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CHAPTER I 

INTRODUCTION 

'!'fie Electrical ffi!;twork Anal:y;zer 

Most electrical engineers are f"am111ar with the use of 

network analyzers 1n the study of power distribution systems. 

The calculating board is now regarded as an ind1spens1ble 

instrument tor determining the transient currents and voltages 

resulting from the interconnection o:f' several genera.ting 

stations, lines, and loads. Difficult problems can be solved 

in a very short period of time with improved accuracy and at 

a reduced cost to the utility companies. Transient and steady 

state currents and voltages ea.n be predetermined for all types 

of fa.ult conditions after the calculating board has been set 

up for a particular system. This is not the only type of 

problem that may be solved by the network analyzer; 1t is 

a relative easy operation to evaluate the effect of any ad­

ditions to the distribution system together with the effect 

of any changes in loading or input to the existing network. 

In addition to the savings in time and money for the 

initial 1nstallat1ons, there results savings in maintenance 

and loss of equipment due to the absence of sufficient pro­

tection for the various electrical units. These economies 

by themselves are adequate justification for the employment 

of a network analyzer. Problems solved by using the calcu­

lating board may be worked out mathematically by properly 

trained engineers if a sufficient amount of time is allowed. 
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The opportunities tor error 1n many ca.seQ a.re numerous, a.nd 

consequently a.11 calculations made independently .· ot a calcu­

lating board must be checked and rechecked. 

Civil engineers have an equally d1:f"t1cult problem in the 

solution or problems involving complex hydraulic pipe line 

networks. Just as the network analyzer has resulted in a. tre­

mendous acceleration of the studies involving networks of 

power systems. so would an analyzer tor hydraulic distribution 

systems tend to speed up the solution or many complex problems 

involved in the flow of water, 011, and other fluids through 

complex networks of pipe lines. 

lb!. fr2blem 

A ca.loula.ting boa.rd for hydraulic systems that would 

permit the determination of the hydraulic pressures at any 

point 1n the system has been sought tor many years with very 

little success. It is the purpose of this research project to 

establish a.n electrical network that is an analogy of hydraulic 

pipe line flow and pressures. However such a development, if 

successful, is by no means a oomple'te solution to the measure­

ment of flows and pressures of a complex pipe line network. 

In this study no attempt 1s made to set up an electrical 

analogy for a multi-pipe system, but only to establish a few 

definite relationships between certain hydraulic problems and 

an electrioa.l network. It is believed that these relation­

ships may be of considerable assistance in any further inves­

tigation or this field. 
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N•oess1 ty !:2£ ·rhis Study 

From among the many problems that a.rise in the study of 

hydraulic systems 1 there are at least three that assume a 

role of major importance. 'l'he design of a calculation board. 

for hydraulic systems must certainly include devices which 

will permit the evaluation of the various para.meters dictated 

by the requirements established 1n these problems. 

In the following 11st a.re three reasons for the naed of 

such an electric analyzer for hydraulic problems. 

(1) Calculations of the pressure changes when an add1t1on 

is made to an existing complex hydraulic system are now im­

possible unless numerous long and tedious oa.lcula.tions are 

ma.de. Such problems should be solved with an analyzer in a. 

few minutes. 

(2) The phenomenon of the water hammer has been a major 

problem and has ca.used enormous losses of equipment. By ex­

tending the research started in this project it may be possi­

ble to predetermine the pressure developed by the sudden clos­

ing of a. valve. If" the changes in pressures are knovm, 

adequate protection may be instituted to guard against them. 

(3) The results of a. change in pressure due to the change 

of elevation of the input head should be readily determined 

by an adequate calculating board. This involves a. simple ex­

tension of the established electrical analogy before applying 

it to a multi-pipe hydraulic system. 
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Delimitations 

The electrical network which 1s to be the analyzer must 

be developed. so that the voltages in the eleetrica.l network 

will represent elther the pressure head at various points in 

the pipe line or the head loss through the pipe line. To 

know which voltage drop corresponds to the pressure head and 

which voltage drop corresponds to the head loss will depend 

entirely upon which resistor 1n the circuit the voltage is 

measured a.cross. Total pressure and elevation head at the 

pipe input will be represented by the applied voltage of the 

electrical circuit because the total head of the pipe line 

system is the sum of' the output pressure head and the head 

loss in the pipe. Direct voltages will be used in the analyz­

er because the normal flow of the fluid in the pipe lines is 

a steady unidirectional movement. A simplified block diagram 

of the analyzer circuit is included in Figure 1. 

Rather than to attempt the solution of a complex pipe 

line network, this project has been confined to the simplest 

type or mesh. A single straight pipe with a. eo:nstant diameter 

and a constant head at the input end presents the type of 

problem that will be considered. Experimental results with 

hydraulic systems have shown that two types of flow may exist 

in a pipe line. These a.re designated as laminar flow and 

turbulent flow. The laminar flow is a smooth type of flow 

that exists if the velocity of the fluid is very low. The 

turbulent flow 1s a rough movement of the fluid 1n the pipe 

which takes place whenever fluid velocity is normal or higher 

than normal. Turbulent flow is discussed more Tully in the 
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next chapter. In the establishment or the ans.logy, laminar 

flow will be given consideration where the roughness of the 

pipe has no ettect. The turbulent region of flow will be 

analyzed where the various degrees of pipe roughness are im­

portant. Laminar flow has very little practical importance, 

and consequently 1s not considered in great detail. Fortunate­

ly it developes that ba.s1o principles involved 1n the construc­

tion and operation or the analyzer a.re the same tor both types 

or tlow. 
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CHAPTJER II 

THEORY OF RELA?IONSHIPS BETWEEN AN ELECTRICAL NETWORK AND AN 
HYDRAULIC SYSTEM 

!b!, HY<!£!ul.1c s;rs tem 

The type or flow existing in a pipe line depends upon the 

value of the Reynolds number which is defined as DF/w, where 

D it the diameter of the pipe, Fis the average velocity of 

the fluid, and W 1 s the k1nema. tic:·: viacosi ty.. Laminar, or 

smooth flow, occurs 1f the Reynolds number is below 2,200 and 

turbulent flow exists if Nr, the Reynolds number, 1s above 

this value. 

The loss of head due to friction depends upon the Reynolds 

number Nr, length of pipe L, Diameter of pipe D, gravitational 

constant g, and coefficient of friction r, that 1s, 

(1) 

The eoerr101ent or friction is not a fixed quantity, but 
1 varies with Nr as shown in Figure 2. 

For a fixed value of Nr in the turbulent flow region, 

f' depends on the degree of roughness 1n the pipe as designated 

by the r/x values. For laminar flow the eurve may be expressed 

1n the :t'orm of' an equation, 

f = 64 64 
--- e:;,C_.....-. 

Nr I 
(2) 

1. Hunter Rouse, Elementary: Mechanics Qt Turbulent Flow 
(New York, New York: John Wiley and Sons, Ifie., 194~), p.376. 



This relationship 1s the same for all values of r/K. 
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The cond1t1on of laminar :t'low will be considered :first .. 

A possible solution can be obtained. by setting the current in 

the electrical network to values that are proportional to the 

Reynolds number ror the p1:pe line. It remains to be seen what 

the values of the resistances rand R must be in order that 

the voltage drop across them will be proportional to hf and 

h, respectively, of the hydraulic ,system. Combining the 

relationship 

(3) 

and equation (1) an equation relating hr to I may be obtained, 

hr~ r2~:r2 (4) 

Substituting equation (2) into (4) gives 

(5) 

By ma.king r 

(Sa.) 

the head loss will always be proportional to the voltage drop 

a.cross the resistor r. By examining (5a) it can be seen that 

the resistance r will not change unless the physical dimensions 

of the pipe line a.re altered or the viscosity of the fluid 

being transmitted 1s changed. therefore, r will be a. fixed 

resistor which w111 not vary as the fluid velocity changes. 

