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PREFACE

In the past, much research and investigations have been conducted in an
attempt to explain some of the discrepancies in the use of complex number
theory as applied to altermating current circuit quantities, There has been
a great deal of confusion end incomplete understanding of the exact nature
of reactive power end how it is measured, Also, no uniform procedure has been
accepted in deciding whether reactive power shall have a positive or a nega-
tive sign. The application of complex number theory to obtain power has caused
confusion in the minds of many.

When harmonics have been present in the circuit being considered, the
equations for power factor and power have been found untrue and useless, In
this thesis, the author has attempted to show why these equations failed, and

the geometric picture of the conditions causing this failure is presented,
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CHAPTER I

INTRODUCTION

Often in the early development of a particular branch of science, rules
and regulations will be established which govern the existing knowledge of the
field at that time, Later, however, invariably many new, and sometimes rad-
ically different, aspects of the science are discovered. These newly discover-
ed truths may necessitate modifications in the statement of the rules and
regulations formerly established, and in some instances may even render them
void and useless, For example, the development of the theory of light propaga~
tion and the flow of light energy is yet to be completely explained., At
present, the use of both the Wave and the Quantum Theories are required to
explain all the phenomena of light, This is the way that kmowledge has progress=
ed from the very earliest beginning; first, the most elementary ideas and con-
cepts, end then, as the known facts increase, the more camplex aspects are
explained, leading to the ultimate establishment of the science on a firm and
sound theoretical basis, the theory being substantiated by observation and
experiment,

The development of the field of electricity and magnetism has been no
exception to this general rule, The first ideas were based almost entirely
upon experimental data, but since that time more powerful mathematical tools
have been discovered and developed that have tended to clarifyy and explain the
wonders of electricity. Many of the presently existing ideas in the field of
alternating current electricity are even yet inconsistent,

The student of elementary electrical technology learns Ohm's law in the
symbolic form I = E/R, which is equivalent to the verbal statement that



the current in an electric circuit is exactly proportional to the voltage
applied to it. By assuming the truth of this statement of the law, the
student is enabled to solve a large number of simple.circuit problems,
and it is not until he progresses a little further in his studies that he
finds its applications to be limited and true only under important qual.
ifications,

In simple metalic circuits with steady voltages, for instance, this expres-
sion of the law holds good only when the temperature of the material of
the circuit is maintained constant. Again, with alternating voltages and
with inductive circuits, it is true only if the frequency is also constant.
If the magnetic flux causing the inductance flows in iron this interpreta-
tion of the law is not correct; even with constant temperature and fre-
quency, current is not exactly proportional to applied voltage. TFurther,
Ohm*s law is known not to hold in certain circuits of an electrolytic
character,

The discrepancy in cases like these is sometimes explained by using the
fiction of a back EMF, but this begs the whole question., It is better to
recognize that there are two distinet kinds of electrical circuits, the
one in which Ohm's law as defined above is obeyed and in which current is
exactly proportional to voltage, and the other in which this proportional-
ity does not holde Circuits of the first class are generally said to have
a linear impadancg; in circuits of the other class the impedance is desig-
nated non~linear,

This paper is concermed in pointing out the inconsistencies in the meaning

of power factor, real power, reactive power, and aspparent power under different

adverse conditions, An attempt is made to explain the appearance of distortion

power and mesh power, and more general definitions to include the possibility

of these quantities in descoribing power factor and power factor angle are

recommended,

POWER FACTOR

In dealing with power in different types of circuits, attention is nec-

essarily focused upon a quantity which in Electrical Engineering literature is

termed "power factor.," The question arises in commection with the definition

of this quentity.

: Go W, Stubbings, "Harmonics and P. F.," Electrical Review, (June 5, 1942).




Elementary a.c, theory is based upon the fundamental assumption of sine
usoidal voltage wave forms and linear impedances, With these assumptions,
current wave forms are also sinusoidal and power factor is the cosine of the
angle of lead or lag, Because of this power factor is gemerally denoted as
cos 9, a symbol that was chosen most unfortunately, because it obscures the
fact that in a large group of circuits power factor is not determined solely
by phase angle, It is regrettable that a characteristic symbol was not chosen
for such an important ratio as power factor, Had this been done the inaccurate
and unqualified identification of power factor with the cosine of an angle
would not have arisen and much difficulty might have been avoided,

If power factor is defined as the cosine of the angle between the voltage
wave and the current wave, difficulties may easily arise, Consider the case
in a single-phase circuit where the current and voltage are in.phase, and are
sinusoids., The power factor is obviously unity. If now the circuit is modified
in such a manner that the third, fifth and seventh harmonics of current are
allowed to flow, the effective value of the current is apparently increased.
It should be recalled here that this power factor is the quantity that when
multiplied by the product of the current and voltage waves (effective values)
gives real or active power, Now it is a well known fact that no increase in
active power is experienced in a circuit when harmonics of either current or
voltage are introduced, unless like harmonics of the other are present also,
It is to be noticed that in the sbove example when harmonics of the current
wave were introduced no phase displacement in current resulted, and hence the
power factor remained unity, But, this same power factor multiplied by an
increased effective volt-amperage would indicate an increase in active power,
Since this is known to be false, it is evident that an inconsistency exists in
the definition when applied to a single~phase circuit containing harmonies in

either the current or voltage wave forms,



Power factor is not the cosine of the angular measure of a phase difference
but the ratio of watts to the product of effective values of voltage and current,
Using accepted definitions of real and reactive powers, it can easily be shown
that in the sbove example the square of the apperent power is not equal to the
sum of the squeares of the real and reactive powers, If we follow certain
suggestions end define a new type of power, distortion power, so that the square
of the apparent power is equal to the sum of the squares of the real, reactive,
and distortion powers, it is evident from geometric intuition that the epparent
power is no longer in the seame plamne as the real and reactive powers,z Notice
that now, using the gbove definition, the power factor angle is also in a difw
ferent plane from the real and reactive powers, and is, in fact; in the plane
of the apparent and real powers, But this violates the definition of reactive
power, f or reactive power is no longer equal to the apparent power multiplied
by the sine of the power factor angle, for this is what is now called ficitia-
tious power,

If one now were to become sc bold as to attempt to apply the ebove defw
inition (the latter one) of power factor to a polyphase, umbelanced circuit
with nonsinusoidal conditions imposed upon the voltage end current wave forms,
it is seen that the definition of power factor and the location of the power
factor angle is even more vague, For now, in addition to distortion power,
the appearance of a new type of power, termed mesh power, is noted., Mesh pow-
or being defined so that the square of the apparent power is equal to the sum
of the squares of the real, reactive, distortion, and mesh powers, Thus it is
evident that the exact location of the power factor angle under these condi-
tions has become quite elusive, and there is ample room for speculetion as to

just whet is meant when the term power factor angle is used,

2 Ve Go Smith, "Reactive and Fictitious Power," A. I, E, E, Transactions,
LII (1933), 748-T51,




It must not be assumed that waves of current and voltage which are not
sinusoidal and which have no apparent angular displacement with respect to
each other, or that dissimilar waves in which the zero ordinates occur simulta-
neously will necessarily give power factor of unity., In fact, power factor of
unity can be obtained only when the current and voltage waves are exactly sime
ilar and have no displacement with respect to each other, Waves of curremt and
voltage that are not similar, but are not angularly displaced, produced a pow-
er factor less than unity. Curves of current and voltage of relative symmetry,
such as a semicircle associated with a parabola, yield their maximum power
factor when their zeros occur simulteneously, Their maxima, then, likewise
ocour simultaneously, When the current and voltage waves are not of such rele
ative symmetry, the maxima will not be coincident in time when the zeros are,
and the maximum power factor is ylelded when neither zeros nor maxima are
coincident, .

VECTOR REPRESENTATION OF SINUSOIDALLY VARYING
ELECTRICAL QUANTITIES

The exact name to be applied to sinusoidally varying currents and voltages
has been under discussion for a long time., The difficulty seems to have arisen
due to peculiar characteristics of these quantities and also perhaps bescause
of a lack of sufficient knowledge of just what a vector really is, The def-

initions of vector and scalar quentities from the Americean Standard Definitions

B_E, Electrical Terms are as follows:

Scalar Quantity

A scaler quantity is any quantity which has magnitude only, The relation-
ship between any physical quantity eand the wnit used to measure it is
completely described by a real number, Examples of quantities for which
the relationship can be represented by either a positive or negative real
number ere: time, temperature, and quantity of electricity.



