A NEW SOFTWARE PROCESS MODEL DESIGNED
FROM THE BASICS OF EVOLUTIONARY BIOLOGY

AND SOFTWARE EVOLUTION

By
MURUGAPPAN RAMANATHAN
Master of Science in Computer Science
Oklahoma State University
Stillwater, Oklahoma

2007

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2007

A NEW SOFTWARE PROCESS MODEL DESIGNED
FROM THE BASICS OF EVOLUTIONARY BIOLOGY

AND SOFTWARE EVOLUTION

Thesis Approved:

Dr. Johnson Thomas

Thesis Adviser

Dr.Venkatesh Sarangan

Dr.Nophill Park

Dr. A. Gordon Emslie

Dean of the Graduate College

il

Chapter Page
L. INTRODUCTION ...ttt ettt sttt sttt e 1
II. REVIEW OF LITERATURE.......cciiiiiiiiiii ettt 4
Reasons to Improve software development methods...........cccceeeviieeiiiiiniiinnieennee. 4
Similarities between software evolution and evolutionary biology............cc.c....... 7
Macro Level COMPATISONcovuuieiriiiiriiieiiiee ettt ettt e eeieee e 8
Micro Level COmMPATiSONc..eeiiieiiiiiiiiiieiieeiee ettt 9
III. METHODLOGY ...ttt sttt sttt ettt sae et saeen 12
Creating a new MOE]c.oeeiiiiiiiiiiieee e 12
EXISNG MOAEIS ..ottt ettt et eeeve e eeveeenseeennnee s 12
IV. PROPOSED MODEL......cc.coctiitiiiiiiiieientenitee sttt sttt 15
Infinity Model based software and biologyccceeeviieiiiieiiieeniiieiieeeieeeeeee 15
Evolution or ReVOIULION......c...oiiiiiiiiiiiiiieieceeee e 18
Evolutionary Cycle Personnel..............cccooiiiiiiiiiiiiiiniiiiieeeeeeeeeee e 18
Revolutionary Cycle Personnel............ccccooviiiiiiiiiniiiiiiiiieeieeeesieeieee 19
Evolution in SOftWarecooouiiiiiiiiiiiiieeeee e 20
Requirement (IMULAtION)........ceeuiieeiirieiiieeeiieeeieeeeieeesteeesreeeseveeeneaeeeereeenreeennneeas 21
Evolutionary REQUITEMENLScoouiiiiiiiiiiieiiiieeiieeeeeerte et 23
Revolutionary REqUITEMENLScceoieeriiiieniiieeiee e eeieeesreeeiveeeiaeeeenee s 24
Planning (SEIECtION)eiiuiiiiiiiiiieeiee ettt 25
Things to be planned..........cceevciieeiiiiiiiie e 26
Development (Genetic Pattern Generation).............eeevveerrveeerieennieennieeennieeenineens 27
Group Personnel.............cooiiiiiiiiiiiieee e 29
Evolution or REVOIULION........ccoiuiiiiiiiiiiiiiieeie e 29
Personnel InVOIVed.........coooiiiiiiiiiiiice e 30
TechnologiCal CYCIEoiiiiiiiiiiiiiiee et 31
Coding and Internal Documentation (DNA Production).........c.cceeeveeevvienrveennnnn. 32
Personnel INVOIVEd..........covuiiiiiiiiiiiiiieeeeeee e 33
Testing and Documentation (REPair).........ccceeeeuveeriiieeniieeiiie e 34

TABLE OF CONTENTS

il

Personnel INVOLVEd......ccoooviiiiiiieeeeee ettt ettt eeeeevaaes 35

Packaging, Deployment and Feedback (DNA Replication)cccceecveeeeuveeennnenn. 35
Personnel INVOIVEd..........coouiiiiiiiiiiiiiieeeee e 36

V. CASE STUDY: SOFTWARE PROCESS MODEL EVALUATION............cc..c.... 39
Water Fall MOlcooiiiiiiiiiiiiiiceeeeee et 39
CIIEQUE ettt ettt ettt et et e et e ettt e ebbeessabeesbbeesbneesabneeas 40

SPITal MOAEL......coiiiiieiie ettt et e e e e e eeaaeeeaaeeenes 42
CIIEQUE ettt ettt ettt ettt e sttt e e bt e e eabeesbbeesbaeesabaeens 43
PrOtOLYPINE . ..eieeeiieeiiie ettt e e et e e e ebeeentaeeesbeesssbeeenssaeensneens 44
CIIEQUE ettt ettt ettt ettt et e et e ettt e s stbeesabeesbbeeebaeesnbaeens 45
Extreme Programimingccccveeeciieiiiieeniiieeeieeeeieeesieeesteeesveeeniaeeeeaeeeeneeennnee s 46
TWEIVE SEEPS .ttt ettt et e s 46
CIIEIQUE .veeenitieeiiieeiee ettt e et e e e tte e et eeeteeesteeesnbaeessseeensseeenssaeensseeesseeensneesnsseens 47

Staged Software Life Cycle Model...........ccooiiiiiiiiiiiiiiiieicececeeee e 49
CTIEIQUE ettt eitieeeiee et e ettt e e tte e et e e et e e s teeesabeeessseeeesseeenssaeenssaeesseeensneesnsseens 50

PSPM MOGEL ..ottt 51
CTIEIQUE .veeenttieeitieetee et et e et e e et e e et eeeteeesnbeeeesbeeeasseeenssaeesseeenssaeensneesnsseenn 52

VI. CASE STUDY: EXAMPLES FROM COMPANY SOFTWARE...........cccceuce.. 54
AVIONICS CaASE STUAY ...uvieiiiiieiiie ettt ettt e st e s s 54
MICTOSOft SOFtWATE ...ccueiiiiiiiiiiiiiee et 57
Embedded SYSIEML.....ccoiuiiiiiiiiiiieeite ettt 59
OPEn SOUTCE SOFEWATEveeeiiieeiiie ettt sae e e sve e e e e eaaeeeeaeeenes 60
DEVICE DIIIVET ...ttt 63
Legacy Software: Department of Defense..........ccccvveeriieeriieenieeciieeciee e 65
Evolution in Nature: Lizardcccooiiiiiiiiiiiiiiiiceeeceeeeeeeee e 66
VIL CONCLUSION ..ottt ettt sttt ettt et aesaeenseeneesaeas 70
REFERENCES ...ttt ettt ettt ettt eneas 72
APPENDIX ...ttt ettt sttt et st b et ae et nteeaean 77

v

LIST OF TABLES

Table Page
1. Laws of Software EVOIUtIONc...cooiiiiiiiiiiiiiiiiiceeceteceee e 5
2. Classification of Software Evolution Challengescccccueeeiveeniieenieeenieeeenenn. 6
3. Dependability perspective of eVOIULIONccccveeeviiieriiieeniieeiee e 21
4. Comparison between different software life cycle modelcceeevvveennennnnen. 53
5. Types of requirement changes identified in the case studyccccceeevveeeruveennee. 56
6. Properties incorporated into the Infinity Model from the case studies................. 69

LIST OF FIGURES

Figure Page
L. INfinity MOdE]ooiiiiieiie ettt e et 17
2. EVOIUHION TAYETS ...eeeuvvieeiiieeiieeeiieeeite ettt e ettt e e eesreeeaseeessseeennneeennnas 20
3. Requirement engineering qUESHIONSccveeerureeesueeeniieeenieeesreeesreeesereeensreeensneens 24
4. Loops in Infinity MOdelcoocuiiiiiiiiiiieiie et e 38
5. Water fall MOdeloooiiiiiiiiiiie e 40
6. SPITAl MOEL.......uviieiiieeiee ettt et et e e e e e eeennseeennees 43
7. EXtIEME PrOZIAMIMNING ...veeeuveeeireeeitreeeireenireeeseeenseeesseeessseesnssesessseessssesssssessnsees 47
8. StaZed MOEL ... 49
0. PSPM MOGEL........eiiiiiiiiiiieee ettt sttt 51
10. Number of requirement changes per software release.........cocceeevveeerveeerveennnen. 55
11. Total number of requirements per software release..........c.cceeeveeervreeerreeerveennnen. 55
12. Data revealing the size and growth of sub-systems in the Linux Kernel 60
13. Growth of the lines of SOUICE COAEeeruiiriiiiiiiiiiiiieeeee e 61
14. Patterns of software system evolution for four different F/OSS systems........... 62
15. Application with Critical Vulnerabilities for Windows Vistac.ccceevuveennnen. 63

Vi

CHAPTER I

INTRODUCTION

Software engineering can be defined as the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance of
software. This process of development of software is achieved by using different
software life cycle models to design, code and test the software. The main purpose of the

software process model is to create reliable and security oriented software.

The software process model consists of several steps like collection of
requirements, designing the architecture, coding, testing and maintenance. Several
process models like the water fall model, spiral model and prototyping are used by
companies to create the software. But most of these models were designed for a single
generation of software. This is a major drawback because most of the software’s today
have started to have several versions and generations and the present models do not
support evolutionary software. For example software created today can be designed from
different models like waterfall or spiral, written in different languages like Java or VC++;
it can run on Windows or a Linux system and depends on the varied hardware
environment it runs on. With so many varied methods of development the idea of

software integration and quality in the software generations has become a major concern.

Some of the problems in the existing methods are that they are not designed to
produce generations of software. Also a single model cannot be used by different types of
companies as some are non iterative like the waterfall model and some are more ad hoc
like the extreme programming method. Researchers such as Dr. MM Lehman have
started to look into the degrading quality in software and have postulated the eight laws
of software evolution [1] to help companies to understand the importance of evolution in
software. Several challenges [2] have been found in the creation of evolutionary software
such as the models used, the human resource involved, and the support available to the
end user. From these challenges several new methods have been designed like the staged
model and the PSPM model. But these models give more importance to the maintenance

phase rather than the whole software life cycle.

In this paper, we propose solutions to problems in existing models by applying
some of the principles of evolution in biology and biochemistry to software, and an
abstract model has been generated. It is also a unification model of all the existing models
and evolutionary principles. The basic building blocks in biology are the DNA,
genotypes, phenotypes and enzymes. By altering these basic properties by the methods of
mutation and selection, nature is able to create evolution in organisms. These basic
principles of evolution were incorporated into the varying steps in the process model to
generate an evolutionary process model. The model is called the Infinity Model. It is
named so because its basic structure is based on the infinity symbol and it signifies the
continuous iteration of software for several generations. It consists of a completely new

design cycle with the importance given to both the creation of software and maintaining

the software. The main advantage of this model is that it is designed for evolutionary
software. In this model, methods to correct the problems in the existing models like
resource allocation, documentation and requirement updating have been incorporated.
Moreover several case studies of large company software and the problems they faced
were studied. From the case studies several methods like requirement evolution,

consolidation and architectural evolution have been incorporated into the Infinity Model.

In the next chapter, the reasons to improve the software process model are
assessed in detail. We then look into the various similarities between software and
biology and the various levels at which they can be compared. In Chapter three the
drawbacks in the existing software models are viewed and also the necessary
improvements are studied. In Chapter four the Infinity Model is proposed and the
different steps in the life cycle are looked at. In chapter five the first case study of the
various software models available today are studied as well as the disadvantages in these
models. The ideas and principles behind these models are explored. In the penultimate
chapter case studies from different companies are studied and the changes and ideas from

these case studies added into the Infinity Model. The thesis concludes in chapter 7.

CHAPTER II

REVIEW OF LITERATURE

Reasons to improve software development methods

As stated earlier software today can be written in different languages for varying
hardware and run on various operating systems. Over a period of time the requirements
and the expectations of the software seem to increase, but the quality of the software
seems to decrease [1]. The initial problem here is the method followed by large
companies to code their software. Even big operating system companies tend to release
software with known bugs and errors [9]. If the quality is not achieved in the first
generation of the code then it becomes tougher in the future generations. The process
model used will define the whole lifetime of the system. If the model is not good then the
system has to be reprogrammed from scratch once again, leading to a waste of human and

€conomic resources.

If one takes into consideration operating systems (OS), each and every operating
system has a different method of functioning and no two OS can communicate with each
other directly. The problem here is the methods used in the development process. Small
software companies therefore find it difficult to code software to run on all operating

systems. This makes them code a lot of drivers to run in different systems and change it

for newer generations. Hence the companies tend to write drivers with less quality.

Another issue is the methods of software development followed by the companies.

