and Pascal procedures and functions that can be 

invoked by application programs written in c and Pascal. 

The Paradox Engine also allows the manipulation of data 

residing in Paradox tables in both single-user and multi­

user environments. 

For more information on this refer to the Paradox 

manuals[l9]. 

CLIPS 

CLIPS is an acronym for C Language Integrated 

Production system. CLIPS is a forward chaining rule based 

language that has inferencing and representation 

capabilities. CLIPS was designed at NASA/Johnson Space 

Center. It was designed to be highly portable and easily 

integrable with external systems at a relatively low cost. 
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Because of its high portability CLIPS has been 

installed on a wide variety of computer systems ranging from 

PC's to CRAY supercomputers(23]. 

CLIPS comprises of three basic elements: 

1. fact-list: global memory for asserted facts; 

2. knowledge-base: rules governing the facts; 

3. inference engine: controls how knowledge is 

manipulated and facts are inferred. 

CLIPS is based on a very fast pattern-matching algorithm 

known as the RETE algorithm(24]. The basic premise of this 

algorithm is outlined below. 

The inference engine typically makes inferences by 

deciding which rules are satisfied by facts in the current 

context, prioritizes the satisfied rules, and executes the 

rule with the highest priority. A rule is said to be 

satisfied when the pattern on the LHS of a rule match with 

existing facts. The other satisfied rules are placed in a 

list called the agenda. 

As each of the rules on the agenda are executed, new 

facts may be created andjor old facts deleted. This in turn 

might lead to some rules which are not on the agenda to be 

satisfied and some rules on the agenda to be unsatisfied. 

The list of satisfied rules must therefore be dynamically 

maintained and updated in an efficient manner. 

If a rule is satisfied the entire process of matching 

facts and rules is repeated. This method in which the rules 



dictate the search process for facts, becomes very 

inefficient as the number of rules increases. 
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The Rete's algorithm is based on the paradigm of facts 

directing the search process for rules that are satisfied. 

Typically very few facts in an expert system change in one 

execution cycle, which in turn implies that only a small 

subset of rules would be affected by the changes in facts. 

This property is known as Temporal Redundancy[24]. The 

Rete's algorithm exploits this property by saving the state 

of the matching process from cycle to cycle and recomputing 

· the changes in this state only for the changes that occur in 

the list of facts. 

organization of Data and Knowledge 

Context-independent data about aircraft configuration 

and flights are stored in Paradox database files in the form 

of tables. The rules which govern this data and help in 

inferring context-dependent facts are stored in a knowledge 

base file. 

Two different classes of data are stored in the Paradox 

files as four tables. The first class stored in 

"Flights.db 11 , consists of the fields shown in table 1, 

Appendix A. It contains information about different Flight 

Numbers and the class of flight. Allowable classes are 'A', 

'B', and 'C'. If a flight's class is 'A', then aircraft 

which can carry more than 350 passengers and cargo weighing 

more than 100,000 lbs can execute these flights. Aircraft 
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which accommodate more than 150 and less than orequal to 

350 passengers, while carrying cargo loads between 40,000 

lbs and 100,000 lbs can execute flights of Class 'B'. All 

other aircraft can execute flights of Class 'C'. It is 

worth noting that Flight numbers are unique and they form 

the primary search key for this table. Also, this table of 

records does not store any references to aircraft. 

The other class of data pertains to different types of 

Aircraft and their configuration parameters. These 

parameters ( totally 22 in number are distributed into 

three tables, namely 11 Acbasic.db", "AcEngine.db 11 and 

11 Acdimen.db "· As the names of these tables suggest, basic 

parameters like Passenger and Crew capacities, maximum 

flying altitudes etc., are stored in" Acbasic.db ", engine 

type, number of engines, etc., are stored in 11 Acdimen.db 11 

The field names and types for each of these tables are 

presented in Appendix A, tables 2 through 4. Note that in 

all the three tables, the field 11 Aircraft-type " is present 

as the Primary key. This is to facilitate the relational 

linkage of the three tables. 

The actual data stored in each of these tables is 

depicted in Appendix A, tables 5, 7, 8 and 9. 