Vector Quantity
A vector quantity is a quantity which has both magnitude and direction,
Examples of quantities that are vector quantities are: displacement,
velocity, force, and magnetic intensity.
The most common methods of describing a vector are by means of the projec-
tions on a system of rectangular coordinates, or by stating the magnitude
by means of spherical coordinates, In rectanguler coordinates, if i, j,

and k represeat unit vectors along the X, Y, and Z axes, respectively, and

if V_, V., and V_ are the scalar values of the projections of the vector

v onxthayms, then V = T+ vy;) + V,k, where the plus sign denotes

addition,

Currents and voltages are not completely described by a real number, as
stipulated in the definition of a scaelar quantity, since they mey have rel-
ative phase positions with respect to each other., The error in terminology
seems to have arisen from the fact that a sinusocidally varying quentity is the
scaler horizonal projection of a revolving vector that is constant in meg-
nitude and turning at a constant speed, Moreover, the sinusoidal quantity had
both magnitude and direction, that is, it has direction in the sense that it
is either directed in one direction or opposite to that direction. Perhaps
better terminology would be that the sinusoid has magnitude and sense, There-
fore, the sinusoid is in actuality a directed magnitude or line segement, Con-
sequently, the term directed line or sinor has been suggested by some authors
as & better name instead of vector,

A directed megnitude or line segement is what today is called the mod-
ulus or magnitude of a complex number, Sinusoidally chenging quantities are
then in truth complex quantities, This has been known for some time, but the
terminology of celling them vectors has persisted,

However, in alternmating current circuit theory care should be teken in
deeling with the complex quantities which arise., The impedance of an inductive
circuit is often very glibly termed e complex quantity in one breath and a
sinusoidally varying quantity celled a complex quantity in the next breath,



Here extreme caution should be observed, For, while both these quentities are
essentielly complex quantities, they are basically different in that one has a
characteristic frequency of oscillation while the other is purely a complex
number, As long as operations are performed between two impedances represented
in complex form no difficulty is observed, Furthermore, when a sinusoid in come
plex form is multiplied by an impedance in complex form no inconsistency is
again found, since the "scalar complex quantity," the impedance, does not effect
the frequency of the "vector complex quantity," i.e., current, Here the term
"vector complex quentity" is used to designate those quantities having a fre-
quency of vibration, i.e., voltage, current, and power, and the term "scalar
complex quantity" is used to refer to pure complex numbers, i.e., impedance.
However, when two vector complex quentities are multiplied together, i.e.,
voltage and current, the ordinary laws of multiplication of camplex quan
tities no longer holds true., Now the product of current and voltage is
known to be power, but to obtain the correct result with the two factors in
camplex form the conjugate of one of the two must be used, This fact is often
treated as a leaw of nature by many authors and completely ignored, The truth
of the matter is, as has been pointed out by A, S, Langsdorf, that the opera-
tor j is being used both as a turning operator and as a wmit vector., Or,
perhaps more vividly, the product of current and voltage is power, a double
frequency quantity, in which the meaning of the operator j must be re-defined,
If the operation of j represented a rotation of 90 degrees with respect to the
current and voltage, it would now represent 180 degrees with respect to the
power,

Thus it is seen that in electricity there are two kinds of complex quan
tities; those possessing frequency of oscillation and those not possessing this

characteristic, Perhaps a better terminology would be to neame them as used



above, "complex vector" and "complex scalar" quantities., In this paper the
"complex vector quantities™ will be called merely vectors, and the "complex
scalar quantities" will be termed complex quentities,



CHAPTER II
THE DEVELOPMENT OF MAXWELL®*S DIFFERENTIAL EQUATIONS AND
THE ULTIMATE LOCATION OF CURRENT AND VOLTAGE WAVES

FROM THESE EQUATIONS

Statement of Gauss®s Laws The total normal electrical induction over o
closed surface is equal to 4 FT times the total charge within it., A similar

relation holds for the magnetic case,
Z e

Figure 1

Y

Consider the electric intemsity, E, at any point A (shown in Figure 1)

as being a vector in space, (E is defined as the force that will be exerted
on an unit charge when placed in an electric field, where both the force and
the electric intensity are expressed in the appropriate units), Let E be
resolved into components parallel to the coordinate axes: P parallel to 0X,
Q parallel to 0Y, end R parallel to 0Z, Themn, if P varies as motion is exper-
ienced from point A in a direction parallel to OX, which in gemeral it would,
its rate of change would be dP/dx, If this rate of change ocours for a dise
tance dx, then the amount of change undergone in the distance moved through

(dx) would be (dP/dx)(dx), The final value of the component of E parallel
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to OX is the sum of the original vajue snd the change that has taken place,
hence the value of P at the face BD (Figure 1) will be P + gdx The normsl
induction over face AC is KPdydz, where K is the dielectric constant, Thus
the normal induction over BD is K(P + %x)dydz. The difference in these two
is then the portion of the normal induction over the emtire surface due to
faces AC and BD, That is: K(P + qoix)dyds - Khdyds = Kaedxdyde,

Now, if faces AB and CD are treated in exactly the same manner as above,
their comtribution to the total normal induction is obtained as: K%d:dydz,
and similerly for faces AD and BC the value of K%%dxdydz results, If p is
the density of the electric charge, and the rectangle in Figure 1 is considered
as being incremental in size, the total charge is pdxdydz. The total normal
induction for all the faces is: K(% + %’ + %‘%)dzdydz.

From Gauss's Lew:

@ dQ dR
K(3x + It qz)dxdydz = 4 TTpdxdydz
Hence QB A o idR .
ETTH T R

For the magnetic field, if L, M, and N are the components of H, the above

equations in analogous form will be:

d, du 4an 4
ST - =2

where p for the magnetic case is the volumetric density of the magnetie pole,
and u is the magnetic permeability of the medium, This is Poisson’s equation,

If p be zero, the expression for the electric field is:
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and that for the magnetic field is:

% + % + g. = 0 (2)
Equation (1) is frequently called the divergence of E, since it represents

the rate at vwhich E changes as motion is undergone outward from point A, Thus

Dive E = 47TTp/K.

= A
o D c
dZ
Ao
o X
Y Figure 2

The work done in carrying a unit pole earound a closed path
through which & current is flowing is equal to 47T times the current, By
definition, this is the line integral around that path, This is also the
curl of HI That is, curl H = 47TTi, where i is the current density.

If u, vyand w be the components of i parallel to the X, Y, and Z axes
respectively, then the current flowing throught the small rectangle ABCD is
vdzdz, If the component of the magnetic field along AB is agein L, than along
DC it will be L + %L;dz. The work done on a unit pole as it moves along AB
is Ldx, and along CD is «(L + %ﬂz)dx. Similarly, for DA it is «Ndz, and for

BC (N + gdz)dx. Therefore, for the entire path ABCD:

dL dnN
work done = Ldx = (L + F7dz)dx - Ndz + (N + Fpdx)dz
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d¥ 4L
work done = (3¢ - EE) dxdz
If the sbove law is spplied, the following result is obbaineds

4 TTvdxdz

i)

ay dL
(T = 57) dxdz

i]

dih, 4N

If the other two components of the current, u and w, are treabted in an

entirely analogous manner to the above procedurs for v, the following group

of equations are obbtained for the three components,

ay daf
-'4-‘_]-“ =‘33:muaf£
v = LAV 3y
- 4TTv = dz © dx (%)
am dL
-4"WW=‘§§'=’T&‘§

CONSIDERATICH OF THE ELECTROMOTIVE FORCE ARCUND A CIRCUIT

THROUGH WHICH THE MAGNETIC FLUX IS VARYING

By Faraday's Law, the generated counter-voltage in an inductive circuit
is equal to a constant times the rate of change fiux interlinkages., If the
units are properly chosen, the constant is unity, and using s negative sign

to signify a counter~voltage, the equation for this volbage iss

-
e = = % (vhers N is the total normsl induchion)

The flux N through the recteangle (ABCD) in the sbove figure is uMdxdz
and dxdz%.gl_mi) is the rate of change of flux,
ap
If the component of E along AB is P, and aleng IC is again P + 34z,

dR
and the components along AD and BC respectively, R and R + Fix, the tobal



electromotive force, e, arcund the rectangle is:

_ dp pid AR P,
Pdx - (P + ;dz)dx = Rdz + (R + “é}:ﬁx)dz = (5= aﬂg)&adz

. 4l dl P dR . o ,
Since ¢ = = T then Tl ol from the fast thal

a{uid)
aN et S
o= S dxdz*ajrg‘““ o

henbs, L and N the following equebtions sre derived:

d _ 4R 40

UTE < Ty - AT

M _ 4P 4R ;
= &2 4)

YT @ T )

a_ dq  ar

S il

In equations (3) the current u, v, and w means thab an electric charge
is moving in s certain direction, snd it is known that this motiom camnot be

contimous wnless the mediwm is an electric conductor,
CONSTDERATION OF THE PROPAGATION OF PLANE WAVES

The electrie intensity will be assumed to be the same over the eutirs

plene under consideration,

Z

FPigure 3
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Let YOZ be the plane of the waves The variation of the slectric and
magnetic intensities in the Y and Z directions is zero if these quantities are

constant. Equations (4) then becomes

ugg = 0
a ar
U = =
a _ dg
Y® T &

and consequently L is zero or a consbtant, Since constant values do not enter

v
into wave propagation, put L equel to zero, : '

)
»IE

1L

where D is the number of Faradey tubes per square centimebter, Since there are

4 TT lines per tube:

47D = K = KB
; .o _ Kk &
1 =8 T Ty dt

Expressing i in terms of its components, the following set of equations are

obtained:

K ,dp

u = T~ N——

4m 4t

. L.

vV = 27 db

I S

4T at

Substituting these values in equation (3) gives:

.Kif?. = iﬂ_-ﬂ
“tdt dy dsz
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day 4L an 5
S W 0 W (&)
dR dM dL
KFE = T} - F

If L from above is zero, equation (4) reduced to value on preceding page

and equation (8) bscomes:
dp
KE%

s

i

Ky =
Therefore, P 15 zero, and since it haé previousiy'been shown that L is
zero, it follows that the direction of the electric and magnetic inbtensities
are enbirely in the plane of the wave, Since the direction of E in the YOZ
plane is entirely arbitrary, the direction that would give the simplest result
would be the logical choice for the direction of the electric intensity.
Therefore, the direction of E shall be chosen as parallel to the 0Z direction,
Obviously then, Q is zers by virturs of the cholice of axes, and it is seen

from either of the relabtionss

aw 4

at = dx?

