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CHAPTER I 

THE PROBLEM 

lol Introduction. The bulk of the energy used to power the 

industries of the world is derived from hydrocarbon fuels such as 

coal 9 oil 9 and natural gas. The transformation of the energy which 

is stored in an orderly manner within the chemical bonds of such fuels 

into useful power is generally accomplished by a process of combustion• 

in which the highly orderly chemical energy becomes highly disorderly 

thermal energy. The inexorable second law of thermodynamics dictates 

that such an energy transformation will be inefficient. The search 

for a means of transforming chemical energy into electrical energy 

which does not suffer from the Carnot Cycle efficiency limitations 

implied by the second law of thermodynamics has reawakened interest 

in a relatively old engineering device• the hydrogen-oxygen fuel cell. 

This thesis consists of an analysis of the most promising such device• 

the hydrogen-oxygen high-pressure, high-temperature fuel cell• and its 

counterpart, the high-pressure, high-temperature hydrogen-oxygen 

electrolysis cell. 

1.2 Historz of Fuel Cells. In 1801, Humphrey Davy• one of the 

pioneers in electrochemical research, built a fuel cell that used 

carbon and nitric acid. However 9 another English investigator. 

William R. Grove 9 is generally acknowledged as the originator of the 
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fuel cell. Paradoxically, the work of Grove was initially devoted to 

a study of electrolysis cells; and his interest in fuel cells was 

motivated primarily by an interest in the back electromotive force 

characteristics of electrolysis cells. In 1839 he reported that two 

strips of platinum immersed in sulfuric acid, one in contact with 

hydrogen and the other with oxygen, caused the steady deflection of a 

galvanometer connected to them (1). Further experiments resulted in 

the construction of a battery of such hydrogen-oxygen cells having 

sufficient electromotive force to electrolyze water (2). The appli-

cation of the output electrical energy of a battery of fuel cells to 

electrolyze water constituted the primary interest of Grove, who 

presented papers on this subject in 1842 9 1843 9 and 1845 (3 9 4). 

In 1889, Ludwig Mond and Carl Langer developed a more elaborate 
' 

hydrogen-oxygen cell which employed platinum foil electrodes which 

were perforated and platinized. These electrodes were pressed against 

layers of absorbent asbestos which were saturated with sulfuric acid 

(5). The successful development of the dynamo at the time of Mond's 

and Langer's research overshadowed their work; and fuel cells dropped 

into relative obscurity until the early l940's, in spite of an 

impassioned plea by Ostwald (6) at the first meeting of the Bunsen 

Society in 1894 1 where he called for the replacement of heat engines 

by fuel cells as the most practical way of increasing the conversion 

efficiency of fuels. 

From 1910 until World War II, Emil Baur ( 7) was the foremost 

contributor to the advancement of fuel-cell technology. The work of 

Baur and his associates covered ne_arly all types of fuel cells. How-

ever, their work was given little credence, primarily due to the 



extremely short operating life of their celis. 

In the years following World War II, many prominent x,esearchers 

made significant contributions to fuel-ce1·1 technology. Edward Justi 

of Germany (8) developed a unique double skeleton electrode structure 

which utilized Raney nickel to establish an extremely active hydrogen 

electrodeo w. T. Grubb (9) and L. w. Niedrach (10) of General Electric 

developed a fuel cell which utilized an ion-exchange membrane to 

replace the conventional liquid electrolyte. A team of researchex-s 

3 

at Allis Chalmers (11) developed a fuel cell which was distinguished 

primarily by an asbestos membrane which used capillary pressure to 

maintain a reasonably constant level of electrolyte concentration.· A 

cell developed by K. Kordesch and his associates at Union Carbide (12) 

which made use of electrodes fabricated from carbon was shown to have 

good lifetime characteristics. Finally, and perhaps most significantly• 

Francis T. Bacon (13) and a research group at Cambridge University 

announced the development of a high-pressure fuel cell which had 

energy density and efficiency characteristics which were superior to 

the characteristics of the fuel cells discussed above. 

The preceding summary of the history of hydrogen-oxygen fuel 

cells clearly demonstrates the current world-wide interest in fuel­

cell technology. Several excellent summaries of modern work in this 

field may be found in the literature (14• 15, 16, 17). 

1.3 History of the Electrolysis of Water. Shortly a~er the 

development of the voltaic pile in 1796 9 Nicholson and Carlisle 

demonstrated in 1800 the electrolytic dec::"omposi tion of water ( 18). 

These investigators found that hydrogen and oxygen were evolved at 



the surface of gold and platinum wires if they were connected to the 

terminals of a voltaic pile and dipped in water. w. R. Grove 9 however• 

from 1835 to 1850 was the first quantitative researcher in the field 

of water electrolysis (1, 2, 3). In the interval between the time of 

Grove and the development of the first electromechanical generators 

of electricity, electrolysis cells were relegated to the position of 

a scientific curiosity; and little work of significance was attempted 

in this area. 

The development of the dynamo in the last decade of the past 

century gave impetus to the field of water electrolysis. The produc­

tion of electrolytic hydrogen for use in fertilizers, dirigibles, and 

chemical manufacture became a profitable sideline for electrical 

power companies from 1895 to 1925 (19). Many different types of 

electrolysis cells, all of which were of essentially the same construc­

tion, were developed during this period. Among these were the 

Electrolabs Cell, the Knowles Cell, the Shriver Filter Pre·ss Electro­

lyzer, the Penchkranz Electrolyzer, the Stuart Cell, and the Noeggerath 

Cell ( 20). Of all of these cells, the Noeggerath Cell was the most 

efficient. Further, it was a pressure electrolysis cell, so gas 

compressors were not needed in such a facility (21). 

From 1930 to 1943 9 improved modifications of the Noeggerath Cell 

were made by D. M. Newitt and H.K. Sen of India (22) and by A. E. 

Zedansky of Germany (23). Commercial facilities utilizing these cells 

are still in use. 

Work on water electrolysis was drastically curtailed during the 

1930 1 s when other techniques of producing hydrogen were perfected. 

Techniques such as reducing hydrogen-rich natural gas to obtain 

4 



hydrogen 0 liquefaction and fractional distillation of coke oven gas, 

special treatment of water gas• etco (24) 9 have largely replaced 

electrolysis for the commercial production of hydrogen. 

lo 4 Need for Research in Hydrogen-Oxygep Electrolysis Cells. and. 

Fuel Cells. The great current interest in hydrogen-oxygen fuel-cell 

technology has been motivated primarily by the space programo Artifi­

cial satellites and manned space probes which remain aloft for several 

days or longer require a compact II light-weight, and efficient source of 

electrical energy. It appears that such power requirements can best 

be filled by hydrogen-oxygen fuel cells (25). 

Research at Oklahoma State University and elsewhere (26 9 27, 28) 

in the field of energy storage has led to an increased interest in 

hydrogen~oxygen electrolysis-cell and fuel-cell technology. For some 

time, engineers have recognized that conventional electrical po~er 

stations could operat·e with greater economy if an energy storage 

facility could be made a part of their power system. Such a storage 

facility could store energy when electrical power demands are below 

an average value, then insert the stored energy back into the power 

system when.the electrical load demand increases. A corresponding 

decrease in the initial capital investment for the facility could 

result ( 29). 

An energy storage system consisting of a bank of electrolysis 

5 

cells to dissociate water, pressure tanks to collect and store the 

evolved gases, a fuel-cell system to recombine the hydrogen and oxygen 

into water and electrical power, and inverters to convert the d-c 

electrical output of the fuel cells into a-c power could, theoretically, 



comprise an ideal energy storage facility for use in conjunction with 

conventional power stationso A further advantage of a power system 

which utilizes a storage facility is that it could draw power from 

such energy sources as the sun, the wind, and the tides and still 

supply relatively constant amounts of power to a consumer ( 30). The 

fuel-cell and the electrolysis-cell configurations discussed in this 

thesis were designed specifically for ultimate use in an energy 

storage facility of the type described aboveo Such a system is shown 

schematically in figure lo4olo 

6 
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Figure 1. 4 .1. A System for Energy Conversion and Storage Relying on 
High-Pressure, High-Temperature Operation to Enhance 
Performance of the Cells 



CHAPTER II 

BASIC ELECTROCHEMICAL AND THERMODYNAMIC RELATIONSHIPS 

ASSOCIATED WITH HYDROGEN-OXYGEN FUEL CELLS 

AND ELECTROLYSIS CELLS 

2ol Introduction. This chapter consists of a summary of some 

of the more important and fundamental electrochemical relationships 

associated with hydrogen-oxygen fuel cells and electrolysis cells. 

The analysis will consider the efficiency• polarization 1 voltage versus 

current, pressure• and temperature characteristics of fuel cells and 

electrolysis cells. Hydrogen-oxygen fuel-cell technology will be 

emphasized, but the similarity between fuel-cell action and electrolysis 

action will make it possible to draw conclusions concerning the 

characteristics of both fuel cells and electrolysis cells. 

2.2 Physical Characteristics ofHydrogen-O&gen Fuel Cells and 

Electrolysis Cells. A schemc1,tic of a conventional hydrogen-oxygen 

fuel cell is shown in Figure 2.2.1. The cell consists of two parallel, 

' porous electrodes which are separated by an electrolyte ( usually 

concentrated potassium hydroxide). Hydrogen is injected into the 

electrode on the left where it combines with hydroxyl ions and forms 

water and electrons. These electrons travel through the external 

circuit to the oxygen electrode where they combine with oxygen and 

water to form hydroxyl ions. The hydroxyl ions migrate through the 

8 



electrolyte to the hydrogen electrode• thus completing the reaction. 

The cell will continue to supply electrical energy to a load as long 

as hydrogen and oxygen continue to be supplied to the cell and the 

resulting water by-product is periodically removed (31). 

· ANODE 
CATALYST 

0 
0 

+ 
WATER@ 

VOLTS 

.------c I >-----. 

ELECTROLYTE 
SOLUTION 

Co 
@ ----... ----

Figure 2. 2 .1. Basic Schematic of the Hydrogen-Oxygen Fuel Cell 

Note that the cell described above requires porous electrodes so 

the necessary solid-liquid-gas interface can be maintained. If 

excessive pressure is applied to the electrolyte, however 9 the electro-

lyte will flood the electrode and halt the action of the cell. If 

excess gas pressure is present 9 the gases will pass through the porous 

electrodeso The possibility of an explosion caused by the mixing of 

hydrogen and oxygen gases then occurs. An alternate approach to the 

establishment of this interface will be considered in Chapter III. 

A typical pressure electrolysis cell is shown in Figure 2.2.2. 

9 
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The cell shown is similar to the type developed by Newitt and Sen (22)o 

The cell electrodes·are concentric steel cylinders. The application 

of d-c voltage of the polarity indicated will cause oxygen to be 

formed inside the inner cylinder and hydrogen to be formed at the 

surface of the outside cylinder. The electrolysis action depends on 

the migration of hydroxyl ions from the hydrogen electrode to the 

oxygen electrode--a fairly considerable distance. Further, the cell 

is unsuitable for reversible action as a fuel cell, since hydrogen and 

oxygen cannot be applied to the active sites of the electrodes. A 

different type of electrolysis-cell system, devised at Oklahoma State 

University, will be discussed in Chapter III. 

