
THE USE OF BASIC MICROBIAL KINETICS FOR THE 

DESIGN OF A TRICKLING FILTER WASTE 

TREATMENT PROCESS 

By 

DANIEL BRYAN HAPKE 
II 

Bachelor of Science 

Oklahoma State University 

Stillwater, Oklahoma 

1974 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

December, 1976 



THE USE OF BASIC MICROBIAL KINETICS FOR THE 

DESIGN OF A TRICKLING FILTER WASTE 

TREATMENT PROCESS 

Thesis Approved: 

96 77 18 
ii 



ACKNOWLEDGEMENTS 

Foremost, I wish to thank Dr. Don F. Kincannon, my principal 

adviser, for the guidance, understanaing, and endless patience he 

showed me during the course of my study. 

I also wish to thank Dr. Anthony F. Gaudy, Jr., Dr. Richard N.­

DeVries, and Dr. Marcia Headstream for their excellent instruction and 

relaxed, friendly attitudes. 

I am particularly grateful to Kenneth Norman Bartle and to all of 

my fellow students for their companionship and stimulating conversation. 

I am grateful to my parents, brother and sisters for their moral 

support, not only during this period, but over my entire life. Their 

love renews the soul. 

I wish to thank my typist, Mrs. Grayce Wynd, for her careful 

typing of this manuscript. 

This thesis was made possible, in part, by Training Grant No. 

T-900078 from the Environmental Protection Agency. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

II. LITERATURE REVIEW 

A. Design by Parameters 
B. Design by Empiricai Formulas 
C. First Order or Simple Kinetic Models 
D. Design Based on Microbial Kinetics 
E. Design Based on Diffusivity • 

III. MODEL DEVELOPMENT 

A. Determining Biological Constants 

IV. TESTING THE MODEL 

V. DESIGN PROCEDURE 

VI. DISCUSSION •••• 

A. Implications in the Method Used to Determine 

Page 

1 

3 

3 
3 
4 
7 
8 

10 

20 

35 

47 

54 

the Biological Constants • • • • 54 
B. Significance of Observed Values for the Bio-

logical Constants • • • • • • • . 54 
C. Comparison of the Various Kinetic Models 55 
D. Use of L'lCOD in Design • . • • • 56 

VII. CONCLUSIONS 57 

VIII. SUGGESTIONS FOR FUTURE STUDY •• 58 

SELECTED BIBLIOGRAPHY • • • • 59 

iv 



Table 

I. 

II. 

LIST OF TABLES 

Corrected Data by Bently 

Corrected Data by Cook . • 

v 

Page 

27 

36 



LIST OF FIGURES 

Figure 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Model of Trickling Filter Showing Elemental Volume; Area 
H, Depth at Z • • . • • • • • • • • 

Theoretical Plot of Substrate Concentration Versus Depth 

Theoretical Plot of Substrate Concentration Versus Depth; 
the Effect of Varying K . . . . . . . . . . . . . . . s 

Theoretical Plot of Substrate Concentration Versus Depth; 
the Effect of Varying Y . . . • . . . . • . . . . . . . 

Theoretical Plot of Substrate Concentration Versus Depth; 
the Effect of Varying ~ • • • • • • • • • • • • max / 

Specific Growth Rate, ~' Versus Specific Utilization, U, 
for Bently's Data • • • • • • . • • • • • • • • 

1 Reciprocal of the Specific Growth Rate, -, Versus the 
Reciprocal of the Substrate • • ~ • • • • 

Theoretical and Actual Substrate Concentration Versus 
Depth for S = 465 mg/1 From Data by Cook . • • • • 

0 

Theoretical and Actual Substrat~ Concentration Versus 
Depth for S = 196 mg/1 From Data by Cook • • • • • 0 ' 

Theoretical and Actual Substrate Concentration Versus 
Depth for S = 175 mg/1 From Data by.Cook ••••• 

0 ' 

Theoretical and Actual Substrate Concentration Versus 
Depth for S = 95 mg/1 From Data by Cook • • • • • 

0 

Theoretical and Actual Sqbstrate Concentration Versus 
Depth for S = 80 mg/1 From Data by Cook 

0 

A Schematic of a Possible Laboratory Unit for use in 
Determining Design Data • • • • • • • • 

vi 

Page 

13 

19 

22 

24 

26 

31 

34 

38 

40 

42 

44 

46 

50 



CHAPTER I 

INTRODUCTION 

As the need for high quality water increases in our society, water 

reuse, either direct or indirect, becomes more common. This reuse 

results in an increased need for effective, reliable wastewater treat­

ment. 

Much research effort has been devoted to understanding the acti­

vated sludge process, and this research has resulted in an evolution of 

design procedures.lModern design methods, such as the '~ean Cell Resi­

dence Time Method" of Lawrence and McCarty (1) and the "Constant Sludge 

Recycle Concentration Method" of Ramanathan and Gaudy (2) are based on 

basic microbial kinetics. These methods have been used highly success­

fully in the Oklahoma State University btoenvironmental laboratories 

to analyze data and explained observed phenomena. 