To evaluate R the relationship between hand F 

(6) 
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and the definition of' Nr may be combined to give 

h : F2 : N»2~1, 
2g 2D'Jg 

and from equation (3) and (6a.) 1t follows that 

h cc w2§2 
2D g 

(6a) 

(7) 

'l'his shows that the voltage across R must be made to vary 

10 

a.a the current squared., The only way this can be accomplished 

is tor the resistance R to change a.a I changes, 

R ~ w2i 
2D g 

1.e~; 

(8) 

This solution gives one fixed resistance rand one resistance R 

that must vary as the first power of I~ 

Another possible attack on the problem la to set 

I oe Nr2 (9) 

By substituting (9) into equation (l) 

(10) 

For 1 th1s approach (9) can be combined with the relationship 

between f and Nr and there results 

f : §ii oe §i,_. (11) 
Nr ff 

By substituting (11) into (10) it is perm1ssable to write 

hr oe 64w2 ff= ;,2w2 1 
~ o3gvI 

(12} 

Upon examining equation (12) it becomes obvious that it is 

necessary to make the resistance 

{13) 
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Hence the resistance r must va:ry inversely as the aqua.re root 

of the current. 

The resistance R may be evaluated from (6) and (9) 

g1v1ng, 

and, 

h ,,,2 
«~I 

2D g 

(14) 

(15) 

Consequently the voltage drop across R will be proportional 

to the outlet head h; therefore 

h ..c IR {15a.) 

This solution, in common with the previous solution, leads 

to the necessity or one fixed and one variable resistance 

for the basic circuit. From the linearity standpoint the 

parameters rand Rare interchanged in these two solutions. 

This is apparent if reference is made to equations (Sa), (8), 

(13), and (15). It is evident that both methods are equally 

sat1sraetory for the laminar flow region. It can be shown, 

however, that they are not equally satisfactory for turbulent 

flow. This will now be illustrated. 

Using the first approach, that is, making the current I 

proportional to the Reynolds number, it was found from equation 

(4) that 

hf-ct LW2 I2 
2n3g 

(4) 

For the turbulent region f cannot be expressed 1n terms ot 



I or :N a.a was the case for the laminar region .. This makes 
r 

it necessary to let 

r oc f LW2 I ( 16) 
21Yg 

It is o11Jv1ous that r is not a fixed qua.nity for all values 

12 

ot I. The outlet head and the resistance R across which the 

resistance drop is measured is the same for turbulent as for 

laminar flow, hence 

(8) 

Therefore both resistances Rand p must vary with the current 

1r I is to be proportional to Nr• 

For the case ot I being proportional to Nr2, the head 

loss and o~tlet head are given by equations (10) and (14) re­

spectively. Consequently 1t follows that the value of the 

two resistances must be 

r r Lw2 
oc::: -

2lYg 
(17) 

and 

(15) 

Values for r Var"J as I changes due to the fact that r is a 

variable. The resistance R is constant as 1t was in the ease 

for the laminar region. For this reason the network will be 

developed on the bases or I being proportional to Nr2, and 

as a result there will be only one non-linear resistance ·1n 

both the turbulent and laminar regions of flow. 
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~ Gam:e ~ Hazen Analyzer 

One of the first network analyzers was developed by Camp 

a.nd Hazen1 , who used resistances which were manually variable. 

These resistances were adjusted to the proper value by a 

successive approximation method. Usually three trial adjust­

ments were nacessa.17 before the proper pressure readings were 

ob"~ained. While their method was reasonably accurate·,. 1 t was 

not applicable to all types or hydraulic problems. The opera­

tor had to be an expert to obtain results in any reasonable 

length of time. A detailed explanation of the operation of 

this analyzer may be round 1n the New England water Works 

Association Journa12. 

Non-Linear Resistances ----
In order to make the analyzer satisfactory for any type 

or problem a resistance which is non-linear with respect to the 

current is required for the parameter r. Referring to equation 

(18) and Figure 2, it may be seen that several different re­

sistance character1at1cs are necessary if any cons1dera.t1on is 

to be given to the roughness ra.otol', r/K, of the pipe. 1~1oth 

the triode and the pentode type vacuum tubes have the above 

mentioned eharacter1st1cs, but .they do not vary 1n the proper 

manner. Numerous attempts were made to correlate the plate 

l. T.R. Oamp and H.L. Hazen, "Hydraulic Analysis of Water 
Distribution Systems as an Electric Analyzer." New Epgl~d Water 
Works Association Journal, Vol. 48 (December 19'4T, pp.· S3-4o7. 

2. Ibid. -
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current aharaateristias of this type tube with curves of the 

Reynolds number squared versus head loss. In these attempts 

the gr1d bias was taken·as a constant for a specific value 

of r/K, and was varied proportionally to r/K to simulate the 

changes in head loss resulting from the various degrees of 

pipe roughness~ 

S1noe the vacuum tube has many different values or resis­

tance depending upon the operat1n5 point selected, it 1s 

possible to simulate the Reynolds number squared versus head 

loss curves providing the control grid bias is varied as the 

current in the tube varies. The above method is limited by 

the maximum allowable plate current of the tube used. This 

difficulty is partially overcome by changing the proportionality 

constants used in the analogy. This point will be treated in 

detail later. 

A means for obtaining the control grid voltage to result 

in the proper plate current to plate volta'-}3 relationship for 

the va.ouum tube representing the resis'tance r must be employed. 

The grid bias voltage used for this vacuum tube must be prede­

termined and is acoompl1shed by a. method to be described later 

in this chapter. A photoformer circuit developed by D.E. Susta1nl 

together with several auxiliary circuits will be used for auto­

matically controlling the grid bias voltage in the prescribed 

manner as the tube current varies. 

1~ D. E. Sustain, "Photoelectric Wavef'orm Generator." 
Electronics, Vol. 22 (February, 1949), pp. 120-121. 
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1'.rut Photoformer Circuit 

31nce the photoforme1" 1s an important pe.rt of the electric 

analyzer, it will be discussed briefly before proceeding further 

w1 th the analogy. 11:'lere are three major components to the 

photoformor, they are a. cathode ray tube, a 931-A photo-electric 

tube, and a direct current amplifier. An opaque paper shield 

is placed over the face of the cathode ray tube, and the output 

vol taga la oaused to vary in such a man.vier that 1 t conforms 

to the contour of the paper shield. This shield is designed 

to give the desired values of control grid on the analyzer 

vacuum tune that represents the head loss resistor r. The 

beam of the cathode ray tube will be deflected in a horizontal 

directio11 by the input on the horizontal det'leotion plates. 

For zero current flow in the analyzer circuit the spot is ad­

justed to the extreme right of the screen of the cathode ray 

tube by a horizontal positioning control. 

As long as the spot is not behind the shield the light 

in front of the cathode ray tube screen will fall upon the 

931-A ph.ototube. rl1e output of the phototube is connected to 

the vertical deflection plates of the cathode ray tube throur-;h 

a. suitable a.mpl11'1er. With this arrangement any change 1n 

light intensity causes a change in the position of the spot. 