POSITIVE-··,· 
ELECTRODE 

VINYL COVERING ON 
EXTERIOR OF STAINLESS 
STEEL CYLINDER 

CJ 25% KOH 

~ OXYGEN 

EEZJ HYDROGEN 

Figure 2.2.2. Conventional Electrolysis Cell 

2o 3 The Electromotive Force of a H;ydrogen-Oxygen Fuel Cello The 

theoretical value of the output voltage of a hydrogen-oxygen fuel cell 

is determined by the thermodynamics of the overall reaction 



under no-load conditionsd According to the second law of thermo~ 

dynamics 11 the e.m.f. of a reversible chemical reaction which operates 

at constant temperature is a measure of the driving force behind the 

reaction (32)o The product of this thermodynamically calculated 

potential (Eth) and the quantity of electricity supplied gives the 

maximum amount of reversible work• We, of the reaction. Applying this 

principle to l mole of monovalent ions 9 the amount of electricity 

converted, according to Faraday's law, is 96 9 497 coulombs or l Faraday 

11 

(33). In the more general case of a reaction with z charge equivalents, 

the maximum reversible work of the reaction is given by (34) 

W =-z.9Eh e t (Watt-seconds/mole) • (2.3.1) 

The negative value of work indicates that work is given up by the 

chemical conversion. 

Appendix A consists of a conventi9nal summary of the concept of 

Gibbs Free Energy as it applies to the hydrogen-oxygen fuel-cell 

reaction,, The Gibbs Free Energy, G, of the reaction relates the energy 

associated with the reaction to the electrical energy which can be 

derived from the reaction (35). 

For the reaction 

by addition of the enthalpies of the components, one may obtain the 

change in enthalpy of the reaction as follows: 

(2.3.2) 
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A similar expression for the change in entropy is 

In the above equations• Hi and Si correspond to the total molar enthal­

pies and entropies, respectively• of the material i with the stoichio-

metric factor v in the reaction equation. The latter is negative for 

reactants (hydrogen and oxygen) and positive for products (water or 

water vapor) (35). 

Table 2.3.l lists the molar values of enthalpy and entropy at 

300°K and one atmosphere of pressure for the reactants associated with 

the hydrogen-oxygen fuel cell (36). From Table 2.3.l the following 

data can be obtainedg 6H = -68 9 350 cal/mole or -2.86 watt-sec./mole; 

6S = -38.99 cal/mole or -163.37 watt-sec 0 /mole °K, from which 6G = 
-56 9653 cal/mole or -2.378 x 105 watt-sec./mole °K. Substituting this 

value in Equation A,9 in Appendix A with z = 2. the basic e.m.f. (Eth) 

is determined to have a value of 1,23 volts at standard temperature and 

pressure. 

Subs:tance 

·H2 

02 

H2o (gaseous) 

H20- Cliquid) 

TABLE 2.3.l 

MOLAR VALUES OF ENTHALPY AND ENTROPY AT 

300°K AND ONE ATMOSPHEru:; 

Enthalpy Entropy 

cal/mole Ws/mole cal/mole Ws/mole 

0 0 31.23 130 • 85 

0 0 49.03 205,43 

-57,840 •2o42- X 105 '45, 14 189.14 

-68 .3.so . -2.86 ~ 105 ;;1.6. 75 70,18 
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2.o4 ·The.Effect ·of. Te:mpera-ture on t~e· qutput Voltage of _a Hydrogen ... 
. . . . . . ·. - . . . . ( .. . - . ~ . . : . 

Oxygen 'r~l Ce,llo T}:le :pxseceding discussion ha~ shown. that thEI theoret­

ical open-ci;r:-cuit voltage of ·a hydrc,ge,n .. oxygen fuel .cell fs 1.2~ voltso 

This figure, however. is based on pressure aI1d temperature cond.itiqns 

of one atmosphere and 300°K, z,espectively.o To continue the _analysif!J · 

still further, it is necessary to know something about the effect on the, 

basic eomofo of chan~es in the env~ronmental teTl)perature ( 37). 

For a reversible electrochemical proce!:ls, Equq.tion A.9 in Appendix 

A may be written as 

Differentiating Equation 2o4ol with respect to temperature while 

holding pressure constant gives 

=}: zi (aGi/aT) 
i 

(2o4el) 

Multiplying Equation 2.4.2 by T and substituting Hi - Gi for TSi leads 

to 

= '. Z• G. - \ z. H. L 1 1 L 1 1 
1 i 

= z ~ Eth - 'z. H. L 1 1 
i 

The preceding equation can be written as 

= - (l/z.1)}: 
i 

z. H. 
1 1 

Equation 2.4. 3 sh.ows that the temperature coefficient of the e.m.f. is 

negative in a reversible process of the type under discussi9no 

It would appear that a fuel cell which is to obtain as much as 



14 

possible of the free energy of the hydrogen-oxygen reaction should be 

operated at as low a temperature as possiple 9 in order to obtain a high 

open-circuit voltage. However 9 the preceding analysis fails to consider 

certain other design parameters for a fuel cell. For example, if the 

reaction is to take place at alle the cell electrodes must contain a 

cataiyst which is sufficiently active to allow it to proceed. Most of 

the conventional catalysts have catalytic parameters which are enhanced 

with temperature, and th~y will fail to perfoX'!TI their function if the 

environmental temperature drops below a given valtieo Further, if the 

cell is operated at a sufficiently high temperature, inexpensive mate-

rials can be used as a catalyst ( 38). Finally, the potassium hydroxide 

electrolyte which is generally used in such cells has a resistance 

which decreases with increasing temperature, thus allowing the cell to 

operate at higher current densities as temperature is increased (39), 

2.s · The Effect of Pressure on the Output Voltage of a Fuel Cell. 

The effect· of pressure on the output voltage of a fuel cell may be 

pred:i,.cted by differentia.ting Equation 2.4.l with respect to pressure. 

Thus (40) 

becomes 

Multiplying both sides of Equation 2.s.1 by -(l/z tJ,) 

= - ( 1/z :7 ) ~ z · V. I., 1 1 
i 
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Assuming that the ideal gas law. pV = nRTt is valid, the above equation 

becomes 

= - (l/z ':1) L zi (nRT/p) 
i 

It is apparent that the hydrogen-oxygen fuel-cell reaction has a 

positive pressure coefficient for the cell open-circuit voltageo This 

indicates that pressure can improve the characteristics of a fuel cell 

by increasing the output voltage of the cell (4l)c 

.206 Voltage Versus Current Curve for the Hxdrogen-Oxygen Fuel 

Cello A typical v-I curve for the hydrogen-oxygen fuel cell is shown 

in Figure 2o6olo From no load to point A, the cell is said to operate 

in an activation polarization region in which the cell voltage drops 

rapidly with increasing current, due primarily to catalytic inadequacies 

at the electrode surfaces. From point A to point B, the cell operates 

in an ohmic polarization region where the very gradual drop in cell 

voltage with increasing load current·is attributed primarily to an IR 

drop in the electrolyteo From point B, a concentration polarization 

region is encountered in which the rate of ion migration through the 

electrolyte is inadequate to support the operation of the cell at a 

reasonable value of voltage. The operating point of hydrogen-oxygen 

fuel cells is generally chosen to be within the ohmic polarization 

region of the cell characteristics as a cpncession between current 

density·, voltage stability• and efficiency. 

Precise knowledge of the various polarization effects associated 

with hydrogen-o.xygen fuel cells is indispensable to the designer of 

such cells. An excellent discussion of polarization effects is 
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contained in reference 420 

If polarization is defined as any characteristic of an electro-, 

chemical reaction which causes a decrease in output voltage, it can 

be caused by the following: inadequate rate of hydrogen and oxygen 

flow into the cell, dissolution of hydrogen and oxygen in the electro-

lyte, inadequate rate of transport of reactants through the electrolyte 

to the active sites of the electrode surfaces, electrical resistance 

effects in the elec'l;rode and electrolyte, slow reaction rate of the 

overall fuel-cell process, undesirable side reactions which contaminate 

the electrolyte or electrode I environmental pressure., and system 

temperatureo 

2 o 7 . Efficiency of the. Hydrogen-Oxygen F'\,lel . Ce.11. The ideal 

efficiency of the hydrogen.:.oxygen fuel cell is defined to be the chan~e 

in free energy• which .is the tnaximum useful work obtalnable from any 

system 1 ·divided by the heat of reaction. That. is 1 

(2.7.l) 

. This value is always less than unity 1 . even in a qell operating revers-

ibly • so long as heat, ( T 6S) . is being rejected ( 43). The heat of 

reaction is used in the above equation in order to compare the effi-

ciency of a fuel ce.11 with that of a conventional power plant. The 

efficiency defined by Equation 2.7.l represents in one sense the thermal 

efficiency of· the fuel cell alone and does not include losses that 

would be associated with the attendant acce.ssories required in any real 

installation (_43). In terms of the reversible electromotive force of 

the cell as given in Equation 2.3.1 9 the efficiency can be written as 



where I is the current and t the time for which the current flows .• 

Equation 2.7o2 is actually an unfair estimate of the efficiency 

of a fuel cell in that it assumes that the output voltage of the cell 

does not change with variations in current. As discussed in the 

preceding section of this thesis, the output voltage of a fuel cell 

decreases with increasing load current due to the various polarizing 

agents associated with the reaction. An equation for the actual 

efficiency of the cellt obtained by substituting the actual cell 

voltage.for Eth in Equation 2o7.2, is 

A simpler ·and more widely U$ecl estimate of fuel-cell efficiency is 

obtained by dividing Eac by Eth• This figure is convenient for its 

simplicity and for the fact that it is a convenient indication of the 

irreveI1sibilities, or polarization characteristics, of the cello 

208 ,Theoretical Characteristics. of Hydroge11-0xygen Electrolysis 

Cells. In Section 2.3 of this thesis, a value of 1.23 volts was 

derived as the open-circuit voltage of a hydrogen-oxygen fuel cell 

operating at 300°K and one atmosphere of pressure. This value is also 

a valid statement of the minimum open~circuit voltage that an electro-

lysis cell can have under_ the same environmental pressure and tempera-

' 
ture conditions. The over ... voltage of an elect:t1olysis ce.11 is measured 

by the difference between the working voltage of the cell and that 

required for the decomposition of water, due allowance being made for 

the voltage required to overcome the resistance of the electr<:>lyte and 

18 
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the other polarization effects associated with the cello In general~ 

most cells cannot operate below lo43 volts due to electrode polarization 

effectso 

A typical voltage versus current curve for a hydrogen-oxygen 

electrolysis cell is shown in Figure 2. 8. lo Points A and B of the 

curve shown in Figure 2.8.l have the same significance as the corre­

sponding points in Figure 2.6.l, which represented the output charac­

teristics of a fuel cello The polarization effects documented in 

Section 2.6 of this thesis are 9 with minor differences 0 identical to 

the effects which 1:1hape the c;haracter of the v ... r curve for electrolysis 

cells. 

Since electrolysis-cell action is essentially the reverse of fuel­

cell action, it is reasonable to state that the efficiency considera­

tions discussed in Section 2.7 apply to electrolysis cells as well as 

fuel cells. Since the output-input characteristics of an electrolysis 

cell are the reverse of the output-input parameters bf a fuel cell, it 

follows that the equations for electrolysis-cell efficiency will be the 

inverse of the equations derived in Section 2.7 for fuel-cell action. 

As a consequen~e of the above, the generally utilized equation for 

electrolysis-cell efficiency is 

(2.8.1) 
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CHAPTER III 

A NEW APPROACH TO ·HIGH-PRESSURE• HIGH-TEMPERATURE 

FUEL-CELL AND ELECTROLYSIS-CELL DESIGN 

3.1 Introductiono The preceding chapters of this thesis have 

demonstrated that a fuel cell or electrolysis cell which is operated 

at high temperature ~nd high pressuX"e can have characteristics which 

·are superior to cells which aX"e operated at low pressures and tempera­

tures. This Qhapter will analyze some ~of the problems associated with 

such·cells. and a new type of electrode structure which might help to 

mi,nimiz.e such problems will be discussed. 