Even though there are so many models for creation, due to time and economical

constraints companies tend to perform various parts of the upgrade using the extreme

programming method. The main idea behind the extreme programming method is to

write codes in a simple fashion for immediate concerns without thinking of the future

[10]. Due to this the project goes to phase-out stage sooner.

When so many problems can occur in a single generation, the problem multiplies

for multi generation software. The various problems have been defined by the eight laws

of software evolution given by Dr. Lehman [1].

No. Brief Name Law
I [Continuing Change Etypo systems must be continually adapted else they become progressively less
1974 salisfactory.

I |Increasing Complexity
1974

Az an E-iype system evolves its complexity increases unless work is done 1o
maintain or reduce it

I (Self Regulaticn
1974

1 “iype system evolution process is self regulating with distribution of product
and process measures close to normal.

1980 [Stability (invarant work rate)

IV |Conservation of Organisational [The average effective global activity rate in an evolving E-‘-!-)'pi: system i3

jinvariant over product lifenme.

YV (Conservanon of Familiariiy
1980

VI [Continu ing Growth
1980

As oan E-lype system evolves all associated with it, developers, sales personnel,
users, for example, must maintain mastery of its content and behaviour [leh80a]
1o achieve satisfactory evolution. Excessive growth diminishes than mastery.
Hence the average incremental growth remains invariant as the system evolves,
The functional content of E-ivpe systems must be continually increased 1o
mainlain user satisfaction over their lifetime,

Wl |Declinimg Quality
14495

The guality of E-type systems will appear to be declining unless they are
rigorously maintained and adapted 1o operational envircnment changes.

VI |[Feedback System
1996 |(farst stated 1974,
formalised as law | 99%6)

E-type evolution processes constitwte multi-level, multi-loop, mult-agent
feedback systems and must be treated as such to achieve significant improvement
over any reasonable base.

Table 1: Laws of Software Evolution [1]

The challenges that are present today for evolutionary software have been
discussed in a workshop called Challenges on Soft-ware Evolution (ChaSE 2005) [2],
which was jointly organized by the ESF Research Network RELEASE (Research Links
to Explore and Advance Software Evolution) and the ERCIM Working Group on

Software Evolution. The table presenting the challenges in software evolution is given

below.

Rescarch target

Time lorizon

Stuclied artifact

Support type

Stakeholder

A presesving

lomig

AOlDWala sy ateim

Lol s, technigues, Tor-

developer, project

long-lived, large, com-
rlex imdusirial sofware
AW NS

arul i||::||'rr\|.n'i|:|g rmzelis s marEger, end aser
quality

n '.1:||.'|Iy.~e'i|:1g. rused v ProgrEms LTI ;l]'rpl. Trasrmme - researcher
IMAanagEing. work., exchangs for-
controllinge mats. interoperability

standarcs

| controlling. short miashels tonls, technigques. for- | softwarne ¢ nginecr
sUppraling mialisms

D | controsllinge. editm any pair of relabed anti- Lol 5 softwar: ¢ ngineer
sSUppHEaTing lacls

E | all Ty pes ol e ||1|.‘.4,i|'1|.||1-|L1:|1g Formeslisems Formmalismmes researc e r
senrch

F Lii'lll'lll‘“”illg., sl - |:||1g|:|a|g4.‘.h' |'rl|'||g|.|i|1.'l_'4.-..‘i.L OIS 'I;l.ngu.':g\-. :1;-.>.|.1y1-|,-.r.
supporting medium toenl builder. re-

searcher

Gi | controlling, medium-long | languages, software | tools, standards tos] builder
sUppHting SYSIC IS

H Managing. con- miedivm SOMMWAN: Proccss - AOMTWAN: Process - manager, software
tralling els els cliginecs

] FTrLd vanld ngr st [TFETIT e e lapiors execulives, kn-

T
¥ araalysing st wersion conirod Tools Lol 5 Tosd Bautilcler
K | analvsinge e ditum Al intormeation useiul to statistical moxdels, em- rescarcher
el insighi in o software | pivical staclies
syslem's evolulion
L | analysing medium-long | release histories of | technigques, ools rescarcher

Pl amclysing lomgr every Kind of evolving | empirical siudies researcher
artifact of 2 seftwiane
Sy siem
M analysing, pre- [shor- soffware sysiems precictive midels, | researcher
dicting e divm Measures, metrics
O | understanding. meclinm evaolving softwire sys- | benchmarks, exem- | researcher
COIMParimng teims plars
F | teaching short formmlisms, fechmigues, | course material teachers, studenis
towsls, theories
understanding. medim-long | everyihing everything rescarcher
suppEaiing:
E | controlling, short- langieames, execution | languages, execution | ool bailcder, end
M|.|.|1]H|-|'I:i|1j.z rossd dinnm 1ol lawr s plat forms, Prcyrrmnes [Tl

Table 2: Classification of software evolution challenges [2]

Several different methods and solutions have been discussed to solve the
challenges shown in the table. These challenges can be faced only by improving the
process models, languages and human training [2]. Software engineers are now at a stage
where they will have to rethink strategies to achieve better results and produce good
software. To achieve this, one of the main requirements is to create a better process
model to code the software. In order to achieve a better model, one does not have to
develop new algorithms which have no base model or tested strategy. One just has to
look into nature to see how a biological entity works and how ecology, even though being
so diverse with all the living organisms, can control evolution by a common inbuilt code
called the DNA. By looking into biology and software generation techniques, a better

process model can be built.

Similarities between software evolution and evolutionary biology

Nature controls all the organisms with a single code called DNA {B}. DNA is a
nucleic acid that contains the genetic instructions used in the development and
functioning of all known living organisms. By changing the DNA sequence in a micro
level the organism is able to perform drastic changes. For an example, although only 5%
of the chromosomes differ between a chimpanzee and a human, the difference between
these organisms is very huge. One has to look into nature at various levels (such as DNA
level, enzyme level, phenotype level etc...) to achieve a pattern and correlate our
software to a common pattern. By achieving this, software can be created in a more

quality oriented way.

This does not imply one can only compare software at the coding level. Software
also can be compared to evolutionary biology in the process model level. Several
questions like why mutation {C} happens, how nature does natural selection {D} and the
main characteristics of evolution that leads to the survivability of the organism can help
in creating an effective process model. Software and evolutionary biology can be
compared at two levels, the macro level and the micro level. This paper will investigate
the macro level idea first because only after the macro level black box is opened, will

researchers be able to open the micro level black box.

Macro Level Comparison

At the macro level comparison huge similarities can be found between evolution
and software. For example, if the program code is compared to DNA, then a single
installation of the code is a cell and the whole software base for that code installed in
different systems is an organism (organism is similar to installed base). The survival and
reproduction of the organism depends on the code and the environment it runs on
(environment is the hardware and user) [12]. Looking closely, both software and
biological organisms have many functions in common for example, both try to replicate,

repair and upgrade for the given conditions.

The process of repair and upgrade is done by the methods of mutation and
selection in nature (Mutation, Selection are similar to Software Life Cycle). Mutation

occurs when a DNA gene is damaged or changed in such a way as to alter the genetic

message carried by that gene. Natural selection is the process by which favorable traits
that are heritable become more common in successive generations of a population of
reproducing organisms, and unfavorable traits that are heritable become less common.

This is similar to the requirement collection and planning in software.

Comparing the relation between an OS and the other applications, one can find
the similarity to the symbiosis {G} in nature [12]. The term symbiosis can be used to
describe various degrees of the close relationship between organisms of different species.
The various device drivers and the operating system works in the form of symbiosis. But
the most important part for survival of both software and nature is co-evolution {H}. In
biology, co-evolution is the mutual evolutionary influence between two species. Co-
evolution in software is improving the dependent software together (such as the operating
system and the drivers), so that the quality and security in both the software is maintained
through the generations. When all these biological properties are incorporated into the

corresponding steps in software, it leads to the creation of evolutionary software.

Micro Level Comparison

Even though theoretical micro level comparison is possible at this time, the
methods to achieve software evolution at this level will not be possible, until the
architecture to create the evolutionary cycle in the macro level is defined. By taking a
closer look at the micro level comparison one can see that DNA and software have a lot

of similarities. For example, DNA is made of four codes - A, T, C and G and software is

made of binary codes - 0 and 1. In DNA even though there are four codes, A is
complementary to T and C to G. They always occur as pairs and that makes them more
like the binary code. Moreover the white blood cells available in DNA for protection
from viruses are similar to how an anti-virus tries to protect code. In nature when an
organism gets hurt, the white blood cells immediately try to quarantine the bad cells and
stop the bleeding and then try to kill the virus. Similarly in most of the anti-virus today

the virus code after detection is quarantined and deleted.

In nature, genotype describes the genetic constitution of an individual that is the
specific allelic makeup of an individual, usually with reference to a specific character
under consideration. The phenotype of an individual organism describes one of its traits
or characteristics that is measurable and that is expressed in only a subset of the
individuals within. The genotype-phenotype distinction must be drawn when trying to
understand the inheritance of traits and their evolution. This genotype {E} —phenotype
{F} modularity {I} and inheritance present in nature can be compared to the module-
function relation present in the software [12]. When the phenotype is changed the
genotype changes, similarly when a function is changed in the code the corresponding

module undergoes a change.

In nature, information is passed from DNA to RNA in the process of transcription
and from RNA to protein by translation. In software the assembly code is compiled to an
object code and that is executed to get the output. There are also similarities in the way

mutations take place. In software a singe function is taken and is changed according to

10

the newer requirements; in biology, DNA tries to change the parts which can make the
organism survive in the new environment. Even though the similarities can be seen in this
level one still has to first get a high-level pattern to achieve greater understanding into

how to convert a code to a DNA sequence.

Even though such similarities can be seen in evolutionary biology and software
evolution, there are a few differences also [13]. In biological evolution the pace is slow,
and the mutations that take place are random. However, in software the mutations are
decided in the requirement phase itself. Software has these variations because of human
involvement, but one does not have to copy nature completely to create the model, one

just has to wunderstand the principles and incorporate them into software.

11

CHAPTER III

METHODOLOGY

A new evolutionary biology based software process

Whenever a new idea is thought of, one will have to go back and look into other
process models and see their working methods. That is the main idea of evolution and so
that is also the first step for creating the Infinity Model. When one looks into the existing
software one can get a better idea for the need of a new evolutionary software process

model.

Existing Models

The most common place models available today are the waterfall model, spiral
model and extreme programming method. However when one looks into these software
models even though they may be useful in some projects, they will not be effective to
create an iterative cycle of integrated system software. In future, software is not going to
be a separate module or a part, each and every component is going to be virtualized and
the main requirement for those systems are going to be intercommunication, inter-
adaptability and security [14]. Many systems created today cannot run on other software
based systems and also if they are able to communicate their performance is poor. For

example even though the latest Apple systems allow Windows OS to run in their

12

hardware, the systems tend to overheat and some operations cannot be performed as done
in the Windows based system. Another example is when a lot of audio and video formats
are present with no particular media player to play, leading to usage of unsafe software

packages to run these files.

Going back to the models, in the waterfall model, once a step is crossed one
cannot go back to that step, and this makes it only usable in very simple software [15].
There is no iteration in the waterfall model and therefore developments and upgrades
cannot be done before all the steps are completed. This leads to wastage of time, cost and
human resource. The spiral model even though it is iterative, does not include cycles for
maintenance of the software. In this model if an error is found or a new idea is to be
incorporated, it cannot be done before going to the next cycle. The spiral models
disadvantage is that it comes back in the next cycle to do the correction, taking up a lot of
time and resources. Furthermore, there are no process steps for upgrades or patches, and
this leads companies to use other methods to change the code, and the original
architecture is lost. The extreme programming method even though effective for small
companies has some major flaws like minimum or no documentation, and no group
programming. The other models like prototyping are costly and can be used by only large

companies.

There are two other models designed to solve the problem of software evolution.

They are the staged model [11] and the PSPM software life cycle [16]. Both the models

are new and have been designed with the software maintenance perspective. Ideas have

13

been taken from them and incorporated into the Infinity Model.

There can be many kinds of models for small and less costly products which do
not go into an iterative process. However, for large projects with lot of iteration there
seems to be no universal process model and companies tend to build their own model,

which is not shared and which leads to software mismatch.