This, 1n turn, will cause a. further change in li~ht intensity 

on the phototube. The amplifier is phased so that a.n increase 

in light will caus': the spot to be deflected downward, and 

conversely, a decrease 1n light will cause the spot to be 
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deflected upward. By the proper adjustment of the gain of the 

direct amplifier, the spot will always come to rest at the 

edge of the opaque shield fixed to the cathode ray tube screen. 

Due to the tact that the deflection sensitivity is indepen­

dent of bea.m height, the output w111 be proport1onal to the spot 

height at any position in the horizontal direction. A ohart 

showing how the output voltage varies with shield height is 

given 1n Figure 4. Therefore, it follows that the input to 

output relationship 1s substantially identical to the contour of 

the shield. By this method any relationship between the input 

and output may be obtained by constructing an optical shield 

of the proper shape. 

Shield Construction 

Input to the photo:f'ormer is supplied by the voltage across 

the resistor R or the analyzer circuit, and consequently the 

input will be directly proportional to the current I. ~'11S 

is apparent if 1 t is recmlled that R does not vary as the 

current I changes. Figure 3 shows a simplified circuit dia­

gram of the analyzer. Grid bias for the non-linear resistance 

element is taken from the output of' the photorormer, and this 

output depends upon the proper construction of the shield. 

In order that the magnitude of these grid voltages may be 

evaluated, a type 6G6 vacuum tube connected as a triode was 

selected to be the non-linear resistance r a.cross which the 

head loss is to be measured. Plate current characte::."1st1cs 

for the 6G6 tube are available in the General Electric tube 

manual, but for convience they a.re reproduced in Figure 5 
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of thiu t:i:1esis. Also the sensitivity of the cathode ray tube 

must be known before the opaque shield can b:, deaigned, and 

consequently it is necessary to calibrate both the horizontal 

and vertical deflection plates. Figures 9 and 9a show the 

cal1brat:ton for the cathode ray tube used in this experiment. 

Experimentation in this project was carried out for a 

pipe line 1,000 feet long, one half' foot in diameter, and with 

water· as the fluid passing through the pipe line. Table I 

indicates the values of both hr and h for the Reynolds numbers 

ranging from 2,200 to 106 for the pipe under consideration. 

These calculat:tons of hr and h were made for two values of 

the roughness factor, r/K, namely: 507 and 15. These values 

represent conditions for a smooth and a rough pipe respectively. 

Previously it was established that the plate voltage of 

the 6G6 vacuum tube was to be proportional to the head loss of 

the pipe line. The plate current that exists simultaneously 

with the plate voltage of the 6G6 tube must also be prot,ortional 

to the Reynolds number employed in calculating the correspond­

ing head loss. The current of the tube and the voltage across 

the tube are ~herefore fixed by the dimensions of the pipe 

and the Reynolds number. Control grid bias of the 6G-6 tube 

is fixed if the plate current and plat~ voltase are specified. 

It folloirs that the output of the photoformer must be made 

equal to this dictated value of the ~rid volta.e;e for a photo­

former input that corresponds to the plate current used in 

finding this grid bias. 
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TABLE I 

HYDRAULIC PIPE LINE PRESSURE HEADS A.MD LOSSES FOR REYNOLDS 
NUMBERS FROM 2,200 to 106 

Nr h • h.f • hr 
~- r/K = 507 ·~ r/K : 15 

Feet t•et Feet 
"2,~oo 3.03 X lo-5 o.ooilhs 0.001815 
2,510 3.88 X 10-5 0.00248 0.00248 
3,160 6.21 X 10-§ 0.00475 0.00476 
3,980 9.86 X 10- 0.0076 O.Oo857 
5,000 15.55 X 10-5. 0.0115 0.01442 
6,300 2~.60 .~ l~=~ 0.0177 0.0246 
7,910 3...,.20 x L, 5 0.0256 o.o4o8 

10,000 62.10 X 10-5 0.0395 0.0665 
12,580 98.oo x 10-4 0.0585 0.1080 
15,800 15.55 X 10-4 0.0885 0.1750 
19,900 24.70 X 10-4 0.1286 0.283 
25,200 39.20 X 10-4 0.197 o.464 
31,600 62.10 X 10-4 0.293 0.745 
39,800 98.oo x 10- o.44o 1.192 
50,000 15.55 X lo-3 o.644 1.888 
63,000 24.70 X 10:5 0.984 2.990 
79,100 39.20 X 10 3 1.49 4.710 

100,000 62.10 X 10-3 2.34 7.55 
125,800 98.oo x 10-2 3.58 11.90 
158,000 15.50 X 10:2 5.51 18.9 
199,000 24.60 X 10_2 8.75 30.0 
252,000 39.20 X 10 2 14.26 47.7 
316,000 62.10 X 10".°2 23.38 75.5 
398.ooo 98.oo x 10-1 37.8 119.0 
500,000 15.55 X 10-l 60.4 189.0 
630,000 2~.70 X 10:l 97.5 300.0 
791,000 3~.20 X 10 l 149.6 477.0 

1;.000,000 62.10 X 10-. 236.0 755.0 

L = 1,000 feet, D = l foot, w = 10-5. 
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Knowing the grid bias and cathode ray tube sensitivity, 

the shield could be constructed :from the data. in Table I if 

it were not for a number of physical 11m1ta.t1ons. Just how 

these limitations a.re overcome will be the next topic of dis­

cussion. 

Prorortionality Constanta 

The proportionality constants that have been referred to 

throughout the theory presented up to this point must be 

evaluated. Before they ca.n be definitely fixed the circuit 

elements must be selected and the characteristics of the pipe 

line to be represented by the analyzer must be determined. 

The necessity for the evaluation of the constants results from 

the fa.ct that the head loss and Reynolds numbers squared a.re 

never numerically equal to the vacuum tube voltage and the 

vacuum tube current ratings, respectively, for the conventional 

types of tubes. This point can be clarified by an example. 

For the purpose of the discussion a. pipe 1,000 feet long, 

one halr foot 1n diameter, and with water (w = 10-5) as the 

fluid passing through the pipe will be the hydraulic system 

used for explaining the system established for the evaluation 

of the proportionality constants. The pipe will be assumed 

to have a roughness factor r/K of 507. A type 6G6 p~ntode 

connected as a triode will be used for the non-linear r&sist­

anee in the electrical network. The plate current character1s­

ties for this tube are shown 1n Figure 5. 

As a starting point a Reynolds number of 2,200, the lowest 

value to give turbulent flow, was selected. Referring to Table I, 
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the head loss and outlet head a.re round to be 1.8 x 10-3 feet 

and 3.03 x 10-5 feet respectively. From equation (9) there 

results, 

(9a) 

where K1 is the f1rst proportionality constant that must be 

employed to bring the eurrent within the x,ange of the 6G6 tube, 

and hence 

I= (2 1200)2 (9b) 
K1 

~ 4.84 x 106 amperes 
K1 

'l'h.e plate current is a.rbr1trar1ly selected as 4.84 milliamperes, 

and so 
6 9 Kl: 4,84 X b0 : 10. 