3.2 High-Pressure, High-TePJPerature Electrolysis Cells. Con­

ventional high-pressure• high-temperature hy.dI'ogen-oxygen electrolysis 

cells consist essentially of parallel-plane electrodes separated by a 

25 to 50 percent solution of potassium hydroxide. As shown in Figure 

2.6.l, the application of a d-c voltage o£ 1.5 to 2.5 volts causes 

hydrogen and oxygen gases to be evolved. The applied voltage for 100 

percent conversion efficiency is theorietically 1.23 volts. As discussed 

in Chapter II• however. polarization characteristics of such cells 

prevent operation at 1.23 volts. A practical operating voltage for 

such cells is 1.7 volts. and.the performance characteristics of electro­

lysis cells are usually listed in amperes per square foot of electrode 

surface for this applied voltage. 

21 
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Various problems are associated with the conventional paX'allel­

plate electrolysis cello For example, as the gases evolve from the 

electrode surfaces, there is considerable danger of their mixing and 

creating an explosion hazard. To avoid this problem, heavy asbe~tos 

membranes are used between the electrodes--thus increasing the internal 

resistance of the cell and decreasing its efficiency. Further, as the 

evolved gases flow upward through the electrolyte, they create turbu~ 

lence which decreases the mean free path of the hydroxyl ions which 

must migrate from the hydrogen electrode to the oxygen electrode so 

the cell reaction may be completed.- Again, the cell resistance rises-­

in a manner which increases with increasing quantities of gas evolved 

by the reaction. 

Some cell manufacturers have attempted to solve the above problems 

by utilizing porous electrodes and an asbestos membrane which is 

partially saturated with a potassium hydroxide solution. The membrane 

acts both as a gas separator and as a container for the electrolyte. 

The cell electrodes are pressed tightly against the membrane. The 

evolved gases are prevented from passing through the membrane by the 

capillary characteristics of the asbestos; and they, therefore, move 

away from the membrane, through the electrodes, and into separate 

pressure vessels. The gas turbulence and the gas mixing problems asso­

ciated with the "wet" type of electrolysis cells are thus solved. 

Unfortunately, such cells are not without shortcomings. Hot spots can 

develop in the cells which can dry the membrane and create an explosive 

hazard. Pressure gradient problems are fairly severe in such cells, 

and a special techniq:ue must be utilized to maintain the concentration 

of the electrolyte confined in the asbestos membrane. Nevertheless, a 



research group working on such cells has quoted an energy density in 

excess of 250 amperes per square foot for an applied voltage of 1.7 

volts for their cells in private communications. 
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The various problems associated with conventional parallel-plate 

electrolysis-cell systems suggest that some alternative to the parallel­

plate electrodes might have some Jnerit. In Figure 3.2.l a conformal 

transformatio~--11~i been used to convert the conventional parallel-plane 

electrode configuration into a set of electrodes which lie in the same 

plane. Since conformal transformations meet the requirements of 

Laplace's equation, the transformed set of electrodes have electrical 

characteristics mathematically relatable to the conventional parallel­

plane electrodes. It is obvious that a set of electrodes such as those 

on the left of Figure 3,2.1 are not necessarily as effective as those 

on the right, but the mathematical relationship which can be established 

between them is of interest. Appendix B consists of a detailed 

comparison of the electrostatic potential distribution of a finned 

electrode with a set of parallel-plane electrodes of the conventional 

type. 

To pursue the matter further, examine Figure 3.2.2. At the top 

of the figure is a set of electrodes for which the field plot is almost 

as good as a field plot for two parall~l plates. So far, nothing of 

value has been gained. Another transformation, however, results in 

the electrode configuration shown at the bottom of Figure 3.2.2. Notice 

the advantages which this electrode design would have in an electrolysis 

system. The effective surface ar~a of an electrode is increased 

over that of conventional parallel-plate electrodes. The effective 

surface area of an electrode is here defined to be the area of the 
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Figure 3.2.2, Transformation of Flat Parallel Plates to Slanted 
Plates to Enhance Gas Flow From Electrolysis-Cell 
Reaction Zone 
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reaction zone of the electrodes. The evolved gases flow by gravity 

through the holes at the upper edge of the plates, reducing the turbu-

lence in the electrolyte solution that lies between the electrodes and 

enhancing the chances for optimum ion migration. 

An experimental set of electrodes of this type is shown in Figure 

3.2.3. The electrodes are separated by a thin membrane made of asbestos 

when the cell is in operation to prevent the mixing of gases. Extensive 

experiments were run on the set of electrodes shown in Figure 3.2.3 and 

on other electrodes based on a similar design. The most significant 

results of these experiments are tabulated in Chapter IV of this thesis. 

Figure 3.2.3. Photograph of the Milled-Fin Electrodes Used to Obtain 
Electrolysis-Cell Characteristics 

3.3 High-Pressure, High-Temperature Fuel Ceils. At the present 

state of the art of hydrogen-oxygen fuel-cell development, it is 

apparent that high-pressure, high-temperature hydrogen-oxygen fuel 

cells are capable of higher energy densities than other types of cells. 

The theoretical advantages of pressure on fuel-cell action are well 



documented in the literature (l3L Operating the cells at high 

temperature offers the additional advantage that nonnoble metal cata­

lysts may be used as electrode materials, greatly decreasing their 

cost. Various difficulties are associated with high-pressure, high­

temperature cells, however, which limit their present usefulness in 

an engineering application. 

In general, high-pressure fuel cells consist essentially of two 

porous electrodes which are separated by an electrolyte. The solid-

, ilquid-gas interface necessary to cell operation is maintained within 

the electrodese Complicated control apparatus is required for the 

maintenance of the interface, however. A pressure of two to five 
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pounds per square inch imposed on the fuel gases is generally sufficient 

to sustain the interface. Controlling this pressure in an environmental 

pressure which is 500 psi minimum implies that the gas regulating 

apparatus must be capable of a regulation corresponding to approximately 

one percent of the environmental pressure. This regulating ability is 

accomplished in the Bacon cell by holding the oxygen pressure and the 

environmental pressure constant• then adjusting the pressure of the 

hydrogen gas to sustain the interface conditions so necessary for proper 

cell performance (44). A precise differential pressure gauge and 

associated solenoid valve is required in this application. 

The function of the electrodes in a fuel-cell system is threefold. 

First, since the reactant is a gas and the electrolyte is a liquid, the 

electrode must provide an interface between the liquid and gaseous 

phases. Second, the electrode must provide a low resistance path for 

the transfer of ele~trons to and from the site of the reactions. Third, 

the electrode must provide reactive sites for the electrode reactions 



to occur. The standard approach to provide these functions is to 

utilize a porous electrode fabricated from a low resistance material 

which is also a good catalyst, insert the gas into one side of the 

electrode, and insert electrolyte into the other side of the electrode 

(45)o The junction of the electrolyte and the fuel gas with the 

surface of the electrode comprises the active site of the reaction. 
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The active site depends on the wetting characteristics of the electro­

lyte on the metal surface• the surface tension of the electrolyte-gas 

interface, the environmental pressure and temperature, the over-pressure 

of gas on the porous metal, and the capillary pressure of the electro­

lyte in the finely divided pores of the electrode. 

The above discussion has implied that there are problems associated 

with maintaining a proper interface condition in the conventional high­

pressure fuel cello Observe, however, that the formation of the active 

site is not sufficient of itself to guarantee the successful completion 

of the reaction (46). In order for the reaction to be completed in an 

alkaline electrolyte, for example, it is necessary that a hydroxyl ion 

move from the oxygen electrode to the hydrogen electrode of the cell. 

One problem associated with this requirement is shown in Figure 3.3.l. 

Note that the solid-liquid-gas interface, or active site, occupies 

only a small part of the electrode. The relative "sharpness" of the 

angle~ e. of intersection of the surface of the liquid electrolyte with 

the electrode walls becomes critical when the thickness of the meniscus 

layer is insufficient to allow the free passage of the hydroxyl ion.s 

necessary for the completed reaction. This restriction sets a lower 

limit on the size of the pores in the electrode and an upper limit on 

the over-pressure of the fuel gas. 
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ELECTRODE WALLS 

FUEL GAS ELECTROLYTE 

Figure 3.3.1. Elementary Diagram of the Three-Phase Interface Required 
for Reaction to Occur in a Fuel Cell 

It should also be observed that the active site shown in Figure 

3.3.l represents an idealized case. In actual fact, the construction 

of a porous electrode from sintered powder results in an extremely 

'irregular interface. It is possible, therefore, that hydroxyl ions on 

their way through the electrodes toward the site of the reaction may be 

surrounded by an equipotential surface--the electrode--and thus exhibit 

no tendency to move on to the active site and complete the reaction. 

The work required to form such ions is, therefore, lost to the reaction. 

These factors limit the size of the metal particles used in porous 

electrodes to a low of five to ten microns, and they also se~ the upper 

limit of thickness of the electrodes to approximately one•eighth inch. 

Further, they place rather severe restrictions on the regularity of the 

geometry of the individual particles which comprise the electrodes. 

A fuel-cell electrode configuration which will eliminate or 

minimize the above problems which occur in conventional parallel-plate 
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porous electrodes can be devised• based on the conformal transformation 

technique discussed in Appendix B of this thesis. Figure 3o3o2 

indicates how a fuel cell would work using such a set of electrodes. 

The electrodes can be either nickel screens or sintered~nickel powder, 

and they are electrically tied together through the load. A thin 

asbestos membrane is, required to keep the gases from mixing. Notice 

that this electrode configuration has no pressure differential problem 

of the type exi~ting in conventional fuel cells. The solid-liquid-gas 

interface problem in conventional cells is greatly improved with the 

electrodes shown in Fig~e 3.3.2 due to the nature of the gravitational 

force on the gas bubbles released at the bottom of the cell. Hydroxyl 

ions can reach the active sites of the hydrogen electrode either by 

diffusing directly into the fins or by drifting into the space between 

the electrodes and being moved to the bottom surface of the fins by the 

upward motion of the gas bubbles. Further, the total surface area of 

the electrodes can easily exceed the area of conventional parallel­

plane electrodes of the same width and height. Finally, the only 

pressure limitation on a cell using the above electrodes would lie in 

the structural capability of the vessel which confines the system. 

One of the problems associated with a fuel cell which utilizes 

finned electrodes is the fact that it is difficult to supply gases 

uniformly to each fin. Various modifications of the finned electrode 

concept were examined experimentally in an effort to subvert this 

difficulty. A photograph of one modification is shown in Figure 3.3.3. 

Gases were inserted into the bottom of the electrodes. Gas bubbles 

came into contact with the diamond-shaped fins of the electrodes, 

forming the necessary solid-liquid-gas interface necessary for fuel-cell 
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FUEL CELL CONFIGURATION USING POROUS ELECTRODES 

Figure 3.3.2. Diagram Showing a Method of Providing Gas to the Reaction 
Surfaces of·a Porous-Finned Electrode System 
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operation. Other bubbles moved through the diamond lattice until the 

bottom part of each fin was covered with gas. Thus, the entire 

electrode was in the path of gas flow. Notice that the interface 

formed in these electrodes might be considered to be dynamic as compared 

to the conventional static interface established in porous electrode 

fuel cells. The diamond-lattice fuel cell will operate at any environ-

mental pressure which can be sustained by the vessel which confines the 

electrodes. 