14

CHAPTER IV

PROPOSED MODEL

Infinity Model based on software biology

The model which is proposed in this paper is named the Infinity Model. The name
is to signify that this model is for processes and projects which keep going for
generations. Generation does not just mean a new version, but also upgrades and patches
within a single version. The main idea behind this process is iteration, but in a varied
style where both full cycles and half cycles of the model can be performed. The other
important advantages of this model are natural selection and future mutation. The ideas
that are going to be implemented from biology are genotype-phenotype hierarchy, gene-
robustness, and principles of symbiosis and gene duplication. These basic principles are
the building blocks in biology and this when incorporated into software gives a better

pattern, a simple and more effective design.

As stated before biology and software do have their differences and this leads us
to consider software evolution also. If a closer look is taken at the methods to develop
software, most of the software products today go in for updates and maintenance till the
phase-out of a generation. They then think about the next generation, and what changes

can be done in that generation but this will not help companies in the long run.

15

In the Infinity Model, the cycle does not start from the beginning but from the
middle. This can be better understood when the model is explained. The idea of starting
the process in the middle is to achieve half cycles in the process. The advantage of this is
if one sees a problem in the methods which have been used, even though the planning
and development methods are finished, instead of going into coding and then coming
back one can straight away go back to planning. Furthermore, when a new upgrade for a
part or a patch has to be done, developers need not wait till all the steps are completed,
but can go to coding with all the initial documentation they have and try to create the
code. By this the company can have a continuous research and feedback cycle, and all the
time somebody will be working in either cycle of the model. The proposed approach will

therefore save time and resources, while generating better code.

Whenever a project is started there are the issues of cost. The companies tend to
spend more time on coding rather than designing, and ultimately waste more time. It is
better to have a slow and steady process than to go into an overnight finished product.
This doesn’t mean the company has to spend extra cost. They just have to plan to do the

process in parallel.

The method to do this is during the requirement [16] and the planning steps more
time is spent, and during the coding step project is divided in to effective modules and
created in parallel. Moreover, testing is made a part of the whole project. When these
steps are followed, initially the projects pace may seem slow but during the later steps the

pace will be quicker and the programming will be very effective.

16

The various Steps of the Infinity Model are

1.

2.

Evolution Or Revolution

Requirements == Mutations

Planning == Selection

Development == Genetic Pattern Generation
Coding == DNA production

Testing == Repair

Packaging, Deployment and Feedback == DNA replication

The diagram given below gives the Infinity Model. The two cycles can be viewed, the

first cycle is called the diplomatic cycle and the second cycle is the technological cycle.

Infinity Model

Diplomatic Phase : Technological Phase

: : Coding & bleral

e E / Documentation \
Plning [v:?m Testing &
Documentation
Revolution

\ . /

Development ?&W

Figure 1: Infinity Model

17

Evolution or Revolution

The initial step is not planning but evolution or revolution. This is because the
main idea of the project is selection, and this has to be done from the initial step. The
selection that takes place here is, whether it is going to be creation of a next generation
for existing software (evolution) or creation of completely new software (revolution).
Even though evolutionary biology states that there is no macro evolution, in terms of
software there is something that gives us a better understanding; both the creators and the

methods of creation are known.

If the goal is going to be creating a new generation then it is an evolution, and
documentation of the old project is taken into the diplomatic cycle. Each and every
developer going to be involved has to work with the old product to get an idea of what
they are going to do. The most important function to be performed is the collection of all
feedback from previous users, and selection of properties which are going to be
continued. If it is going to be a new project then all the modules created for other projects
which can be used have to be collected. The competitor products available have to be
thoroughly researched. The people involved in this step are based on the selection of

evolution or revolution type.

Evolutionary cycle personnel involved

1. Project manager and programmers of existing generation

18

2. Second set of programmers to start work in new phase
3. Financial advisor (Experienced)

4. Client

5. Testers — Old generation and new recruits

6. Users of the Old generation

7. Private Reviewers

Revolutionary Cycle personnel

1. Experienced project manager
2. Quality oriented programmers
3. Financial advisor (committee)
4. Client

5. Private Reviewer

6. Testers (well experienced)

By doing the selection, a clear idea of how the project is going to be continued
and also who are going to be involved is found. If the project is a continuation, the
company already has the knowledge of the time and money that is going to be involved.
The project should involve more experienced people to maintain quality. However if it is
going to be a completely new project then more new developers can be used and fewer

number of experienced people are enough.

19

The Infinity Model has internal evolutions also other than the overall software

evolution, and these can be seen in the diagram below.

Evolution in Software

Organization Evolution

Human(-Machine) Evolution

Figure 2: Evolution layers [17]

After the evolution or revolution step the various other evolutions like the
requirement evolution and the architectural evolution take place. The necessity of these

evolutions can be understood from the table below.

| Evolution

| Dependability Perspective

Software Hwvo-
lution

Software evolution can affect dependability attributes (e.g., Reliabil-
ityl. Neverthaless software evoluticn ean improve dependability at-
tributes by feults removal and maintenance to satisfy new crising
requiraments.

Architecture
Evaolution

Architecture evolution is usually an expensive phenomenon. [t does
not affect directly dependability, but there is high risk if the evolution
process is unclear and little understood. Architecture evelution may
be needed to support specific systam properties (eg., redundancy,
Eelformance. ate,).

[Requirements
Evolution

Requirements evolition does ot directly afect dependability, but
non-effective managemert of the requirement orocess may allow un-
desired changes to fall down into the product affecting its dependabil-
ity. On the other hand requirements evolution may enhance system
dependability across subsequent releases.

System
Evalution

System evolution mway give rise to undependability. This is due to in-
complete evolation of system resources. Evolution of some resources
(e.g., software) should bz taken into account by the other resources
(e.g., liveware and hardware) in order to regster a new configura-
tion for the system. Hence the interactions among resoirces serve to
effectively deploy a new system configuration.

Human
(-Computer)
Evalution

Human ean resct and learn how to deal with undependable situstions,
but continuows changes in the system configuration may give rise to
little understending about the systam, Henee the human-computer
interaction may become quite undependable as well,

Organization
Evolution

Orzanization svolution should reflect system evolution. Little coordi-
nation between system evolution and orgenization evolution may give
rise to undependablity.

Table 3: Dependability perspective of Evolution [17, 20, and 21]

Requirements (Mutations)

The next step after making the decision of going into an evolutionary cycle or a
revolutionary project is to get the requirements. In nature, the requirements that are

collected are the change in the climate, predators and ecology. This leads to the

21

survivability and the adaptability of an organism. Nature takes in the input and does the
process of mutation. It generates both good and bad mutations. Next using the process of
selection, the good mutation (those that survive) are left and the bad mutations disappear.
Even though the path followed by nature is at a slow pace, the important thing for
software is, all the ideas generated during the requirement phase should be reviewed and
documented. The most important concept in evolution is to understand that mutation is
not the end of evolution but the beginning of a new one. Once a mutation takes place, a
set of new mutations take place to support the change and standardize it. Similarly in
software, the requirements are the starting step. Any new requirement is a starting point
for a number of future requirements which will arise within the software life cycle or

after a generation is released.

A continuous method of collection and implementation of the requirements is
necessary. This is achieved by getting all the ideas (requirements) noted down and
including them in the document. By this when the new project is going into generation all
the old ideas can be looked up, and useful ones can be applied to the new phase. After
getting all the requirements, they have to be arranged in the order of most interesting
ideas to the least ones and the most applicable ideas to the least ones. This has to be
documented and read by all the people involved in the project team before they come into
the planning phase. By doing this, the groups when coding, can look up the other
requirements and try to create modules in such a way that they can accommodate those

requirements in the future.

22

The requirement maturity index [18, 19] for the software package is given by

RMI=RT -RC/RT

Where RMI is the requirement maturity index, RT is the total number of requirements
and RC is total number of changes. Using this formula, engineers can decide the change
in the size of the project and also the human resource involvement required. If the RMI
increases then the complexity of the code will increase, and more testing will be required

for the project.

In the Infinity Model, the requirement phase is performed with a different group

of people to collect different types of data for both the cycles. The requirements will vary

for both the cycles and the different requirements can be seen below.

Evolutionary requirement

The new set of requirements for this cycle is obtained from a number of people
1. Feedback from users
2. Requirements from the client
3. Ideas from the previous creators
4. Future changes that need to be done based on the software and hardware.
Checking into the future is required because the environment it is going to be

deployed into may change before the project is released. The requirements collection will

23

have to proceed till the planned generation may exist theoretically in some form.

Revolution requirement

1. Complete requirement from the client
2. Questionnaire requirement from the future user

3. Future requirements if the product is going to go into cycles

The grouping of requirement engineering questions

1. Requirements Management Compliance 10. Requirements Description

2. Business Tolerance Requirements 11. System Modelling

3. Business Performance Requirements 12. Functional Requirements

4. Requirements Elicitation 13. Non Functional Requirements
5. Requirements Analysis Negotiation 14. Portability Requirements

6. Requirements Validation 15. System Interface

7. Requirements Management 16. Requirements Viewpoints

8. Requirements Evolution & Maintenance 17. Product-Line Requirements
9. Requirements Process Deliverables 18. Failure Impact Requirements

Figure 3: Requirement engineering questions [17, 20]

Even though the project may be new to the company, if the company is planning
to venture into the market of the new software then a detailed study of how it is going to
work in the future has to be made in this phase. By doing this the company can decide

how to plan the human resource and the cost required for the project.

24

Planning (Selection)

The planning phase is the phase of selection. In evolution even though a number
of mutants are created by nature, only those that survive are selected to be replicated. For
example when organisms started the generation of an eye, initially most of the organism
types did not have the biochemical components for an eye in them. When a change in the
DNA {B} led for the creation of a single cell biochemical reaction, it was replicated in all
the offsprings, and today almost all the organisms have some type of eye component in

them. The eye of each and every organism has improved on the environment it lives.

In software there is a necessity to produce successful products, but how one can
relate to evolution is by checking the survivability of software in the past and creating the
new generation [22]. For example, in the past the graphical user interface for software
was not available. All the computers worked on character based interface, but once the
graphical user interface came into existence all software were made with visual interface.
This leads to the point where during planning of software the visual aesthetics of the code
have to be given a lot of importance. Furthermore, planning the look and feel of the

software has to be discussed to get a successful product in the first release itself.

In the Infinity Model, during the planning phase the number of people should be
high to perform a better selection of the requirements. They should be divided into
groups. They will have to discuss about the various requirements to be selected for that

generation. Then all the groups have to present their selection. The method of voting has

25

to be used to make the final selection of requirements from the different groups.

The groups should be allowed to make decisions on all parts of the project. The
group should consist of all the people who are going to be involved in the process like the
programmers, testers, hardware engineers, financial consultants, human resource

managers and the clients.

Things to be planned

1. What kind of resources will be required
2. How the project is going to be performed
3. Language
4. Hardware Environment
5. Tools
6. The number of layers in the project
7. Future improvements and methods to allow them
8. Functions to be reused
9. Functions to be changed
10. What will be the size of the group
11. Time and cost analysis
12. People going to be involved
a. Programmers

b. Testers

26

Development (Genetic Pattern generation)

The development phase is where the real architecture is decided. The most
important part in biological evolution is whenever a new DNA sequence helps the
organism’s survival it is incorporated into the existing DNA structure. When the
organism reproduces, the basic DNA code of the organism has the instruction for the next
generation DNA sequences also. The idea behind this is even if mutations are performed

in the organism continuously only the code of the surviving pattern is replicated.

In software when creating an algorithm or a flow chart the most important thing to
remember is that the properties of the old generation that survived and were liked by the
users have to be repeated. The general structure should always be maintained to improve

the success and security of the software.

In the development phase, a new evolutionary step starts which is the architecture
evolution. Here all the requirements are designed into a formal architecture. This leads to
new requirements and changes [17, 22] that have to be incorporated for standardizing the
architecture. The development phase is never ending and will always have to be repeated
to improve the system. The algorithms and the flowchart of the project are going to be
developed here. During the development the number of layers in the project and the
functions of the project have to be decided. For this group meetings have to be arranged
and the full group has to meet at the starting and at the end of the project. This is to make

sure that every one has an idea of the pattern that is going to be used in the project.

27

During the end meeting a person from an old project or some other project has to be
called to inspect the phase, to make sure the planned components can be achieved with
the architecture. The layers have to be decided to allocate coding groups according to
each layer. The layers make it easy to calculate the time to be spent in the project.
Examples for layers are the basic kernel level, the visual display level etc. The
architectural properties which are decided here are functions, modules, GUI, partner

software compatibility and security.