4.84 X 10-3 

From equation (15) the value of K2, the second proportionality 

constant, may be evaluated. It follows that 

R = w2 : 6 1 21 x 10-ll ohms. (15a) 
2n2sK2 K2 

The constant K2 must be established so that the voltage IR 

when multiplied by a third constant K3 will g1ve the value or· 

the outlet head, hence K3 must be evaluated before K2 can be 

determined. The constant K3 should. be selected so that the 

values of hr/K3 will yield values of tube voltage that are with­

in the range of the 6G6. For a Reynolds number of 2,200, K3 1s 

arbitrarily ta.ken as 0.5 x 10-4. The tube voltage is then found 

to be 1 •. 8 X 10-3 36 50 lt t f 4 84 or • vo s a a current o • · ma. 
0.5 X lo-4 

From 
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equation (15a) and the fact that IRK3 equals h, it is now 

possible to evaluate K2• Substitution of the values of I, (15a.}, 

and ha.ta Reynolds numbor of 2,200 into the equation 

yields 

IRK3: h 

(o.oo 484)(6.21 x 10-11 )(0.5 x 10-4 ) = 3.03 x 10-5 
K2 

or K2 equals 0.5 x 10-12 ; so that 

R: w2 -- -
2D2gK2 

results from {15a.). 

6.21 X lo-11:: 
0.5 X 10•12 . 

124.2 ohms (15b) 

For a. Nr equal to 2,200 the electrical network has the 

voltage and current as illustrated in Figure 6. 

The value of minus one volt used tor the control grid bias 

1s determined from the plate current oharacter1st1c of the 6G6 

tube a.ta plate current of 4.84 ma. a.nd a. plate voltage of 

36.5 volts; it is obtained f'rom the photoformer circuit by the 

proper shield construction. Before the opaque shield can be 

constructed, the procedure Just presented must be carried out 

for the entire range of Reynolds numbers. In doing this it 

will be necessary to change Ki and K3 several times due to the 

maximum current rating of the 6G6. On the other hand K1 and 

K3 should not be changed unless 1t is absolutely necessary to 

do so~ beaa.use it is impossible to tell which value of K1 and 

K3 is the proper value to use without some type of' indicating 

device. The voltage applied by the horizontal positioning 

control must also be changed when K1 and K3 a.re altered. It 
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TABLE II 

ELECTRICAL EQUIVALENTS OF PIPE LINE FLOW AND SRESSURES AT R:E!YNCLDS 
NUMBERS FROM 2,200 TC 6~3 x 10 

rh • 507 r/K-15 
.,s,.. .. .,,.""1'--,·-,- -·~ ·,}:.~, 

N.' r Kl I m K2 'K3 Eb Eee Eb 
ma volts volts volts volts 

2,200 109 4,84 6 6 -12 -4 36,3 -1.0 36.3 O, 0 0,5xl0 12 0,5x10 4 
2,510 109 6 .. 3 0,182 o,5x10-12 o.sxio-4 50~6 -1;9 49~6 
3,160 109 10.0 1.242 o.sx10:12 o.5x10- 95.0 -3.9 95.2 

,3,980 109 15.8 1.972 0.5xl0 12 o.sx10-1 152.0 -7.2 171.4 
5,000 109 25.0 3.11 o.5x10-12 o.sxio-4 230.0 -11.0 288.4 
6,300 lOio 39.8 4.92 o.sxio-12 o.5x10-3 354.0 -20.0 492.0 
7,910 1010 6.3 0.182 o.5x10- o.5x10- 51.2 -2.0 so.4 

10,000 1010 10.0 1.242 o.sx10-i~ o.5x10-5 79.0 -2.5 133.0 
12,580 1010 15.8 1.972 o.sxio-12 o.sx10-3 117.0 -4.o 216.0 
15,84-0 1010 25.0 3 .. 11 o.5x10-12 o.sx10-3 177.0 -5.5 350.0 
19,900 1011 39.8 4.92 o.sx10- o.5x10- 257.2 -8.0 566.o 
25,200 lOil 6.3 0.182 o.sx10-12 o.5x10-2 39.4 -0.l 92.8 
31,600 1011 10.0 1.242 o.5x10-12 o.5x10-2 59.6 0 149.0 
39,800 1011 15.8 1.972 o.5x10:r~ o.5x10:~ 88.o 0 238.0 
50,000 1011 25.0 3.11 o.5x10 12 o.5x10 2 128.8 -0 .. l 377.6 
63,000 1012 39.8 4.92 o.5x10- o.5x10- 196.8 -1.0 598.o 
79,100 1012 6.3 0.782 o .. sx10-i~ o.sx10-l 29.8 o.4 94.2 

100,000 i~2 10.0 1.242 o.5x10-12 o.sx10-1 46.8 o.4 151.0 
125,800 15.8 1. 972 o.5x10:12 8:~±8= . 71.6 . 1.0 2,a.o 
158,000 1012 25.0 3.11 0.5xlo_12 llC.2 1.6 378.0 
199,000 1012 39.8 4.92 o.5x10_12 o.sx.10-1 175.0 1.0 600.0 
252,000 1013 6.30 0.182 o.sx10 o.5 28.52 0.5 95.4 
316,000 1013 10.0 1.242 o.sx10-}~ 0.5 46.76 o.4 151.0 
398,000 1013 15.8 1.972 o.sxio-12 o.s 75.6 o.6 238.0 
500,000 1013 25.2 3.11 o.5x10- 0.5 120.8 o.s 378.0 
630,000 1013 39.a 4.92 o.sx10-12 o.s 194.o -1.0 600.0 

i -5 4 h = 1,000 feet, D = ,r foot, 'l = 10 , R : 12 .2 ohms 
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1a this volta,ge that is used to operate the indicating device; 

however no automatic means of changing the voltage on the 

positioning control has been developed. This is tho only opera­

tion that must be done manually on the analyzer as it now stands. 

A table of Kt, K2, K3, I, V1, V2, IR, and E00 for all or 
the Reynolds numbers ranging trom 2,200 to 6.,.3 x 105 a.re listed 

in Table II .• 

By an examination of the constants K1 and K3 in 'fable II, 

it can be seen that the applied voltage, the voltage drop 

across R, and the voltage drop across the vacuum tube may re­

present any one of five different values of head or head loss. 

The indicating device will establish which value of K1 and 

K3 is to be used. ·rri1s is determined from the magn1 tude of 

the horizontal positioning voltage. A voltmeter may be employ­

ed as the indicator, and it will be found that the voltage 
' 

magnitude that designates which value of K1 and K3 is applicable 

depends upon the construction of the shield used in conjunction 

with the photoformer. :ViOre will be said about this after the 

design or the shield has been discussed. Assuming that K1 

and K3 are known.the voltages V1 and V2 together with the 

current I are read .. These values a.re then multiplied by the 

proper proportionality constant as indicated in Figure 6 to 

obtain the head loss, the outlet head, and the Reynolds number 

for any applied head at the input to the pipe. 

There are a number of details that have been omitted from 

the previous discussion in order that the over-all picture 

might be clearer. Now that all the necessary data have been 
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compiled and the general concept is established, it becomes 

necessary to consider these details. A complete circuit dia­

gram or the analyzer is included in Figure 7. The power supply 

circuits are not shown ro:r the reason .that any regulated supply 

may b(:l.ut111zed providing its current capacity is sufficient. 

Likewise a .photograph of equipment that was useq. in obtaining 

experimental data can be found on page 41. By an examination 

of the analyzer soh~~tio diagram 1n Figure 7, it is obvious 

that several dif'ferent values of direct voltage a.re neoessnry. 

For example, direct voltage of negative 1,250 volts, negative 

300 volts, and positive 105 volts must be supplied to the 

direct current amplifier of the photoformer. Futhermore a 

negative 1,800 volts and a positive 450 volts are required to 

supply the anode and cathode of the cathode ray tube for the 

photoformer. The power supplies and the inter connections 

between these units will be discussed 1n Chapter III. A ma­

jority or the power supply units that were ut111zed consisted 

of units removed from a war surplus SCR-545-A radar set. 