Figure 3. 3, 3. Photograph of Diamond-Lattice Shaped Fuel-Cell Electrodes 
Designed to Facilitate Gas Flow 

~-

In the solid electrode approach to fuel-cell electrode design, 

the fuel gases and the oxidizing gases are injected into the electrolyte 

at the bottom of the cell; then they move upward by gravitational force 

to their respective electrodes. The electrode geometry must be such 

that the gas bubbles impinge on the electrode surfaces and remain at 

the active sites of the electrodes for a period of time sufficient to 

allow the cell reaction to be completed. In the diamond-lattice 
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configuration shown in Figure 3o3o3t the active sites available for the 

hydrogen-oxygen reaction to occur are at the bottom of each of the 

diamond-shaped segments of the electrodes. Such an arrangement does 

not provide the maximum number of active sites possible in a solid 

electrode structure~ Further, the manifolding characteristics of the 

diamond-lattice struct1,1re allows an excessive quantity of gas to pass 

through the cell without entering into the fuel-cell reaction. 

A modification of the diamond--lattice electrode configuration 

which might improve the manifold system and increase the number of 

active sites available for the cell reaction is the spiral electrode 

structure shown in Figure 3 •. 3.40 The cell consists of two pure nickel 

cylinders• each of which has a spiral manifold cut into its surface. 

A gas bubble injected at the bottom of one of the spirals would move 

along the bottom surface of the spiral until it entered into the fuel­

cell reaction. It is apparent that the. probability of hydrogen and 

oxygen bubbles .getting through such a matlifold without entering into the 

fuel-cell reaction is much less in this type of .structure _than it is in 

the diamond-lattice· approach to fuel-cell electrode· design .• 

Data 9oncerning the characteristics. of the fueL-cell types 

dis.cussed in this sectio~ are tab:ulated in Chapter IV of this thesis~· 



Figure 3,3,4, Photograph of the Spiral, Cylindrical Electrode Fuel­
Cell Configuration 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

4ol Intrbduction. This chapter consists of a summary of the 

experimental results obtained on the high-pressure, high-temperature 

hydrogen-oxygen fuel cell and electrolysis-cell electrode structures 

discussed in Chapter IIIo The experimental work.was devoted to a 

search for the optimum pressure and temperature environment for cell 

operation• electrode catalyst and material studies, the search for an 

optimum electrode configuration, and an attempt to justify the, "finned" 

~lectrode approach to high-pressure, high-temperature fuel cell and 

electrolysis-cell electrode designo 

· 4o 2 .· Experimental Apparatus and Procedures. A fundamental probl~m 

which must be faced by any researcher in the area of high-pressure, 

high-temperature hydrogen~oxygen reactio~s is the potential explosion 

hazard which exists when experimental work becomes a part of the 

research efforto Experimental procedures and techniques must be care-·. 

fully chosen to guard against an accidental mixing of hydrogen and 

oxygen gases which could cause an ~xplosiono Further, safeguards must 

be built into the experimental system to protect the researcher and his 

experimental apparatus from the hazards associated with the reactiono 

The facility c.onstructed as a part of this study is shown in Figure 

4o2olo 
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Figure 4,2,l. Photograph of Facility Used in High-Pressure, High­
Temperature Experimental Work 
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The facility shown in Figure 4o2ol is a rectangular cage con­

structed from heavy gauge steel screen covered with chemically-treated, 

fire-resistant canvaso The top of the reaction chamber consists of a 

sheet metal hood, whose seams were carefully welded to prevent gas 

leakageo An exhaust fan driven by a quarter-horsepower universal motor 

was installed at the apex of the hood to insure a rapid egress of any 

gases or fumes associated with the reactions which occurred inside the 

cageo The blower motor was a sealed• brushless type that could not 

produce any sparks which could trigger an explosiono All of the experi­

ments whose results are presented in this chapter were performed within 

this facilityo The exhaust fan ran continuously, and the door of the 

cage was kept closed during the course of each experimento A heavy-duty 

safety glass window installed in the door of the cage permitted visual 

observation of the progress of the experimentso 

An interior view of the facility shown in Figure 4o2·ol is shown in 

Figure 4o2o2o The heavy gauge w!re superstructure of the cage is shown 

in the figureo Also shown in the figure is a typical high-pressure 

electrolysis-cell system consisting of an electrolysis cell, defoamers, 

desiccators I and st·orage tanks. The electrolysis cell design was pat-

terned after the work of Sen (22) 1 and the details of its construction 

were shown in Figure 2o2o2 of this thesiso 

The system shown in Figure 4.2.2 was constructed so that an indi-

cation of the problems associated with high-pressure electrolysis and 
·' 

high-pressure gas storage could be obtained. Experimental work on this 

system soon demonstrated that the internal resistance of the Sen cell 

was 4o7 ohms at 800 psi and ao 0 ra the temperature and pressure capa-

bility of the cello Such a figure is far too hi'gh to allow the cell to 



Figure 4.2,2 • 
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Photograph of High-Pressure Electrolysis-Cell System, 
Showing Experimental Facility Utilized to Dry Gases 
Prior to Storage 
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be used for the economic production of hydrogen and oxygen on a large 

scale• but it did provide impetus for the search for a better electrode 

configuration as discussed in Chapter III of this thesis. 

Analysis of the system shown in Figure 4.2 . 2 also demonstrated 

that the gases which are evolved during the electrolytic process con-

tained large quantities of water vapor and potassium hydroxide foam . 

Such contaminants had to be removed from the gases before the gases 

reached the storage tanks. Otherwise, the potassium hydroxide foam 

would corrode the pressure tanks; and the water vapor would condense 

inside the tanks, eventually filling them. The defoamer chambers shown 

immediately above the electrolysis cell in Figure 4.2.2 consist of 

stainless steel chambers which were loosely packed with shredded teflon 

to reduce the potassium hydroxide foam to a liquid which would drain 

back into the electrolysis tank . The pressure vessels which are shown 

in Figure 4. 2.2 to be installed between the defoamers and the high-

pressure storage tanks were packed with a commercial desiccant to col-

lect the water vapor which was present in the gas stream and insure that 

the gases which· reach the pressure tanks shown. at the left of Figure 

4.2.2 were sufficient,ly dry, to allow for convenient storage. 

Another problem .which is associated with high-pressure electrolyi;;is 

cells is the fact that water must be periodically added to the electro­

lyte, replacing the water which is removed by the electrolytic process. 

Such action is n~~essary to the maintenance of an approximately con-

stant value of electrolyte concentration. This problem could neces-

sitate pumping water into the pressure chamber under pressure, which 

would introduce an appreciable loss to the system and thus decrease its 
. I . ' . 

efficiency. The water addition problem associated with such cells was 
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solved in the system shown in Figure 4.2.2 by the pressure tank and 

associated valves shown at the right of the figure. When it became 

necessary to add water to the system, the valve shown at the left of 

the pressure tank, or water reservoir, and the valve .shown at the top 

of the pressure tank were closed, thus disconnecting the reservoir tank 

from the electrolysis-cell system. The pressure tank was then de­

pressurized by an independent set of valves, and water was added to the 

reservoir tank. . The independent set of val.ves was then closed, and the 

valves connecting the water reservoir to the electrolysis cell opened, 

thus allowing water to be added to the elec~rolysis cell without neces­

sitating depressurization of the electrolysis cell proper or pumping 

water into the system at high pressures. The rather crude system of 

valves clearly demonstrated the workability of the process, and an 

automated control system based on the principle demonstrated could 

easily be installed in a commercial facility. 

A set of electrolysis-cell electrodes, fabricated according to the 

finned electrode approach discussed in ~he preceding chapter, is shown 

in Figure 4.2.3. The electrodes were constructed from one-sixteenth­

inch thick sheet nickel stock, and the one-inch long fins were spot 

welded to the electrode base plate. The holes drilled in the electrode 

base plate served as a convenient exit for the gases which were evolved 

during the electrolytic process. The relative merits of this electrode 

configuration were documented in the preceding chapter. 

Before electrolysis-cell electrodes of the type shown in Figure 

4.2.3 can be inserted into an environmental chamber, they must first be 

put into a container which will help to keep the evolved gases sepa­

rated. Such a container is shown in Figure 4.2.4. The electrodes shown 



Figure 4.2e3e Photograph of a Test Set of Electrolysis-Cell Electrodes 
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Figure 4o2o4o Photograph of a Disassembled Electrolysis-Cell Configuration, Showing Electrodes, 
Teflon Container• Asbestos Membrane, and Gas Separator 
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in Figure 4o2o3 are shown in Figure 4.2.4 to be attached to opposite 

walls of a teflon container, the other two walls of which are shown at 

the left of the figure. Teflon was used in the construction of all of 

the containers used in the experimental work which was conducted as a 

part of this study, due to the fact that this material proved to be 

impervious to the pressure, temperature, and corrosive aspects of the 

system environment. The asbestos membrane used in all of the experi­

mental work on the electrodes shown in Figure 4.2.3 is displayed at the 

right of Figure 4.2.4. The membrane shown consists of two layers of 

woven asbestos cloth with a narrow border of sheet nickel to keep the 

membrane rigid. Since the earliest days of electrolysis-cell research, 

asbestos has been used as the membrane material, primarily due to its 

resistance to the potassium hydroxide environment associated with such 

a cello Shown between the electrodes in Figure 4.2.4 is a teflon sepa­

rator which is fitted on top of the cell membrane to help keep the 

evolved gase~_ separateo 

In Figure 4.2.S the assembled cell is shown beside the high­

pressure tank into which the cell assembly is inserted during environ­

mental testing of the electrolysis-cell system. One side of the con­

tainer was detached in the figure to show the orientation of the 

electrodes and membrane when the cell is assembled. 

The system employed in all of the high-pressure, high-temperature 

fuel-cell and electrolysis-cell experiments conducted as a part of this 

research effort is shown in Figure 4.2.6. The system consists of three 

tanks, each of which is similar to the tank shown in Figure 4.2.S. The 

pressure and temperature limits imposed by the structural capability of 

the tanks were 3,000 psi and 400°F, respectively. The bottom tank 
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Figure 4.2.So Photograph of High-Pressure Environmental Pressure 
Chamber in Which Fuel-Cell and Electrolysis-Cell Tests 
We,re Run 



0 

Figure 4. 2. 6. Photograph of Environmental Test Facility Installed in 
the Protective Facility 
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contained the electrolysis-cell or fuel-cell configurations required in 

a given experiment. and the pressure vessels above this tank served as 

a receptacle for the gases which were associated with the reactions in 

the bottom tank. By design, the volumes available for storage of the 

evolved gases were kept small in the environmental test facility shown 

in Figure 4. 2.6. This was done to insure that the quantity of hydrogen 

gas available to an explosive reaction could be kept small, if such an 

explosion did occur. 

Figure 4.2.7 is a photograph of the experimental apparatus used to 

instrument and control the fuel-cell and electrolysis-cell tests which 

were conducted as a part of this study .• At the left of Figure 4.2.7 is 

an instrumentation panel which enables the researcher to monitor the 

temperature, ,voltage, and current parameters of the system under test. 

In addition, the instrumentation panel is connected through a switching 

circuit to the digital voltmeter shown in the center of the photograph 

in Figure 4.2.7. Such an arrangement greatly facilitates the data­

taking process and enhances the reliability of the data by making it 

possible for one highly accurate meter to be used for all of the elec­

trical measurements required in a given experiment. The voltmeter 

shown is a Digitex Model No . 201 digital voltmeter, which is capable 

of four-figure accuracy on its one-volt range . 

The device below the digital voltmeter in Figure 4.2.7 is an 

Industrial Instruments Incorporated Therma Bridge Analyzer, Type No. 