Q@ _ 4
or Kaf_g = ax

that in this case N must be equal to zero, Bub, this means, since both W and
L are zero, that the maguetic intensity lies along 0¥, Therfors, the E and
H vecbors are at right angles to each other and lie along the Z and Y axes,

respectively. Sinee R and M are now the only components of E and H, respec-
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tively, the equations reduce to:

R = - &

Differentiating the first with respect to t end the second with respect

to x, the following equations ensue:

Py ah
174 axdt
Kﬁ = dZM
dxdt ax@
Or, differentiating the first with respect to x and the second with respect
to t:
a2u %R
Udxdt = = dx?
2R a2y
EEZ = - Tt
VT ORN
Therefore e
' W T

This is the form of the general equation of the motion of a plane wave,
the direction of propagation being parallel to the axis OX, and its general

solution is:

R = f(x = vt) + fy(x + vb)

1
where 72 = s and f. and f_ are, of course, functions,

1 2
It can be shown that rl(x - vt), and fz(x + vt), represents a wave that
travels along the OX axis., The direction of propagation of fl(x - vh) is
toward the right, or in the direction of the positive X axis, while the direc=-

tion of propagation of fz(x + vt) is toward the left, or along the negative
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X axis, Only the forward wave, namely fl(x = vt), shall be considered here,
and only the most importent case of such a wave, specifically that in which

R end M vary harmonically,
L S
Let R = Ro sin =p~(x - vt) (Where A is wavelength.)
I t = 0; Re mia (-z—in:x)

Although the curve is drawn with the OX axis as reference, it must be
understood that the value of R at all points in anmy plane parallel to YOZ, is
the same at each instant, and is represented by the ordinate of the curve,

If x be increased by the length A:
R = Ro sinz—A]I(xq- A) = Ro sin (%-Fl:x+ 2TT)»
and the curve begins to repeat itself, If T is the period and t is the time;
R = Ro sin 2 (T - ;-)

In order to make an analogous derivation for M, the following equations

are used:

27T z %
= —p— Ro Cos 2T|_(I" E)

Therefore,

sle ae =fe

x - &
= -%FRO Cos 2TT(E =7
Integrating which, the following is obtained:

T %
M = ——Ro sin (T-m2TT

L
But e "1.?. = (EKu)*
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t
Therefore u = \J % Ro sin ZTT&_ ™

The maximum velue of M is therefore, \I%Ro and calling this Ho, the following
similar equation for M is obtained:

X %
¥ = ¥ sin 2TT (T =%

POINTING'S THEOREM

It is espparent that a traveling wave carries with it a transfer of power,
For example, when a' radio receiver picks up a wave signal a certain amount of
power is required to actuate the receiving apparatus; this emergy must be cons
tained in the wave and is propagated with it from the sending station to the
receiving point,

Let the symbol P represent the emergy in watts per square meter that flows
through an imaginary surface through which a wave is passing, Then P ¢ a is
the total power flowing out through an area a.

Outward flow of power = ?P e da

By the law of the conservation of emergy, if there is an outflow of

energy there must be a corresponding loss of emergy within the magnetic and
electric fields,

1
Electric energy = -z-fD ¢ Edv

Y
lMagnetic energy = 3 f B ¢ Hdv

1
Total energy = -z-f(B"H-i-B‘E)dv

Differentiating this expression to find the rate at which this stored
energy diminishes gives:
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Rate of emergy decrease = %%{(B s H+ D o B)dv

Assuming, for simplicity, no losses of electrical emergy, i,e., conver=
sion of electrical emergy into heat, the outgoing energy must equal the amount

of energy given up by the electric and magnetic fields,

P ¢ da

dtz/(B e H+D e E)dv

P e da / “55(uH ° H + eE ° E)dv (Where D

it

= eE, and B = uH)
Performing the indicated differentisbion, the right-hand portion of the

above equation becomes:

f(uH° +eEod_b)dv= /(He—-+Eo-)dv

The derivatives in the above equation are partial derivatives,

Using Maxwell?s equations to substitute for the time derivetives gives:

f[H ° (V‘x E) « E-e (VX Hi, dv

Which reduces to: f ve (E *H)dv

Since divergence is here integrated through a volume, by Gauss’s
Theorem a surface integral over the surface enclosing the volume mey be sub-

stituted for the volume integrel giving:

Sépoaa =§§(EXH)oda

Now, both sides of this equation are surface integrals over the same surw

face, hence the equation is obviousiy satisfied if:

P = EXH
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This derivation of the Poynting vector considers only the regions with-
out conductivity, thereby, eliminating resistance loss of emorgy. Had cone
ductivity been comsidered, the results would have been identically the same;
the gbove expression holds for the Poynbing vector regardless of whether or

not the region has conductivity.
INTERPRETATION OF PRECEDING RESULTS

The general equations governing the action of magnetic and electrie
fields thaet have been derived in the preceding portion of this thesis will
now be studied and analyzed to determine the relationships that exist between
these fields and the quentities that produce them, namely current and voltage,

From equations (3), the expressions relating the components of the cur-

rent and the components of the magnetic field are:

- 47Tu = %..%%
- 4TTw = %m%
=4
akw

2o

Figure 4
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Where u, v, and w are the components of current demsity in the X, Y, and 2
direction, respectively, as shown sbove,.

Now the electromotive forece around a closed path through which the magnet-
ic flux is varying has been shown to be, from eque:biori (4), composed of the

following three components:

_ 4L _ dr_dg
TR T F %
- L3 4P 4R
eY ’"’&’E"‘ dz  dx
_ dv _ 4Q dr
ez"uﬁ‘E'ﬁ""{if'

=
Aez
ei | x
%4
N
Figure &

Now, to propagate a pleme wave in the X direction, restrictions must be
placed on these gemeral equations, If it is assumed that a conductor with a
circuler cross=section, and with its longitudinal axis coincident with the X
axis is under vconsideration, then within the conductor; the magnitudes of the
E and H vectors would be constant in the Y and Z directions at any one partice
vlar time, i.es, the distribution of the E and H vectors in the Y0Z plane

would be uniform. This would be true if the conductor possessed a constant
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velue of u and K for eny small volume considered., Then the space derivatives
of B and H with respect to Y and Z would be zerc, Hence, the above equations

for electromotive force would reduce to:

e = ud'L = B & 0
x = a6  dy T dz
_oar _g-_?i dr _ dR 8
9 T VE T %X T E (6)
A _ dg dap _ dQ
° T U T T"F T =&
And similarly for the current, the equations reduce to:
u o= L& g . 0
4TT dy dz
_ 1 dL 4aW, 1 dn 7
VE oG ® T TT® (™)
w o= (dM dL) = _].'...92@.
477 dx 47T dx
dL

Since from equation (6),; uE = 0, L must equal zero or a constant, and
since constan'b values do not influence propagation, let L equal zero, From
equation (7) %;;» o %MZ = 0, end from equation (5) -Ix"gr% = %Nf -%I-.g = 03 there=
fore, P = 0,

Now P, Q, and R and L, M, and N were the X; Y, end Z components of E and
H, respectively. It has just been shown that the X components of both E and
H are zeroz therefore; the E and H vectors are contained entirely within the
YOZ plane, Also, ¢ and i (voltage and current) have been shown to have no
components in the X direction, and hence, are contained in the YOZ plane.

To obtain the relationship between the E and H directions; and the e
and i directions, arbitrarily place the E axis in the direction of +the Z axis,

Due to this orientation of axes; obviously now Q must be equal to gerc, and

therefore, E must equal to R, since P has previously been shown %o be zero,
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From equation (5)

~Sat dz = dx
and since both Q and L have been shown to be zero, then N must be equal to
zero also, Thersfore, H must now be equal to M, since both L and ¥ are zero,
From equation (6) e, = %%‘, and since Q was shown &bove to be zero, e,

must be equal to zero. Therefore, the only component of the electromotive force

remaining is Oys vwhich from equation (6) is:

e T e ;‘B’.
¥ dx
From equetion (7)
S T 4TTdx

and since N was showm ebove to be zero, then v must be zero,

Since u and v have both been shown to be zero, then i must be equal
to w, the Z component. The voltage, current, electric intensity, ﬁagnetic
intensibty, and the flow of emergy are represemted below on the coordinate

axes in their proper space relationships, |

Z
1

Y
x

ey

Figure 6
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Notice that from the preceding section on the Poynting Theorem, the flow
of energy is E x H, while from the sbove diagram such an energy transfer would
involve the product i x e, Here power flow is obtained from the cross product
of the two vectors i emnd e, and the resultant expression for power flow is a
vector from the definition of the cross product. Moreover, it should be pointed
out that this is in accordance with the usual notions of harmonically varying
quantities, for here the power flow is a harmonic variation the same as the
voltage or currentv, except that it varies at a double frequency.