Two circuits or the analyzer that have not been discussed are 

the horizontal pos1t1on control and a second direct voltage 

amplifier employed to amplify the voltage drop across the 

r~s1stance R. these circuit units are necessary in order to 

obtain the necessary control and amplification of the horizontal 

de:f'lection voltage indicated on the screen of' the cathode ray 

tube. 
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The Horizental Detlect1ns C1rau1ta 

The horizontal positioning control varies the direct 

voltage applied to the horizontal d.e:flect.ion plates. This 

voltage is 1n series with the output of the direct voltage 

ampl1:f1er that also varies the electron beam horizontal deflec­

tion. In this direct current amplifier, which employs a 6G6 

pentode tube connected as a triode, the input to output voltage 

is a linear function. Figure 8 shows a plot of the grid bias 

versus the voltage drop across the 7,000 ohm resistance, Rx• 

Throughout the. region fro~ zero grid voltage to minus twelve 

volts the curve is t!1ther a straight line or at least so close 

to being a straight line that very little error is introduced; 

hence, the horizontal de:flection or the spot on the cathode 

ray tube screen is still proportional to the current flow in R. 

One more item must be clarified before the actual shield 

can be constructed, a.nd that 1s the matter or the sensitivity 

ot the deflection plates 1n the cathode ray tube. For the 

five inch tube used 1n gathering experimental data the cali­

bration curve :for both the horizontal and vertical plates 

are included in Figures 9 and 9a. From these curves the 

sensitivity was :found to be 56 volts per inch for the horizon­

tal de:fleotion plates and 47 volts per inch for the vertical 

plates. 
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Desisn Q!. Shield 

F:xtreme care should be employed in the construction of 

the sh1ald; any diacrepane1es in either the design or formation 

of the opaque shield will result in an incorrect value or the 

grid bias voltage on the 6C-6 vacuum tube. Head loss measure­

ments are taken from a meter in the plate circuit or the 6G6 

tube, and consequently an error in these readings will result 

if the grid bias voltage of the tube is not accurately main­

tained~ If the readings of the head loss hr are incorrect it 

follows that the readings of the input head will be in error. 

This is due to the fa.ct that. the input head is always equal 

to the sum of the output head and the head loss. In the ex­

ample it was necessary to use five different values of K1 

and K3• This implies that the 6G6 maximum current range must 

be covered five times 1n order to accommodate the variations 

of Nr from 2,200 to 106. It follows that the shield must be 

subdivided into five sections in the horizontal direction; 

consequently five different settings of' horizontal positioning 

control are required. Five inches are available on the screen 

of the cathode ray tube, but only the center two and one half 

inches can be utilized because of the limited operating angle 

of' the phototube. From this it follows that only one half 

inch can be assigned to each division. The direct voltare 

amplifier using the 606 tube is adjusted by varying its load 

resistance Rx, so that a 40 ma. current in the resistance R 

will cause one halt inch deflection on the cathode ray tube 

screen. Due to the fact that R has a resistance of 124.2 ohms, 
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and. the current is 40 ma., there will be a voltage of 4.968 volts 

a.cross a. Oonsequently the direct voltage amplifier was ad­

justed so that the combined sensitivity of the ampli:°'i'Jr and the 

deflection plates or the cathode ray tube was 9.936 volts per 

inch. It follows that the scale used for the X axis of the 

shield will be 9.936 volts per inoh. The IR column of Table II 

provides the horizontal values to be used in constructing the 

shield, while the corresponding values in the E00 column are 

for the vertical or Y axis values. By an examination of the 

schematic diagram 1t can be seen that only one half of the 

total output from the phototormer 1s applied to the grid of 

the f1rat 6G6 tube of Figure 7. The sensitivity of the vertical 

deflection plates 1s forty seven volts per inch, and therefore 

the scale for the Ya.xis 1s 23.5 volts to the inch. In laying 

out the shield in the X direction, five different ordinates 

a.re used. They will be separated by one half inch, and the 

one on the extreme left will correspond to the lowest ra.ne;e 

of Reynolds numbers associated with the lowest values of K1 

and K3• The second ordinate is used for the next to the 

lowest rane;e of Nr• Thin system is followed to the last 

ordinate which is for the highest value of Nr. 

A typical shield is drawn to scale in Figure 10. The 

data. for its construction were ta.ken from Table II. An 

identical shield was used for the experimental data tabulated 

in Table III and Table r.r of' Chapter III. 

D:!!, ~nd1cator 

It is now possible to discuss the voltages utilized in 
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the device designed to indicate the proportionality constant. 

Since the sensitivity for the horizontal deflection plates 

was determined to be 56 volts per inch, a total horizontal 

positioning voltage of 70 volte is required to locate the 

spot at point e of Figure 10. This value 1a based upon the 

voltage required to produce a one and one quarter inch beam 

deflection to the left or the shield's center line. This 

voltage of' 70 volts will read positive provided the positive 

terminal of the voltmeter is connected to the left hand de­

flection plate of the cathode ray tube. In the discussion 

that :f"ollows this connection will be employed. Whenever the 

value of the indicator voltaee is between a positive 70 volts 

and a positive 42 volts, the photoformer output will be con­

trolled by the curve e-f of' the shield. shown 1n Figure 10, and 

consequently the proportionality constants K1 and K2 will be 

109 a.nd 1/2 x 10-4 respectively. The procedure that was 

followed for the curve e-f must be repeated for the remaining 

divisions, namely t-g, g-h, h-1, and 1-J. The shield con­

structed tor the example under consideration employed the 

following proportionality constants for the consecutive voltage 

ranges involved. 

!nd1oator voltage 
range 1n volts 

~70 to +42 
+41 to +14 
+13 to -13 
-14 to -41 
-42 to -70 

1/2 X 10-; 
1/2 X 10-2 
1/2 X 10-1 
1/2 X 10~ 
1/2 X 10 
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CHAPTER III 

EQUIPMENT, EXPERIMENTAL DATA' AND nrTERPRETATION OF THE DATA 

Oonstruotion 

As a check on the correctness of the theoretical principles 

set forth in Oha.pter II tor an electrical analyzer for an hy­

draulic system, an analyzer wa.s constructed from the equipment 

that was available at Oklahoma. A. and M. College. The equip­

ment used was not spec1t"1eally designed tor this project, but 

it proved to be satisfactory t"or preliminary checks. Some 

difficulty was encountered 1n the adjustments ot the analyzer. 

This was due to the lack of a control. panel. Before aprlying 

the principles of the analogy to a complex pipe line system, a 

compact unit should be designed. After the design and con­

struction of a compact unit has been accomplished there remains 

only the relatively easy task of compiling data tor the complex 

hydraulic network. 

Several power supply units were required in the construe~ 

tion of the analyzer. Voltage ratings on these may be readily 

determined from Figure 7. All units should be regulated in 

order to obtain sucoesst"ul operation of the analyzer. In 

addition to the power supplies mentioned, it is necessary to 

have a cathode ray tube, two 6AG7 vacuum tubes, two 6G6 vacuum 

tubes, together with a variety of resistors of conventional 

types. Reference should be made to Figure 7 tor the resistance 

iU'1t1ngs of the resistors. Since the exact values of voltage 

output tor the above mentioned direct voltage supplies were 
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not available in one unit 1n all eases, the following arrange­

ment was employed. To obtain the minus 1,250 volts tor the 

phototube circuit, three 300 volt units and one 350 volt unit 

were connected in series. The negative 300 volt supply was also 

obtained from one of these units. All three 300 volt units 

were part of a war surplus radar set SCR-545-A. Their circuit 

diagrams may be round on drawing number TL-39258 of the service 

manual tor that equipment. No circuit diagram is available 

for the 350 volt unit, since it was a standard unregulated 

rectifier power supply unit. However.the load was small and 

very little voltage fluctuation was observed. The cathode ray 

tubes were also a part of the SCR-545-A radar as were the power 

supplies that furnished voltages for these tubes. Cirouit 

diagrams for these components are available on drawing TL-39286 

in the service manual f'or SCR-545-A radar. All other circuits 

in the indicator unit were rendered inactive. 