In a paper comparing the ~cttvated sludge and the trickling filter 

processes (3), Kincannon and Sherrard found that the two processes dis­

play similar characteristics with regard to treatment efficiency, sludge 

production, presence or absence of nitrification, removal of inorganic 

nutrients, and stability under shock loads when compared at equivalent 

sludge ages or/food-to-microorganism ratios. 

In view of these facts, it is reasonable to assume that trickling 

filter design based on laboratory studies and appropriately applied 

microbial kinetics should be successful, and that many of the 

1 



techniques used in the design of activated sludge treatment plants 

could be modified for use in trickling filter design. 

The purpose of this study was to develop a method for trickling 

filter design based on kinetics of microbial growth. 

2 



CHAPTER II 

LITERATURE REVIEW 

A. Design by Parameters 

Imhoff (4) recommended basing the filter volume on the population 

to be served, and Ingram (5) set ranges for parameters such as yolum-

etric and surface flow rates, and organic volumetric and surface load-

ings. These design methods are equivalent, in essence, to designing 

activated sludge for a certain detention time, BOD loading per unit 

volume, or pounds BOD per pound aeration solids per day. 

B. Design by Empirical Formulas 

In 1946, the National Research Council published an empirical for-

mula for treatment efficiency based on data from sewage treatment plants 

in military installations (6). The equation without recirculation is: 

E ;::; 1 

1 + c(~t·5 

where 

E = fraction of BOD removed 

W = organic load applied (lbs BOD/day) 

V = filter volume (1000 ~u ft) 

c = 0.0561 

3 

(1) 
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In 1956, Fairall (7) developed another empirical formula based on 

data from forty-four treatment plants in the Upper Mississippi Valley. 

Without recirculation, the equation is 

Le (v) -0.322 
~1 = 1.102 -Q 

i 
(2) 

where 

L 
e --- = fraction of influent BOD remaining in the settled effluent Li 

V = folume of filter medium (1000 cu ft) 

Q = hydraulic flow rate (MGD) 

In 1964, Galler and Gotaas (8) published an empirical fo~ula based 

on multiple regression analysis on data from existing treatment plants 

which states 

where 

1 19 0 28 (An. ) 0 •13 0.464 L • (1 + R) • ~ 

L = ------~o----~~~~~~~~---
e (l + D)0.67 TO.l5 

Le effluent BOD 

L = influent BOD 
0 

C. First Order or Simple Kinetic Models 

In 1944, Phelps (9) published an equation based on .:f;:trst o?:;der 

removal of BOD, which states 

where 

(3) 

(4) 
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Lt = BOD remaining at time t 

L = initial BOD 

k = rate constant 

t contact time 

In 1948, Velz (10) developed a similar expression, based on filter 

depth rather than contact time, which states 

LD 
10-kD (5) -= 

L 

where 

D = depth 

all other terms as previously defined 

Gerber (11) proposed lumping hydraulic dosing rate (H, ft/day), 

-1 BOD rate constant (K1 , day ) and depth (D, ft) into one dimensionless 

constant (H/DK1), and found a linear relationship between efficiency 

(BOD at depth D/BOD applied) and H/DK for values of H/DK1 up to 50 with 

wastes having 120 to 140 mg/1 initial BOD. 

In 1960, Schulze (12) found that 

where 

L e 

Li 

k 

D 

Q 

= 

= 

= 

= 

-kD/Q2/3 
10 

effluent BOD (mg/1) 

influent BOD (mg/1) 

rate constant 

filter depth (ft) 

= hydraulic load (MGD/acre) 

(6) 



In 1961, Eckenfelder (13) developed several equations based on 

first order removal kinetics. In the simplest form 

where 

L = effluent BOD 
e 

L = influent BOD 
0 

K = a coefficient incorporating the surface area of active film 

per unit volume 

D = filter depth 

Q hydraulic load per unit surface area 

n = constant 

If the slime layer is non-uniform, and different components of 

the waste are removed at different rates, the equation becomes 

L 

6 

_e = _ ___;l::;..0::;..0~--:-
1o CD(l+m) 

(8) 

1 +----

where C, m, and n are constants to be determined by multiple regression 

analysis, and all other terms are as previously defined. 

In 1957, Stack (14) developed a theoretical equation based on the 

assumptions that 

1) a trickling filter is basically a self-regenerating absorption 

tower; 

2) each unit depth of the filter will remove a constant fraction 

of the removable BOD applied to that unit depth; 
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3) removable BOD is the fraction of the observed BOD which can be 

removed by biosorption, and 

4) the quantity of BOD that can be absorbed by one unit volume of 

a filter has a maximum limit. 