Functions that interact with the Paradox engine are 

implemented in a systematic way as outlined below: 

1. The Paradox engine is started and initialized; 

2. The desired table is opened; 

3. A record buffer is dynamically allocated; 
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4. Fields of the record needing access are defined; 

5. Necessary operation(s) are carried'out; 

6. The record buffer is freed; 

7. The opened table is closed; 

8. The Paradox Engine is shut down. 

The abstract rules which govern the inferencing 

capabilities of the Expert Database system are stored in a 

knowledge base file. CLIPS requires that these rules (and 

certain "facts") be stored in file with a 11 .CLP" extension. 

Facts in the context of knowledge base of a regular expert 

system are 11 chunks" of information. However, those facts 

that are context-free are stored in the database of an EDBS 

as far as possible. Facts that are dynamic in nature and 

are added or removed in a specific context (agenda) are used 

in a knowledge Base of an EDBS. A fact in CLIPS consists of 

one or more fields enclosed in matching left and right 

parentheses. Good programming style dictates that facts be 

represented as (<relation name> <valuel> ...••• <valueN>) 

which explicitly declare the relationships between various 

values. 

An example follows: 

(is-class-of-aircraft B) 

Rules in any EDBS are necessary to infer new facts from 

the data in the database. CLIPS requires that these rules 

follow the following syntax : 

(defrule <rule name> [<optional comment>] 

<<patterns>> ; Left - Hand Side (LHS) of the rule 
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=> THEN arrow 

<<action>> ; Right - Hand Side (RHS) of the rule 

The group of all facts known to CLIPS is stored as a 

list known as a fact-list. New facts can be added or 

removed from the fact-list using the CLIPS function assert 

or retract, on the RHS of the rule, respectively. 

Variables within CLIPS rules are always written in the 

syntax of a question mark followed by a symbolic field name. 

The 'bind' function can be used to bind the value of a 

variable to that of an expression. 

Comments in a rule begin with a semicolon and can 

continue until the end of the line. 

An example of a simple rule follows: 

(defrule calc_cargo_volumes "Calculate cargo Volumes" 

IF forward and rear cargo volumes of an aircraft is 
known 

(vol_of_cargo_compts ?aircraft ?forward vol ?rear vol) 

=> ;THEN 
Assert total cargo volume as sum of forward and rear 

: cargo volumes 

(bind ?total val (+ ?forward val ?rear_vol)) 

(assert (total_cargo_volume ?aircraft ?total_vol))) 

In the present work, CLIPS is embedded within the 

application. Calls to CLIPS are made like any other 

function call. Embedding CLIPS involves the following 

steps. 



1. The application provides a main program, and 

includes 11 stdio.h11 and 11clips.h" in the main 

program file; 
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2. CLIPS is initialized by the main function prior to 

loading rules; 

3. Application defined functions which are to be 

called by CLIPS, are also made known to CLIPS in 

the main program file; 

4. The header files are customized to the 

applications operating environment(including 

memory usage, specialized functions, etc.); 

5. The applications code is then compiled and linked 

with all CLIPS files except the object version of 

the CLIPS main program file. 

Interaction Between the Application, 

CLIPS and Paradox 

The flowchart depicting the overall algorithm of the 

application is presented in Appendix B, figure 4. Since 

CLIPS is used in an embedded form, CLIPS is initialized as 

the first step in the main function. The rules in the 

knowledge base file are then loaded. The main menu is 

displayed. The main menu entries are classified into two 

categories: 

1. Entries to view, insert or delete records in the 

conventional database; 
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2. Entry to allow users to pose queries to the 

inference engine and get solution, if any exist. 

As already mentioned, entries in category 1 above 

bypass CLIPS and interact directly with the Paradox Engine 

functions and the Paradox data files. Deletion of a record 

in the database for example, would involve determining the 

primary key identifying the record and calling the 

appropriate function to delete the record. 

The query entries in category 2 interact with CLIPS 

which, if required, interact with the application functions 

that deal with the Paradox engine and the Paradox database 

files. The following exampl e outlines the interactions 

involved in a typical query solving process. 

Assume that the user poses the query "Compare the 

engine weights of Boeing 747 and DClO". Processing proceeds 

as follows: 

1. Based on the query, facts are asserted in CLIPS. 

In this example, the fact "comp-attr engine-

weight DClO BOEING-747" is asserted in the CLIPS 

knowledge base; 

2. CLIPS inference engine is then invoked; 

3. Depending on the rules in the knowledge base and 

currently available facts, rule(s) are fired. In 

this example, one of the rules fired would have 

the following pseudo-code: 

(if(comp-attr ?attr ?al 
get-value of attr of 
get-value of attr of 

?a2} is defined then 
?al as ?vall 
?a2 as ?val2 
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if ?vall > ?val2 then 
print ?al is more than ?a2 

else 
print ?a2 is more than ?al 

) : 

4. If Paradox functions need to be called by CLIPS 

during the inferencing process, they are invoked. 

