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Chapter 1 

INTRODUCTION 

Electromagnetic scattering from rough land surfaces is an important research topic 

for both military and scientific radar applications. Military applications include the 

suppression of ground clutter that can hide low-flying targets such as aircraft or cruise 

missiles. Similarly, scientists applying synthetic aperture radar (SAR) to study en­

vironmental changes on the Earth's surface also need a better understanding of the 

scattering mechanisms in order to improve the analysis of the radar data. Of partic­

ular interest is the scattering from a rough terrain when illuminated by the radar at 

small grazing angles. Under these conditions, the geographical features cast shadows 

that greatly complicate the scattering problem. Unfortunately, analytical solutions to 

Maxwell's equations are not possible for such problems due to the random nature of 

the scattering surface, and approximate analytical solutions are not valid for small 

grazing angles of illumination. Numerical techniques may provide an accurate altern­

ative to analytical models, but finite computer resources severely limit the size of the 

surf aces that can be modeled. 

Approximate analytical solutions to rough surface scattering problems include the 

Kirchhoff approximation (KA), the small-perturbation model (SPM), and the two scale 

model (TSM). The Kirchhoff approximation of Beckmann and Spizzichino [I] uses the 

physical optics (PO) current on planes tangent to a slightly rough scattering surface 

to approximate the true induced current. The Kirchhoff approximation only gives a 
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good estimate of the locally specular reflection from the surface, and fails for small 

grazing angles of incidence where surface self-shadowing is significant. It is valid for 

"gently undulating" surfaces with large radii of curvature compared to the wavelength 

of the illuminating field and at moderate incidence angles [2]. 

In the small perturbation model (SPM) of Rice [3), the induced current and 

scattered fields are found first for a smooth surface and then perturbed to account for 

a superimposed small-scale roughness that is assumed to be smaller than the incident 

wavelength. SPM accurately predicts the Bragg-resonant scattering thought to be the 

dominant scattering mechanism on many types of rough surfaces, but is limited in 

applicability to surfaces with electrically small features and at only moderate grazing 

illumination angles. 

The two-scale model (TSM) [4) [5) attempts to combine the benefits of the Kirchhoff 

and small perturbation theories into a single model. A small-scale roughness that 

follows the small-perturbation model is superimposed upon large-scale features that 

follow the Kirchhoff approximation. Although the TSM has been used successfully 

to predict the scattering from more realistic surfaces than either the KA or SPM, 

its validity conditions follow directly from KA and SPM. Hence it is unsuitable for 

predicting scatter when the illumination grazes the surface at a small angle. 

Approximate scattering theories fail under these extreme illumination conditions 

in part because they neglect surface self-shadowing and multipath scatter. As shown 

in Figure 1.1, the surface can be directly illuminated by the incident field or indirectly 

illuminated by diffracted and multipath scattered fields. Diffracted fields appear to 

emanate from illuminated edges on the shadowing obstacle and can propagate into the 

shadowed region [6). Another form of diffraction is "creeping diffraction" in which a 

surface wave propagates over a curved obstacle and detaches [6). Multipath scatter 

occurs when the illuminating field induces surface currents that radiate and illuminate 
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Incident Field 
- - - - - - - Diffracted Field 

Shadowed Surface 

Figure 1.1: Surface self-shadowing and multipath scatter. 

other portions of the surface [7]. 

Corrections to the approximate scattering models can be made to attempt to ac-

count for shadowing. Typically, the shadowed regions of the surface are determined 

using geometrical optics (GO), and the currents in these regions are set to zero so 

that they do not contribute to the radiated field. This simple correction yields accept-

able results at the onset of shadowing since the dominant scatter is from the directly 

illuminated surface features. However, for small illumination grazing angles much of 

the surface is shadowed, and the relative contributions of the nonzero currents in the 

shadowed regions may become more important. Recent studies have suggested that 

small scale roughness features in shadowed regions of perfectly conducting surfaces 

can significantly contribute to the total scattered field [8] [9] [10]. 