TBA3-919. This instrument is an oxygen analyzer which provides a 

direct indication of the amount of hydrogen gas which is present in the 

oxygen side of the system. It allows the researcher to compare various 

membranes and gas separators in terms of their ability to keep separate 



r .igure 4. 2. 7. Photograph of Experimental Apparatus Used in Fuel-Cell and Electrolysis-Cell 
Tests 
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the gases which are evolved during the electrolytic process . Further, 

the device has a built- in alarm system which can give warning of an 

excessive quantity of hydrogen in the oxygen gas stream; and it thus 

provides insurance against the possibility of an explosion. 
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Shown at the right of the oxygen analyzer in Figure 4.2.7 is the 

power supply used to supply electrical energy to the electrolysis-cell 

systems examined by this researcher . Maximum voltage and current param­

eters of the power supply are 24 volts and 200 amperes, respectively. 

The power supply was driven by a three- phase power source, and it uti­

lized ignitrons to provide a direct- current power which was relatively 

free from alternating-current ripple components. The apparatus shown 

above the power supply in Figure 4. 2.7 is a twenty-ampere Variac which 

supplied power to the heating elements used to control the temperature 

.of the system under test. The heating elements were attached directly 

to the pressure tank containing the cells being tested, and they were 

capable of increasing the cell temperature at a rate of 200°F per hour . 

A schematic of the test facility used in all of the hydrogen­

oxygen fuel-cell tests is shown in Figure 4. 2.s . , As shown in the 

figure• an electrolysis· cell and a fuel cell were plac~d in the same 

environmental pressure chamber . When electrolysis action was initiated 

througl) the application of d-Cr electrical energy, the resulting hydrogen 

and oxygen gases rose from the · surfaces of the electrolysis electrodes 

and moved, by gravitational force, to the fuel-cell electrodes. The 

necessary solid-liquid-gas interface for fuel- cell action was then 

established, and fuel-cell action was initiated. The physical distance 

between the electrolysis electrodes and the fuel- cell electrodes was 

made large with respect to the spacing between the electrode pairs so 



LOAD RESISTANCE 

FUEL CELL VOLTAGE 

ASBESTOS 
MEMBRANE 

ELECTROLYSIS 
CURRENT---

FUEL CELL 
CURRENT 

TEST 
ELECTRODES 

GAS SUPPLY 
ELECTRODES 

Figure 4.2.8. Schematic Diagram for Supplying Gas to and 
Testing for Fuel-Cell Action of Electrodes 
Based on the Finned-Electrode Approach to 
Cell Design 

49 



50 

that ion fringing effects which would cause an undesirable interaction 

between the cells would be negligible. To further insure that fringing 

effects would not affect the fuel-cell data, the tests were run as 

shown in Figure 4.2.B and then repeated with a Faraday screen surround­

ing the electrolysis electrodes. No change in fuel- cell performance 

was noted, so the effects of fringing were assumed to be negligible. 

The process by which the required hydrogen and oxygen gases for 

fuel-cell action were supplied to the fuel cell by an electrolysis cell 

contained within the same pressure vessel made it unnecessary 'for the 

required gases to be pumped into the system under pressure . Such a 

procedure greatly simplified the experimenta;l system and brought about 

a corresponding decrease in the cost of the system. It did, however, 

make it necessary for both fuel-cell and electrolysis-cell electriC:al 

data to be taken during the course of all fuel-cell experiments . The ;. 

instrumentation panel and digital voltmeter discussed in conjunction 

with Figure 4.2.7 was designed to have this capability, as is shown in 

Figure 4.2.~, which consis~s of a close-up vie~ of the instrumentation 

panel-digital voltmeter combination. The left side of the instrumenta­

tion contains a conv~ntional d-c voltmeter with a 2.0 volt full- scale 

reading and a. 25-ampere meter shunt which had a resistance of 0.001 

ohm. The voltmeter was used to give a general indication of the elec­

trolysis- cell voltage, and the voltage terminals of the meter shunt 

were tied through the switch shown at the right of the instrumentation 

panel to the digital voltmeter. In this way, the digital voltmeter 

could be used to measure the current associated with the electrolysis 

cell . The voltage associated with the electrolysis cell was also tied 

through the switch to the digital voltmeter to allow accurate 



Figure 4.2.9. Photograph of Instrumentation Utilized to Obtain V-I Relationships 
· Associated With Hydrogen-Oxygen Cells 
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tabulations of its value to be made o A similar voltmeter and meter 

shunt were installed in the center of the instrumentation panel to 

allow fuel- cell data to be tabulated o These instruments were connected 

through the switching circuit to the digital voltmeter in a manner 

identical to the techniques discussed above for the electrolysis cell. 

The instrumentation panel and associated digital voltmeter provided 

a convenient and compact facility to measure the electrical character­

istics of fuel cells and electrolysis cells. The only other electrical 

device required for the taking of such data was a variable resistor 9 

one of which is shown in the foreground of the photograph in Figure 

4.2.9. These variable resistors were inserted into the electrical 

circuit as is shown in Figure 402080 

Various techniques were employed to fabricate the electrodes whose 

characteristics are tabulated in the following sections of this chapter . 

The electrodes with the most significant parameters are shown in Figures 

4~2.10 and 4.2.ll. They were fabricated from one-fourth-inch flat 

nickel stock 9 as shown in Figure 4.2.12. The milling machine shown in 

the figure was purchased for the specific function shown in Figure 

4o2ol2--to facilitate the fabrication of milled- fin electrodes. The 

complexity and expense of this process could easily be reduced if large 

quantities of such electrodes were required . Electr-ode casting or ex­

trusion techniques which would eliminate the milling process are well 

within the range of present engineering technology. 

4. 3 Hydrogen-O?(Ygen Electrolysis-Cell Experimental Results. This 

section consists of a presentation and discussion of the data obtained 

during three years of experimental research on the finned- electrode 



Figure 4,·2 .10. Photograph of. Milled-Fin Electrodes Used to Obtain 
E.lectrolysis-Cell Characteristics 
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Figure 4,2,ll, Photograph of Diamond-Lattice Electrode Approach to 
High-Pressure Fuel-Cell Design 



Figure 4.2.12. Photograph of Facility Utilized in Fabricating Milled­
Fin Electrodes 

55 



approach to hydrogen electrolysis-cell design . Although research in 

this area is still being conducted, the results presented in this 

section wi).l clearly show the usefulness of the technique. 
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The theoretical advantages of a finned- electrode approach to elec­

trolysis-cell design were documented in the preceding chapter. Experi­

ments were conducted to determine the optimum number, length, and angle 

of declination of various sets of fins in an effort to determine the 

optimum electrode configuration. Figure 4. 3.l shows that the effective 

resistance of the electrolysis cell decreases with an increasing number 

of fins, indicating that the fins are in parallel in the electrolyte. 

This implies that the number of fins per unit of vertical length should 

be as large as possible. The upper limit on the number of fins possible 

in a given cell is established by the vertical distance between the 

fins, which must not be so small as to constrict the flow of hydroxyl 

ions into the vicinity of the fins. Further, the distance between the 

fins must be large enough to provide for the free passage of the gases 

which result from electrolytic dissociation away from the active sites 

of the electrodes. However, neither of these limits can be approached 

in a real electrode due to difficulties associated with the fabrication 

process. 

As discussed in Chapter III, the fins associated with this approach 

to electrode design are given a downward tilt so that gravitational 

force will cause the evolved bubbles to move rapidly aw.ay from the 

membrane used to keep the gases separate . Too steep a tilt in the 

electrodes, however, would increase the difficulty ·in fabricating the 

fins • . These problems limited the fin tilt to 45°, and this angle was. 

maintained in all of tne electrodes constructed as a part of this study. 
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The efficiency of the electrolytic process is known to be a func­

tion of the distance between the electrodes, due to the resistive char­

acter of the potassium hydroxide elect rolyte. This implies that the 

effectiveness of the fin surfaces in a finned electrode decreases with 

distance away from the fin tips. This means that electrodes with ex­

tremely long fins would contain large areas of fin surface which would 

not contribute greatly to the electrolytic process. However, the fins 

should be long enough to allow for the safe separation of the evolved 

gases . A balance of these length- determining factors led to the estab­

lishment of a f in length of 1/ 8 inch for all of the milled- fin elec­

trodes constructed as a part of this phase of the research effort. 

The electrodes whose characteristics are discussed in this section 

were milled from solid nickel sheets . The data plotted in Figures 

4. 3 . 2 and 4. 3. 3 indicate that the characteristics of such electrodes 

are enhanced when the electrodes have been etched in a concentrated 

solution of nitric acid. It is anticipated that the electrolysis-cell 

characteristics can be improved still further by using porous elec­

trodes9 which would have an even greater effective surface area for a 

given mechanical configuration. Figures 4.3 . 2 and 4.3.3 also show that 

the addition of an asbestos membrane between the cell electrodes to 

keep the evolved gases separate does not affect the characteristics of 

the cell to any great extent . Figure 4.3 . 2 consists of a voltage versus 

current plot for a finned-electrode electrolysis cell which contained 

no protective membrane . In Figure 4 . 3. 3, the same characteristics are 

plotted with the cell electrodes separated by three layers of asbestos 

membrane . Comparison of the two curves shows that only a slight voltage 

drop is associated with the membrane 9 proving that such membranes can 
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be used in electrolysis cells without seriously affecting their 

performance characteristics or efficiency. 
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The effect of a catalyst on the performance of electrolysis cells 

was examined. A 25-percent solution of platinic chloride was applied 

to the etched electrodes, following procedures suggested by General 

Electric (47). As shown in Figures 4.3.4 through 4. 3.7 9 the activated 

electrodes exhibited performance characteristics which were superio~ to 

those for .the unactivated set over a pressure range of atmospheric to 

3 9000 psi• the upper pressure limit of the environmental pressure cham­

ber used in· the experiment. The electrodes used in this series of 

experiments were shown in Figure 4.2.3. 

The curves shown in Figures 4.3.4 through 4.3.7 are also signifi­

cant in that they demonstrate the effect of pressure on the voltage 

versus current curves for both activated and non- activated electrolysis 

cells. The curves show that a slight improvement in cell performance 

occurs as the environmental pressure of the system is increased. Al­

though the improvement is slight, it is significant in that it shows 

. that the gases which result from the electrolytic process can be evolved 

and stored under high-pressure conditions without increasing the input 

electrical power requirements of the cell. This indicates an advantage 

of a pressure electrolysis-cell system over a system which operates at 

atmospheric pressure and then utilizes a compressor to compress the 

gases to a pressure suitable for gas storage. 

The improvement in cell performance which results when a catalyst 

is applied to the electrode surfaces becomes significant only if the 

effectiveness of the catalyst is not degraded by the environmental con­

ditions of cell operation . Tests were run to determine the effect on 
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the catalyst of environmental pressure ranges up to 3,ooo psi and envi­

ronmental temperatures up to 200°r. It soon became evident that the 

effectiveness of the catalytic deposition technique used was limited to 

temperatures lower than 150°Fe due to the fact that the platinum coating 

on the electrodes went into solution with the electrolyte at tempera­

tures above 150°F. The deterioration of the catalyst can be seen from 

a comparison of Figures 4.3.8 and 4.3.9. The experiment whose results 

were plotted in Figure 4. 3. 8 was the first effort to obtain a voltage 

versus current plot for various temperatures and a constant pressure of 

3,000 psi for the catalyzed electrodes shown at the bottom of Figure 

4.2.10. The curves shown in Figure 4.3.9 represent the second run of 

the same experiment. The curves in Figure 4.B.9 are clearly inferior 

to those shown in Figure 4.3.8 at each environmental temperature for 

which data was recorded. This indicates that the catalytic deteriora­

tion which occurred du,:,ing the first run of the experiment caused the 

degradation in cell performance shown in Figure 4.3.9. Further evi­

dence of the inadequacy of the catalytic deposition technique at high 

temperatures follows from the fact that the data plotted in Figure 

4.3.8 was taken as the environmental temperature increased. The.voltage 

versus current curve for 122°F is identical to the curve at l93°F 9 

while the curve at 152°F is superior to both of these curves. thus 

proving that the cell characteristics deteriorated at temperatures in 

excess of 152°F. 