In this example, the firing of the above rule 

involves the invocation of Paradox function to 

determine the engine weights of DC10 and Boeing 

747, this is done through the use of application's 

function 'get-value': 

5. The solutions, if any, are printed. In our 

example the reply, "BOEING 747 has more engine 

weight than DClO" would be printed to the screen. 

Query Interface 

The ease with which a user can query an Expert Database 

System helps determine its widespread usability. Ideally, 

users would prefer to pose queries in a natural language 

like English without having to phrase their queries in a 

specified manner. Flowchart for query parsing is as shown 

in Appendix B, figure 5. 

The query parsing mechanism implemented for the present 

system allows users to pose queries in a restricted form of 

the English language. 
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Guidelines in constructing Query 

The user poses a query to the EDBS in plain English in 

the context of aircraft based on the following guidelines: 

1. Queries can be in upper or lower case; 

2. Queries should not contain any characters other 

than alpha-numeric characters; 

Parsinq Of Queries 

When a query is specified by the user, the keyword in 

the query string is determined and removed. The noise words 

in the query string are then eliminated. The noise words 

were chosen such that parsing of the query is simplified. 

These words can be typically categorized as words not adding 

any information to the query understanding. Table 6, in 

Appendix A, lists the noise words in the present system. 

This query is then parsed by a Finite State Recognizer. 

As the query is parsed, a query structure identifying the 

relevant query construct is built. 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

An Expert Database System(EDBS) for a sample aircraft 

database was successfully developed and tested, using the 

methodology described in chapter III. The system was 

developed using the C programming language in a single-user 

PC environment. Context independent data about aircraft was 

stored in Paradox database files. The Paradox engine was 

used to develop the interface between the Paradox database 

files and the system. CLIPS (ver 5.0) was used for its 

efficient inference engine. Rules constituting the EDBS's 

knowledge base were stored in a CLIPS knowledge base file. 

The main features of the methodology adopted in 

developing the above system are: 

1. the use of a widely-used conventional programming 

language like C; 

2. the use of a highly versatile relational database 

management system like Paradox, with conventional 

programming language interface to the database 

files (like Paradox engine)~ 

3. use of an efficient inference engine like CLIPS; 

4. use of an efficient query-parsing mechanism 

(designed to interpret queries posed in a natural 

30 



language such as English) independent of the 

relational database system or the inference 

engine; 

5. enmeshing the inference engine with the database 

management system. 

The EDBS has a menu-driven user-interface. It allows 

the user to insert, delete, or view records in the 

relational database files. It also allows users to pose 
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, queries in English. An ambiguous query causes the system to 

prompt the user for clarification as far as possible. 

Adaptability to a New Knowledge Domain 

The methodology used in developing the present system 

could easily be used in developing an Expert Database system 

for any knowledge domain. However to make the system more 

efficient, some code segments are domain-specific. Major 

modification of this system to operate in a d i fferent 

knowledge domain would involve the following changes: 

1. creating the Paradox database files and storing 

context-independent data about the domain in these 

files~ 

2. Modifying the funct i ons, written using Paradox 

engine's routines which assist in interfacing with 

the Paradox database files. This is necessary 

since the functions take into account the type of 

data stored in the database files, like int, char 

strings, etc; 



3. Developing the CLIPS rule base for the desired 

knowledge domain; 
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4. Changing the CLIPS-Paradox interface functions to 

be useful with the new interface; 

5. Modifying the query parsing structure and 

functions to incorporate the parsing of all 

possible queries in the new domain. This includes 

modification of the list of noise words and the 

list of synonyms. 

Limitations of the current system 

Following are the limitations of the current system: 

1. The current system does not deal with a very large 

database. In very large databases, efficient 

access of secondary storage becomes a crucial 

factor. This issue has not been dealt within the 

current system; 

2. The current system also uses a small 

representative knowledge base. As the number and 

complexity of rules in the CLIPS knowledge base 

increases the memory requirements for rule 

processing would also increase. While the current 

hardware technology has made memory economically 

cheap, memory availability would still be a factor 

in very large systems. Proper ordering of the 

patterns of rules could help restrict the memory 

crunch in such systems. These techniques have not 



been consciously used in developing the current 

system. 
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3. This system is implemented in a single-user PC 

environment. Typically, large databases are 

accessed across a network of machines by multiple 

user. Issues such as data integrity, updates, 

etc. would then have to be considered. While 

Paradox and CLIPS are designed for a single-user 

and a multi-user environment this system is 

limited to operate in a single user environment; 

4. The current system is limited by the 640KB memory 

barrier encountered in personal computer. 