If no recirculation is used but if the load of removable BOD is 

sufficient to saturate a portion of the filter depth, the equation 

takes the form 

R = XfS + f(L-XfS) [1+(1-f) + (l-f) 2 + (l-f) 3 + ••• 

+ (l-f)D-X-1] 

where 

R = fraction of removable BOD removed 

X = number of unit depths that are saturated 

f = coefficient of biosorption 

(9) 

S = quantity of removable BOD that must be applied per unit area 

to completely saturate one unit depth with BOD 

L = quantity of removable BOD applied per unit area 

D = number of unit depths in the filter 

D. Design Based on Microbial Kinetics 

In 1968 and 1969, Kornegay and Andrews (15)(16) published their 

results of experiments conducted with completely mixed, annular reactors, 

and developed the following equation for trickling filter performance 

K ~n(S /S ) + (S - S ) = s o e o e 

where 

~max a d H X Z 

FY (10) 



K = saturation constant which varies with flow velocity (M/L3) s 

S =initial concentration of growth-limiting nutrient (M/L3) 
0 

S = final concentration of growth-limiting nutrient (M/L3) 

~max • maximum specific growth rate (1/T) 

a 

d 

H 

X 

z 

F 

y 

= specific surface area of filt~r media (L) 

= active microbial film thickne~s 

= cross sectional area of tHe trickling filter (L2) 

' ' 3 = unit mass of the microbial film on a dry basis (M/L ) 

= filter depth (L) 

=hydraulic flow rate (LJ/T) 

= yield coefficient, and 

L, M, and T denote length, mass, and time, respectively 

E. Design Based on Diffusivity 

\l. In 1976, Williamson and McCarty (17) developed an equation based 

in part on Monad's (3) equation for microbial growth, and in part on 

the rate of diffusion of oxygen and essential nutrients into the slime 

8 

layer. The result is a second order differential equation which states 

where 

KSX c c. 

S + K c s 
(11) 

S a concentration of limiting nutrient within the biofilm cellu­c 

lar matrix (mg/1) 

Z = filter depth (em) 

k =maximum utilization rate of rate-limiting substrate (mg/day/mg) 



X = bacterial concentration within biofilm, assumed constant 
c 

D 
c 

K 
s 

with depth (mg/1) 

= diffusion coefficient within biofilm (sq em/day) 

= Monod half-velocity coefficient (mg/1) 

Though no general solution to this equation is possible, if cer-

tain assumptions are made, boundary conditions may be set and a 

9 

solution may be calculated by the Runge-Kutta finite difference method. 



CHAPTER III 

MODEL DEVELOPMENT 

To understand the kinetics of a trickling filter, several facts 

must be kept in mind. Purification of the waste occurs because micro­

organisms, predominantly attached to the filter media, utilize com­

ponents of the waste as nutrients. Thus, part of the material is used 

for energy and part is used to synthesize new cellular material, and 

the concentration of nutrients in the liquid decrease with depth. This 

decrease in nutrient concentration causes a decrease in growth rate, a 

situation similar to that which occurs in a plug flow reactor. 

The layer of microorganisms growing on the media will eventually 

increase in thickness until the physical forces binding the slime layer 

together and to the media are insufficient, and a portion of the slime 

layer will slough off. Though this may produce local differences in 

conditions at a certain depth, it is assumed that the average condition 

of the biological material at a given depth is constant if the trick­

ling filter as a whole is at steady state (influent and effluent BOD 

and flow rate are constant). 

Kornegay and Andrews (16) developed kinetics based on the fact 

that the active film thickness, d, is only a portion of the total film 

thickness, h, and on the following assumptions: 

1) Plug-flow is achieved in the liquid phase. 

2) Substrate utilization due to sources other than the attached 

10 



microbial film is small and may be neglected. 

3) The apparent yield, YOBS' remains constant with depth. 

4) Removal is described by a saturation function which incorpor­

ates the effect of diffusion and growth rate. 

11 

The model developed in this chapter is similar in many respects to 

that developed by Kornegay and Andrews (15) with the exception that the 

true yield, Y (which occurs when the microorganisms are growing at the 

maximum specific growth rate), is used in place of the observed yield, 

YOBS (which decreases with decreasing specific growth rate). With this 

change, assumption 3 now reads: 

3) The true yield, Y, remains constant with depth. 

The substrate available will limit the growth rate. Physical con­

ditions, such as temperature or pH, may limit the maximum growth rate, 

but the substrate concentration will set the actual growth rate. The 

material that limits growth in most wastes is carbon. In the case that 

nitrogen or phosphorous is growth-limiting, these materials may be 

added so that carbon will be growth-limiting. The oxygen demand of the 

waste, as biochemical oxygen demand (BOD) or chemical oxygen demand 

(COD) .may be used as measures of substrate where carbon is the limiting 

nutrient. 