The two 6AG7 tubes required a 105 volt supply with a 200 

milliampere current capacity. '?here were no power supplies 

with this rating available at the time of the construction, 

consequently it became necessary to obtain the plate and screen 

voltages from separate units. For the operating condition 

assigned to the 6AG7 tubes, the screen current did not exceed 

30 milliamperes. This made it possible to design a regulating 

circuit that utilized a VR-105-30 tupe. The supply voltage 

f'or this regulator circuit was a standard unregulated 350 volt 

unit. The plate current demand of the 6AG7 tubes, however, 
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was approximately 170 milliamperes, and therefore a VR-105-30 

tube could not be used. This led to the construction or 

power supply with a high current oa.pacity and a low internal 

rea1stanoe~ With this type or reot1t1er very little fluctuation 

of voltage was observed. 

An ungrounded source or }00 volts was required to operate 

the horizontal positioning control and the direct voltage 

amplifier equipped with,.a 6G6 tube. A standard. regulated power 

supply was used tor this purpose. The 1ntercorm.ect1on or the 

power supplies previously discussed a.re indicated schematically 

in Figure 11. 

Connections to the deflection plates of' the cathode ray 

tube were made at points 1dent1f1ad by the numbers 252-lF, 

252-lD, 252-lB, and 252-lA on drawing TL-39286 found in the 

SOR-545-A service manual. All connections tha. t were ma.de at 

these points when the equipment was used as a radar indicator 

w&re removed. 

The analyzer was built in three separate parts a.nd inter­

connected by cables as sho\om in Figura 12. The first of the 

three tmits housed the analogy circuit and the horizontal 

control c1rcu1ts ~or positioning the electron beam or the 

cathode ray tube. The complete photof'ormer network comprised 

unit 2, while unit:, consisted of the several power supplies 

tor the system. Eaeh component is identified in the photograph 

of the apparatus included on page 41. 
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AdJustments 

Ifl adjusting the circuit to function properly the spot 

of the cathode ray tube must be ma.de to follow the contours ot 

the shield~ This was accomplished by varying both the spot 

1ntens1ty and the control grid voltage on the second 6AG7 tube 

shown 1n Figure 7,.. To prevent damage to the :f'loureaoent screen 

the intensity or the spot should be kept low. However, it 

must be remembered that the purpose of the cathode ray tube 

was to supply light to the phototube, and consequently the 

intensity cannot be decreased below a. value required by the 

photoformer tor sa.tis'factory operation. This results in the· 

determination of an optimum light intensity. The sensitivity 

or the photoformer may also be increased or decreased by in­

creasing or decreasing the spacing between the screen of the 

cathode ray tube and the phototubes.. However this adjust­

ment is limited because the minimum distance that can be 

employed is determined by the 32 degree horizontal angle re­

quired by the phototube. The light from the cathode ray tube 

must be within the 32 degree angle originating at the phototube. 

Therefore, ample spacing between the cathode ray tube and the 

phototube should exist, so that this angle will include the 

contours of the opaque shield tiXed to the cathode ray tube 

screen. With the spacing that existed in the experimentar 

equipment it was perm1ssable to use the center two and one 

ha.lf inches of the cathode ray tube screen. 

In addition to adjusting the spot to the edge of the 
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shield, the position of the shield must be adjusted on the 

face of the cathode ray tube. This 1s an important procedure, 

because the grid bias voltage supplied to the 6G6 tube used 

as the non-linear resistance depends upon the photoformer 

output. Points e and ,j of Figure 10 are selected as the zero 

voltage reference points. It follows that the adjustment of 

shield position w111 be made to result in zero voltage output 

of the photorormer when the cathode ray tube beam is horizontally 

located at either e or j. In the experiment this was accomplished 

by a. trial and error procedure. The shield we,s glued to the 

screen of the cathode ray tube, and whenever the position of the 

shield was altered it was necessary to remove the hood between 

the phototube and the cathode ray tube. After dismantling the 

hood the position of the shield was shifted. Following this 

adjustment it was necessary to reassemble the hood. One ad­

justment did not always result in zero voltage output, and it 

was usually necessary to repeat this procedure several times. 

The sensitivity of the vertical deflection plates is 47 volts 

per inch, consequently the adjustment can vary less than 1/47 · 

of an inch if the photoformer output is to be accurate within 

plus or minus one volt. This degree of accuracy could not 

be obt.a.ined with the arrangement used in this project. An 

excellent improvement in the analyzer would result from the 

design of a mechanism for making these adjustments. In design­

ing such a device it should not be forgotten that the shield 

must be directly against the screen of the cathode ray tube. 
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There 1s another factor which must not be overlooked if 

accurate experimental results are to be obtained. The plate 

current cha.racter1st1os employed in ma.king the calculations 

outlined in Chapter II should be for the actual 6G6 tube used 

1n the-analyzer. The average characteristics thBt a.re available 

1n the tube manual are not accurate enough for this purpose. 

The plate current characteristics should be measured and plotted 

very accurately 1n order to permit precise determination of 

the grid voltage. This is one ot the extremely critical 

factors for obtaining correct data. from this phase of the 

experiment. 

The refinement Just mentioned is necessary if the results 

obtained from t.ne analyzer are to be accurate. However it 

must be kept in mind that at the present there is considerable 

error 1n estimating the roughness f"a.ctor, r/K, for the pipe 

under cons1derat1on. Until more accurate means a.re developed 

tor determining this factor, the advisability of striving for 

a. high degree of accuracy for the gr1d bias voltage is some­

what dubious. Consequently it was deemed inadvisable to 

prepare an elaborate set of plate current ohara.cter1st1ca 

for the 606 tube used in this experiment. 

1l1!. Ex12eriment 

Experimental data. were ta.ken over the aomplete turbulent 

range for a roughness factor of r/K equal to 507 and are com­

piled in Table III. Data for any other pipe roughm3ss can be 
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secured by an identical procedure, but an opaque shield must 

be ma.de for the value of r/K in question. Changes in applied. 

head were the only condition analyzed in this study. In 

taking data the current was set to a value·that corresponds 

to the Nr in question by adjusting Eu, and all corresponding 

voltages were recorded together with the current readings. 

Values of Eyp h, H, hr, and Nr were calculated from these 

voltages and current by applying the correct proportionality 

constant as described in Chapter I!. A comparison of data in 

Table II with that in Table r,r shows the experimental readings 

of hf to be within± 15 per cent of the theor1t1cal values 

set forth in Figure 13. Two factors contributed to this error .. 

An examination of Table II and Table III will show that the 

experimental value of Ecc was not exactly as calculated. 

This was due to the inaccuracies in the construction of the 

shield contours and the adjustment. of the shield on the cathode 

ray tube screen. The second source of error was due to the 

ract the averar£e plate current characteristics of the 6G6 tube 

were taken as a source of data and considered as sufficiently 

accurate for the calculation of the grid bi~s voltage required 

by the 6G6 tube. This action is justified by the reasoning 

that was presented in the preceading paragraph. 
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TABLE III 

EXPERIMENTAL DATA 

Eii Eco 

volts yol,ts 

34.o - 1.0 
48.o ... : 1.5 
so.o - , .• ,l. 