FUture Work 

The fo l lowing are some of the areas where future work 

on the current system is suggested: 

1. Linking the SQL database server to the current 

system would greatly enhance the usability of the 

system; 

2. Expanding the current system to work in a 

networked PC environment andjor Unix workstations; 

3. Expanding the knowledge and database of the 

current system to aid in solving a variety of 

airline industry related problems; 

4. overcoming the limitation of 640KB real memory 

availability in PC's. This could be done by using 



tools to map the executable to the protected 

memory area. 
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TABLE I 

FIELDS OF FLIGHTS.DB 

FIELD FIELD FIELD LENGTH PRIMARY 
NUMBER NAME TYPE KEY 

1 FLight No Nuneri c N/A 

2 Class Alphabet j 

TABLE II 

FIELDS OF ACBASIC.DB 

FIELD FIELD NAME FIELD LENGTH PRIMARY 
NUMBER TYPE KEY 

1 Aircraft type Alphabet 28 * 
2 No crew Nuneric N/A 

3 No of bag COII"pt Nuneric N/A 

4 No passengers Nuneric N/A 

5 Max takeoff ld Nuneric N/A 

6 Max cargo ld Nuneric N/A 

7 Max altd fly Nuneric N/A 

8 Max_cspeed Nuneric N/A 
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TABLE Ill 

FIELDS OF ACENGINE.DB 

FIELD FIELD NAME FIELD TYPE LENGTH PRIMARY 
NUMBER KEY 

1 Aircraft type Alphabet 28 * 
2 Engine type Alphabet 31 

3 No of engines N~.m~eri c N/A 

4 Wt_engine N~.m~eri c N/A 

TABLE IV 

FIELDS OF ACDIMEN.DB 

FIELD FIELD NAME FIELD TYPE LENGTH PRIMARY 
NUMBER KEY 

1 Aircraft type Alphabet 28 * 
2 Cabin Length N~.m~eri c N\A 

3 Cabin width N~.m~er ic N\A 

4 Cabin height N~.m~er i c N\A 

5 Acraft length N~.m~er i c N\A 

6 \.ling Span N~.m~eric N\A 

7 Cargo_ Vol N\.llleric N\A 



FLIGHTS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE V 

FLIGHT DATA STORED IN 
FLIGHTS.DB 

FLIGHT CLASS 
NUMBER 

112 c 

173 A 

179 A 

456 A 

790 B 

889 A 

1132 B 

1190 c 

1234 A 

8812 B 

TABLE VI 

LIST OF NOISE ~ORDS USED BY 
THE QUERY PARSER 

A AN AIRCRAFT AIRCRAFTS ALL 
AND AIRPLANES APPLICABLE 
CRUISING COMPARTMENTS DURING FOR 
FLYING HAS HAVE HAVING EACH IS 
KNO~ OF OFF NUMBER OR TO THAN 
SIZE SPAN PLANES ~ITH THE 
RESPECT VALUE 
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AIRCRAFT 
TYPE 

AIRBUS 

BOEING 707 

BOEING 717 

BOEING 727 

BOEING 737 

BOEING 747 

BOEING 757 

BOEING 767 

DC 10 

DC 7 

DC 8 

DC 9 

LOCKHEED JETSTAR 

LOCKHEED TRISTAR 

TABLE VI I 

AIRCRAFT ENGINE DATA STORED 
IN ACENGINE.OB 

ENGINE TYPE 

GENERAL ELECTRIC CF6-50C 

PRATT & YHITNEY JT3D-3 

PRATT & IJHITNEY JT3D-7 

PRATT & YHITNEY JTB0-7 

PRATT & YHITNEY JTBD-7 

PRATT & YHITNEY JT9D-3 

PRATT & IJHITNEY JTB0-9 

PRATT & YHITNEY JTB0-9 

GENERAL ELECTRIC 
CF6·50A 

PRATT & YHITNEY 
JT3D-1 

PRATT & YH ITNEY 
JT3D-7 

PRATT & YHITNEY 
JT80·9 

PRATT & YHITNEY 
JT12A-8 

ROLLS ROYCE 
RB21 1-228 ' 
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# OF \.IT. OF 
ENGINES ENGINE 