Consider the situation in a unit volume of the filter shown in 

Figure 1. The filter has a cross sectional area, H, and a depth, Z. 

The unit volume of depth dZ has a substrate concentration, S + dS, 

, entering, and a substrate concentration, s, leaving it. The steady 

state substrate balance across the differential element, dZ, is then: 

input • output + disappearance by microbial utilization (12) 



Figure 1. Model of Trickling Filter Showing Elemental 
Volume; Area, H, Depth, Z 
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The total mass of substrate entering the unit volume is equal to 

the flow, F, times the substrate concentration. The output is equal to 

the flow times the substrate concentration leaving the unit volume. 

The microbial utilization is the change in substrate per unit time. 

Thus, the substrate balance becomes 

where 

F(S + dS) 
dM 

s 
=FS+d"t 

F = hydraulic flow rate (£/day) 

S substrate concentration (mg/1) 

M = mass of substrate (mg) 
S' 

t time (days) 

(13) 

The change in the mass of microorganisms is related to the change 

in mass of substrate by the equation 

where 

Thus 

Mo = mass of microorganisms (mg) 

Y true yield 

-1 kd = decay coefficient (day ) 

dM 
d: = dMo/dt + kdMo 

y 

-1 The true growth rate, ~ (days ), may be defined as 

(14) 

(15) 



so 

""' dHo/dt + 1,. 
Mo 'd 

dM 
s ].lMO 

dt= y 

By substitution, the balance for substrate becomes 

F(S + dS) = FS -.!:!.. Mo y 

15 

(16) 

(17) 

(18) 

The microorganisms of interest are not the total mass, but are the 

active mass in the outer layer of the microbial film. The total active 

mass in the unit volume may be expressed as a product of the differen-

tial depth, dZ, the cross sectional area, H, the specific surface area 

in the media, a (surface area per unit volume), the mass concentration 

of microorganisms, X, and the thickness of the active layer, d. There-

fore 

Mo = (a)(X)(d)(H)dZ 

and the substrate balance becomes 

F(S + dS) = FS- ~ (a)(X)(d)(H)dZ 

where 

].l = specific growth rate (T-1 ) 

Y = yield coefficient 

S = concentration of the growth-limiting nutrient (M/13) 

a= the specific surface area of the media (12/13) 

(19) 

(20) 



X = concentration of microorganisms in the film on a dry basis 

d = thickness of the active microbial film (L) 

H = cross sectional area of the filter (L2) 

Z = filter depth (L) 

F =hydraulic flow rate (L3/T) 

16 

In addition, Monod (18) ,showed that the specific growth rate may 

be related to the substrate concentration by the following equation 

where 

jl = 
Jlmax S 
K + S s 

-1 Jlmax = the maximum specific growth rate (T ) 

K = the substrate concentration at which Jl = ~ Jl , also s max 

(21) 

called the saturation constant or half-velocity constant 

(M/L3) 

Upon substitution of equation (20) into equation (21), we find 

that 

F (S-kiS) = FS - [ ~:"! :] ( t) (a) (X) (d) (H)dZ (22) 

which may be rearranged as 

(Ks: S) dS = Jl;;x (a)(X)(d)(H)dZ (23) 

By using plastic or redwood medium, one can construct a trickling 

filter in which the cross sectional area, H, and the specific surface 
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area, a, are constant. Kornegay and Andrews (16) found ~ , Y, X, and max 

d to be constant over a wide range of flow velocities, dissolved oxygen 

and substrate concentrations. The saturation constant, K , was found s 

to vary with velocity, but should be constant for a given flow rate. 

If we assume these parameters to be constant, equation (23) may be 

integrated to produce 

~ (a) (d) (H) (X) 
K ~n 

s 

s 
0 

s 
e 

max + (S - S ) = ~-----:=:---- Z o e FY (24) 

A more useful form of the equation may be developed by rearranging 

equation (24) in the form 

FY [ K ~n (S /S ) + (S - Se)J 
Z = ----·~s~--~o~~e~~~~o~--~ 

(~ ) (a) (d) (H) (X) max 
(25) 

This equation allows one to select the proper filter depth, given a 

waste of a certain strength and flow, a certain effluent requirement, 

and values of the various biological constants involved. In addition, 

the equation may be used to generate a substrate removal profile, by 

choosing various values of S and calculating the depths at which they 

occur. One may then change the values of ~ , Y, or K , and observe max s 
the effect on the substrate versus depth curve. 

Kornegay and Andrews found X= 95 mg/cm3 and d = 7 x 10-3 em (15), 

and these values are assumed throughout this investigation. In Figure 

2, it was assumed that S = 300 mg/1, F = 500 gpd, Y = 0.44, K = 150 0 s 
-1 2 3 2 mg/1, ~ = 2.50 day , a = 27 ft /ft , and H = 1 ft • Values of max 

depth Z were computed for various values of S down to S = 1 mg/1. The 

graph shows that the substrate versus depth curve may be approximated 



Figure 2. Theoretical Plot of Substrate Concentration 
Versus Depth by Equation (25) 
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by two straight lines. This explains results obtained by Little (19) 

and others. 