115.0 - 4.7 
229.0 -10.5 
285.0 -13.0 
:,oo.o -16.7 
350.0 -20.4 
52.5 - 2.0 
79.0 - 2.85 

101.0 - :,.85 
175.0 - 6.5 
22s.o - 7.9 
256.o - 8.5 
268.0 - 8.71 
35.0 0.25 
50.0 0.38 
67.0 0.28 

112.0 - 0.125 
140.0 - o.4 
170.0 - o.66 
206.0 - 1.0 
34.o ~-- o.o 
54.-0- 0.16 
67.0 0.31 

113.0 o.:,a 
137.0 0.23 
116.0 - 0.17 
210.0 - 0.60 

4-0.o - 0.5 
59.8 · - o.66 
76.o - 0.81 

126.0 - 1.0 
148.0 - 1.0 
190.0 - 1.1 
220.0 - 1.4 

' 

Ehr. 

volts 

33,.39 
47.23 
78.76 

113.0 
225.3 · 
281.3 
295.6 
345.0 
51.72 
77.76 

105.0 
171.9 
224 .. :, 
251.6 
263.0 

34.22 
48.76 
65.0 

108.9 
136.3 
165.6 
201.0 
33.22 
52.76 
65.03 

109.9 
133.3 
171.6 
205.0 
39.22 
58.6 
74.03 

122.9 
144.:, 
185.6 
215.0 

La 1,000 feet, and r/K. 507 

47 

IR 

volts 

0.606 
0.782 
1.242 
l.972 
3.11 
3.75 
4.37 
s.oo 
0.782 
1.242 . 
1.972 
3.11 
3.75 
4.37 
5.00 
0.782 
1.242 
1.972 
3.11 
3.75 
4.37 
5.00 
0.782 
1.242 
1.972 
3.11 

·3.75 
4.37 
5.00 
0.782 
1.242 
1.972 
3.11 
3.75 
4.37 
5.00 



TABLE IV 

CALCULATED EXPERIMENTAL DATA 

H h:r h 

Feet Feet Feet 

17 .. 0 X 10-4 16.9 X 10-: 3.03 X 10-5 
24.0 X 10-4 23.6 X 10-4 3.88 X 10-5 
40.0 X 10-4 39.4 X 10-4 6.21 X lo-5 
57.5 X 10- 56.5 X 10:4 9.86 X 10-S 

114.5 X 10:1 112.5 X 10 lJ. 15.55 X 10-5 
142.5 X 10 4 140.8 X 10- 18.75 X 10-5 
150.0 X 10:4 147.9 X 10:1 21.85 X 10-i 
175.0 X 10 3 172 .. 5 X 10_3 25.00 X 10-

26.3 X 10-3 25.9 X 10_3 3.88 X 10-4 
39.5 X 10:3 38.9 X 10 3 6.21 X 10-4 
53.5 X 10 3 52.5 X 10-3 9.86 X lo-4 
87 .. 5 X 10-3 85.7 X 10~3 15.55 X 10-4, 

114.0 X 10-3 112.2 X 10~3 18 .. 75 X lo-4 
128.1 X 10:3 125.8 X 10 3 2L .. 85 x 10:4 
134.1 X 10_2 131 .. 6 X 10-2 25.00 X 10 J 
17.5 X 10_2 17 .. 16x 10-2 3.88 X 10-
25.0 X 10 2 24.4 X 10-2 6.21 X 10:~ 
33.54:x 10- 32.5 X 10-2 9.86 X 10 
56.0 X 10-~ 54.4 X 10- 15.55 X 10-5 
70.0 X 10-2 68.lSX 10-~ 18.75 X 10-3 85.0 X 10-2 82,.8 X 10-2 . 21.85 X 10:3 

103.0 X 10-l 100.5 X 10-l . 25.00 X 10_2. 
17.0 X 10-l 16.55x 10-1 . 3.88 X 10 2 
27 .0 X 10:l 26.4 X 10:1 6.21 X 10-2 
33.5 X 10 1 32.6 X 10_1 9.86 X 10- . 
55.7 X 10:1 54.9 X 10 l 15.55 X 10-~ 
68.5 X 10_1 66.,9. X 10:l . 18.75 X 10-
88.0 X 10_1 85.8 X 10 l 21.85 X 10-~ 

105,.0 X 100 102.5 X 100 25.00 X 10-l 
20.0 X 100 19.6 X 100 3.88 X 10-l 
29.9 X 100 29.J X 100 6 .• 21 X 10-1 · 
38.0 X lOo 37 .0 X 100 9.86 X 10- .. 
63.0 X 100 61.5 X 100 15.55 X 10-i 
74.0 X 100 72.2 x 100 18. 75 X 10:l. 
95.0 X 100 92.8 X 100 ·21.85 X 10 l 

110.0 X 10 107.5 X 10 25,.00 X 10-

D = 1/2 :root, L: 1,000 f'eet, and. r/K: 507 

Nr 

2.200 X 10~ 
2.510 X 1~ 
3.160 X l~ 
3.980 X 1 
5 .. 000 X 103 
5.460 X 103 
5.920 X 1~ 
6.3oox l 3 
7.910 X 103 

10.00 X 103 
12.58 X 103 15.84 X 103 
17.30 X 1~ 
18.60 X l 
20.00 .x 104 
2.51 X 104 
3 •. 16 X 10 
3.98 .x 10! 
5.00 ,X 104 
5.46 .x 101~ 
5 .. 92 X 104 
6.30 .x 104 
7.91 ;x 104 

10.0 X 104 12.58 X 104 
15,.84 X 104 
17.30 X 104 
18.60 X 104 
20.00 X 105 
2.51 ~ 105 
3.16 ~ 105 
3.98 X 10~ 
5.00 X 10 
5.46 X 105 5.92 X 105 
6.30 X 10 
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CHAPTER IV 

Sill!J,JPuqy AND CONCIUSIOl!S 

Summary 

'.rhe ultimate goal of th1s project was to establish an 

electrical analogy between a pipe line system and. an electrical 

network. Due to the complexity of the problem when applied 

to a complete pipe line network, the research has been conf1ned 

to a single straight pi~e and the equivalent electrical circuit. 

First it was necessary to determine theoretically how the 

various flows and pressures of an hydraulic line could be 

represented in the electrical system. After several lines of 

attack had been tried, the analogy was established by making 

tha current in the electrical network proportional to the 

Reynolds number for the hydraulic network. By setting I 

proportional to N-j' it was possible to make the voltage readings 

in the electrical circuit analogous to the head loss and 

pressure readings of the pipe line. 

The resistances to be used in the analyzer were evaluated 

from the known parameters of the pipe line. The resistance R, 

a.cross wh:tch the outlet pressure head is measured, 1s propor­

tional to w2/2n2g, while the resistance r, across which the 

head loss is measured, is proportional to f Lw2/2n3g. Since 

the coefficient of friction 1s a variable, the resistance r 

is non-linear with respect to the analyzer current. ~he re-

aistanoe R, however, is constant for all values of curr?nt. 
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Since r 1s not fixed, a vacuum tube was employed to represent 

this resistance. It must be remembered, however, that the 

control grid bias on this vacuum tube must be changed through­

out the range of operation to secure the proper values of re­

sistance at all values of plate current. 