Figure 4.3.10 indicates that electrolysis characteristics of the 

milled-fin electrodes are greatly enhanced by increasing environmental 

temperature. For a temperature of 400°F and a pressure of 2,000 psi• 

the current density for electrolytic action was 405 amperes per square 
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foot for an applied voltage of lo 7 volts. This figure is significantly 

higher than any which this writer could find in the literature. This 

fact, coupled with the preceding discussion on the effect of pressure 

on the cell, demonstrates that the milled-fin, high-pressure, high­

temperature electrolysis-cell configuration developed as a part of this 

study represents a noteworthy step toward the development of a superior 

electrolysis-cell system. The fact that temperature has a greater 

effect on the electrodes than pressure is seen from a comparison of 

Figure 4.3.10 with Figure 4.3.11 9 which shows the effect of pressure 

on the milled-fin electrolysis-cell electrodeso 

Figures 4.3.12 through 4.3.16 are included in this thesis to show 

that the e-nhancing effect of temperature on activated milled-fin elec­

trodes is independent of environmental pressure. These curves repre­

sent the completion of the experimental attempt to map the pressure and 

temperature effects on the voltage versus current curves for the new 

type of electrode structure developed at Oklahoma State University. 

An experiment was devised to quantitatively measure the amount of 

gas evolved by the electrolytic process as a function of the applied 

voltage and current. In this way, a practical estimate of the actual 

conversion efficiency of the cell could be determined. The evolved 

gases were bled into an inverted, water-filled, calibrated glass cyl­

inder which was attached to the top of the upper left-hand tank shown 

in Figure 4.2.6. Continuous observation of the electrical power re­

quired t9 produce the gases was made possible through the use of a 

recorder. Data taken as a part of this experiment is shown in Table 

4. 3. lo Also listed for comparison purposes is data concerning the 

characteristics of some of the more importa~t commercially available 
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Cell Type 

CSU Milled-Fin Cell 

Knowles Cell 

Shriver Filter Press 

Ho Ko Sen Cell 

Noeggerath 

Electrolabs Cell 

TABLE 4.3.l 

A COMPARISON OF THE OKLAHOMA STATE UNIVERSITY MILLED-FIN 

CELL WITH CONVENTIONAL HYDROGEN~OXYGEN 

ELECTROLYZERS 

Energy Density 
(Amps Per Sqo Ft.) 

710 

300 
/ 

100 

18 

75 

86 

Kilowatt Hours 
Per Cubic Ft. H2 Out 

'.100 
-

.140 

.139 

.112 

.100 

.125 

Efficiency 
% 

95.l 

68.0 

68.5 

85.o 

95ol 

72o5 

Reference 

(20) 

(20) 

(22) 

(20) 

(20) 

-..J 
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electrolyzers / It is apparent fro~ the table that the Oklahoma State 

University cell has a significantly higher value of energy density than 

any of the other cell types. (The energy density figure is referenced 

to a cell_ voltage of two volts in each case listedo) The efficiency of 

the milled-fin approach to electrolysis-cell electrode design• as s)lown 

by columns three and four of Table 4o3o1 9 is extremely high; and it 

compares very favorably with the values listed for the other cellso 

A significant difficulty associated with the construction of a 

large electrolysis system is the fact that the individual cells are 

characteristically high-current, low-voltage deviceso It is desirable, 

therefore, that such cells be operated in a series connection, rather 

than in a parallel configuration, to reduce the current requirements 

for a large bank of the cells. Compounding the difficulty in connecting 

the cell ·electrode pairs in series is the fact that the electrolyte 

solution used in the system provides an extremely low-resistance path 

fo,:, the flow of ions and thus tends to connect the·cell electrode pairs 

in parallel when the cells are operated in a common electrolyte. 

In water electrolysis, it is necessary that hydroxyl ions pass 

through the electrolyte from the oxygen electrode to the hydrogen elec­

trode if the reaction is to be completedo lheref~re 9 those ions which 

are released from a given oxygen electrode must be available to its 

corresponding hydrogen electrode but not available to any other hydrogen 

electrode which might be in the same electrolyte. This is accomplished 

in the Oklahoma State University electrolysis cell as is shown in 

Flgure 4o3ol7, Between the finned electrode pairs is a nickel plate 

which serves both as a barrier to the free flow of hydroxyl ions and an 

extremely low-resistance contact which binds together the two electrodes 



BACK SIDE OF EACH 
ELECTRODE SLOTTED 
TO ALLOW FOR RAPID · 

·.·EXIT OF GASES. 

ASBESTOS 
MEMBRANES 

SOLID NICKEL 
ION BARRIER 

79 

Figure 4.3.17. Schematic Diagram of. Two Milled-Fin Electrolysis Cells .. 
· Connected ln Series Electrlcally 



80 

shown in the figureo It is interesting to note that the middle elec­

trode will have oxygen gas evolved from the left-hand side and hydrogen 

gas from the right•hand side when the voltage of the polarity indicated 

is applied to the cello 

A series configuration of the type described above was constructed, 

and it is shown in Figure 4o3ol8o Voltage versus current curves were 

plotted for the two electrodes shown in.the figure• then a curve for the 

series arrangement was plotted from the results of the experiment. 

These results are shown in Figure 4.3.19. Also plotted in Figure 4.3.19 

is the theoretical V-I curve which would result when the V-I curves for 

the individual electrode pairs were added arithmetically. Note that the 

curve obtained experimentally is superior to the curve obtained by sim­

ple arithmetic. This occurs because the current available to the center 

electrodes is injected uniformly into the electrode in the series con­

figuration. When the curves were run for the individual cells, however, 

the current was injected into the bottom of the electrodes and was thus 

not distributed uniformly along the surface of the electrode. The 

nickel plate·which served as a barrier to the passage of hydroxyl ions 

was seen to perform satisfactorily since gases evolved from only one 

side of the center electrode when the V-I curves for the individual 

cells were being obtained experimentally. Although this demonstrates 

the technical feasibility of this approach to placing the cells in 

series, more research is necessary to prove the practical value of the 

technique. 

4.4 Hydrogen-Oxygen Fuel-Cell Experimental Results. Data for a 

single fin set of fuel-cell electrodes is presented as Figures 4.4.l 
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through 40408 of this thesiso The curves indicate the effect of pres­

sure and temperature on the set of nickel-fin fuel-cell electrodes 

which had been activated with a platinic chloride catalysto A com­

parison of Figures 4o4ol through 4o4o4 indicates the marked improvement 

in fuel-cell performance which results when the environmental pressure 

of the cell is increased. Not shown in the curves is the fact that the 

stability of the cell characteristics is also enhanced by increasing 

pressure. Stability in this case is an indication of the ability of 

the cell to maintain a given voltage and current without undesirable 

drifto The curves relating to fuel-cell performance were plotted as 

straight lines connecting the data points for the single-fin set of 

electrodes to indicate the stochastic nature of the data. Figures 

4o4o5 through 4.4.8 demonstrate clearly that increasing temperature 

causes an improvement in fuel-cell performance. 

An attempt was made to repeat the above experiments 9 using non= 

catalyzed nickel-fin electrodes. No fuel-cell operation of any conse­

quence was noted for the unactivated electrodes within the environmental 

pressure and temperature limits of the cello The results of the experi­

ments run on the activated electrodes. however• clearly demonstrates 

the finned eleqtrode approach to fuel-cell design can produce fuel~cell 

action. 

Initial tests on the diamond-lattice electrode structure shown in 

Figure 4.2.11 were performed on solid electrodes which were fabricated 

from 3/8-inch nickel stock. Each electrode was ten square inches in 

areat and no catalyst was applied to the electrodes. No appreciable 

fuel-cell action was observed until the environ,mental temperature rose 

about 290°F, and a rather dramatic improvement in cell characteristics 
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occurred above that temperature. 

It is interesting to observe that the diamond-lattice approach to 

fuel-cell electrode design does not require porous electrodes to pro­

duce the desired reaction. The data plotted as Figure 4.4.9 indicates 

that a current density equivalent to 14 amperes per square foot at o.7 

volts is observed for this configuration when the electrode material is 

solid nickel which has been etched by concentrated nitric acid. The 

current density of 14 amperes can undoubtedly be increased by a refine­

ment in the diamond-lattice structure. However 0 the use of porous 

material for the diamond-lattice electrode can give one the advantages 

of a porous electrode without the disadvantages discussed in Chapter 

III. 

Justi ( 8) and others have noted that porous electrodes made from 

Raney Nickel contain large amounts of highly reactive hydrogen and oxy­

gen, up to 1.1 protons per nickel-catalyst atom. Thus, in addition to 

the increased number of active sites made possible through the use of 

porous electrodes, one can also realize the advantage of having a cell 

which can continue for a relatively long time to supply electricity; 

even if the gas supply is temporarily interrupted. 

A set of diamond-lattice electrodes fabricated from General 

Electric Foammetal--a type of porous nickel--was constructed to allow 

a comparison to be made between the solid and the porous electrodes. 

The Foammetal set of electrodes produced a current density equivalent 

to 140 amperes per square foot at o.7 volts, as is shown in Figure 

4.4.10. This figure is appreciably higher than the data previously 

quoted for the solid-nickel electrode. Further 51 the current output of 

the Foammetal electrodes persisted for as long as five minutes after the 
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gas supply was interruptedo The current output of the solid electrodes, 

on the other hand, dropped in a few seconds following the interruption 

of the gas supplyo 

Voltage versus current curves for the Foammetal cell are plotted 

as a function of pressure and temperature in Figures 4a4all through 

4o4ol7 of this thesiso It is again apparent from these figures that 

the output characteristics of the cell are enhanced by both pressure 

and temperaturea 

As shown in the preceding figures, the diamond-lattice fuel-cell 

electrode structure is capable of producing appreciable values of cur­

rent. Unfortunately, the Foammetal material proved to be unable to 

withstand the high-pressure, high-temperature environmental parameters 

of the fuel-cell system. The electrodes disintegrated very rapidly in 

the cell environment. 

Two new types of porous electrode materials were obtained in an 

attempt to find an electrode with the corrosion-resistance character:­

istics of solid nickel and the current-density characteristics of 

porous materials. Each of the new electrode materials was fabricated 

from finely divided pickel powder which was sintered into plia:t:es one­

eighth-inch thicko Material assigned the type number D differed from 

material type Bin that material D contained a fine mesh nickel screen 

to give a degree of st,ructural integrity to the electrodes. 

Tests run on the electrodes made of these materials proved that 

.both had excellent resistance to the corrosive aspects of the.cell 

environment. However, each material exhibited an undesirable polariza­

tion characteristic which made them have voltage versus current charac­

teristics which were inferior to the Foammetal electrodes. Data plotted 
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in Figures 4o4ol8 and 4o4cl9 indicates that the electrodes fabricated 

from the new material exhibited a conventional voltage versus current 

relationship whi.ch was reduced in value by a Oo2 to Oo4 polarization 

voltage for a given value of current. Material B had a maximum current 

.density of 26 amperes per square foot; and material D exhibited a maxi­

mum current density of 44 amperes per square foot, referred to a stand• 

ard voltage of 0.7 volts per cello 

A modification of the diamond-lattice electrode configuration 

which might improve the manifold system of this type of structure and 

increase the number of active sites available for the cell reaction is 

the spiral electrode structure shown in Figure 3.3.46 Tests were run 

on the cell shown in the figure at an environmental pressure and tem­

perature of 3,000 psi and 4009F, respectively. No catalyst was applied 

to the electrodes• which were fabricated from pure nickel cylinders 

then etched in a concentrated nitric acid solution. 