Figure 3 shows the effect of holding all other values constant and 

varying K to 70 mg/1 and 40 mg/1. As K is decreased, substrate is s s 

removed more rapidly. 

The curves in Figure 4 show the effect of varying Y. For K = 40 
s 

mg/1 and all other values as previously stated, curves 4, 5, and 6 may 

be generated by choosing values of Y = 0.20, Y = 0.44, and Y = 0.60, 

respectively. 

The curves in Figure 5 show the effect of varying ~max" With Y = 

0.44, K = 40 mg/1, and all other values as in the previous examples, s 

curves 7, 8, and 9 may be generated by choosing values of~ = 5.50 max 
-1 -1 -1 day , 2.50 day , and 1.83 day , respectively. 

The curves in Figures 4 and 5 are identical. Because the term 

~max/Y appears in equation (25), any effect on the substrate versus 

depth curve resulting from an increase (or decrease) in ~ may also max 

be achieved by an appropriate decrease (or increase) in the value of Y 

(with ~max constant). 

A. Determining Biological Constants 

Details of data collection will be covered in Chapter V but, basi-

cally, the data required for determining values of the biological con-

stants are biological solids production per day, influent substrate 

concentration (various values or at various flow rates) and effluent 

substrate concentration. The data presented in the following analysis 

were gathered by Bently, using a synthetic waste with sucrose as a car-

bon source (20). 



Figure 3. Theoretical Plot of Substrate Concentration 
Versus Depth by Equation (25); the 
Effect of Varying K s 
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Figure 4. Theoretical Plot of Substrate Concentration 
Versus Depth by Equation (25); the 
Effect of Varying Y 
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Figure 5. Theoretical Plot of Substrate Concentration 
Versus Depth by Equation (25); the 
Effect of Varying ~ max 
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Bently's data measure substrate as COD. A small portion of the 

total COD is composed of inorganic material or other substances which 

are not available to the microorganisms as substrate; therefore, a cor-

relation factor of 18 mg/1 was subtracted from all values of influent 

and effluent substrate concentrations. These corrected data are listed 

in Table I. 

TABLE I 

CORRECTED DATA BY BENTLY 

F s s Effluent Clarifier 
(liter~ 0 at 4 ft Solids Solids 

day (mg/1) (mg/1) (mg/1) (mg/day) 

1893 156 71.3 18.5 996.17 

1893 132.2 37.6 13.9 568.80 

1893 237.4 118.6 24.6 1153.50 

3785 89.7 32.1 12.1 1126.05 

3785 60.2 21.0 5.8 807.16 

3785 111.2 53.8 9.43 1255.50 

4732 83.2 42.4 5.78 1492.03 

4732 57.4 27.7 4.20 912.20 

4732 40.7 27.4 6.50 699.40 

Although the growth rate of the microorganisms in the filter is not 
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constant with depth, one can use the concept of an average growth rate. 

Analysis of trickling filter data can be performed using methods devel-

oped for activated sludge (21). 

The mean cell residence time, 8 (days), may be calculated by the c 

following formula 

8 
c 

X total 
= -=:V~X::---+,.--::F=:X:--E 

c c 

where 

where 

XT = total active solids on filter surfaces (mg) 

V = volume of clarifier (liters) c 

X solids collected in clarifier per day (mg/day) c 

F hydraulic flow rate (liters/day) 

XE = solids concentration in the effluent (mg/1) 

The total active solids on the filter surfaces are given by 

XT = (a)(Z)(H)(d)(X) 

The observed yield, YOBS' is given by the formula 

V X + FXE c c 
y OBS = ~( s=-'

0
----=s=-4~)-F 

(26) 

(27) 

(28) 

s4 denotes the substrate concentration at a 4-ft depth, and all 

other terms are as previously defined. The specific utilization, U 
-1 (day ), is calculated by 

u = .(29) 



Values for the true yield, Y, and the decay coefficient, kd' may 

be obtained by two methods. Since 

29 

_!_ - YU - k (30) 8 - d 
c 

1 a plot of -e- versus U will give a straight line with slope, Y, and 
c 

intercept, -kd. This plot is shown in Figure 6, and the values for the 

constants are Y -1 = 0.44 and kd = 0.180 day 

which may be inverted to give 

Also 

(31) 

(32) 

A plot of 1/YOBS versus Gc will give a straight line with slope, kd/Y, 

and intercept, 1/Y. In this method, the value of kd is much more sen­

sitive to small changes in slope, and the data did not fit this plot 

well, so this graph is not included. 