The biological concepts which are integrated in this phase are the gene-robustness
{I}, genotypes {E}, phenotypes {F} and symbiosis {G}. By incorporating gene-
robustness architectural stability is achieved. The core properties (inner most modules) of
the code are well secured and changes to them is limited. This is done to make the base
strong and secured. The internal kernel can undergo only minimal change in a generation
to safeguard the quality of the software. The genotypes and phenotypes are the modules
and functions that are going to be used in the project. In nature, when the phenotype is
changed the genotype changes accordingly. The genotypes are modular, and this helps to
reduce virus attacks. By making software more modular it is easier to make more changes
and also remove modules if they are not working. The last is the symbiosis; while
designing the system the architecture includes all the other codes which are going to
survive on the main code (kernel). These codes also share the hardware environment with
the main projects code. All these codes have to be collected and documented. This
information is important to standardize the functionality and the reliability of the code in

the hardware environment. By incorporating these biological concepts the survivability of

28

the software increases.

Group personnel

1. Project manager

2. Programmers

3. Testers

4. Client

5. Outside project manager

6. Financial advisor

Evolution OR Revolution

By coming back to this step the changes in the state of the project can be studied.
For example different companies may have come up with similar products. New ideas
which could get a breakthrough may have been found. Changes to the architecture to
improve it or a new virus might have been found which could affect the code just
decided. A project cannot be stopped for up-gradations, but the developers can start a
new half cycle in the Infinity Model to look at methods to repair or improve the product
[2, 17, and 25]. This cannot be done at the end of the project because of the time delay.
Original ideas may be lost and changes that could have saved the system would
ultimately lead to a huge loss. At the beginning of the project the ideas are varied, and

groups involved want a lot of different things. Even though they may have sounded

29

promising at the beginning, when the development phase is reached people have more
understanding to the project and realize its limitations. They are then in a better position

to make better decisions on where improvements could be really made.

To achieve a better result from the project, the developers will have to redo the
selection of evolution or revolution. By doing this a pattern can be generated, and if a
new idea is found to improve the project or correct the problems found during the
algorithm generation, it can be sent to the next evolutionary cycle. If a completely new
requirement (an extra tool) outside the pattern is found then it goes to the revolutionary
cycle. This recycle is not done by the old personnel who are going into the technological
cycle, but by a new team who have been looking into the project from the outside from
the beginning. This new team starts the work on the improvements and by doing this the
company can have two teams who have a good idea of the project. The security and
upgrading can be done with little problems as the product has been in a continuous

improvement cycle.

Personnel Involved

1. Project manager (Two people)
2. Tester (One or Two teams)

3. Programmers (Two Teams)

4. Client

5. Financial consultant

30

The original group should be used in the initial stage along with the new group. The
second group should take over and start the process again if there is place for

development.

Technological Cycle

The second cycle in the Infinity Model performs the technical side of the project.
This cycle is more private. It involves only company workers like programmers and
testers. However in the final step, the client is brought back to perform problem solving
and provide feedback. Software maintenance [2] is basically performed in this cycle. The
main advantage of the Infinity Model is to allow software maintenance to be a cycle in

the iterative model rather than a separate step.

Many companies perform updating and correction of large projects by a method
called the extreme programming style. This is a separate method and is not a part of the
original process model. The main difference in the Infinity Model is to standardize the
methods and help companies to achieve better results than the methods they already
employ. For example even though extreme programming [10] is used to reduce time, the
amount of material the company has before starting coding is very limited and this leads

to programming errors and loop holes.

In the Infinity Model this cycle is a repetition. By performing this part of the cycle

31

alone the architecture of the program is maintained, and newer changes are being
incorporated in the documentation. This cycle performs the upgrading and error

corrections. This cycle reduces the complexity and increases the quality of the software.

Coding and Internal Documentation (DNA production)

This is the start of the second cycle. The architecture is decided and algorithms
are given to the various groups. The groups were decided by the project manager and the
human resource personnel in the previous phase. The programmers are given the
functions and layers which they are going to code. The standard methods for inducing
security in the code [23, 24] are provided. A few years ago security in software [14] was
not a big issue and programmers where coding using different methods. With the latest
security threats, there is a need for programming methods with internal security. This can
be found in biology were DNA {B} has an internal code for repair called the white blood

cells [6].

The purpose of these cells is to quarantine and heel the parts which are affected
and protect the parts which are not. Whenever a DNA is created the basic pattern of
repair is also coded with it in all the repetitions, and it makes it easy for the organism to
detect viruses. For example if humans were attached by a virus, the body tries to increase
the body temperature and give symptoms to inform of the attack. It does not go straight
down to shutdown mode. Similar methods have to be performed in the coding phase. The

functions when joined have to coexist and protect themselves when attacked [16, 24].

32

Check points and internal testing have to be constructed within the program.

The programmers have to follow the algorithm created in the development phase
seriously. No deviations are allowed from the main specs. Programmers also have to do
some testing before giving it to the test group. The tests should be in the form of grey box
testing [24] and should test the basic requirements. This has to be performed by the group
which did that particular module of the program and also by the groups which performed

the predecessor and successor modules.

Personnel Involved

1. Project manager
2. Programmers

3. Testers

This phase alone can be used to perform upgrades and maintenance. To do this the
company will have to create an algorithm to allow the changes in the architecture. The
algorithm should follow the pattern of the existing code and have the security measures
inbuilt in code. The group which does the program has to see the issues which led to
problems in the code, and try to create code patches without creating dormant code. The
style of programming differes according to the project size; for large projects larger
groups are used and a single group does a single module. For smaller projects, pair

programming is used.

33

Testing and Documentation (Repair)

Testing [26] is the toughest part of the cycle. The testers will have to check if the
product meets requirements, and if the quality and security issues are met. They have to
look into the code without any prejudice and see if the code follows the check points, if
the algorithm was followed and if any dormant code was created. The tester should be
given permission to question the programmers on the parts which are doubtful. On the
whole, the project depends more on the testers than on the programmers. If the tester

misses an error, it leads to loss that cannot be corrected in that version.

Testing is the place where real mutations happen. The testers are the first users to
find new requirements, changes for the next generation and the necessary updates. They
give out not only the errors, but also the necessary first hand information on how the

product works and also the parts which need change.

As the testers have been involved with the project from the start, they should
create test modules before the programmers do the coding. They should also generate
tests to check the check points and virus checking mechanisms constructed into the
program. Extensive black box testing should then be performed and if the outputs are
wrong then white box testing is done. Some level of mutation testing has to be performed
to check for random errors that could have been created by the programmer. Testing
should be done not only by the personnel involved, but also by the client at the end to

make sure it meets the requirement. This is because, correcting a product already into

34

production is tougher and would be a lot easier if there is an unofficial check by the client
beforehand. If it is a product like an operating system then the workers of the company
have to be made to use the product. The inputs have to be used by the testers and

programmers.

Documentation is an internal part of testing and the documents have to be updated
continuously to report a success or a failure. If there is a failure then the reason for its
occurrence and the corrective steps have to be documented. After the corrections are

mode, the changed modules and results should be attached to the document.

Personnel Involved

1. Test Lead
2. Junior Tester
3. Client
4. Programmer if required
Testing is similar to planning, but here the selection takes place on the parts of the

code to be upgraded and the changes that need be made.

Packaging, Deployment and Feedback (DNA Replication)

This is the last step in a single cycle of the Infinity model. This by itself is not a

maintenance step like the waterfall model or the spiral model [23, 24, 28, and 29]. This is

35

because maintenance is not a single step. Based on the feedback the maintenance may

require a full cycle or a half cycle repetition to get the required result.

The first part of this step is packaging. The overall packaging of the software and
all the help utilities decides the survivability. In the finished product, the necessary help
topics are added to the code from the documentation. The next part is deployment. It may
be done in beta versions or as a full version. If it is released in beta then the feedback is
initiated in a large scale. If it is the full version the maintenance phase of the project
begins. The feedback is a multi-level, multi-loop and multi-user feedback. The feedback
is the most important step for any evolutionary product. The general public or users tend
to use the project in a way not decided by the creators and therefore are more likely to

suggest new ideas and report errors.

This is not an end step but the start of evolution for this generation and the next
[16]. The feedback from the help desk is the most important part of the documentation for
the evolutionary process model. The company will have to document all the new ideas
and errors without repetition. By doing this, when the cycle goes back to the evolution or

the revolution step the teams can sit around and analyze the next generation.

Personnel Involved

1. Help topic documentation writers

2. Project manager

36

3. Programmer (Any of the Two groups)

4. Client

In the next step of Evolution or Revolution, the updates and changes from the
feedback are done. The decision to go back to the diplomatic cycle is made.
Consolidation of the changes in equal intervals of time is done based on the number of
requirement changes (RMI). After all the parts are finished the company goes back to the
initial step. Here decisions to improve the product are made. The economical gains
achieved and the other clients for the product are explored. This is similar to nature where
the survivability and adaptability of the new organism [12, 13] is tested continuously. All
this leads to the next generation of the organism or software. The human resources
involved in this step are the programmers, testers and the clients. They have to decide
whether it is going to be a half cycle or the full cycle for upgrading the software. This is

the last step in a single full cycle.

In the figure below, the various steps are divided into appropriate parts. There are
two important cycles; they are the requirement — feedback cycle [17, 20] and the
development - coding cycle. Both provide requirements to the software in different ways.
The feedback — requirement cycle provides new ideas, consolidation and updates to be
added to the generation. The development - coding cycle allows changes which are used
to correct the requirements which are already available, and by natural selection the

required properties are incorporated in to the final product.

37

Infinity Model

Technological Phase

Coding & Internal
' Documentation {

Testing &
Documentation

Diplomatic Phase

Feedback - Requirement Cycle Develaptet - Coding Cycle

e

Figure 4: Loops in Infinity Model

The Infinity model is an abstract model designed to help evolutionary software
and improve the methods of production of software. The Infinity model incorporates
several evolutions like the requirement evolution [17], architectural evolution [20],
system evolution [17, 21] and software evolution. It also contains the basic principles of
evolutionary biology. The model is designed in a way that any kind of company, small or

large could use it to design software

The Infinity model is designed to reduce the economical constraints [30] present
in evolutionary and legacy software. This is done by giving methods and ideas to
improve the human resource usage, time reduction and economic reuse of the functions in
the previous generations. Any company can take up the model and customize it to
incorporate the company policies and procedures. The process model is itself a starting

step for mutations.

38

CHAPTER V

CASE STUDY: SOFTWARE PROCESS MODEL EVALUATION

In this chapter the methods followed by the existing process models are looked in
depth. The models disadvantages for evolutionary software are given in the form of a
critique. The models looked into are the waterfall model, spiral model, prototyping,

extreme programming, staged model and the PSPM model.

Waterfall Model

The waterfall model [23] is a purely sequential method of performing software
engineering. The first step is the requirement collection and after all the requirements are
obtained the process moves to design. In the design stage the method of development of
the software is planned and the architecture of the software is created. When the design is
fully completed, an implementation of that design is made by coders. During the coding
phase several programmers work in small teams and develop separate parts of the
software. At the end of this phase all the parts are integrated. After the implementation
and integration phases are complete, the software product is tested and debugged. Any
faults introduced in earlier phases are removed here. Then the software product is
installed, and maintenance is performed to introduce new functionality and remove

CITOrS.

39

Thus, in the waterfall model the team moves from one phase to the next only after
the preceding phase is completed and perfected. Phases of development in the waterfall
model are discrete, and there is no jumping back and forth or overlap between them.
However, there are various modified waterfall models that may include slight or major

variations upon this process.

System requirement

Software requirement

Analysis

Design

Coding

Testing

Maintenance

Figure 5: Waterfall Model [23]

Critique

The waterfall model is the classic model. All the steps of software development
are defined in this model, but its major disadvantage is that it has no iteration [23, 31].
Unless those who specify requirements are highly competent, it is difficult to know

exactly what is needed in each phase of the software process before time is spent in the

40

following phase [32]. The design phase may need feedback from the implementation
phase to identify problem design areas. The main idea behind the waterfall model is that
experienced designers may have worked on similar systems before, and so may be able to
accurately predict problem areas. Because of this, the developers do not have to spent
time in doing prototyping and implementing [32, 33]. Continous testing from the design,
implementation and verification phases is required to validate the phases preceding them.
Constant prototype design work is needed to ensure that requirements are non-
contradictory and possible to fulfill. The implementation has to be performed continously
to find and inform the problem areas to the design process. Constant integration and
verification of the implemented code is necessary to ensure that implementation remains
on track [33]. The counter-argument for the waterfall model is that constant
implementation and testing to validate the design and requirements is only needed if the
introduction of bugs is likely to be a problem. Frequent incremental builds are often

needed to build confidence for a software production team and their client.