The space between the electrodes was made extremely small so that 

a thin; porous teflon membrane could be used to keep the fuel and oxi­

dizing gases separated. The data published by the manufacturer of 

these membranes indicated that they were markedly superior to the as­

bestos membrane used in most fuel cells in that the voltage drop in the 

teflon membranes was predicted to be less than ten percent of the drop 

associated with conventional asbestos membranes. 

Unfortunately, the teflon membranes had a tendency to shrink when 

immersed in 25 percent potassium hydroxide and subjected to the high­

pressure, high-temperature environment of the cell. A total of ten 

tests were run on the spiral electrode structure, utilizing three 

different types of teflon membrane. The result of each experiment was 
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the same-•the membrane would tear and allow the fuel and oxidizing 

gases to mix before a complete set of data could be taken4 The damaged 

membranes were sent to the manufacturer for further study. 

The asbestos membrane used in the conventional fuel cells manufac­

tured by Allis Chalmers was also found to be unsatisfactory in the 

spiral electrode fuel cello Tests proved that this type of membrane 

swells when it absorbs potassium hydroxidec The expanding membrane 

filled the manifold of the spiral electrode cell and thus cut off the 

flow of gas to the active sites of the cell electrodesd In spite of the 

difficulties associated with the spiral electrode approach to fuel-cell 

design• information concerning such a cell is included in this thesis 

t6 show that the search for an optimum manifolding structure is not 

completed and that alternate structures should be examinedQ 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5,1 SummaEY• This thesis consists of an analysis of the charac­

teristics of high-pressure, high-temperature electrolysis cells and 

fuel cellso In Chapter II the basic theory of the hydrogen-oxygen 

reaction was summarized with emphasis given to the effects of pressure 

and temperature on cell performance, polarization characteristics of 

the cells, and the reversible voltage values associated with the reac­

tion. In Chapter III the various problems related to the operation of 

fuel cells and electrolysis cells at high temperature and pressure are 

listed, and an alternate electrode structure is suggested as a possible 

means of surmounting these problems. The theoretical treatment, based 

on the technique of conformal transformations, which led to the "finned" 

electrode approach to cell design, is introduced in Chapter III and is 

documented in detail in Appendix B. In Chapter IV 9 experimental evi­

dence supporting this new approach to hydrogen-oxygen fuel-cell and 

electrolysis-cell design is presentedo 

s.2 Conclusions. A fuel cell or an electrolysis cell which is 

operated at high pressures and temperatures is capable of having charac­

teristics which are superior to similar cells which operate at lower 

pressures and temperatures. The various problems associated with oper­

ating such cells at high pressures and temperatures, however, must be 
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solved before they can be considered as economical and practical 

engineering devices. 

The analysis presented in this thesis shows that a conformal trans-

formation of parallel-plate electrodes can lead to a set of finned 

electrodes which have electrostatic characteristics mathematically re ... 

lated.to the parallel-plate electrodes. Engineering modifications of 

the basic finned set has lead to the development of fuel-cell and elec-

trolysis cell electrodes which have interesting engineering parameters. 

The electrolysis-cell electrodes which resulted from this analysis have 

energy density and efficiency characteristics which are superior to 

conventional electrolysi~ cells. The primary significance of the finned 
. . . 

electrode approach to fuel-cell design is that it eliminates the inter-

face problems associated with conventional high-pressure cells. 

5.3 Recommendations for Further Study, The experimental facility 

which was used to accumulate data on the electrolysis-cell and fuel-cell 

electrodes developed in this study was limited to environme~tal pres .. 

sures and temperatures of 3,000 psi and 450°F, respectively. This 

physical limitation confined the search for an optimum pressure and 

temperature environment for fuel-cell and electrolysis action to these 

upper limits. Environmental pressure and temperature facilities should 

be constructed which will allow the search for an optimum pressure and 

temperature environment to be extended to much higher ranges of pres-

sures and temperatures. A further disadvantage of the environmental 

test facility used in this study is that it was the only facility of 

its kind available, and literally hundreds of tests had to be performed. 

This limitation of facilities made it impossible for extensive life 
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tests to be run on any of the electrolysis ... cell or fuel-cell configura­

tions which were examined. As a consequence, no information concerning 

the longevity of the electrodes in the extremely corrosive environmental 

conditions imposed by concentrated potassium hydroxide 9 high pressure, 

and high temperature. Such life tests must be run before any of the 

electrode structures can be given real engineering significance. 

As a consequence of the lack of an environmental. test facility 

which could be used to conduct life-test studies I the phenomena of hy­

drogen embrittlement~ which other researchers have observed in high­

pressure, high-temperature facilities which contain hydrogen~ did not 

occur. Hydrogen embrittlement is believed to occur in fuel-cell and 

electrolysis-cell pressu~e chambers because of the highly reactive 

nature of the nascent hydrogen which is a part of the cell reaction. 

This nascent hydrogen can pass along the grain boundaries of the stain­

less steel environmental chamber until it reaches the oxides and sul­

fides in the steel, thus causing embrittlement to occur. As a conse­

quence of hydrogen embrittlement, pressure chambers can weaken and lose 

their structural integrity. The obYious explosion hazard which then 

occurs is one which any researcher in high-pressure 9 high-temperature 

hydrogen-oxygen fuel~cell technology should examine. 

The experimental results presented in Chapter IV of this thesis on 

the characteristics of the diamond-lattice electrode structure showed 

that this type of electrode can produce fuel-cell action. However, it 

was also clear that the materials used in the experimental examination 

were not optimum. Further, it was also observed that the manifolding 

character of the diamond-lattice electrodes was not optimized. More 

work should be devoted to the solution of these problems. The spiral, 
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cylindrical approach to cell design should also be subjected to further 

analysis. 

The energy density characteristics and the polarization parameters 

of the fuel-cell electrodes examined in this study could undoubtedly be 

improved if the proper catalyst could be found. A concentrated effort 

should be devoted to this area of research. It should be noted here 

that the type of catalytic deposition technique used on the milled-fin 

electrodes developed in this study will differ greatly from the tech­

niques employed on conventional fuel cells. The finned electrodes are 

essentially solid; therefore• electroplating techniques can be used to 

deposit catalysts on the electrode surfaces. Such techniques are not 

applicable to the conventional porous electrodes due to the high proba-. 

bility that the pores will be covered over by the plating action. 

The design of the electrodes considered in this study was under­

taken with the intent that they be used in an ener,gy-storage system of 

the type shown in Figure 1.4,l. Such a system has not yet been con­

structed. Consequently, no information is available concerning the 

problems involved in constructing, controlling, or maintaining the 

various components of the system. A pilot system of the basic type 

shown in the system should be constructed so that these problems may 

be solvedo 
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APPENDIX A 

FREE-ENERGY CONCEPTS RELEVANT TO THE HYDROGEN-

OXYGEN FUEL=CELL REACTION 

Basic to the analysis of the hydrogen-oxygen fuel cell is the 

concept of free energyi which is the factor that determines the amount 

of energy which can be derived from the reaction. The purpose of this 

appendix is to derive some of the fundamental relationships associated 

with this concept as they apply to the hydrogen-oxygen reaction. 

The fundamental chemical reaction which occurs in hydrogen-oxygen 

fuel cells which utilize an alkaline electrolyte, written on a half-

cell basis• is 

H2 + 20H--+ H20 + e (Anode or Hydrogen Reaction) 

1/2 o2 + e + H2o-+ 20H- (Cathode or Oxygen Reaction) 

The overall cell reaction is 

(A.1) 

where the hydrogen and oxygen are in a gaseous state; and the water by-

product can be either a liquid or a gas~ depending on environmental 

conditions. 

In terms of the internal energy associated with the gas molecules 

involved in the reaction 9 the reaction is (49) 
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(A.,2) 

where Ui is the internal energy associated with the i-th reactant. The 

term z g Eth is an electrical work (Eth = voltage t Gt is the Faraday• and 

z is the number of equivalents involved in the reaction). The term Q 

represents the heat added to the system, and Wis a term representing 

the work done by the system. (The internal energy of the products of 

the reaction is neglected.) 

For a constant pressure closed system, the expansion work of the 

system can be written as 

W = l p !J.V, • (A. 3) 
• l. 
l. 

where Vis a change in volume of the system. Assuming that the volume 

of the water product of the reaction is negligible compared to the 

volume of the reactants associated with the reaction !J.Vi = •zi Vi, 

Equation A.3 then becomes 

(A.4) 

where Vi represents the change in volume of the i-th components. Sub-

ject to the above considerations, Equation Ao2 may be written as 

- l zi (Ui + p Vi) = - z g. Eth + Q 
i 

(A.5) 

where the term U, + p V, = Hi·, the enthalpy of the components of the 
l. l. 

system. It is to be noted that the right-hand side of Equation A.5 

contains a heat term as well as a.n electrical term. 

Let Si denote the entropy of a substance i at some given operati~g 

pressure and temperature. Assuming all of i reactants are converted 
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from a gaseous to a liquid formt the entropy associated with i must 

decrease to a value corresponding to the entropy of the products of the 

reaction11 An inspection of Table 203111 shows that the entropy asso-

ciated with the liquid water form is small compared to the entropy of 

the reactants11 Correspondingly• the effective entropy change due to 

the conversion of the gaseous reactants into a liquid product is ob-

tained by assuming that the entropy of the reactants disappears. This 

change in entropy causes an increase in the entropy of the system of 

(A.6) 

Under these conditions, the second law of thermodynamics dictates that 

the increase in entropy of the system environment is. 

The total entropy increase due to the chemical reaction is (for a 

reversible system) 

L zi Si+ Q/T = 0 • 
i 

Equation A.8 can also be written as 

- Tl Z, S, + Q = 0 • 
• J. J. 
l. 

(A.7) 

(A.8) 

Solving Equation A.5 for Q and inserting this value into Equation A.8, 

one may concl.ude that ( 50) 

(U, + p V, - TS,) • 
J. 1 1 

( A.9) 

Let the expression 

U, + p V, - TS· = G1· • 1 1 J. 
(A.10) 



It is apparent that the term l z, Gi represents a decrease of energy 
• i 
1 
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because of the reaction, and it is a free energy which may be converted 

into any other form~ The term G is generally used to represent the 

Gibbs Free Energy of the reaction. 



APPENDIX B 

ELECTROSTATIC POTENTIAL DISTRIBUTIONS 

ABOUT FINNED ELECTRODE PAIRS 

B,l Introduction. Research at Oklahoma State University has 

indicated that there are many practical advantages in using finned­

electrode structures for fuel cells and electrolysis cells. This thesis 

will examine the electrostatic potential distribution about such elec­

trodes and compare this distribution pattern with that associated with 

a conventional set of parallel-plate electrodes. The analysis is di­

vided into two parts. First, it is assumed that the medium between the 

electrodes is a charge-free space which satisfies Laplace's Equation. 