Once kd is known, the true growth rate, J.l, may be calculated by 

the following relationship 

1 
J.l = e + kd 

c 

The true growth rate, J.l, and the substrate concentration, S, are 

related by the Monod equation 

(33) 



Figure 6. Specific Growth Rate; ~, Versus Specfic 
Utilization, U, 'for Bently's Data 
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~ 

~ = max S 
K + S 

s 

By inverting, we find 

1 Ks 1 1 -=---+--
~ )1 s ~ max max 

32 

(34) 

(35) 

so that a plot of 1/).l versus 1/S should give a straight line with slope, 

K /~ , and intercept, 1/~ • This graph, using adjusted effluent s max max 

substrate concentrations, is shown in Figure 7. It was found that ~ max 
= 2.50 day-1 , and K = 40 mg/1. It is interesting to note that the s 

variation in flow velocity produced no obvious variation in K , since s 

all data points lie relatively near the line. 

Equation (34) may also be rearranged in the form 

s - = 
K 

S _1_ + __ s_ 

~max ~max 
(36) 

A plot of S/)1 versus S will give a straight line with slope, 1/).l , max 

and intercept, K /~ • Data scatter made this graph unusable, and it s max 

is not presented. 



Figure 7. 1 Reciprocal of the Specific Growth Rate, -, 1 
Versus the Reciprocal of the Substr~te, S 
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CHAPTER IV 

TESTING THE MODEL 

The ultimate value of a kinetic model lies in its ability to pre-

diet performance. Therefore, an attempt was made to use the kinetic 

model and biological constants develqped in Chapter II to predict other 

laboratory data. 

The data presented in this section were obtained by Cook on a lab-

oratory trickling filter unit using sucrose as a sole carbon source 

(22). As with the earlier data, an adjustment for non-biodegradable 

COD was required, and the value 15 mg/1 was subtracted from all 

substrate concentrations. The corrected data are listed in Table II. 

In his study, Cook used media with a specific surface area of 50 

ft 2/ft3 • However, a study by Fleming (23) indicated that increasing 

the media specific surface area above 27 ft 2/ft3 had little influence 

on filter performance, so the value of 27 ft 2/ft3 is used in these caJ-

culations. 

The values for the biological constants were assumed to be those 

-1 
found by analysis of Bently's data--that is, ~max = 2.50 day , Ks = 40 

mg/1, and Y = 0.44. Using these values, and the actual influent sub-

strate concentrations and flows, substrate versus depth curves were 

generated using equation (25) for each influent substrate concentration. 

These curves are shown plotted against the actual data in Figures 8 

through 12. 
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TABLE II 

CORRECTED DATA BY COOK 

Influent Adjusted Substrate Concentration Flow 
~liter~ as COD (mg/1) 

day Depth 0 ft 1 ft 2 ft 3 ft 4 ft 

1136 465 358 300 240 192 

1136 196 124 85 39 20 

1893 175 102 86 47 36 

1136 95 45 22 3 3 

2271 80 42 28 13 6 



Figure 8. Theoretical and Actual Substrate Concentration 
Versus Depth for S = 465 mg/1 From Data 

0 by Cook 
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Figure 9. Theoretical and Actual Substrate Concentration 
Versus Depth for S = 196 mg/1 From Data 

0 by Cook 
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Figure 10. Theoretical and Actual Substrate Concentration 
Versus Depth for S = 175 mg/1 From Data 

0 by Cook 
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Figure 11. Theoretical and Actual Substrate Concentration 
Versus Depth for S = 95 mg/1 From Data 

0 by Cook 
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Figure 12. Theoretical and Actual Substrate Concentration 
Versus Depth for S = 80 mg/1 From Data 

0 by Cook 
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CHAPTER V 

DESIGN PROCEDURE 

Since the values of the biological constants, ~ , K , andY, will max s 

vary with the nature of the waste to be treated and the microbial popu-

lation that will grow on the waste, it is highly desirable to run a 

treatability study to ensure that a naturally-occurring microbial popu-

lation will be capable of purifying the waste, and to collect data in 

order to determine the values of the constants which characterize that 

population growing on that waste. 

The design procedure is as follows: 

Step 1: Characterize the waste as to flow, strength (BOD), and 

BOD:N:P ratio. 

If the variations in flow or strength of the waste are greater than 

2:1, serious consideration should be given to the use of an equalization 

basin. The BOD:nitrogen:phosphorous ratio should be about 100:5:1. If 

the waste is deficient in nitrogen or phosphorous and supplemental 

nutrients will be added to the waste, these must be added during the 

treatability study, also. 

Step 2: Set specifications for filter media and choose filter 

area. 

The specific surface area of the media used in the treatability 

study should lie in the range specified for the treatment plant. Filter 

cross sectional area may be based on flow rate and media manufacturer's 
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recommendations. The most important consideration should be to keep 

the entire filter wet at minimum flow. 

Step 3. Choose a range of flow rates for th~ treatability study. 