2 51000 

4 18000 

4 19000 

3 14000 

2 14000 

4 43500 

3 14500 

2 14500 

3 49000 

4 17000 

4 19000 

2 14500 

4 33000 

3 38000 



TABLE VIII 

ATTRIBUTE VALUES STORED IN ACDIHEN.DB 

AIRCRAFT TYPE CABIN CABIN CABIN 
LENGTH IJIDTH HEIGHT 

AIRBUS 175.09 28.06 17.07 

BOEING 707 104.10 11. 08 7.07 

BOEING 717 111.06 11.08 7.07 

BOEING 727 72.08 11.08 7.02 

BOEING T57 62.02 11.06 7.02 

BOEING 747 185.00 20.00 11.04 

BOEING 757 92.08 11 . 08 6.11 

BOEING 767 68.06 11.06 7.02 

DC 10 150.00 18. 00 10.90 

DC 7 102.01 11.06 7.03 

DC 8 100.00 10.00 6.09 

DC 9 100.00 10.00 6.09 

LOCKHEED JETSTAR 128.02 6.02 6.00 

LOCKHEED TRISTAR 135 .11 18. 11 7.11 
----

AIRCRAFT lo/ING 
LENGTH SPAN 

147.12 147.12 

145.01 130.10 

152.11 145.09 

133.02 108.01 

94.00 93.00 

231.04 195.08 

153.00 108.00 

100.00 93.00 

181.04 161.04 

150.06 142.05 

187.05 148.05 

125.07 93.05 

60.05 54.05 

178.08 155.04 

CARGO 
VOLUME 

4869 

1665 

1775 

900 

650 

5190 

1485 

875 

6000 

1390 

2500 

1019 

2000 

2528 

~ 
~ 



AIRCRAFT CREII I OF BAGGAGE 
TYPE SIZE ca4PARTHENTS 

AIRBUS 5 3 

BOEING 707 4 2 

BOEING 717 5 2 

BOEING 727 3 2 

BOEING 737 2 2 

BOEING 747 3 2 

BOEING 157 3 2 

BOEING 767 2 2 

DC 10 5 3 

DC 7 5 1 

DC 8 5 1 

DC 9 2 1 

LOCKHEED JETSTAR 2 t 

LOCKHEED TRISTAR 5 1 

TABLE IX 

BASIC AIRCRAFT DATA STORED 
IN ACBASIC.DB 

I OF MAX. TAKEOFF 
PASSENGERS LOAD 

331 302000 

181 257000 

219 333600 

131 160000 

115 105000 

500 mooo 
189 190500 

130 115500 

380 555000 

179 325000 

259 350000 

125 114000 

10 42000 

. 200 430000 

MAX. CARGO Al TITUOE 
LOAD 

70020 35000 

46849 42000 

53900 39000 

34500 36500 

32100 360bo 

164745 45000 

41000 33500 

35700 34000 

104913 32700 

34360 36500 

6ms 35100 

34195 34000 

2926 37400 

86183 42000 

CRUISING 
SPEED 

582 

618 

605 

607 

553 

600 

599 

576 

570 

580 

600 

561 

570 

550 

~ 
U1 
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Knowledge 
Acquisition 
Subsystem 

User interface 

(Knowledge Bast) 

Working Store 

Knowledge-based system tool 

Debugging 
aids 

Qnterence Engine) 

Interface with other 
systems 

Figure 1. Logical Components of a Knowledge-Based 
system 
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I Knowledge-Base I 
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' User / 
/ 
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I Inference Engine I 
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Figure 2. Basic Concept of an Expert System 
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Figure 3. Logical Architecture of a DBMS 
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PARSE QUERY &·ALL UP 
QUERY .STRUCTURE 

ASSERT APPROPRIATE FACTS DEPENDING 
ON QUERY lYPE TO ARE APPROPRIATE RULES 

CUPS INFERENCE ENGINE TAKES OVER­
FROM ASSERTED FACTS TRIES TO AND 
SOLUTION INTERACTING. IF NECESSARY. 

Willi PARADOX DATABASE 

N 

Figure 5. Flowchart of Query 
Processing 
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