It is difficult to estimate time and cost for each phase of the process without doing
some evaluation work in that phase, unless those estimating time and cost are highly
experienced with the type of software product. The waterfall model brings no formal
means of exercising management control over a project and planning. Moreover control
and risk management are not covered within the model [31, 33]. Very specific skill sets
are required for each phase; thus there is a requirement for multiple projects to run in
sequence to optimize resource use. All members have to stay through the course of a

given project, or the company will suffer skill levels by using inexperienced resources.

41

Spiral Model

The spiral model [24], also known as the spiral lifecycle model, is a systems
development method (SDM). This model of development combines the features of the
prototyping model and the waterfall model. The spiral model is intended for large,

expensive, and complicated projects.

The working of the spiral model starts with collecting of requirements. The new
system’s requirements are defined in detail. This usually involves interviewing a number
of users representing all the external or internal users and other aspects of the existing
system. A preliminary design is created for the new system. A prototype of the new
system is constructed from the preliminary design. This is usually a scaled-down system,
and represents an approximation of the characteristics of the final product. A second
prototype is evolved by a fourfold procedure: evaluating the first prototype; defining the
requirements of the second prototype; planning and designing the second prototype;
constructing and testing the second prototype. At the customer's option, the entire project
can be aborted if the risk is deemed too great. Risk factors might involve development
cost overruns, operating-cost miscalculation, or any other factor that could, in the

customer's judgment, result in a less-than-satisfactory final product.

The existing prototype is evaluated in the same manner as was the previous
prototype, and, if necessary, another prototype is developed from it according to the
fourfold procedure outlined above. The preceding steps are iterated until the customer is
satisfied that the refined prototype represents the final product desired. The final system

is constructed, based on the refined prototype. The final system is thoroughly evaluated

42

and tested. Routine maintenance is carried out on a continuing basis to prevent large-

scale failures and to minimize downtime.

&»
Curriulakive
cont
,__q“
Progradad
traugh

Al

Evalrate alernatives,

Dredermine idantily, reaciva rinks

abjmctiven,
allarnalives,
conetrsints

Fish
analysls

Flask
anaky- | mmnr,-“‘ Cammrmticnml
G Coammitmmsm M | = mrotEiyEe
N artitien X e — Eimulaticna, madais, Banchmars
Faguiramenta plan T —_— —— pidi =
la-cycls plan E‘“"f;ﬂr‘m ————
e Softwara Dot
recuIrsmantn Boliwnrs f“w
kit dasign
Devmlap- Hequiramenis denEgn _———
miang plan g winlid atian o
intenidtion | Casign vandatien
N':’; mnd vardiceation jand mat
Implarnantatian] Acceptanca |
o=t i
Fian noxt phasess | i
Drarvarlops, warily
naxt-lavel product
Figure 6: Spiral Model [24]
Critique

This is the first model which used iterative cycles to produce software and there
are a few disadvantages with the model [34]. The model takes a lot of time to finish one
cycle. The risk assessment needed by the model cannot be done by all companies in the
beginning of the software development itself. Because of the risk assessment companies
will not be able to use it in general software production [35]. The process guidance in
determining objectives, constraints, and alternatives are not explicitly defined. Most of

the companies lack risk assessment expertise.

43

The assessment of project risks and their resolution is not an easy task. A lot of
experience in software projects is necessary to accomplish this task successfully [34, 35].
Because of the dynamic and risk driven approach of this model, the phase products and

milestones are hard to define.

The main disadvantage from the point of view of software evolution is that it does
not perform any cycle for the maintenance of the generation. The time spent for the single
generation is good for real time products but cannot be used by commercial companies. It
is also expensive and requires a lot of prototypes. The time consumption and human
recourse distribution is not explained for the maintenance part of the software
development. Due to the well defined structure of the spiral model all the companies
cannot use it effectively. The time and cost do not allow small companies to perform such
large procedures and expertise [35]. It is however the best model for projects which

require reliability and quality at the highest standards.

Prototyping

Software prototyping [28] is the process of creating an incomplete model of the
future software program. This model is used to let the users have a first idea of the
completed program or allow the clients to evaluate the program. The main advantage of
prototype is the software designer and implementer can obtain feedback from the users
early in the project. The client and the contractor can compare if the software made

matches to the software specification, according to which the software program is built. It

44

also allows the software engineer some insight into the accuracy of initial project

estimates and whether the deadlines and milestones proposed can be successfully met.

The process of prototyping involves the following steps [28]

1. Identify Requirements: Determine basic requirements including the input and output
information desired. Details, such as security, can typically be ignored.

2. Develop Prototype: The initial prototype is developed that includes only user
interfaces.

3. Review: The customers, including end-users, examine the prototype and provide
feedback on additions or changes.

4. Revise and Enhance the Prototype: Using the feedback both the specifications and the
prototype can be improved. Negotiation about what is within the scope of the
contract/product may be necessary. If changes are introduced then a repeat of steps three

and four may be needed.

Critique

The focus on a limited prototype can distract developers from properly analyzing
the complete project [36]. This can lead to overlooking better solutions, preparation of
incomplete specifications or the conversion of limited prototypes into poorly engineered
final projects that are hard to maintain. Further, since a prototype is limited in
functionality it may not scale well if the prototype is used as the basis of a final
deliverable. This may not be noticed if developers are too focused on building a

prototype as a model [37]. Users can begin to think that a prototype, intended to be

45

thrown away, is actually a final system that merely needs to be finished or polished. This
can lead them to expect the prototype to accurately model the performance of the final
system when this is not the intent of the developers. Users can also become attached to
features that were included in a prototype for consideration and then removed from the
specification for a final system [36, 37]. If users are able to require all proposed features
be included in the final system this can lead to feature creep. Developers can also become
attached to prototypes they have spent a great deal of effort producing; this can lead to
problems like attempting to convert a limited prototype into a final system when it does
not have an appropriate underlying architecture. It cannot be used by small companies
because of the cost. It is an expensive method of software development which includes
several prototypes. The prototypes take a lot of time for creation and the company may
skip important requirements to reduce the time. This leads to incomplete generations of

software.

Extreme Programming

Extreme Programming [29] is the mostly widely used agile methodology to date.
Originally formulated by Kent Beck with collaborators such as Ron Jefferies and Martin
Fowler, XP consists of approximately twelve interconnected practices, making it the most
well-defined agile process. It has been adopted by development groups around the world

in a variety of different companies.

The twelve practices of XP are: [29]

A. Planning Game

46

B. Small Releases

C. Customer Acceptance Tests
D. Simple Design

E. Pair Programming

F. Test-Driven Development
G. Refactoring

H. Continuous Integration

I. Collective Code Ownership
J. Coding Standards

K. Metaphor

L. Sustainable Pace

Test Scenatios

User Stories Mew User Story
Requirements Froject Yalocity Bugs

Releasze Latest Custamer

: Syst
Arclutt?cturalmgta;r:gr Rﬁleas': Plan | Ttepation [¥rsion Acceptance approval. Small
Spike Planning & Tests Releases
&, =N
Uncertain (‘ J Confident w
Estimates Ectimates
Spike
Figure 7: Extreme Programming [38]
Critique

The principles of extreme programming are to reduce cost and time and make it
usable by everyone [39]. The biggest problem with this method is that it does not look for

quality and reliability. The companies tend to use informal and flexible methods for

47

servicing which leads to lot of loop holes in the software, and people trying to service it
in the future do not have a complete idea of what was done. Groups to control the
changes in the code are being used by the companies using extreme programming and
this is a sign that there are potential conflicts in project objectives and constraints
between multiple users [40]. XP's expedited methodology is somewhat dependent on
programmers being able to assume a unified client viewpoint, so the programmer can
concentrate on coding rather than documentation of compromise objectives and
constraints [39, 40]. This also applies when multiple programming organizations are

involved, particularly organizations which compete for shares of projects.

The problems with extreme programming in case of quality are requirements are
expressed as automated acceptance tests rather than specification documents.
Requirements are defined incrementally, rather than trying to get them all in advance.

Software developers are required to work in pairs.

There is no big design up front. Most of the design activity takes place on the fly
and incrementally, starting with the simplest thing that could possibly work and adding
complexity only when it's required by failing tests [40]. A customer representative is
attached to the project. This role can become a single-point-of-failure for the project, and
some people have found it to be a source of stress. There is also the danger of micro-
management by a non-technical representative trying to dictate the use of technical

software features and architecture.

Extreme programming can be used in small software which have minimal cost

and time involved. This software tends to be the weak links for the virus to attack.

48

However, it has been claimed that XP has been used successfully on teams of over a
hundred developers [39]. It is not that extreme programming doesn't scale, just that few
people have tried to scale it, and proponents of XP refuse to speculate on this facet of the

process.

The Staged Software Life Cycle Model

According to the staged model [11], the life cycle of a software system starts with
initial development where a first functional version of the software is produced. Then the
software moves on to evolution stage, during which the system’s functionality is
enhanced or adopted to satisfy the user’s requirements. The servicing phase allows minor
repairs and small functional changes only. From there, it is inevitable that the system
eventually passes on to the phase-out stage where the system is being kept alive but is not
changed any more. This is because no developer or maintainer dares to touch the system

after that. Finally, the system is closed down and replaced by the next generation.

Initial development

First running -
versian ¥y FEvolutian changes

Evalution

Loss of avolvability L.
¥ Servidng patches

Sendcing

Servicing discaontinued \

Phasequt
Switchaff g

Closedown

Figure 8: Staged Model [11]

49

Critique

This model was designed to improve the working of large systems [16]. It
certainly helps in discussions between management and technical staff about the state of
a system and necessary technical decisions, and their consequences. However, it is not
well defined on issues that would be important for constructive improving of system
evolution. The model does not give any ideas on how to stay in the evolution stage as
long as possible. It uses, but does not define the term architectural integrity that according
to the model, seems to be one of the major pillars on which evolution of the software

relies [11].

It also states that systems can not return from servicing back into evolution. There
are several counterexamples to this, if one thinks for example of Open Source Software
such as Linux or commercial products, such as SAP, that were successfully serviced and
evolved in several iterations over long periods of time [16]. A new user looking at the
model may come to the conclusion that the initial development is viewed separately from
the rest of the life cycle. The initial phase has a decisive impact on the life-time of the
system. Long running initial developments also are themselves composed out of

evolution and servicing steps.

Even though the model gives a good idea of the various maintenance phases it

does not define how a company can move back into other phases and it also does not give

a complete evolutionary model.

50

PSPM model

The main idea behind the PSPM model [16] is that from the starting of the life
cycle the system enters a process that alternates between evolution and consolidation
phases.

The consolidation phase constitutes the bottom-up portion of the process. The
existing system is taken and modified according to technical aspects without actually
adding new features but changing what is already there. The evolution phase is the top-
down part of the PSPM. In this phase, requirements are elicited; refined and
corresponding features are integrated into the system. The primary focus of this phase is
to implement the requirements. The PSPM differs from other iterative processes models

significantly by respecting the role of both activities at the process level.

This process spans the complete life cycle of the system until its phase out.
Between the major phase’s evolution and consolidation, the system is serviced, that is
minor corrections or enhancements are performed. The other main idea is that the single
servicing activity cannot degrade the quality of system but small changes over a long

time tends to weaken the system and pushes it to a phase out stage.

Saniing
Evalution PSPM Consolidaton
Saning
Stant of System Developmeant Phase Out

Figure 9: PSPM Model [16]

51

Critique

This model is very basic and gives a method to perform evolution in a
constructive way, but this model does not give the steps to be used for evolution or the
time to be spent on the servicing and consolidation steps. The model just states that at
equal intervals of time the whole code is to be consolidated. However when evolution
occurs and a new phase is released consolidating the old phase will be of less usage to a
company as they will be concentrating more on the new evolution [16]. The next biggest
advantage in this model is it helps software to stay in the evolution stage till the company

wants the software to phase-out, but this may lead to a legacy system.