The current and voltage ere seen from the above derivation to be in space
quadrature with each other, i.e., ninety degrees apart in space phase, exactly
the same as the electric and magnetic intensities., The result of rotating the
voltage vecltor around until it coincides with the current vector or falls withe
in the same plane with it is to make the expression for power flow now be equal
to the dot product of e and i, yield an apparent scalar quantity for the power
flow. This condition is realized when, as in conventional literature, the volt
age and current waves are drevn in the same plame, Actually, to be rigorous
in approaching the problem, the current end voltage waves should be considered
as in separate planes, just as the electric and magnetic intensities are con-
sidered. DNotice that if the current and voltage are in time phase, i.e.,
their maxima occur at the same instant during propagetion along the X axis,
then the oross product will yield the same absolute value with the two vec-
tors in space quadrature as the dot product would if the waves were consider-
ed to be in the same plane and the dot product were used, This follows from
the definitions of the dot and cross products, The cross product of two vec~
tors is a vector whose megnitude is equal to the product of the magnitudes of
the two given vectors and the sine of the angle between them, The dot product

of two vectors is & scalar which is equal to the product of the magnitudes of
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the two given vectors and cosine of the angle between them, However, the
significant point not to be overlooked is, that the placing of the two waves
in the same pleane and using the dot product destroys, by the ordinary math-
ematical notaetions, the vector characteristics of the power, which it obvious-
ly should retein, Also, it is believed that if the voltage and current waves
were considered e&s being in separate planes, the appearance of the mesh and
distortion powers could be better explained.

In the previous section it should be noted that the derivation was valid
only for conditions within the wire, If a conductor direction was assigned to
the diagrem showing the current, voltage, magnetic and electric field inten-
gsities, it would epparently be in the d.ireotion-of the current flow, i.e., in
the direction of the Z axis. The magnetic lines of flux would encircle the
conductor and at amy perticular point a vector representing the magnetic field
intensity would be drawn tangential to this circular flux line, which would
appeer on the diagram mentioned above as being along the Y axis, This agrees
with the final position of the H vector as determined by the differential equa-
tions, From the diagrem, it is seen that the flow of energy is apparently at
right angles to the electric and magnetic fields, which would make the flow be
in a direction perpendicular to the circular surface of the conductor, i.e.,
along radial lines, This is precisely as it should be, for inside the conduc-
tor the only energy being trensferred is the energy flowing directly into the
conductor from the outside to furnish the copper loss of the conductor. In
other words, the major energy transfer takes place outside the conductor in
the form of building and collepsing electric and megnetic fields parallel to
the longitudinal axis of the conductor, the small emount of energy for copper
losses being furnished along the conductorts length in a continuous, distribut-

ed manner,
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Outside the conductor, the direction of the magnetic intensity is unchang-
" ed,; but the direction of the electric intensity and the Poynting vector for
energy flow are redically different. The Poynting Vector will have two compo-
nents; one small component perpendicular to the conductor surface to furnish
the copper loss, and a large component parallel to the conductor surface to
furnish the energy being transferred or transmitted from the sending point to
the receiving location., The above conditions for the inside and the outside

of the wire are represented diagrammatically below.

Electrie Fleld
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Y ’agne tic Fleld
bl s =
_-_.-# ‘_—-—-
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e SOW AL

Foynting's Vectors

Figure 7
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CHAPTER III
GEOMETRICAL INTERPRETATION OF A, C. POWER QUANTITIES

SINUSOIDAL SINGLE-PHASE CIRCUITS

It was shown in the section of this paper entitled "Trigonometric Treat-
ment of A, C, Circuit Quantities"™ that the instantaneous real power in a line
ear circuit is composed of a constant component and a component that varies as
a double-frequency cosine wave, The real or active power is the time average
of the instantaneous values of the active power taken over a complete cycle of
the fundamental frequency of the alternating current, The time average of a
cosine wave over a complete cycle is zero, therefore, the effective real power

is the constant term, 20“ — o

In the seme section of this paper mentioned above, it was shown that a
quaedreture component of instantaneous power existed in a sinusoidal circuit
which varied as a double-frequency sine wave, Now the reactive power is the
time average of the quadrature components of power taken over a complete cycle
of the fundemental frequency of the alternating current, This time average of
the sine wave is evidently zero., Reactive power in a sinusoidal circuit is
arbitrarily defined as the apparent power multiplied by the sine of the an-
gular displacement be.tween the voltage and current wave forms, Thus the
diegrem shown below would correctly represent such quantities in a sinusoidal

circuit.
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P, = Reactive power = ;?I_n_l. sin @
P = Active power - oK *)
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Pap = Apparent power = Y

SINGLE-PHASE CIRCUITS WITH NONSINUSOIDAL CURRENT AND VOLTAGE

The instantaneous power is the product of the current and potential dif=
ference as before in sinusoidal circuits, However, in this case, its varia-
tion is not a simple sine function of time, so that the instantaneous power
is given by an expression which includes the product of each harmonic term of
the current by the corresponding harmonic term of the voltage.

The active power under periodic conditions is equal to the algebraic sum
of the active powers corresponding to the fundamentel and each harmonic. The
active power of the fundamental and each harmonic, as before, is the time
average of the instantaneous values for that particular frequency taken over a

complete cycle of the fundeamentel frequency of the altermating current,
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Similarly, the reactive power in a eircuit with periodic current and volt-
age is the algebraic sum of the reactive powers corresponding to the fundamen-
tal and each hermonic, Where the reactive power for each harmonic has the same
meening as in the previous section for the fundamental. The apparent power is
the product of the effective current and effective voltage.

With the definitions that have been chosen, the squere of the apparent
power, is, in general, greater than the sum of the squares of the real and re-
active powers when there are harmonics in the current and voltage wave forms,
Hence, the triangle that was used to represent power under sinusoidal condi-
tions must be modified. One method of doing this is to introduce a new
quantity, "distortion power," which is so defined that the square of the appar=
ent power is equal to the sum of the squares of the active power, the reactive
power, and the distortion power, A convenient way of visualizing the three
power components is to construct them parallel to the three-dimensional Car-
tesian Coordinate system as shown below,

Fictitious power is defined as the square root of the difference in the
squares of the apparent power and the active power, From the diagrem below,
fictitious power is obviously equal to the square root of the sum of the squares
of the reactive power end the distortion power, The vector power is defined
as the square root of the sum of the squares of the real power and the reactive
power, Nonreactive power is defined as the square root of the sum of the
squares of the active power and the distortion power, The symbols used in the

following diagram (Figure 9) are defined as follows:

Pap Apparent power

P = Active power



P_ = Vector power

P.. = Reactive power

Fictitious power

g
H
L}

o
1}

Nonreactive power

R

R

R

Figure 9
BALANCED POLYPHASE CIRCUITS WITH SINUSOIDAL CURRENTS AND VOLTAGES

In dealing with this type of polyphase circuit, for example the three-
phase wye, the definitions for single-phase circuits will hold for each phase
of the polyphase circuit, However, the instantaneous power for a balanced
three-phase circuit does not vary under sinusoidal conditions es it does for
a single-phase circuit,.

Thus a power diagram could be constructed for each phase of the poly-
phase circuit exactly as was done for the single-phase circuit. The only
types of power present would be the real power, reactive power and, of course,

apparent power, Therefore, the square of the apparent power would necessarily
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be equal to the sum of the squares of the real power and the reactive power,
Since the diagram for this power relationship would be identical in construc-
tion to that for the single-phase case, an additional diagram will not be

drewn in this section,
BALANCED POLYPHASE CIRCUITS UNDER NONSINUSOIDAL CONDITIONS

The extension of power concepts to & balanced polyphase circuit with
hermonics in the currents and voltages may be accomplished by considering the
circuit as separated into a group of single-phase circuits, Each of the sine
gle-phase circuits has the same effective current and effective voltage as
the others, The instenteneous power is given by a sumation of the powers of
each of the component single-phase circuits, In general, the instentaneous
power is not constent but will hrave & cyclic variation with time, The power
diagram for this case would be the same as for a nonsinusoidal single-phase
circuit, except the quantities of one of the above discussed circuits must be
multiplied by the number of circuits, Therefore, the power diagrem for this

section will be omitted.
UNBALANCED POLYPHASE CIRCUITS UNDER SINUSOIDAL CONDITIONS

Again, the simplest, and most common, method of attacking unbalanced
sinusoidal polyphase circuits is to consider the polyphese circuit as being
composed of ccmponent single=phase circuits, with a particular point being
teken as reference,

It is to be noted, however, that although the insertion of a set of
wattmeters in the usual menner at the terminals of an unbalanced polyphase
circuit gives a theoretically correct measurement of the active power in the

polyphase circuit; the corresponding method for measuring reactive power will
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not give a correct result, if both the current and the potential differences
form vnsymmetrical sets. The symmetrical components may be applied here. A
theoretically possible but impracticelly complicated sequence network is re=-
quired for a correct measurement of reactive power inthis oaae.l