In order to obtain data at various growth rates, one must vary the 

organic loading to the filter by varying filter depth, substrate 

concentration, or flow rate. In most cases, the simplest procedure 

will be to vary flow rate. 

Design will be based on maximum daily flow or, if flow equaliza-

tion is employed, on average daily flow. Since K may vary with flow 
s 

velocity, it is suggested that the treatability study flow rates be 

chosen so that the values of flow per unit cross sectional area lie in 

the range expected in the actual treatment plant. 

If this variation does not produce adequate variation in growth 

rate to allow accurate determination of the biological constants, a 

larger range of flow rates should be chosen or, alternatively, one may 

extend the range of organic loadings by dilution. 

Step 4. Operate a small scale unit and collect data. 

If possible, the laboratory unit or pilot plant should be fed the 

actual waste to be treated. If not possible, a similar waste may be 

used. A schematic of one possible laboratory unit is shown in Figure 

13. This unit allows collection of solids in a clarifier for deter-

mining Y and kd. 

The first step in the operation of the unit is to condition the 

filter by applying the waste until growth is obtained on all surfaces. 

Once the filter is conditioned, the flow rate should be adjusted to 

the proper value and the influent substrate concentration adjusted to 

the maximum observed in the actual waste. The unit should be operated 



Figure 13. A Schematic of a ~ossible Laboratory Unit for 
use in Determining Design Data 
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in this manner until steady state is achieved, at which time data should 

be taken. Steady state is indicated by constant flow, influent and 

effluent substrate concentrations. Though BOD may be used in design, 

it is advisable to monitor the performance of the unit by using COD 

because results are obtained more rapidly. 

As steady state is reached, design data of influent and effluent 

BOD and COD, and clarifier and effluent solids may be obtained. If sub-

strate removal and solids production are constant for three days' samp-

ling, the flow rate should be changed, a new steady state reached, and 

design data sampling performed. 

It is advisable to operate the unit at a minimum of five different 

flow rates with a range of at least 5:1 in order to obtain a spread of 

growth rates for determining ~ , K , Y, and kd. 
m~ s 

It is also useful to obtain substrate concentrations from within 

the filter at various depths, especially at low loadings where the sub-

strate may be exhausted before the bottom of the trickling filter is 

reached. If this condition does occur, the effective depth of the 

filter is reduced to the depth at which substrate is exhausted. 

Step 5. Determine values for the biological constants. 

The constants Y and kd' and ~ and K may each be determined by max s 

two graphical methods. All four graphs should be used in order to make 

the best estimate of the values of these constants. Details of deter-

mining these constants were presented in Chapter III, part A, pages 20 

to 34 of this thesis. 

Step 6. Determine the required filter depth. 

Filter depth is given by the formula 
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FY ~ .Q,n :
0 + S - SJ ~ s e o z J..l (a) (d) (H) (X) 

max 

(25) 

where 

z = required filter depth (ft) 

F = design hydraulic flow rate, normally maximum daily flow 

(liters/day) 

y = true yield (fraction) 

saturation coefficient -1 
K = (day ) 

8 

S design influent substrate concentration, normally maximum 
0 

substrate concentration (mg/1) 

S required effluent substrate concentration, normally specified 
e 

by standards (mg/1) 

-1 
J..lmax = maximum specific growth rate (day ) 

a = specific area of filter media, normally available from media 

manufacturer (ft2/ft3) 

d 
-3 = thickness of active microbial film, assumed to be 7 x 10 em 

X = concentration of biological solids on a dry basis, assumed to 

H 

3 be 95 mg/cm 

2 = filter cross sectional area (em ) 

If the required depth is excessive, the filter may be constructed 

as two or more units in series. 

Step 7. Estimate solids production. 

An estimate of the true growth rate, J..l, for the trickling filter 

may be made based on the required effluent substrate concentration and 

1 1 s 
either the graph of ~versus S or ~versus S. Solids production is 

estimated by the formulas 
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~ dX 
Solids production day = dt = ~Xt (37) 

and XT = (a)(Z)(H)(d)(X) (27) 

A second method for estimating solids production is based on the 

formulas 

Solids production (38) 

and (39) 

Step 7. Including safety factor in design. 