After collecting all the advantages and disadvantages of the various models, we
created a table comparing the existing models with the Infinity Model. In the table the
important properties required for software evolution are compared for the different
models. The comparison of the various models gives us the advantages of the Infinity

model for creating evolutionary software. This can be noted from the table below.

52

Properties

Water Fall
Model

Prototyping

Extreme
Programming

Staged
Mode!

PSP
Model

Infinity
Model

Iteration No Tes Ves Ves NA NA Tes
Quality Yes Yes Vs No Ves VA Ves
Onented

Rk Tes Tea Ves ND NA NA Tes

Azszaament

Partial

Time
C otizuming

Human | Experienced | Partal Patal | Experienced | Partial NA Partial
Resouree
Ewltonary | No No = No Yes Yes Ves
Maintenance
Time and Tes Tes I ND No NA Tes
Cost Analvsg
Cotsolidation No No No Np No Tes Vet
Pair No No No Yes No NA Ves

Prosramming

Typesof
Project

14

Sml'.i

Large

Large

Model Tvpe

Well
Defined

Abstract

NA

Servidng No No No Yes Yes Ves Ves
Requirement | No Yes Yes Ve NA NA Yes
- Feedback
cvcle
Ewolufonary | No No Yes No Yes Yes Yes
PIOCEs Mainfznance | Mainienance
el

Table 4: Comparison between different software life cycle models

53

CHAPTER VI

CASE STUDY: EXAMPLES FROM COMPANY SOFTWARE

In this chapter, various problems faced by different types of companies due to
software evolution are studied. The case studies cover different types of software such as
operating systems, embedded software, real time software and device drivers. The
methods incorporated into the Infinity Model to improve the problems in these case
studies are described at the end of each case study. The final case study is about evolution
in a biological organism (lizard). From this case study the necessary mechanisms for
survival of an organism are studied and the comparative software mechanisms are

incorporated into the Infinity Model.

Avionics case study

In an avionics case study [41, 42], the evolution of requirement in a real time
software environment is studied. In the case study, the authors have published the various
stages the software goes through. They have showed that the requirement phase is not a
single entity but takes place through out the life of the software. To understand this better

the important points of avionics case study are shown in this paper. In the case study 22

54

releases [17, 41] of the different generations of the avionics software were taken and

requirement changes that occurred in the generations of software were displayed.

A closer look into the study shows the requirements for software constantly
change within a generation of the software and updating for the old software is required

constantly. This can be better understood from the diagram below.

R 7 ohal Muesbe of R ieoeets
Acdee Deteted anve! Modfed (5

@ w gy ernaein O oy pem

e Ll

Sotawe Heisasan

Figure 10: Number of requirement changes per software release [41]

® Tow Wirmber of Neguamemass (F

¥ Hegaisrrehe
-

Scframrs YMetomsan

Figure 11: Total number of requirements per software release [17, 41]

55

From the picture above one can find that the number of requirement changes is
very few when a completely new generation comes out. Moreover the requirements grew
drastically [42] with succeeding generations. This shows that the rate of requirements
goes up in comparison to the complexity of the software. The constant need for

improvement leads to constant up-gradation of a generation.

The main idea behind requirements evolution is to improve the life cycle of the
software. By better understanding and documenting the requirements they overall quality

and reliability of the software can be improved.

|_T'_1,'pc.~ of Change] Dioscription |

Add, Delete and Requirements are changed due to the spectication pro-

Modify requirements cess maturity and knowledge.

Explanation The paragraphs that refer to a specific requirement are
changed for clarity.

Rewording The requirements itsell does not change, but it is
rephrased for elarity.

Traceability The traceability links to other deliverables are
changed

MNop-compliance A requurement that 15 not applicable tor a new solt-

ware package. This is the caze when the requirements
specification is based on that one of a previous project.,
Partial compliance A requirement that is applicable partially for a nesw
software package. This is the case when the reguire-
ments specification is based on that one of a previous
project.

Hardware modification | Several changes are due to hardware modifications,
This tyvpe of change applies usually to hardware de-
pendent software reguireimoents.

Hange modification The range of the variables within the scope of a specific
requirements is modified

Add, Delete, Honame | The variables/parameters to which a specific require-
parameters,/ varinbles ment refers can change

Table 5: Types of requirement changes identified in the case study [17, 41]

From the table above, one is able to find the various types of requirement changes

that had occurred in the avionics software. These are the changes which occur in most of

56

the software. From this table one can find out the various changes to be noted down by
the project team when they perform a requirement collection. It also gives an idea of

where future changes could be found in the software.

This concept has been absorbed into Infinity Model and throughout the course of
the software life cycle, the requirements of user, clients and coders are documented and
evaluated for the next cycle [17]. By constantly reviewing the requirements in the model

a company will be able ready for the future changes and the customer requirements.

Microsoft Software

The information for this case study was collected from the Microsoft case study
[11, 43]. From this study sees that Microsoft does not use the traditional software
maintenance followed in general by other software companies. They use the method of
releasing their operating system to their users, and then starting to update the software

from the errors and requirements reported by the user.

By this process they reduce the time in the development phase. This also helps to
reduce the economical cost [11]. This process cannot be used for real time software but
may be helpful for commercial software. Although the method has been successful for
Microsoft, there may be huge problems if they have a competition in the operating
system field [43]. If there is competition they will have to improve their software

structure and also think of reliability during the production of the software than at the end

57

of the life cycle. The main principles they might have to incorporate to improve their
software would be to start the whole process of software generations with multi user
requirements. They will then have to create more modules and functions [43] to make the
software more secured and reliable. Many of their competitors tend to use these methods

and produce software which is far more reliable.

The Infinity Model incorporates ideas from the existing method used by
Microsoft and as well the changes required. In the Infinity Model the versioning system
is used to mark each and every cycle, it can be used for half cycles also. When a complete
change is made it is incorporated into the next generation and released along with the
older code. The process of programming used in the Infinity Model also gives an idea of

the necessity for maximum modularization of the code.

The method used for the maintenance of the software leads to complete
documentation of the changes, and leads to better consolidation and understanding of the
changes. The most important thing to be understood from the Microsoft case study is the
method used by them for evolution. They always start the next generation of the software
once the older generation has reached a standard point. By this they do not become a
legacy system and also the environmental changes are completely utilized by the later
generations. This constantly keeps them up to date in the operating system software. The

cycle model in the Infinity Model allows such a scheme.

58

Embedded System

In the embedded system case study [11, 44] one can see how small embedded
system companies create their software, and also the problems they face with every new
generation of the operating system. These small software companies tend to use little or
no documentation during the development of their software. They use methods like
extreme programming to perform the coding, and so they tend to create programs with a
lot of errors even for a single generation. These drivers tend to be open links for the virus
to attack the operating system. These codes with no quality or standards tend to waste the

hardware resources and reduce the quality of the operating systems [44].

The case study shows that these companies use C, C++ or BASIC to code the
software. Moreover consolidations [11] of the codes are not planned at any stage. With
every new change or new generation of the OS the device drivers have to be rewritten or
changed completely. There is no level of planning for the next generation and this leads
to phase out the codes written for the embedded system. Considering all of this,
traditional software maintenance offers little help. If the Infinity Model is used, the
methods to collect the requirements from the partner company’s on the changes in next
generation are given. The model also gives the necessary consolidation techniques
needed to improve the quality of software created [11]. If the companies understand the
process of requirement - feedback cycle then they will be able to produce software with
better quality, and the components created for a single generation can be used in the next

generations also.

59

Open Source Software

Dr.Scacchi made a case study on open source software like Linux, Apache server
and Mozilla Fire Fox [45, 46]. In this case study, several important lessons could be
learned on how open source software develops and also what makes open source

software successful.

In all open source software, programmers constantly change the code to adapt to
new requirements. Each and every change, according to the grouped requirements is
updated in to the code [46]. The decision of consolidation and selection of updating leads
to the main survival of the system in the evolving hardware. As an example the number

of changes Linux has gone through in the last 10 years can be seen from the figure below.

1, 300,000
= dpvers
1.000.000 — — arch 7
« include -'l
S sanoan L+ et -
'E — 5 i-
E —- kermel =
E B00L000 — =
E =&~ MM 1
G] £
g e .~
2 400000 = _ fp e e R A Rt e TR e tead R P e e e
2 2 -t
e = init _‘;'

20000

e

-

l..... ._'_-hi-i-‘ ‘,Fhll-l'. s
M i

Jan 1983 Jum 1534 Qct 1985 Mar 159? Jul 18408 Cec 1950 Apr 2001

Figure 12: Data showing the size and growth of sub-systems in the Linux Kernel [45, 46].

60

In open source software, several number of programmers from different places
tend to improve the way the single code works. There is also a downside to this method
of development; as there no rules on the programming style if one of the programmers
makes a mistake or creates junk code then the code will fail for a new user. The open
source software will always be helpful only when experts use the code and have a
through knowledge of the code [47]. If an inexperienced user tends to work on the code it

will lead to errors.

The number of programmers who work in open source software is so large that
the ideas that are input to open source software are vast. All these ideas may not be
helpful and useful to all the users and this leads to wastage of memory and poor
performance in the hardware. The number of people who have worked on the Linux

kernel since 1993 can be viewed in the diagram below [45, 47].

00000
m
o
T =i lelnTalwl 9 u
i
11 A DRI e]
g " 8 %o
3 s lulalel
a i
1
o 200 O =
[#]
f) (]
A0
1
C g
o L el
- 101000
S -20 Lw] 201 ENs) [E]] £0 4410 120 g1 7 6503

Number of P rOSranimers

Figure 13: Growth of the lines of source code added as the number of software
developers contributing code to the GNOME user interface grows [45, 47].

61

From this what one can infer for the Infinity Model is that a code developed for
open source software should be created with maximum compatibility and modularity.
This will help the programmers who tend to work on the code to be able to make changes
easily and securely [48]. The diagram below shows us how updating and compaction
takes place in the open source software, and how moving the selected updates to the next

generation helps the survivability of the code.

GNU Wingnut Linux paen

atch

"\\ Teedback
l'l.‘-:tlbu}l\
released st
O pulblic VEISIoNs
C) VErSIS
. T
incorporate '
o
.--".r!-"-
e
& mn I.‘I."r|\i1]':i'|.‘
=
i Jun
PostgreSQL

Figure 14: Patterns of software system evolution forking and joining across releases
(nodes in each graph) for four different F/OSS systems [45, 48].

The ideas pf modularity and consolidation are added into the Infinity Model. The
open source software developers can also use the Infinity Model for the development and
consolidation of the software in a more professional and quality oriented way. When
software is released in the open source, the documents of how it was developed and the

methods of development should also be available so that the others can work on it.

62

Device Drivers

The device drivers and applications being developed for each and every
generation of software are dependent on the OS completely. If the companies new
generation do not allow old drivers to work or are not calibrated to accept future growth
of drivers, then this leads to a lot of errors and virus attacks [49]. The Windows Vista
released in 2007 has similar types of virus attack related problems in the new generation

and they are listed below.

2007’s Popular Applications with Critical Vulnerabilities

Software Version Vendor's MNature of Vulnerabilities CVE* Number(s)
Solution
EJ Yahoo! Messenger 8.1.0.239 Upgrade to Buffer overflow allows remote attackers to execute arbitrary CVE-2007-4515
and earlier 8.1.0.419 code via unspecified vectors. CVE-2007-4391
CVE-2007-3148

CVE-2007-3147
CVE-2007-1680

B Apple Quicktime i Patch Multiple vulnerabilities allow remote attackers to execute CVE-2007-4673
arbitrary commands and code crafted URLs and Java applets. CVE-2007-2397

CVE-2007-23%6

CVE-2007-2393

B Mozilla Firefox 2006 Upgrade to 2.0.0.7 Allows remote attackers to execute arbitrary commands CVE-2007-5045

for some fixes through specially crafted URLs. CVE-2007-4841

CVE-2007-3845

B Microsoft Windows 7.0,8.0 Upgrade to Heap-based buffer overflow allows user-assisted remote CVE-2007-4579

Live (MSN) Messenger 7.0.08.20 or 8.1 attackers to execute arbitrary code via unspecified vectors CVE-2007-2931
involving video conversation handling in Web Cam sessions.