Algebraic apparent power is defined as the maximum active power that can
exist with the given effective wvalues of currents in the conductors and volt-
ages between conductors. Mesh power has been defined as a gquantity to relate
algebraic apparent power and vector power, In the type of circuit under con-
sideretion, the square of the algebreic apparent power is equal to the sum of
the squares of the active power, reactive power, and mesh power., The diagram
is shown in one plene since, with sinusoidal variations, the distortion is
zero, This is the vector diagram for a four-wire, three-phase circuit, where

the voltages were measured from the actual neutreal,

R

Figure 10

1 H, L., Curtis snd F. B, Silsbee, "Definitions of Power and Related Quen-
tities," Electrical Engineering, (April, 1935), Vol. 54, pp. 394-404.
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UNBALANCED POLYPHASE CIRCUITS UNDER NONSINUSOIDAL CONDITIONS

This type of cirocuit may be approached in mamner similar to that utilized
in the preceding sections, i.e., be broken up into component single-phase cir-
cuits, There is no unique division of an unbalenced polyphase circuit into
component single~phase circuits, since no possible separation would give a
group of identical circuits. The vector diagram for an unbalanced, three-wire,

three~phase, nonsinusoidal circuit is shown on the preceding page.
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CHAPTER IV

ALGEBRAIC VERIFICATION OF GEOMETRIC INTERPRETATION

Consider the case where a sinusoidal voltage is applied to a single-phase,
non-linear circuit, For reasons of simplicity, all harmonics are neglected
in current other than the third harmoniec, The production of a third harmonic
current with a sinusoidel voltage form might be questioned by some; but such
can be produced with non-linear circuits,

When a sinusoidal alternmating voltage is applied to a non-linear imped-

ance it is almost selfw-evident that, due to the nonproportionality of

current to voltage, the wave form of the resulting current must be dif-
ferent in shape from that of the epplied pressure, A none-sinusoidal
wave form is said to be distorted, and the distortion is due to the
superposition on a sinusocidal and fundemental component of normel fre-
quency, of a number of other sinusoidal components having frequencies
which are odd multiples of the circuit frequency., These latter compo=-
nents, generelly celled harmonics, can be conceived to flow in the
non-linear circuit simulteneously with the sinusoidal fundamenteal
component, just as in ordinary circuits active and raaftiva current
components are conceived to be simultaneously present,

Now in a circuit where the total current is composed of harmonics as well
as the fundamentel, it is a well known fact that the effective wvalue of the
complex current wave is equal to the square root of the sum of the squares of
the effective values of each individual wave considered separately.z This
effective value of the complex wave is the amount that an emmeter would in-

dicate if it were placed in the circuit.

1 Stubbings, "Harmonic and P, F,," Electrical Review, June 5, 1942,

2 eV Tang, Alternat Currents Circuits, lst Edition, International
Textbook Company, 1940, ppe 316,
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Furthermore, by integrating over a cycle, it cen easily be shown that a
funuamentel voltage and e third harmonic current yield no power whatsoever,
either active or reactive., To better explain this point let us assume (what
is conceiveble, although perhaps not practically realizable) that a non-linear
circuit allows the passage of a third hermonic component of current having an
emplitude equal to ome-half the fundamental component, when a sinusocidal volt-
age is epplied to ite To produce the 60 cycle fundamentel component will
require a certain emount of power which is given by the usual power formule
VI cos #. Now, comsider the relation of the third harmonic which has been
generated by the non~linear circuit to the fundamental component, This third
harmonic current is continually gaining in phase on the fundamental voltage,
and in less than a half-cycle of voltage change the harmonic current will
pass through a complete cycle of phase change relative to the voltage. More-
over, there will be exactly three complete cycles of this current for each
cycle of the voltage, therefore, the average power required to genersate this
third harmonie current from the source is apparently zero, However, the
instantaneous power required to deliver this third harmonic current is not
Z6r'0¢

In a circuit containing a third harmonic, the real power is them given
by:

(Real Power) P = Rl EI, = EI, Cos g
and the reactive power is given by:

(Reactive power) P, = Im 1'311 = EI, Sin g
Where £ is the conjugate of E, and # is the angle between E and I The syme
bol I here refers to the amplitude of the fundemental component of current,

In the following discussion I, will arbitrarily be teken as the axis of
reference, The symbol I, will be used to designate the effective value of the

complex current wave,
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Ie B 112 + 152
Since the total appsrent power (Pap) for such a circuit does not equal to the
squere root of the real power (P) squared plus the reactive power (P,) squared,
a new type of power will now be defined, which shall be designeated as distore
tion power (Pd), in such manner that the total apparent power is equal to the
vector sum of P, P, and Pge

Pap = P+ Pp+ Py (Vector sum)
Before the third harmonic current flowed, i.e., when only the fundamental com-
ponent flowed, the square of the total apparent power was equal to the sum of
the squeres of the real and reactive powers, and hence the distortion power was
zerc, When a circuit was devised to let this cwrrent flow the above relation
no longer held true, Therefore, even though the third harmonie current does
not produce any real or reactive power, it is evident that it is producing en
effect that is destroying the triangle relationship emong the real, reactive,
and apparent power, i.e., distortion effect.

It will now be assumed that the distortion power, Pd’ is due to some

distortion current, I, thens

Pg = Ely
The ebove equation for totel apparent power will now be investigated teo deter-
mine the relative positions of the real, reactive, and distortion powers., It
should here be remembered that the total apparent power was merely defined as
the vector sum of these three quantities. It is alrecady known that the real
and reactive powers are at right angles to each other, hence the remeining
problem is to locate the direction of the distortion power.

P ® EIe = E 12*1952

Pa.p =P+Pr+Pd
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This equation is interpreted on the following diegram, Notice that P__ end
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P, are vectors in different directions, and in addition they are separated by

the turning angle 0.
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CHAPTER V

TRIGONOMETRIC TREATMENT OF A, C. CIRCUIT QUANTITIES

The ordinary manner in which most textbooks apprcach the idea of an al-
ternating current or voltage is to represent the current ss a sine wave and the
voltege as a sine wave displaced from the current wave. The effective values

of these waves may be represented geometrically as shown below,

Figure 13

From which i Icos g

iy = Ising
e = E cos (0 + )

e. = E sin (0 + f)

Here E and I are merely thought of as being directed lines drawn to scale
such that their respective lengths represent the effective heights of the curw
rent and voltage waves, Now then, by expanding the expressions for e and ey

the following equations are obtained,
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E(cos & cos © « sin ff sin Q)

L]

e = E(sin #f cos 6 + cos ff sin 0)

The two above equations follow directly from the trigonometric identities:
cos (f+80) = cos fcos @ - sin f sin ©
sin (f+0) = sin @ cos 0 + cos & sin @

Assuming power to be given by the expression

P = ei+ e 1 the following equation is obtained,

E I(cos?d cos @ = cos @ sin ¢ sin 6) +

P =
E I(sinzﬂ' cos © + cos @ sin f sin 0)

From which
P = E I(coszﬂf + sinzﬂ) cos 8 =E I cos o

This latter expression is recognized s&s being 'l:he.true oequation for real
power only end contains no double=frequency ccmponent, Since it is well known
that a double~frequency component of power is present in a general a.c, circuit,
the question naturally arises as to the reason for its ebsence in the ebove
expression,

At this point, the assumptions that have been made should be carefully
studieds Particularly, the assumption that P = ei + e;i; is most interesting.
As will be easily shown in the section of this peper relating to the complex
representation of alternating current circuit quentities, the above expression
for power actuelly represents only the real power developed by the voltage and
current and hence should be equal to the product of their effective values and
the cosine of the angle between them, as this is quite commonly known to be
the expression for real or true power,

In the above computations it might et first appear that two quantities at

90° degrees with each other, ei and eli]_, are being added arithemeatically to
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obtain the total power; and 6onsequently the alert reader might immediately
object to such a mathematical treatment, However, it must be remembered that
active power is determined by the product of the in-phase component of the volt=-
age and the current, and it should further be noticed that to take the component
of the voltage in-phase with the current and multiply this by the current is
identically the some as adding srithematically the product of the in-phase compo-
nents of current and voltage along the x and y axes,

It might be more beneficiel to study the expression for the power at any

given instaent.