While the shadowing corrections to the traditional scattering models do not account 

for diffracted fields or multipath scatter in the shadowed regions, an analysis based 

upon the moment method (MM) [11] accurately predicts the induced surface current 

on every part of the scattering surface. In this numerical technique, the unknown 

surface current density is represented in an integro-differential equation in terms of 

the known electric or magnetic fields. The scattering surface is divided into segments, 

and the boundary conditions set by the integral equation are satisfied only on discrete 

points of the surface. The resulting system of linear equations then must be solved for 

the unknown current density on the surface segments, and finally the far-field scatter 
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is found by radiating the current using Maxwell's equations. 

Since the order of the system of linear equations is dependent upon the square of 

the number of surface segments, a moment method analysis of scattering from a large 

surface can be computationally expensive. A reduction in the number of computations 

can be made by artificially truncating the modeled surface, which unfortunately in­

troduces nonexistent edge diffraction into the scatter. The moment method treats the 

artificial edge as a real edge that diffracts the illuminating field, causing unrealistic 

diffracted fields to propagate to the far-field and to incorrectly illuminate other parts 

of the modeled surface. One way to alleviate this problem is to tape,r the illuminating 

field to a small magnitude at the edges of the modeled surface. Electromagnetically 

valid beams give very unrealistic illumination for small grazing angles unless a very 

large surface is used. Thus, applying the moment method at small grazing angles is 

computationally prohibitive. 

A hybrid moment-method/ geometrical-theory-of-diffraction (MM/ GTD) technique 

has been developed and implemented to overcome many of the inadequacies of the 

traditional techniques for the analysis of scatter from rough surfaces by grazing illu­

mination [12] [10]. In this numerical method, the currents on large portions of the 

scattering surface are represented using simple basis functions that are derived from 

the GTD fields at the surface. West [10] used the technique to examine the relative 

contributions of small-scale roughness on shadowed portions of perfectly conducting 

surfaces representing near-breaking ocean waves. 

The purpose of this work is to investigate the relative contributions to the scattered 

field of shadowed roughness on lossy and low-loss dielectric surfaces representative of 

moist and dry soil, respectively. First, a detailed review of the scattering problem will 

be given, followed by reviews of the approximate theories and numerical techniques 

that can be used to solve for the scattered fields. The hybrid MM/GTD technique will 
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be reviewed, and an extension of the technique for low-loss dielectric boundaries will 

be presented. Next, the accuracy of the hybrid technique will be evaluated against 

theory and other numerical techniques for scattering from simple surfaces. Finally, 

the hybrid technique will be used to find the scatter from surfaces representative of 

rough land surfaces. Of particular interest is the relative contributions of small scale 

roughness features in the shadow of large scale features. 
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Chapter 2 

BACKGROUND 

The purpose of this chapter is to introduce the scattering problem geometry, to define 

the surface roughness and electrical properties, and to review the pertinent electrer 

magnetic scattering theory. 

2.1 Scattering Geometry 

The problem of scattering from a three-dimensional rough surface is beyond the scope 

of this work due to the tremendous computational requirements for such a problem. In­

stead, it is useful for the purpose of discussion and analysis to define a twerdimensional 

scattering problem in which the surface has roughness features in only one dimension, 

as illustrated in Figures 2.1 and 2.2 for horizontal and vertical polarizations, respect­

ively. 

For the purposes of this investigation, the surface is assumed to be in the far­

field of both the illuminating and receiving antennas. Hence, the illumination and 

scattered fields are approximated by uniform plane waves [13]. When both the incident 

(transmitted) and scattered (received) electric fields are parallel to the scattering 

surface, as shown in Figure 2.1, the scatter is said to be horizontally polarized (HH). 

Likewise, when the incident and scattered magnetic fields are parallel to the surface, as 

shown in Figure 2.2, the scatter is vertically polarized (VV). In the figures, the positive 
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Figure 2.1: Rough surface scattering geometry, horizontal polarization. 

YA 

Figure 2.2: Rough surface scattering geometry, vertical polarization. 
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z direction (out of the page) is denoted by 0, and the negative z direction (into the 

page) is denoted by EB, All plots in this paper will use grazing angles (referenced 

to horizontal) for the illumination angle ()9 and observation angle 06 • However, some 

equations will use an incident angle ()i referenced to vertical where ()i = 'IT /2 - 09 • 

2.2 Generation of Random Surface Models 

It is impractical to model a large land or ocean· surface using most numerical tech­

niques, even in only one-dimension of roughness, because such an analysis would 

surpass the finite memory capacity of even the most sophisticated supercomputer. 