Lines of constant electrostatic potential will then be plotted for 

parallel-plate electrodes and for finned electrodeso Second; the case 

of a low mobility 9 concentrated plasma or electrolyte between the elec­

trodes will be examined. In both cases it will be shown that the fin­

ned electrode structure does not drastically perturb the electrostatic 

potential characteristics of fuel cells or electrolysis cells. This 

analysis is included in this thesis because it documents the theoretical 

concept which led to the electrode configurations discussed in Chapter 

III 0 

Bo2 Conformal Transformations of Cell Electrodes. The theory of 

conformal transformations is valid only for regions which satisfy 
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Laplace's Equation. 

A conventional set of parallel-plate electrodes is shown in Figure 

B. 2. L For convenienc~, it will be assumed that the electrodes are 

semi=infinite in length and are separated by a distance of ,r units. 

V 

w3 

I w-plane 

I 
I 

/1 
wl W2 

u 
-,r/2 ,r/2 

Figure B.2.1. Conventional Parallel-Plate Electrodes 

The Schwarz-Christoffel transformation (51) can be used to trans-

form the above set of electrodes into a single set of "finned" elec-

trodes. The problem in such a case is simply to map the semi-infinite 

strip 

- 'IT/2 < U < 'IT/2 t V > Q - -
in thew-plane onto the half plane y.:. 0 in the z-plane. Consider that 

the strip in thew-plane is the limiting form of a triangle with ver-

tices w1 ; w2 , and w3(Figure B.2.1) as the imaginary part of w3 ap­

proaches infinity. The limiting values of the exterior angles of w1 , 
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Choose the points x1 = ~1, x2 = 1, and X : oo 
3 

as the images of the 

vertices in the z-plane, as shown in Figure Bd2.2. Then the derivative 

of the mapping function can be written as 

thus 

Let 

then 

or 

or 

dw A (z + l)-1/2 (z - 1)"'1/2. dz = 

= A ( z2 - 1) ~ l / 2 

w = A' sin~ 1 z + B 

A' = 1/a and B:: b/a 

w = (1/a) sin- 1 z + (b/a) 

• -1 aw= sin z + b 

aw - b = sin- 1 z • 

y 

z-plane 

-1 +l 

Figure B.2.2., Single-Fin Electrode Configuration 

(B.2.1) 
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It follows from the above that z = sin (aw - b) 9 a convenient form 

with which to satisfy the boundary conditions. Now 9 if 

w = - (n/2) t z = - l 

and 

w = n/2 ~ z = l 

so the equations 

- l = sin (- ( n /2) a - b) 

and 

l = sin ((n/2) a= b) 

can be used to solve for the constants a and b. Thus, a= land b = o. 

The transformation equation is, therefore, 

z = sin w • (B.2.3) 

If fringing effects are neglected at the bottom of the semi­

infinite strip 9 the equipotential lines and the flux lines will be 

straight lines parallel to the electrodes and perpendicular to the elec­

trodes, respectively. It is desirable that these lines be transformed 

into the z-plane so that an idea of the field configuration about a set 

of finned electrodes can be realized. 

The following identity will be usefuli 

sin w = sin u cosh v + i cos u sinh v. 

With the above identity, the transformation z = sin w can be written as 

u = sin x cosh y, v = cos x sinh y. 

Equipotential lines in the w~plane are characterized by 
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U = C t - 1T /2 < u < 1T /2 - -
In the z-plane they become characterized by the parametric equations 

x = sin c cosh v, y = sinh v cos c. 

These parametric curves represent the right-hand half of the hyperbola 

x2 

sin2 c 

x2 
--2-.,. l' 
COS C 

(B.2.4) 

if c is greater than zero and the left-hand half if c is less than zero. 

Lines of constant flux in thew-plane are characterized by 

V = C t - 1T/2 !_ U !_ 1T/2 9 

and in the z-plane they become characterized by the parametric equations 

x = cosh c sin u, y = sinh c cos u. 

If c is greater than zero, then y is greater than or equal to zero; and 

these equations represent the upper half of the ellipse 

:x:2 y2 

cosh2 c + sinh2 c = 1 • (B.2.5) 

If c is less than zero, they represent the lower half of the ellipse. 

Lines of constant flux will not be considered further in this thesis. 

Constant potential lines in the z-plane, based on the conformal trans-

formation developed in this appendix, are shown in Figure B.2.3. Each 

point of a constant potential line in thew-plane maps into one point 

of the hyperbola and, conversely, according to the given parametric 

equations. The points z = ±1 are the foci of the hyperbolas. Since 



u = - 7T/2 

y 

u=O 

z-plane 
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U=7T/2 X 

Figure B.2.3. Equipotential Lines Associated With a Single-Fin Cell 
Configuration 
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the mapping is conformal, it is a one~to-one mapping. 

The preceding discussion has shown that the field configuration 

about a set of finned electrodes differs greatly from that of a set of 

parallel-plate electrodes. A single set of fins is of no real value 

in a practical fuel cell or electrolysis cell, however. Many sets of 

fins, arranged as in Figure B.2.4, would be more desirable in an actual 

application. 

y 

l l' 
2 2' 

Id 3 3' _oc,..,._ ~ 00 

• 

• 
!l - .. ..n.!. X 

Figure B.2.,4. N-Finned Electrode Set 

The electrodes l, 2 1 31 •••, n are parallel, semi-infinite plates; 

and they all are assumed to have the sanie potential., Electrodes l', 2', 

3' 
' •••• n' are parallel, semi-infinite plates and are here assumed to 

be at a potential of +V with respect to the electrodes l, 2, 31 ••• , n. 

Since the system under discussion is assumed to be linear, the principle 

of superposition applies; and the potential distribution pattern for the 

n•finned set of electrodes shown in Figure B.2.4 can, therefore, be 

determined from that of a single set of fins using this principle. 

For convenience, let the z-plane for then-finned configuration be 
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oriented as shown in Figure Bo2o4o From the discussion of the pre-

ceding section, then, the potential pattern set up by each electrode is 

as follows: 

Single-Fin Set 1-1' 

Single-Fin Set 2-2' 

Single-Fin Set p-p' 

' 2 sin c 

x2 

sin2 C 

x2 

sin2 C 

y2' = 1 
cos2 C 

(y - d)2 
= 

cos2 C 

Sx - pd)2 

cos2 C 

1 

= 1 

where p goes from o. 1, 2 1 ••• as n goes from 1 9 2 9 3 9 •••• 

(B.2.6) 

Suppose now that it i$ desirable to determine the potential at 

some arbitrary point x 9y not on the electrodes. The potential at this 

point :will be given by an infinite series of terms--one term for each 

fin on that side of the y-axis where the point x,y is located. The 

contribution of the i-th fin to the potential at x.y is determined by 

ci in the equation 

Thus 

where -n/2 < c. < n/2. 
J. 

sin2 c. 
J. 

V 
xy = 

2 
(y - Pid) 

l 
i = 1 

c. t 
J. 

= l I", 

It is apparent that plotting lines of constant potential utilizing 

the above equation represents a tedious undertaking. However, a graph-

ical approach can be used which will indicate the general shape of these 

equipotential lines. Figure B.2.5 shows the superimposed lines of 
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Figure B.2.5. Superimposed Equipotential Lines for a Two-Fin Set (Electrodes Widely Spaced) 
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constant potential associateg with a two-finned set of electt>odeso The 

lef-hand electrode will· ha.ve a ,symmetrical -potential distribution and is 

not shown in the figure. For the case shown 1 the potential between the 

fins is known only at the intersection points of the curves. Figure 

B.2.6 and Flgure B.2.7 _indicate how the intersection points vary with 

changes -in the spacing between the fins. The fact that a pattern of 

the constant potential lines which exist in the "two .. fins" case has been 

established is shown in Figure B. 2. 8, which shows the locus of the lines 

of constant :i;>otential established by the intersection of the super­

imposed potential lines shown in Figµre B.2.s. 

For the case of n-fins, the potential distribution shown will be 

essentially as, is shown in Figure B.2.a. For small values of x in a 

neighborhood about x = l (i.e., close to the tips of the fins), it is 

evident that the potential distribution will be dominated by the adja­

cent firis; and the contribution of the other fins will be slight. How­

ever 9 for values of x much greater than one, the potential will be 

determined by the contributions of many of the fins. It is apparent 

that a potential surface will be formed for x>> l_which will be equal 

to the e~ectrode potential. 

B.3 Potential Distribution in a Concentrated Electrolyte. The 

preceding analysis has indicated the potential distribution associated 

with finned electrodes where the environment surrounding the electrodes 

was a charge-free space. In an actual fuel cell or electrolysis cell, 

however• the environment around such electrodes is a concentrated elec­

trolyte which consists primarily of charged particles 0 Laplace's 

equation is obviously invalid in such an environment. It is necessary 
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Figure n.2.6. Superimposed Equipotential Lines for a Two-Fin Set (Moderate Spacing Between 
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Figure B. 2. 7. Superimposed Equipotential Lines for a Two-Fin Set (Electrode Fins are Closely 
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in the case of an actual cell to utilize Poisson's equation in conjunc-

tion with a charge distribution function to determine the potential 

distribution about an electrode in this case. 

A concentrated electrolyte such as 25 percent KOH consists essen-

tially of potassium ions and hydroxyl ionso In such an environment, 

the ions are subject to forces which vary inversely a~ the square of 

the distance between them; and the relationship between charge density 

in the electrolyte and the potential is given by Poisson's equation 

'i/2 1/J = - p/e: • (B.3.1) 

The equation states that at any point in the electrolyte determined by 

three-space coordinates ( x • y • z; r • e, lj,) • the divergence .of the 

gradient of the potential or the total outward flux of the force at 

this point is proportional to the charge density at this point. In an 

electrolytic medium, the charge density at a distance r from the j ions 

is 

s 

l n .. ei • 
i = l Jl. 

(B.3.2) 

where the summation is over all the ions(+ and-) in the solution. 

Therefore, in general (52), 

where r 1 and r 2 are general vector distances. For a stationary system, 

the motion of ions is determined essentially by thermal consideration 

so that the statistical distribution of the ions is established by 

Maxwell-Boltzmann statistics, with the result that the 9istribution 

function for the ions in the electrolyte has the form 



n •• 
]1 

where U •. is the potential energy of the i ion in the vicinity of the 
J;;L 

j ion and kT is its kinetic energy. It follows from Debye (53) that 

the solution for Wj is 

-z. q K w. = __ J __ 
J £ 

t 

where z. is the valence of the j-th ion, q is the electronic charge, 
J 

and 

2 
K - -L l 

- kT £ n = 
s 

n. Z. 
l 1 1 ' 

or, inserting various constants and inverting, obtain 
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-11.fef 1/K = 7 0 924· X 10 V T (B.3.7) 

which is the ionic radius of the j-th ion. Tin the equation is tern-

perature in absolute units, and r is the ional concentration. At 25°C 

the value of 1/K for potassium in a 25 percent solution of potassium 

hydroxide is 1.33 angstroms; and for hydroxyl ions, the figure is 2.70 

angstroms. 

The above values of the ionic radii of the ions in the electrolyte 

are significant in that they represent the distance of closest approach 

of the ions in the electrolyte to the charged plates which comprise the 

electrodes. The hydrogen electrode in a fuel cell will be negative and 

will, therefore, attract a cloud of potassium ions, which will be ori-

ented approximately 1.33 angstroms from the surface of the electrode. 

Correspondingly, the oxygen electrode will accumulate a cloud of 
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hydroxyl ions. This cloud of ions serves to insulate the electrolyte 

from the effects of the charge distribution associated with the elec­

trodes. The result is that charges which are several 1/ic units away 

from a given electrode are completely unaffected by the existence of 

the ele.ctrode. Therefore I the fact that the electrodes are finned or 

parallel plates makes no difference to the operation of the cell, inso­

far as the potential distribution associated with the electrodes is 

con~erned. 
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