Let v = Vn sin wt, and
i = Im sin (wb - Q)

Then p = vi = VmIm sin wt sin (wt - 0)
p & IEJZ|Cos 6 - Cos (Zwb-g)]

from the trigonometric identities

Cos (a =b) = CosaCosb+ sina sinb
Cos (2 +Db) = Cos aCosbe«sinasinbd
Inln oo -c (2wt - ©)
p = {T ]T oS L o8 -
p = EI Cos © - EI Cos (2wt - ©)

p = EI Cos © - EI Cos 2wt Cos 0 - EI sin 2wt sin @
The last two terms on the right of the sbove equation are pulsating quentities
of a double=~frequency. Moreover, these same berms will average to zero over
an integral number of cycles, The first term on the right side of the equation
is seen to be the maximum value of the second term., These first two terms cone

stitute the instantaneous real power, as their difference is never negative.
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The term Eszm

obviously has equal positive and negative loops, It represents the oscillating

sin 2wt sin @ is the instantaneous reactive power, It

energy between the gensrator end the inductive or capacitive reactance, This

power fluctuates between +%;IE sin © and = VmZIm sin @,.and hence has an

average value of zero,

When 2wt is an odd mulbiple of T[T, the value of the instantaneous real
power is 2 VI Cos @ o Vhen 2 wt is an even multiple of TT, the real power j.s
zero, Thus,the real power flucbuates bebween 0 amd 2 VI Cc_>s 0, snd hence has
the average value of VI Cos @,

It should be emphasized that the above discussion refers to components of
the resultant power wave., These components do not exist as separate entities,
but they sre convenient components to consider for purposes of analysis. Actually

a single power wave as determined by the equation



P = EIl Cos 6 ~ %l Cos 2wt Cos 8 - EI sin 2 wb sin @

is the only wave that has physical existance,

1 R, M. Kerchner and G. Fo Corcoran, Alternatingnggrrent Circuits,
2nd Edition, John Wiley & Sons, New York, 1943, pp. 26=32.
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CHAPTER VI

COMPLEX REPRESENTATION OF A. C. QUANTITIES

Immediabely after the development of complex number theory by Argend, this
theory was applied to alternating current circuits by Steinmetz. However; in
the rapid application of the complex number theory to a.c., circuits subsequent
to the original efforts of Steimmetz, several inconsistencies have developed.
For example, & sinusoidally varying current and a constant impedance are both
spoken of as "wvectors." Yet, immediately after calling these quantities "vec-
tors," authors of most elementery texts promptly begin to perform operations
with these quentities unknown in the algebra of true vectors, MNoreover, after
defining a peculiar type of product for the above mentioned basically different
quaentities in order to obtain the desired result, the correct one, in one in-
stance, it has been found that to secure the desired result in other cases a new
type of product had to be arbitrarily introduced, namely the substitution of a
conjugate, Most authors blandly justifyy this vioclation of basic mathemetical
laws by the observation that such a substitution is necessary to yield thé

correct result, The following discussion will attempt to clerify this argument,

. .
| R
e | x,= AMFL

Figure 15
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If a sinusoidelly verying voltage is applied to the above circuit, it is
a weli Imown fact that the resulting current will also vary in e harmonic man=
ner., Following the usual procedure, let the effective value of the current be
represented in a complex manner as?

A+ 3B (3 =\/-T>

end, 2 = R+ jX

1

Then E = IZ = (A+ jBY(R+ jX) = AR = BX + j(BR + AX)
Let C = AR = BX, amd D = BR + AX

Then E = C+ 3D

Therefore P= EI = (A + jB)(C + jD) = AC -~ BD + j(EC + AD)
P = A(AR = BX) = B(BR + AX) + j|B(AR = BX) + A(BR + AX):]
P = A®R «BR - 2ABX + jE?.A.BR + X(a% - 32)]

Note that Mode (I) = /(Az + Bz)

or Mod. (I)z = A% 4 st where Mod. (I) refers to the sbsolute
magnitude of the effective value of the current wave,
Now consider:
P = IE, where I is the conjugete of (I)

P

(A = JB)(C + jD) = AC + BD + j(AD « BG)
P = A(R - BX) + B(BR + AX) + jE(BR + AX) = B(AR = BX):I
P = (4% 4+ BO)R + 5x(a2 + BP)

In the sbove complex representation a harmonie function, I, snd & constant
impedance, Z, were both represented by the same notation, It is seen that the
ordinary product of these two quantities, I and Z; yielded the correct value
for the voltage drop across the circuit, However; when this value of E so
found was used further as a multiplier of the current to find the correct ex.
pfession for power, P, the result obtained did not represent either real or

reactive power, in fdact, had no known physicel significence, When the con-
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Jugete of I, A = jB; was used as a multiplier of E, the resulting expression
was found to be the known correct equation for power, To the student of science,
the question is at once posed as to what fundementel reason should the ebove
phenomensa be ascribed.

At this point one must become rigorously critical as to the exact nature
of the symbol or operator which was termed j. In mathematics, any real number
along the X axis when used in conjunction with the operator j, or multiplied
by the number set (0, 1), is said to be relccated along the positive imagi-
nary axis the seme distance from the origin as before. In other words, to op=-
erate on a complex number a + jb with the symbol j, rotates the complex number
90° in a counter-clockwise direction, meking a new complex number =b + ja.

Now, in applying the j operator to alternating currents and volteges, care
must be observed as to the proper inberpretation of j. When I was multiplied
by Z to obtain E; the voltage so obtained was of the same frequency as the cur-
rent, Therefore; as far as E end I are concerned, the operator j has the same
meaning for each, since a 90° rotation in the Argand Plane would be interpreted
as a quarter-cycle displacement of the sinusoidal waves along. the time axis,
But, notice that in multiplying E end I to obtain power, a quantity with a fre-
quency twice that of the voltage or current makes its appearance as shown in
the section of this paper entitled, "Trigmometric Treatment of A. C, Circuit
Quentities," Now, a displacement of 90° along the time axis for the current
or voltage would represent an 180° displacement for the double-frequency power.

Therefore, if an operator is to be used to indicate a rotation, one must
remember thet this operator will have a meaning that will depend upon the
frequency of the quantity in question, In fact, it might be well to use a
different operator to use in conjunction with each different frequency., These

operators would then have the same meaning when applied to their fundemental
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frequency, as is ordinarily associated with j as used with its fundementel.

Let fo be the frequency corresponding to which j has a meaning of a 90°
counter=slockwise rotation, At a frequency of 2 fo” 3 would then mean a
rotation of 180°, If a new symbol, 1, is used to represent a rotation of 90°
at a frequency of 2 f , then obviously 12 is equivalent to j. Similarly, if
m represent a 90° rotation at a frequency 3 fo, then m® is equivalent to js The

following teble is thus derived:

Frequency Operator Relation to j

fo 3

2 £, 1 12 = 3
38, m m® = j
41 n nt = j
5 £, P p° =
6 £, r 6 = 3
7L s s’ = j

The above table gives the relation that would exist between j end the other
operabtors that represent a quadrature rotation for their particular frequency.

The idea of using other operabtor for higher frequencies is not altogether
foreign to students of Electrical Engineering, For exampls, when dealing with
electrical machines with more then two poles, we distinguish between "elsctrical"
and mechanical degrees, With a slight extension, the same idea holds in the
ebove discussion. That is, a second harmonic obviously passes through twice as

many electrical degreess as its fundamental,
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CHAPTER VII

SYMMETRICAL COMPONENTS

Any unbalanced three-phase system may, for purposes of analysis, be divid-
ed into three balanéed systems, This was shown in the original works of
Fortesquey published in the A, I, E, E, magazine in 1918,

Let Va, Vb, and Ve be the unbalanced phase voltages in a three-phase system,
Then, similarly, let Ia, It and Ic represent the corresponding unbalanced phase
currents, Now, in dividing the given unbalanced system into three balanced
systems,; it is found thabt two of the balanced systems are of opposite phase rota-
tion, while the third balanced system involves no phase rotation, Consequently,
these three balanced systems are referred to in such a menmer as to indicste
the phase rotation by whish they are characterized, with respect to the phase
rotation of the original given unbalanced system. The balanced system having
the same phase sequence as the original unbalesnced system will be called the
"positive sequence nebtwork," and will be designated by the symbol ABC. The
other oppositely rotating system will be termed the "negative sequence net=
work," and, similarly, will be referred to by the symbol ACB. Since the remaine
ing balanced system has no rotabing characteristics, it will be called the "zero
sequence network,"

The subscripts 1, 2, and © will be used to refer to the positive sequence,
the negative sequence, and the zero sequence, respectively. In & similar menner
the subscripts a, b, and ¢ will be used to refer Lo phases A, B, and C, respece

tively,



Since the sum of positive sequence quantities or the sum of negative se=
quence quantities for all three phases is zero, the total vector volt-ampere

imput for amy three-phase load, whether belanced or unbalanced, is
Totel (EI)- = 3(E010 + By 1) + Byl,)

It is to be noticed that the only terms that contribute to the total vector
volt-amperes are those in which the sequence orders of the potential and the
current are the same, Thus positive sequence and negative sequence currents
produce no power, either active or reactive, in the circuit as a whole, al-
though they do contribute to the power of each of the individual phases, That
is ‘to say, they contribube to the unbalancing of the circuit by inereasing the
power in one phase above the average power and decreasing the power in another
phase below the average power, i.,e., above and below the zero sequence compo=
nent of power.