B EMC VMware Player 2.0,1.04 Upgrade to Allows remote attackers to execute arbitrary code via a malformed ~ CVE-2007-0063

(and other products) 201 or 1.0.5 DHCP packet that triggers a stack-based buffer overflow or CVE-2007-0062

corrupt stack memory. CVE-2007-0061

B Apple iTunes 732 Upgrade to 7.4 Buffer overflow allows remote attackers to terminate the CVE-2007-3752

application or execute arbitrary code via a music file with
crafted album cover art.

BB !ntuit QuickBooks 9 and earlier Upgrade to 10 Multiple stack-based buffer overflows in the ActiveX contrel allow CVE-2007-4471
Patch remote attackers to execute arbitrary code via unspecified vecters. CVE-2007-0322
B S5un Java Runtime 1.6.0_X Not found Buffer overflow in Java Web Start allows remote attackers to have CVE-2007-5019
Environment (JRE) an unknown impact via unexpectaed arguments to a method call.
B} Yahoo! Widgets 4.0.5 and Upgrade Stack-based buffer overflow allows remote attackers to execute CVE-2007-4034
previous arbitrary code via unexpected arguments to a method call.
@ Ask.com Toolbar 4.0.2.53 and Not found Stack-based buffer overflow in ActiveX contrel and Ask Toolbar CVE-2007-5107
previous allows remote attackers to execute arbitrary code.

Figure 15: Application with Critical Vulnerabilities for Windows Vista [49].

The drivers that are developed for the older generation should be allowed to work

with the new generation and should not create errors. Windows Vista has a bug with the

63

drivers created for XP [2, 49]. Most of the drivers which are not preloaded in Vista are
not allowed to install or are not saved in the hard disk, and are referred again and again
with security violations being stated as the reason. A common issue with driver
installation failures is associated directly with the driver package which lacks non-system
driver files. In Windows Vista all the driver files have the INF reference. All the other
driver files must be imported into the driver store before the package can be installed.

Otherwise the files are not imported successfully and the installation fails.

There are problems concerning the installation of class installers and co-installers
also. Some of the problems are related to the device installations that occur in an
interactive system context [50]. Vista requires class installers and co-installers not to
display a user interface with the exception of the finish-install action. Windows Vista also
no longer attempts a client-side install [49, 50] in a scenario where the system-based

install would return an error code.

These are problems in evolution when one of the companies does not share the
information of the development of the new generation to the other partners. This leads the
companies to use the old code or style of execution when the latest version of OS does
not allow that. In a rush the driver companies tend to create new code with less quality to
quickly supply a working driver for the new generation. Changes in generation should not
affect people using other packages. In the Infinity Model the principles of symbiosis and
co-evolution are used in the architecture evolution phase and the coding phase to avoid

such problems.

64

Legacy System: Department of Defense

Rajlich and Bennett [11, 51] report on the method of software development used
in the defense department in the USA, in particular, the problems faced by the company
because of evolution and lack of expertise. This has led the company to rethink its
strategies and may lead to a new generation developed from scratch. This has occurred
due to the lack of change in the systems for a long time, and not deploying new members

and techniques to change the code for the later generation.

The various findings of the paper are given below [11]:

1. The defense systems which have been in use for a very long period were
developed in assembly language. They require continuous change to adapt to

the new hardware.

2. The software is very important as they are all real time and errors or loss in

software will lead to a disaster.

3. In the past, experts in both software and hardware had created the system and
continuously worked on it. They were trying to improve the system and were
trying to free it from ad hoc patches. They documented all the processes and

tried to understand the impact of the software.

65

4. However, in recent times several of the experts has moved out, and there are a
lot of decays in the old system when they are updated for the new hardware.
There structural decays are a serous problem. The department feels it is
impossible to reengineer the system as there are not enough experts and feels
if the situation continues they will have to develop a whole new system from

scratch.

This is because of the negligence of constant updating to the next generation and
also the deployment of human resources [51]. From this case study it becomes clear that
updating alone will not suffice, but migration and evolution are also needed for the
survivability of a software system. The Infinity Model tries to involve new human
resource in each and every cycle of the process. The Infinity model also incorporates the
principles of migration whereby every project when it comes into the next cycle, the

change in the environment and user requirements are studied.

Evolution in Nature: Lizard evolution

In nature, evolution takes place continuously in a slow but steady pace. All
organisms have an inbuilt code called DNA, and all the organisms are constantly
mutating at a very slow speed in the micro level. Here in this case study a particular
organism is looked into and the mutations that occur on the organism in the given

environment are studied.

66

The organism under study is the lizard and the different environment, in which it
survives, differentiates the appearance of the lizards. The experiment [52], provided
scientists with important information as they observed what they thought would be the
extinction of the introduced lizards. But the lizards adapted to their new environments,
and the focus of the experiment changed to studying this rapid evolution. An experiment
with lizards in the Caribbean has demonstrated that evolution moves in predictable ways
and can occur so rapidly that changes emerge in as little as a decade [52, 53]. The
experiment bears on two theories of evolution; one is punctuated equilibrium and the next
is gradualism. Gradualism states that evolution is a relatively slow, constant process,
producing changes over millions of years [54]. Punctuated equilibrium states that
environmental constraints hold species remain unchanged for millions of years, which

then undergo rapid evolution when environmental changes demand it.

The experiment involved the introduction of one species of lizard to fourteen
small, lizard-free Caribbean islands [52, 54]. The lizards were left for fourteen years.
Lizards on Caribbean islands have been carefully studied by biologists for their
adaptation to different conditions on different islands with corresponding changes in
body shape. One of the important differences in the lizards noted by scientists over the
years has been that lizards that inhabit large trees tend to have long legs, whereas those
lizards that live on twig-like plants have short legs [53]. The more the vegetation differed
from that of their original home the more the lizards should evolve. The scientists had
predicted that evolutionary pressure would cause the long-legged lizards to produce

short-legged forms as the Caribbean islands are almost treeless. Losos and his colleagues

67

report in the journal Nature, that the lizards evolved in the direction as predicted [52].

Those with the shortest legs are found on islands with the scrubbiest vegetation.

A long-standing issue in biology is whether micro small evolutionary changes are
the same as macro evolutionary changes seen over millions of years. Douglas Futuyama
of the State University of New York at Stony Brook, states that while there are many
known instances of rapid evolution in biochemistry, such as evolving resistance to
pesticide, there are fewer examples of bodily changes. One well known macro
evolutionary event is the specialization of lizards on Caribbean islands. Lizards have

evolved into 150 different species spread across these islands.

The rate of evolutionary change is measured in units called darwins [52]. Darwins
provide a measure of the proportional change in a given organ over time. Changes
typically seen over millions of years in the fossil record usually amount to 1 darwin or

less. The transplanted lizards evolved at rates of up to 2000 darwins.

From the case study the main idea incorporated into Infinity Model is for the
survival of an organism rapid mutation based on environmental conditions is required.
Change in hardware should always be studied. Rate of mutation depends on rate of
change of environment. In the software world, the environment is both hardware and
user. Hence according to hardware updates or user requirements the next generation

software should be made available.

68

The table below displays the various problems faced by the companies and the
corresponding methodologies incorporated into the Infinity Model to reduce the
problems. These problems can be defined as the requirements to build evolutionary
software. If the solutions to these problems are incorporated into the process model then
the software created will be more quality oriented. This has been done in the Infinity

Model and this can be viewed in the table below.

C'age Studies

Properties Incorporated into Infinity Model

Aviomes Case Study: Increase in
conplexity due to merease in the munber
of requirements.

1. Requirement Evolution

2. Requirement NMaturity Index

3. Requurement Collection and
Documnentation methods

Mhcrosoft Case Study: Release of OS wath
knovm ervors. Imtiating of next generation
when the previous generations 1s released.

—

Servicing and Consolidation
tecluiques

2. Tmtiation of next generation when
previous generationis released

Embedded Systems Case Study: Poor
plamming mechanisms. No process model or
requurement collection methods were
followed.

1. Partner or dependent company
change collection mechanisms

2. Tterative feedback and requirement
cycle

Open source Case Study: The methods of
Imman resource distnbution followed by
open source progranmming. Servicing and
consolidation teclmicues. Problems in
sharing core parts of the code.

1. Humanresource distribution
according to projects

2. Coreproperties secunity

3. Consohdation m equal mtervals of
tume

Device Daver Case Study: Problems in the
partner sotbwares of Windows Vista.

1. Contnuation of fanuliar teclunques
to keep user base.

2. Help partner software compaines to
create (quality code to avord vitus
attacks

Legacy Systems Case Study: Problems
created due to non mugration and non
urvolvement of new developers.

1. Migration and consolidation in
equal intervals of tiume

2. Requurements updating

3. Introduction of new lunuman
resource mto projects to avoidloss
of knowledge

Lizard Evolution Cage Study: Rapd
mutaton 1 Lizards to swvive in a
conplete new ewviromment. Change of
body parts in short intervals.

1. Rapid change to new recuirements

18 necessary for survival

Change in requirement leads to

several new requirements which

need to be performed for the

survival.

3. Eumvironment is both hardware and
use. Chanee in any one will directly
affect the software.

!:-»J

Table 6: Properties incorporated into the Infinity Model from the different case studies

69

CHAPTER VII

CONCLUSION

By designing the new model we plan to start a new generation of process models.
This is also an effort to make people look into nature to find different patterns and
methods to create better software. When the understanding of the principles become
clearer then the designing of better modes and projects will become more quality

oriented.

The Infinity Model is an abstract model and also a unification theory of all
existing models. It is designed from the basics of software evolution and also the
important principles from evolutionary biology. The main purpose is to give an idea of

the measures needed to make evolutionary software in the future.

From the various case studies of existing models the various advantages and
disadvantages could be understood and also methods to decrease the disadvantages are
tried in the Infinity Model. In the case studies of the various companies and projects the
idea of the various changes needed in the existing methods used to design software could
be found. The Infinity Model tries to improve the methods in those areas. From the case

studies an idea of the advantages of the Infinity Model could be gathered.

70

The Infinity Model is a step towards creating methods and procedures to produce
quality software. This model also includes evolution to be used in the future maintenance
and development of the software. The model is a basic idea to create evolutionary
software and a model on the time and cost involved to create the software is needed. The
model also needs some improvements in the maintenance cycle to accommodate the
requirements of different types of companies. A real-world software design is needed to

test the effectiveness of the proposed model.

71

10.

11.

REFERENCES

. M. M. Lehman, “Rules and Tools for Software Evolution Planning and

Management”, Annals of Software Engineering, Vol. 1, No. 6, pg. 15-44, 1997.

T. Mens, S. Demeyer, M. Wermelinger, S. Duccase, R Hirschfeld, M. Jazayeri,
“Challenges of Software Evolution”, IEEE, Eighth International Workshop on
Principles of Software Evolution (IWPSE’05), pg. 13-22, 2005.

W. Scacchi, “Understanding open source software evolution”, Report, Institute of
Software Research, 2004.

M. Kim, “Understanding and Aiding Code Evolution by Inferring Change
Patterns”, Proceedings IEEE International Conference on Software Engineering,
(ICSE 2007), pg. 101-102, 2007.

Luqi, “A graph model for software evolution”, IEEE Software Engineering, Vol.
16, No.8, Pg. 918-927, 1990.

C. Corby, “Introduction to evolutionary biology”, www.talkorgins.org, 1996.
[Date last accessed : Dec 05, 2007]

E. Garfield, “Highly cited articles. 35. Biochemistry papers published in the
1940s”. Current Contents No. 8, pg. 5-11, 1977,

“Molecular Evolution”, http://en.wikipedia.org/wiki/Molecular evolution , 2007.
[Date last accessed : Dec 05, 2007]

“Windows Bugs”, http://audacityteam.org/wiki/index.php?title=Windows Bugs,
2007. [Date last accessed : Dec 05, 2007]

“Extreme Programming”, http://en.wikipedia.org/wiki/Extreme programming,
2007. [Date last accessed : Dec 05, 2007]

V. T. Rajlich, K. H. Bennett, “A Staged model for software life cycle”, IEEE
Computer, Vol. 33, No.7, 2000.

72

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

L. Yu, S. Ramaswamy, “Software and Biological Evolvability: A Comparison
Using Key Properties”, Proceedings IEEE International Conference on Software
Engineering, pg.82-88, 2006.

C.L.Nehaniv, J.A.Hewitt, B.Christianson, P.D.Wernick, “What Software
Evolution and Biological Evolution Don’t Have in Common”, Proceedings IEEE
International Conference on Software Engineering, pg. 58 -65, 2006.