A 6G6 pentode tube, connected as a triode, was selected 

to perform the function of the variable resistance r. The 

required grid bias voltage was calculated for the entire 

range of Reynolds numbers .from the plate current characteris-

tics. A photo.former circuit was employed as a meann of vary­

ing the grid bias voltage in accordance with these calculations. 

The ratios of the input voltage to the output voltage for the 

photoformer are identical to the contours of a shield used in 

conjunction with this unit. Since the resistance r is non­

linear with respect to the current I of the analyzer, the input 

to the photoformer was obtained from the fixed resistance R. 

Oonsequently the input to the photoformer was directly proportional 

to the current I. The output from the photoformer controlled 

the magnitude of the resistance r by supplying the correct grid 

bias voltage to the 6G6 tube .. trherefore it followed that the 

shield used in conjunot1on w1 th the photoformer was desie;ned 

so that the photoformar would furnish the desired values of 

grid bias voltage for the 6G6 tube. 

Before the shield of the photoformer could be constructed, 

1t was necessary to calibrate the equipment employed in terms 

of the unkno1tm constants of the nine line. As soon e.s the ' -· 
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required calibrations were made, a shield was constructed :for 

a pipe 1,000 :feet long, 1/2 foot in diameter, and a roughness 

factor of r/K equal to 507. Experimental data :for this sample 

problem are tabulated in Table III and the theoretical values 

as developed in Chapter II may be found in Table II. In order 

to ra.cilitate comparison these two values have been plotted 

in Figure 13. 

Ex9erimental results verify the basic principles involved 

1n the ana.lyzer. It must be remembered that the accuracy of 

all ree,dlngs could be imnro"red by the use of precision made 

parts i:l.nd equipment. However the results of the present 

experiment were within± 15 per cent of the calculated values. 

Conclusions 

'I'he ultimate results to be accomplished from the project 

undertaken in this thesis is the establishment of an electrical 

analogy for the pressures and :flows that exist 1n a complex 

hydraulic system. In this thesis the problem was limited to 

the establisb.ment of the electrical a.naloe;y for s, single 

straight pipe with a constant pressure head at the input. 

Futhermore, the various p1 ... oblems involved in dealing with 

the phenomenon of water hammer were not investigated. 

\'lithin the limits set forth in this project, it can be 

safely claimed that the goal has been attained. I'he analyzer 

as developed is capable of predetermining the output pressure 

and head losses for any fluid velocity. Also the input head 

required to produce this velocity may be predetarmined. 
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Agreement between the values read from the analyzer and the 

values calculated from empirical formulas verify the principles 

a.eve lo pod. 

"!:he fundamental principles of the analogy can be applied 

to the corriplex pipe line network. It must be remembered, 

however, that the proportionality constants established for 

the electrical network must be uniform throughout the network. 

Should it become necessary to deviate from this uniformity of 

the pro·nortlonal1 ty constants, the problem of correlating 

the constants established for the various branches c1ri3es. 

Such procedure may not be an easy obstacle to surmount. And 

may require considerable additional research. 

Necessary Improvements 

':J'hen a new :rield of engineering 1s invGstiga ted 1 t is 

not unusual for shortcomings to exist in the first product. 

Futtu"'e research and development in such a new field ca:n be 

simplified if' the or1g1na.l experimenter indicates the existence 

and nature of these weak points. For this reason the short­

comings of the analyzer will be summarized. 

In order to operate the photoformer the intennity of 

the lic-J1t from the cathode ray tube must be a.t ap)roximately 

normal brilliance. However the spot is not in continuous 

motion, and this may result in dama:::;e to the scr2En1 of the 

cathode ray tube. '.rhepeforo a refinement ln the photoformer 

circuit is necensary. :rh1s difficulty might be overcome by 

increasing the sensitivity of the phototube circuit, in which 
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event .the brilliance or the light could be decreased. An 

alternative procedure might involve the selection of a cathode 

ray tube with a flourescent screen that is not easily damaged 

by a continuous electron bombardment. 

Turbulent flow takes place in a pipe line whenever the 

Reynolds number exceeds 2,200. For all practical purposes 

the upper limit or Nr can be ta.ken as 106 .. From this it follows 

that the largest value or~ is 4.~5-x 103 times larger than 

the lowest value of Nr f'or turbulent flow. 

Equation (9a) gives the relation 

KI Nr2 
1 = "(9a) 

Theratore it can be seen that the current I for a value of 

Nr equal to 106 must be 2.07 x 105 times larger than the 

current corresponding to a Nr or 2,200. Due to the fact the 

maximum current rating or the 6G6 tube 1s 40 milliamperes it 

becomes necessary to use a very small value of I to simulate 

the lower values of Nr• However the sensitivity of the 

circuits involved 1n controlling the resistance r prevented 

the utilization of these low current values. Because of this 

lack of sensitivity in the control circuits the r~ge of Nr 

wa~, subd1vtded into five sections. This proeess·or subdivid­

ing ,the range leads to a unique value of K1 'tor each division. 

·For ea.eh value of K1 there must be a corresponding section 

ot the shield. Consequently a. manual adjustment of the horizon­

tal positioning voltage was required for ea.ch value of Ki. 
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In order to obtain completely automatic operation of the 

analyzer it will be necessary to develop a relay system that 

will make the required adjustments. An alternate remedy 

might be to develop a detector that would resnond to the 

current values f'or the complete range o'f' Nr• However such a 

design is not feasible at the present stage of the electronic art. 

The analyzer in its present stage is now capable of solving 

problems which involve changes 1n the input head o'f' the simple 

pipe line. In the 'f'uture the application of the analyzer may 

be extended to solve problems involving complex pipe line systems. 

Again it must be observed that no provisions have been incor­

porated in the electrical network for obtaining a solution to 

the water hammer problem. 

The initial cost of constructing a calculating board 

for a complex pipe line system will be high due to the amount 

of equipment required to s1mula.ta a. pipe line electr.:1.cally. 

Justification for the installation and purchase costs will 

be determined by the demand fort.he analyzer. 



BIBLIOGRAPHY 

Hydraulic 

Bokhmeterr, B. A., lb!. Mechanics Q! TurbulentD.Q.:!. 2nd printing. 
Princeton, New Jersey: Princeton University Press, 1S41. 
Pp. 101. 

Rouse, H., Elementary Mechanics 2.f. Turbulent Flow. New York, 
New York: John Wiley and Sons, Inc., 194b.Pp. 376. 

Electrical 

Camp, Thos. R. and H. L. Hazen, 11 Hydraul1c Analysis o:r Water 
Distribution Systems as an Electric Analyzer," Journal 
of ~ Imglan(! Water Works Association, Vol. 48, 
~December, 1934), pp. 383-407. 

Kron, Gabiel, nElectric Cirouit :Models or Partial Differential 
Equations," Electrical Ep£1neer, Vol. 67, (.July, 1948), 
PP• 672-684. 

Mccann, G. D. and r~. L. Harder, "Oomputer-Matherna.tical Merlin, ,t 
Westinp;house Engineer, Vol.8, (November, 1948), pp. 178-183. 

Sustain, n. E. 1 11Photoelectr1c Waveform Genera.tor, 11 1Uectronics, 
Vol. 22, U:<"eb. 1949), pp. 100-103. 

Travers, H. A., uThe Network Calculator Brour;ht up to Date. fl 
Westi:ry:r,house Enhineer 1 Vol. 4, (July, 1911-1.~), pp .. 111-119. 



Typed by: 

E. A •. Mccowen. 