The amount of safety factor to be included in the design is a dif-

ficult choice, and must be based, largely, on the designing engineer's 

experience. However, it is possible for that engineer to gain some 

insight into the effect of a change in the strength of the waste or 

values of the biological constants, ~max' Ks, andY, by generating pro­

files of substrate versus filter depth. Once the designer has chosen 

values of S , ~ , K , and Y to be investigated in this scenario, the o max s 

substrate profile is generated by using equation (25) to calculate fil-

ter depth for various substrate concentrations less than S • The sub­
o 

strate concentrations chosen are reduced until the predicted depth 

equals or exceeds the design depth. Now, a graph of S versus Z will 

allow the designer to estimate the filter depth at which adequate treat-

ment will be achieved for these new condition~ of S , ~ , K , andY. . o max s 



CHAPTER VI 

DISCUSSION 

A. Implications in the Method Used to Determine 

the Biological Constants 

Kornegay and Andrews (16) lump ~max andY into a constant P, where 

P = 1 ;(y)(~ )(X)(d) (40) 
/ ' max 

and suggest determining the values of K and P by a plot of S - S 
s o e 

versus ~n S js . This approach has two disadvantages: first, since Y 
o e 

is not determined, no method is available for estimating sludge produc-

tion. Second, when attempting to use this method, difficulty was 

encountered due to the sensitivity of the term ~n S (s to small 
o e 

errors at low values of S • 
e 

B. Significance of Observed Values for the 

Biological Constants 

An interesting interpretation may be attached to the values of the 

biological constants observed in this study. F~r heterogeneous popula-

tions of sewage origin grown using a sugar as a carbon source in an 

activated sludge unit, the values for the biological constants normally 

encountered are -1 
~max= 3 to? days (24), Ks =50 to 125 mg/1, andy 

0.4 to 0.6 (24)(25). The value of Y = 0.44 is not unusual, nor is 
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K = 40 mg/1 very unusual. These values depend only on the micro­
s 

organisms involved, substrate used, and environmental conditions. 

-1 
The value determined for ~ = 2.50 days depends not only on max 

-3 these factors, but also on the assumptions that d = 7 x 10 em and 

3 X = 95 mg/cm • These assumptions were used to calculate total active 

biolotical solids, ~' and XT was used to calculate sludge age, ec, 

which was used to calculate specific growth rate ~, which was used to 

determine, graphically, ~ • max 
-1 Though not hard proof, the fact that ~ = 2.50 days , as was 

max 

found in this study, is not an unusually high or low value, tends to 
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indicate that the values of d and X found by Kornegay and Andrews (15) 

were similar to those encountered in this study. 

An error in the assumed values for d or X would not invalidate the 

design method, if ~ is determined from actual data. An error in d max 

or X would produce a corresponding error in the value determined for 

~max" When applying equation (25), these errors will cancel. 

C. A Comparison of the Various Kinetic Models 

As was mentioned earlier, the values of S , Y, ~ , and K can o max s 

influence the shape of the substrate versus depth curve. Several 

shapes were observed in the analysis of data obtained by Cook (22). In 

Figures 8 and 10, the curve is nearly linear. In Figure 12, the curve 

has a shape similar to that of a first order decreasing function. In 

Figure 11, the curve might be approximated fairly accurately by two 

straight lines. All of these shapes have been used in the past to des-

cribe data or for filter design. 

In light of these similarities, it seems likely that any of the 
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design methods available, if properly applied, would be adequate in at 

least some cases. However, the method outlined in this thesis has 

three basic advantages. First, it may be used to describe sets of data 

which plot a variety of shapes as substrate versus depth. Second, this 

method allows one to investigate the effect of a change in the values of 

influent substrate concentration or biological constants. Third, this 

method allows an estimate of solids production. 

D. Use of L\COD in Design 

BOD is the standard measure of substrate (strength of the waste or 

effluent quality) recognized by government pollution control agencies, 

and it is a logical measurement. However, the BOD test is more vari­

able than is the COD test (25), and use of the COD test is therefore 

desirable. Since the COD test can measure the oxygen demand of material 

which is not available to the microorganisms as substrate, a modifica­

tion of the use of the COD test, known as 6.COD has been·suggested (25). 

The non-biodegradable fraction of the COD may be determined by 

aerating the effluent from the trickling filter in a batch reactor and 

monitoring the COD. The minimum observed COD is then used as a base 

line or correction factor which is subtracted from the COD data to 

obtain L\COD. Initial substrate concentration might affect the value 

for this correct~on factor, so the correction factor should be deter­

mined at each substrate concentration used. The value of the correction 

factor may be checked by operating a trickling filter at successively 

lower influent substrate concentrations until a min~um effluent COD is 

observed or, in a tall tower, by sampling COD at various depths until 

duplication of COD values indicates that substrate removal is complete. 



CHAPTER VII 

CONCLUSIONS. 

1. A design method based on basic microbial kinetics may be 

applied successfully to a trickling filter. 

2. Biological constants for a trickling filter may be determined 

by using methods of data analysis developed for the activated sludge 

process. 
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CHAPTER VIII 

SUGGESTIONS FOR FUTURE STUDY 

1. Study the effect of flow velocity on K . 
s 

2. Study the use of biological kinetics to describe nitrifica-

tion in a trickling filter. 

3. Study the possibility of devising a method for determining d 

and X for a trickling filter. 

4. Study the possibility of devising a method for determining 

~max for a trickling filter which is independent of the values of d 

and X. 
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