G. McGraw, “Software Security”, IEEE Security and Piracy, Vol. 2, no. 2, pg.
80-83, 2004.

“A Survey of System Development Process Models”, CTG.MFA — 003, Center for
Technology in Government, 1998.

T. Seifert, M Pizka, “Supporting Software Evolution at the process level”, IEEE
Software, Vol. 20, No. 3, pg. 106-107, 2004.

Stuart Anderson and Massimo Felici. “Controlling requirements evolution: An
avionics case study”. In Proceedings of SAFECOMP 2000, 19th International
Conference on Computer Safety, Reliability and Security, LNC S 1943, pg. 361—
370, Rotterdam, The Netherlands, October 2000.

Stuart Anderson and Massimo Felici.” Requirements engineering questionnaire”,
version 1.0, January 2001.

Tom Gilb. Principles of Software Engineering Management. Addison-Wesley,
1988.

IEEE. IEEE Std 982.1 - IEEE Standard Dictionary of Measures to Produce
Reliable Software, 1988.

IEEE. IEEE Std 982.2 - IEEE Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, 1988.

Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 2000.

Royce, “Managing the Development of Large Software Systems”, Proceedings of
IEEE WESCON 26 (August): 1-9, 1970.

Barry W. Boehm. “A spiral model of software development and enhancement”.
IEEE Computer, Vol. 21, No. 2, pg. 61-72, May 1998.

Juha Kuusela. “Architectural evolution. In Patrick Donohoe”, editor, Software
Architecture, TC2 First Working IFIP Conference on Software Architecture
(WICSAI), pages 471-478, San Antonio, Texas, USA, 1999. IFIP, Kluwer
Academic Publishers.

73

26

27.

28.

29.

30.

31.

32.

33.

34.

35

36.

37.

38.

39.

. G. T. Laycock: The Theory and Practice of Specification Based Software Testing.
PhD Thesis, Dept of Computer Science, Sheffield University, UK, 1993.

Lawler LP, Pannu HK, Fishman EK, “MDCT evaluation of the coronary arteries,
2004: How we do it— Data acquisition, post processing, display, and
interpretation”, AJR Am J Roentgenol, Vol 184: pg. 1402-1412, 2005;

Joseph E. Urban, “Software Prototyping and Requirements Engineering”, Report,
Rome Laboratory, Rome, NY, 2003

Ken Auer and Roy Miller: Extreme Programming Applied: Playing To Win,
Addison-Wesley. 2005

Barry W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

Nilesh Parekh, “The Waterfall Model”, http://www.buzzle.com/editorials/1-5-
2005-63768.asp, 2005. [Date last accessed : Dec 05, 2007]

Adrian Als & Charles Greenidge,
http://scitec.uwichill.edu.bb/cmp/online/cs221/waterfall_model.htm , 2003. [Date
last accessed : Dec 05, 2007]

Phillip A. Laplante and Colin J. Neill, "The Demise of the Waterfall Model Is
Imminent and Other Urban Myths”, ACM Queue, 2004

Adrian Als & Charles Greenidge,
http://scitec.uwichill.edu.bb/cmp/online/cs221/spiralmodel.htm , 2003. [Date last
accessed : Dec 05, 2007]

. ComTech, Disadvantages of Spiral Model,
http://inhairstudio.blogspot.com/2007/10/disadvantages-of-spiral-model.html,
2007. [Date last accessed : Dec 05, 2007]

C. Melissa Mcclendon, Larry Regot, Gerri Akers, What is Prototyping,
http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html, 1999. [Date last
accessed : Dec 05, 2007]

Keng Siau, wwwe.ait.unl.edu/siau/mgmt454/Chapter6.rtf, University of Nebraska,
2000. [Date last accessed : Dec 05, 2007]

Don Wells, Extreme Programming, http://www.extremeprogramming.org/, 2000,
2001. [Date last accessed : Dec 05, 2007]

Matt Stephens, Disadvantages of Extreme Programming,
http://www.softwarereality.com/lifecycle/xp/safety_net.jsp , 1998- 2007. [Date
last accessed : Dec 05, 2007]

74

40.

41.

42.

43.

44,

45

46.

47

48.

49.

50.

51.

Matt Stephens and Doug Rosenberg , Extreme Programming Refactored: The
Case Against XP, Apress, July 2003

Stuart Anderson and Massimo Felici, “Requirements changes risk/cost analyses:
An avionics case study”. In M.P. Cottam, D.W. Harvey, R.P. Pape, and J. Tait,
editors, Foresight and Precaution, Proceedings of ESREL 2000, SARS and SRA-
EUROPE Annual Conference, volume 2, pg. 921-925, Edinburgh, Scotland,
United Kingdom, May 2000.

Stuart Anderson and Massimo Felici, “Controlling requirements evolution: An
avionics case study”. In Proceedings of SAFECOMP 2000, 19th International
Conference on Computer Safety, Reliability and Security, LNC S 1943, pages
361-370, Rotterdam, The Netherlands, October 2000. Springer- Verlag.

M.A. Cusumano and R.W. Selby, Microsoft Secrets, Simon & Schuster, New
York, 1998.

Michael A. Cusumano and Richard W. Selby, How Microsoft Competes,
http://www.trudelgroup.com/bookr2.htm, Research Technology Management. Pg.
26-30, 1997

. Walt Scacchi, “Understanding Open Source Software Evolution”, Proceedings

IEEE Software Engineering Workshop *06, Pg. 47-58, 2006

J. Erenkrantz, ‘“Release Management within Open Source Projects”, Proc. 3rd.
Workshop on Open Source Software Engineering, 25th Intern. Conf. Software
Engineering, Portland, OR, May 2003.

. C. DiBona, S. Ockman and M. Stone, Open Sources: Voices from the Open

Source Revolution, O’Reilly Press, Sebastopol, CA 1999.

M.W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study”,
Proc. 2000 International Conference on Software Maintenance (ICSM-00), San
Jose, California, October 2000.

“Top Ten Worst Windows Applications”,
http://slashmyblog.blogspot.com/2007/11/top-10-absolute-worst-windows.html,
2007. [Date last accessed : Dec 05, 2007]

Ron Schenone, “Microsoft Windows Vista - Driver Problems Still a Problem”,
http://www .lockergnome.com/blade/2007/02/19/microsoft-windows-vista-drivers-
problems-still-a-problem/, 2007. [Date last accessed : Dec 05, 2007]

George Stark, Al Skillicorn, and Ryan Ameele. “An examination of the effects of
requirements changes on software releases”, CROSSTALK the Journal of Defense
Software Engineering, pg. 11-16, December 1998.

75

52. Dr. George Johnson, “DNA and Darwin: Evolution repeats itself in Caribbean
lizards”, http://www.txtwriter.com/Onscience/Articles/losos.html, 2001. [Date last
accessed : Dec 05, 2007]

53. Allen E Greer,”Lizards - How They Evolved and Lost Their Limbs”,
http://www.amonline.net.au/factSheets/lizards.htm, 2003. [Date last accessed :
Dec 05, 2007]

54. Jeff Poling, “Lizard experiment suggests rapid evolution”,
http://www.dinosauria.com/jdp/evol/lizard.html, 1997. [Date last accessed : Dec
05, 2007]

76

APPENDIX

. Biological Evolution: In biology, evolution is the change in the inherited traits of
a population from generation to generation. These traits are the expression of
genes that are copied and passed on to offspring during reproduction. Mutations
in these genes can produce new or altered traits, resulting in heritable differences
between organisms. New traits can also come from transfer of genes between
populations, as in migration, or between species, in horizontal gene transfer.
Evolution occurs when these heritable differences become more common or rare
in a population, either non-randomly through natural selection or randomly
through genetic drift.

. DNA: Deoxyribonucleic acid, or DNA, is a nucleic acid that contains the genetic
instructions used in the development and functioning of all known living
organisms. The main role of DNA molecules is the long-term storage of
information and DNA is often compared to a set of blueprints, since it contains
the instructions needed to construct other components of cells, such as proteins
and RNA molecules.

. Mutation: A Mutation occurs when a DNA gene is damaged or changed in such a
way as to alter the genetic message carried by that gene. A Mutagen is an agent of
substance that can bring about a permanent alteration to the physical composition
of a DNA gene such that the genetic message is changed.

. Natural Selection: Natural selection is the process by which favorable traits that
are heritable become more common in successive generations of a population of
reproducing organisms, and unfavorable traits that are heritable become less
common. Natural selection acts on the phenotype, or the observable
characteristics of an organism, such that individuals with favorable phenotypes
are more likely to survive and reproduce than those with less favorable
phenotypes.

. Genotype: Genotype describes the genetic constitution of an individual that is the
specific allelic makeup of an individual, usually with reference to a specific
character under consideration. It is a generally accepted theory that inherited
genotype, transmitted epigenetic factors, and non-hereditary environmental
variation contribute to the phenotype of an individual.

77

F. Phenotype: The phenotype of an individual organism describes one of its traits or
characteristics that is measurable and that is expressed in only a subset of the
individuals within that population. Examples include "blue eyes", or "aggressive
behavior".

G. Symbiosis: The term symbiosis can be used to describe various degrees of close
relationship between organisms of different species. Sometimes it is used only for
cases where both organisms benefit; sometimes it is used more generally to
describe all varieties of relatively tight relationships.

H. Co-Evolution: In biology, co-evolution is the mutual evolutionary influence
between two species. Each party in a co-evolutionary relationship exerts selective
pressures on the other, thereby affecting each others' evolution.

I. Genotype-Phenotype Mapping: The genotype-phenotype distinction must be
drawn when trying to understand the inheritance of traits and their evolution. The
genotype of an organism represents its exact genetic makeup, that is, the
particular set of genes it possesses. The term "genotype" refers, then, to the full
hereditary information of an organism. The phenotype of an organism, on the
other hand, represents its actual physical properties, such as height, weight, hair
color, and so on. It is the organism's physical properties that directly determine its
chances of survival and reproductive output. The mapping of a set of genotypes to
a set of phenotypes is sometimes referred to as the genotype-phenotype map.

78

VITA
Murugappan Ramanathan
Candidate for the Degree of

Master of Science

Thesis: A NEW SOFTWARE PROCESS MODEL DESIGNED FROM THE BASICS
OF EVOLUTIONARY BIOLOGY AND SOFTWARE EVOLUTION

Major Field: Computer Science
Biographical:
Personal Data: Born in Coimbatore, Tamilnadu, India.

Education: Graduated from G.R.T Mahalakshmi High School, Chennai, India
in May 2001; received Bachelor of Technology in Information
Technology from Anna University, Chennai, India in May 2005.
Completed the requirements for the Master of Science degree in
Computer Science at Oklahoma State University, Stillwater, Oklahoma
in December, 2007.

Experience: Graduate Assistant, Oklahoma State University, College of
Engineering and Architecture, January to December 2006; Teaching
Assistant, Oklahoma State University, Department of Computer Science,
January to July 2006 and as a Graduate Lab Assistant, Oklahoma State
University, Department of English, January 2007 to present.

Name: Murugappan Ramanathan Date of Degree: December, 2007
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A NEW SOFTWARE PROCESS MODEL DESIGNED FROM THE
BASICS OF EVOLUTIONARY BIOLOGY AND SOFTWARE EVOLUTION

Pages in Study: 78 Candidate for the Degree of Master of Science
Major Field: Computer Science

Scope and Method of Study: The process of software development is achieved by using
different software life cycle models to design, code and test the software. Process
models like the water fall model, spiral model and prototyping are used by
companies. Most of these models were designed for a single generation of
software. In this research, methods to correct the problems in existing models are
proposed based on the principles of evolution in biology and biochemistry, and an
abstract model has been generated. The model is called the Infinity Model. The
basic principles of biological evolution have been incorporated into the varying
steps in the Infinity Model to generate an evolutionary process model. It consists
of a completely new design cycle which incorporates both the creation of software
and the maintenance of software. In this model, methods to correct deficiencies
like resource allocation, documentation and requirement updating in the existing
models have been incorporated. Several case studies of large company software
and the problems they faced were studied. From the case studies several methods
like requirement evolution, consolidation and architectural evolution have been
incorporated into the Infinity Model.

Findings and Conclusions: The Infinity Model is an abstract, unification model. It
improves the quality and survivability of the software. It incorporates ideas from
several models to create an evolutionary model for software. Using the Infinity
Model different types of companies can create quality oriented evolutionary
software.

ADVISER’S APPROVAL: Dr. Johnson Thomas