If the lbad is balanced, V:L and I1 have a definite value and the other
guentities are zerc, The imput per phase is {71011, The postive sequence
voltages and the negative sequence currents produce no power, in the whole cire
cuit, either active or reactive, They do contribute to the power of each phase, |

When voltages or currents are unbalanced, they contribute to the unbalancing of

the circuit,

PHASE POWER EQUATIONS

Pa = Vals = (Vl + VZ o VO)(Il + Iz'l' Is)

Here the V¢s are all conjugates; the symbol not being used due to lack of appro=-

priate capacity of typewriter,

o

Pb = VbIb = (aVy + azvz + VO)(azll + aly + Ig)
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TWhere a is merely a rotational operator indicating a rotation of 120 degrees.
The operator is entirely analogous to the j operator commonly used to indicate

a rotation of 90 degrees,

Pc = TVelc = (azvl + aVy + Vo)(a.Il + azlz + Ip)
Pa = (V1) + VoI, + VoIg) + (VoI + ViIy + VoIg) + (VoI + VoIp + ViI,)
Pb = (VyI, + VoI, + V. I.) + (a.ZVI + 82V, T +‘a.2VI)
14 7 %272 7 Yoo 071 1+2 210
+ (aVZI]_ + a.VOIZ + a.VlIo)
Pe = (V1Iy + Valy + Vglg) + a2(VoIy + VoI, + V1I)
+ a(VpIy + VI, + VZIO)
Pa = PO + Pl + Py
- 2
Po = PFp + a™Pp + aPz
Pe = P, + a.zP + aP
0 2 1
Pa + Pb + Pec = 3PO+P1(1+ a + ad) + Po(l+ a+ az)
But P; (1 + & + a?) = 0, since this represents three equal vectors 120 de-
grees apart, Similarly, Py(1 + a + a®) = 0.
Pt=Pa+Pb+Pc=3PO \4‘

Pigure 16



Figure 18

B2
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Pa = P0+0M

U."U
n

PO+ oQ

d
]

PO+0N

But, Om + ON + 0Q = O, since the sum of three vectors which form a

closed triengle is zero., Then,

Py = Pg+ P L+P, = 3P+ O0M+0Q+ 0N = 3P,

Py = 3P, (Total active power)

Active power is always zero sequence,

In the above derivations the power quantities were treated as vectors, which
they actually are, That is to say, the different power components possess both
magnitude and a definite phase relationship to each other, in other words direcw
tion, which is the definition of & vector, In using the different phase-powers
in the above figure as vectors, the seme result was obtained for algebraic appar=
ent power as in the previous case using the idea of symmetrical components., That
is, the above figure is merély a means of representing in a vaelid memner the
known correct results obtaixi_ed by the symmetrical components, which requires that
the different powers in the different phases be considered vectors,

Since the theory defeloped in the foregoing discussion is primarily design-
ed for the solution of unbalanced circuits, there should exist same procedure
of using symmetrical components to solve for the magnitude of the mesh power in
such a circuit, In fact, this should be the power per phase produced by the
positive or negative sequence voltage and the current of opposite sequence,
since it is the inbter-action between these voltages and currenmts of unlike sew
guence that produces the umbalance in the circuit, in a mathematical sense.

Moreover, there might arise under differemt physical conditions some
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speculation as to the identity of the different sequence currents and voltages.
In the previous development, it was merely shown that a given set of unbalanced
vectors spaced 120 degrees apart could be represented by the sum of not more
then three sets of wvectors, two sets being‘balanced sets of opposite phase rota=
tion and the third being a uni-directional set of equal magnitude, No attempt
was made to formulate a circuit in which these sequence quantities might actually
exist.

For example, consider an unbalsnced three-phase, wye connected load placed
upon an alternater with a grounded neutral, If the neutral point of the load
is ungrounded, then the system coen be represented by the positive and negative
sequences, But, suppose that the neutral of the load is grounded, then the
ground current (that in the neutral) is the zero-sequence current, Now, sup=
pose the load is adjusted to balanced conditions; a netural current may still
flow, For example, consider the load as being wye commected treansformer; it
is a well known fact that a third harmonic of exciting curremt will flow if the
neutral of the primary is grounded, because of the non-linearity of the mage

netization curve and the effect of distortion of the hysteresis loop.
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CHAPTER VIII

APPLICATION OF QUATERNIONS TO POWER

It was shown in the section of this paper dealing with the geometric ine
terpr_'e'tation of genersalized power in a,c, circuits that the power factor angle
is en angle between the real or active power and tﬁe vector apparent power,
This; of course, implies that ﬁhevpower factor engle is, in general, an angle
in space, that is, it is not in the same plane as the real and reactive powers.
Obviously, then, to completely describe power in the general sense would re=-
quire the use of four dimensions., For example, the four dimensions could be
either real, reactive, distortion and mesh powers, or they could be composed
of three of these and the space-angle, i.e., power factor angle, This idea
could perhaps be represented by quaternions,

A quaternion is essentially an operator; it is a magnitude and a turning
factor. A quaternion expresses the rslation between two vectors., The mage
nitude consists of the ratio of the absolute magnitudes of the two vectors,
The turning factor is an operator which operates upon one of the vectors,
turning it into the path or line of action of the other vector. Consider two
vectors M end N. Suppose further that M is r times as greoat in magnitude as
N. Also, assume that the two vectors are directed in different directions,
the angle between their lines of action being en arbitrary angle 8, Then M =
ngN, where B° represent a rotation of O degrees from N toward M, This roba-
tion, of coursey; takes place in a plane, That is, the operator B® rotates the
vector N from its original position until it coincides with the direction of

vector M, the plemear rotation taking place in the plane M-N,
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Also, the reciprocal relation to the foregoing can be written as ¥ =
;/rB-”"QM. Here B"g nerely represents a rotation through the same angle © and in
the same plane, but the rotation occurs in a negative sense to the proper
direction of meaéur*ing 6, In addition, the relation M = rg° may be written.
In other words, BO rotates vector N into .1ine with vector M and then the mul-
tiplier r makes them equal in magnitude just as the operator‘had made them have
the same sngle, | | |

Now, © was any arbitrary angle, and hence could be either O or 90 degrees.
In fact, the operator 3° may be broken into two component parts, one which
rotates zero degrees ‘end the other which rotates ninety degrees, The proper
multiplier r would have to be associated with each of these rotating factors.,
Therefore, Bg = CO8 © X BO + sin @ x Bgo°’ or, in event the magnitude is
not unity in general rB° = r cos @+ r sino Bgoo. The zero angle operator
is omitted because it has no effect upon the quantity upon which it operates,
If we use symbols to designate the r cos © component end a different symbol to
represent the r sin @ component, say p and g respectively, then rBQ = p+

90° o
@B . And, also, r8®A = pA + qB%OA, Where the relation between p and g,

and r end O are given by r = ,/(p® + q?) , md 8 = arc ten (p/q)»

From the above discussion it is seen that a quaternion is in reality
composed of two parts, a scalar part and a vector part, The scalar part in
the above derivations and definitions is p, end the vector part is quoo.
Examples

Let E ropresent a sine wave alternating electromotive force in mage
nitude and phase and let 1 denote the alternating curremt in magnitude and
phase that would flow if thé sine wave electromotive force were applied to the
terminals of a series resistance-inductance circuit, Then B = (i.’ + 2 x 3,14

o
fLBgo }JI. Vhere r is the resistance of the circuit in ohms, L is the inductance,
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£ is the frequency of elternations per second, and I denotes the axis of the

plane of representation,

E = rI+ 6.28 £1390°1

BEI"Y = r + 6,28 £1890°

Thus, the operator which transforms the current into the voltage is a qua-
ternion end the inductive reactance is ths vector part.

To determine the components of the reciprocal of e quabternion, consider

R = (p+ quoo)A
Then A = ____l.§3?
P +‘qB; 90°
A = p-aB

X3 - ;] -~ R
0+ B0 @ - ™)
A= P=B g

D% + ¢ |
: o
= P oo B
A v

p°+q° p° g

Exemples
Consider the same application as considered in the previous examples Sup-

pose that it is desired to obtain I in terms of E.

E I

-]
(r + 2TTfL x 590"

o 27TEL 90°
P 2 2 7 B
r? 4 (277fL) r° + (Z7TEL)

Hence, I B

ADDITION OF COAXTIAL QUATERNIONS

If the ratios of each of several vestors to one particular vector are known,
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the ratio of their resultant to the same reference vector is obtained by taking

the sum of the ratios.

00
R, = (p; + a; x B0 )A
Ry = (pg+qp xB8%9)a
& L4 L] - *
Ry, = (p,+ qango YA

vl

n ° . n °
=z = =0, +aq x5 {EP-* =(a) = 3%
J ‘ J val J J

Exemples
Consider a circuit composed of a mumber of simple R-L circuits connected

in parallel,

9 Q
r” o+ _(2TT£L1) R
Iz _ o 2Ly x x E,

r22 + (ZTl’sz)z

21 =Z[r - 2THL x 9900:{ x B,

rz 2 (ZTTfL)z

PRODUCT OF QUATERNIONS

The quaternion which cnages A to Rl is obtained by teking the product of
the quaternion which changes A to R with the quaternion which changes R to Rl.
o
R = 8% = (p+ g )a
1 °
and gt = rlB¥R = (pl + qlBgo )Rl

1 1 0°
then R = reip(®* 970y . Eppl -~ aa) + (pq + pq)B° ]A |

If

§
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Notice that the complete product is the product of the magnitudes, and also the
product of the turning factors. The angles were added because they were indices

of the common base B,
QUOTIENT OF TWO QUATERNIONS

The quateranion which chenges R to Rl is obtained by taking the quotient

of the quaternion which changes A to Rl by the quaternion which changes A ‘o

R,
If R = rBa = (p+ 3?4
1 o
end Rl = r13%a = (pt+ 189070
3
then RY = ?B@ %)z
1
R = (pt v g3 L o R
p+gB
1
RE= (pr+ o897 (p - %) |
o2 o qz
1 1 _1.,.90°
pl = (pp~ # ag’) + (pa’ - pq)B
21 o

PRODUCT OF TWO VECTORS

In the following paresgraph are the rules commonly associated with the
vector algebra, These vectbrs products pley an important role in the field of
applied mathezné.ticso Any general vector in three dimensions is represented by
its components along the coordinates of the rectangular Cartesian Coordinate
system. The component of the magnitude of the vector along each of the three
axes is multiplied by the appropriate unit vector, and the sum of the three
vector components then obviously gives the original vector, The unit vectors

along the X, Y, and Z axes shall be designated by i, j, and k respectively.
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The product of two vector means to take the product of their magnitudes
and direct this product in the direction normel to the plane of the two vectors
in the direction that a right hand screw would advance if the screw be turned
from the first vector in the product toward the second vector in the product.
Then, obviously, ij is k, and ji is «k, Also, j% is 1, end similerly for the
squares of the other two unit vectors. The following table completely describes

all possible products of the three unit vectors.

12 1s 1 2 45 1 ¥ is 1
ij is k ok  is i ki is ]
i dis -k kj dis -i ik is -j

The square combination of the unit vectors give quantities which are in-
dependent of direction, snd consequently are summed by simple addition,

The physical meaning of the above rules is made clearer by considering
an application to the dynamo and the electric motor, In the dynemo, three princi-
pal vectors have to be considered: +the peripherial velocity of the rotor con-
ductors at an instant, the strength or intensity of the magnetic field and the
vector representing electromotive force, The vectors representing the three
electrical quantities above'are orthogonal vectors., Therefore, by proper
orientation, they can be located in the Cartesian coordinate system, Frequently
all that is required is;, given two of the directiuns, to determine the third,
Suppose that the velocity of the conductor is i, snd the direction of the flux
is j, then the direction of the electromotive-force is k, The above formula
ij is k becomes

velocity x flux is electromotive-forcs,

From which it easily follows that

flux x electromotive~force is velocity
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and electronotive~force x velocity is flux

The corresponding equation for the electric motor is

current x flux is mechanical=force
From which by a cyclic permutation as before

flux x force is current

force x current is flux

In most elemetary courses in electricity the student is taught a thumb-
end-finger rule in order to remember the sbove relationss The formule
velocity x flux is electromotive~force is much handier and eeasier to remember
than sny thumb-snd=finger rule, for it compares the three directions directly
with the right hend screw.

Exeample:

Suppose that the electrical conductor is so orientated that it is per=~
pendicular to the plane of the paper and its velocity is toward the bottom of
the sheet, Furtber, suppose that the direction of the magnetic flux is toward
the left of the paper. Corresponding to the rotation from the velocity to the
flux, a right handed screw would advance into the paper; that then is the direc-
tion of the electromobive=force, Notice, particularly, that since velocity
appears first in the product, we must turn the screw from the velocity into
the direction of the flux}

On the other hand, suppose that the direction of the current along the
conductor is in a direction directly out of the paper toward the reader and
perpendicular to the plane of the paper. Again, assume the flux to be to=
werd the left. Corresponding to the rotation current-flux, e right handed
screw would advance toward the bottom of the page, which,therefore, must be
the direction of the mechenical force which is applied to the conductor. This

is the generator principle; the example above was the motor principle,
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COMPLETE PRODUCT OF TWO VECTORS

A

il

e.li-t- a.zj + ask

K

and B 3

bll + sz + Db

These are two gemeral three-dimensional vectors, not necessarily of the

same physical kind, Their product is then

AB

1}

(ali + ey ask)(bli + b+ b3k)

2

i

albliz + a.zszz + a3b3k2 + asbzik + agbokj

+ agb ki + albsik + 89bo1] + agbyji

1]

+ (e,lb2 o azbl)k

|
a1b1+a22+a3b3+ 8y 9‘2 a.3

by by b (determinant)

Thus the totel product bresks up into two partial products, nemely, a1b; + asb,
+ agbgz, which is independent of direction, emd 8] 85 &g

by by bz |, which has a

[ dd
[N
Ly

direction normal to the pleme of the two original vectors, A and B. The first
part is called the scalar part, and the latter, the vector part.

If one can think of the scalar part as being represented along some real
axis, then the foregoing totel product would very aptly represent the tobal

power in en a.c. circuit. For example, the real part is the expression for



63

active power, the other three could perhaps be Thought of as representing the
reactive power, the distortion power and the mesh power,

P = VI = P+ P+ Py+ Py
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CHAPTER IX

REPRESENTATION OF ELECTRICAL QUANTITIES IN HILBERT SPACE

While solving integral equation in comnection with physical problems,
Hilbert initiated what is now celled a sequential Hilbert Spece., Many other
mathematicians developed the theory of these spaces amd applied it to problems
of mathematics and methematical physics, They introduced different kinds of
Hilbert spaces that are called todey different realizations of the Hilbert space,
It was only at the end of the third decade that J, von Neumenn laid down & basis
for the unified theory of the spaces developing the theory of the abstract Hilw
bert space., Since then the theory has undergone a great development in itself
as well as in its applications to other branches of mathematics end mathematical
physicse.

Hilbert space appears as a generalization of the n-dimensional Fuclidean
or unitary spaces for n as n approaches infinity. The n-dimensional Euclidean
space is a space whose points P are in a one-~to~one correspondance with all
sequences of real numbers (the coordinates of P), The symbol % shall be used
to denote a one-to-one correspondance,

Px (X5 Xpo Xgs eoos Xn)

The distence of two points P * (xk), Q% (Y ); for k = 1,2, 3, eosy 0 is:

[m cx)P e (T - 1P 5 eees + (2 xnﬂ

'_The abstract Hilbert space is based upon notions familiar in the classical
vector-caloulus, Recall here briefly these notions as they are used in an rw

dimeunsional space, Y
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Two poimts of the space P<>(x,) end Q<»(y,) give rise to a vector PQ = u

s

with origin P and end-point Q. The components of the vector PQ are the differ-

ences (¥y1 - X3y, Vo = %g; cees ¥Yp = X.n)o Two vectors are equivalent when their

coordinetes are equal. Consequently, each vector is equivelent Lo a vector

u = OF with origin at ¢ (0, 0; 05 oces 0): The coordinates of the vector
v = OP are the same as those of the point P,

DEFINITION OF ADDITION:

ver(x)s Ve ()

u 4+ v<+(xl ¥ Yys K ¥ Vg eses X * yn)
MULTIPLICATION BY A NUMBER a:

an = (axl, 8Xos axS" t26 5 3-xn) = (a-xk)

SCALAR PRODUCT (u, 7):

+

i

(v, V) XYyt Xo¥g b owers * Xp¥y (real x & y)

If x and y are somplex

{(u; v) X7+ KpTo * Xz * cees * X -
The scalar product is never negative and is = 0O, if,and only if,u = 0,
i.e., u = zero vechbor (05 0, Oy eees 0)s Ifu = (P and x = 0Q, then

VvV =1u

the vector P¢ is equivalent tove-u. The distance from P to Q is

0

Any point in Euclidesn space can then be represented by a vector from the
origin to the point in guestion,

An alternating voltage source that contains harmonics of the order n will
now be considersd., If this volbage is applied to a circuilt then currents of order
corresponding to the voltage harmonics will flow, and if the circuit is none
linear this may further affect the current harmonics., Now it is a well known

fact that if a voltage wave conbains harmonics, the effective wvalue of the
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%

resultant complex wave is E = IZE]_Z + E22 + ocop * En2 s> and similarly for
the current I = [Ilz + 122 + ocoey + Inz‘] « These values of E, and I, may be,
either real or complex, Now it is evident that the two above equations.define
E end I as two points in the abstract Hilbert space, i.e,, E represents the
vector OF and I represents the vector 0I.

The product of E x I represents in the ordinary sense volt-amperes, By

integrating over a half=cycle it can be shown that a voltage and a current of

a different integral frequency will furnish no net power, That is to say that

2. 2

E? x 12 = By PL% 4 BpPL,% + euss Bp°Ly

1]

. |
2 7
Eﬁlzll * E22I22 * oo En21n2‘

This is the definition of the scalar product in the abstract Hilbert space.

Ex1I
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CHAPTER X

CONCLUSIONS

Progress is a continual struggle bebween the destruction or modification
of the old and the develcopment and growth of the new. Inthis paper the inede
equacy of the old definitions of power factor, real power, reactive power, and
apperent power when considering non=linear and unbalanced circuits has been
discussed, Conventions and rules once established and written into textbooks
are difficult and time consuming to change, However, it is the author's opine
ion, should the conditions merit such, that the further growth and development
of the field of electricity should not be shackled and impeded by the adherence
‘o partially inconsistent and inadequate rules and conventions,

It is not recommended here that the old definitions be complebtely discard-
ed, in fact the definitions of real and reactive power could possibly be retaine
ed, but the definitions of power factor and total apparent power should be
adjusted to fit the more general types of circuits rather than the simple sin-
usoidal circuits under balanced conditions, Further, the concept of mesh and
distortion powers should evidently be incorporated into textbooks. This would
at least warn the student of elementary electricity of the possibility of the
right triangle relationship emong the different types of power being false,

There are probably some who would argue the unpracticality of further
complication of the theory of a.c. circuits, especially from the viewpoint of
the practical engineer, This argument is ill-founded. For, should the con-
cepts be extended, the practical engineer would be in no greater dilemma than

he is at present even if he knew nothing of the extension, as he could continue
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using his old practices without undue change., Moreover, individuals not having
the capacity to extend their knowledge and change their ideas do not deserve

the title "engineer,"
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