Instead, it is necessary to study relatively small surface models that are perhaps only 

one hundred wavelengths or less in length but include the roughness characteristics of 

actual surfaces. 

Although ocean and land surfaces may have many scales of roughness, only large 

and small-scale roughness features are included on the representative surfaces in this 

investigation. The scattering from such two-scale surfaces has been investigated ex­

tensively and is well understood for large grazing illumination angles. The scale of 

roughness is determined by comparing its mean radius of curvature with the illumin­

ating field wavelength. The height y at any position along the modeled surf ace is 

given by y(x) = l(x) + s(x), where l(x) and s(x) are functions characteristic of the 

large- and small-scale roughness, respectively. In this study, the large-scale roughness 

will be represented by a deterministic function approximating the large-scale displace­

ments found on land surfaces. Small-scale roughness features will be represented with 

a random function. Note that the rough surface models shown in Figures 2.1 and 2.2 

have only a small-scale roughness component. 

A review of the spectral technique used to generate randomly rough surfaces is 

given in [14] and summarized here. For a given surface, the normalized surface auto-
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correlation function [15] 

R(r) = E[y(x)y(x - r)], (2.1) 

where ED is the expected value operator, gives an indication of the similarity between 

the surf ace heights at points x and x - r along the surf ace. The correlation length L of 

the surface is often defined to be the distance between points on the surface that gives. 

R(L) = 1/e [15]. Taking the Fourier transform of equation (2.1) yields the surface 

power spectral density function [16] 

W(K) 1 100 . - R(r)e-,K-r dr 
271" -oo 

- E{F[y(x)y(x - r)]} 

E{IY(K)l2} (2.2) 

where K is surface wave number, and Y(K) is the amplitude spectrum found by taking 

the Fourier transform of a sample surface. 

The goal of the spectral surface-generation technique is to generate a sample surface 

with the desired statistical roughness defined by the power spectral density function. 

It can be shown that if the amplitude spectrum is chosen to be 

Y(K) = N(K).jW(K), (2.3) 

where N( K) is the Fourier transform of a real, white noise process n( x), then a sample 

surface can be generated using the inverse Fourier transform [14] 

(2.4) 

where W(K) is now the desired power spectral density function. 

Natural surfaces often have power spectral density functions that follow power law 

functions [17]. One such power-spectral density function is the saturated region of the 

one-dimensional Pierson-Moskowitz ocean wind-wave spectrum given by [18] [19] 

{ 
0 

W(K)= 
a/4IKl3 

if IKI < Ko 
(2.5) 

otherwise 
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POWER LAW SURFACE PROFILE 
0.4 

K0=1 
0.3 ··· CJ=0.045 l 

0.2 

0.1 

~ 0.0 .... 
-0.1 

-0.2 .... : ............ : ............ :············'.············1···········-:·-·········-:············'.············t···········t··········· : .. . 

-0.3 : j j I : j ; j i \ j 
-0.4 

0 2 3 4 5 6 7 8 9 10 
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Figure 2.3: A typical power law surface. 

where a = 0.0081, Ko is an arbitrary threshold value, and K is the surface-wave 

spatial wave number. The surface height variance 

loo a 
u 2 = W(K)dK = - 2 

-oo 2K0 
(2.6) 

can be adjusted with the Ko threshold. Although this spectrum is not suitable for 

modeling rough land surfaces, it is believed that an inverse power law spectrum 

W(K) ex: IKl-2•5 can be applied to geological features (20) (17). An example of a 

zero-mean power law surface is shown in Figure 2.3. Figure 2.4 compares the aver-

age normalized at1tocorrelation function for 500 independent power law surfaces to 

the theoretical normalized autocorrelation found by numerically evaluating the inverse 

Fourier transform integral of the power spectral density function in equation (2.5). 

Numerous rough-surface scattering studies have used not a power-law spectrum 

but a Gaussian spectrum to describe the power spectral density of a surface height 

distribution. The autocorrelation and power spectral density functions of a Gaussian 
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Figure 2.4: Normalized autocorrelation function for a power law surface. 

surface are given by 

R(r) = u2exp[-(r/L)2], 

and 

u2L ( L2K2) 
W(K) = 2v'rr exp --4 - , 

(2.7) 

{2.8) 

respectively, where u is the surf ace displacement standard deviation and L is the 

correlation length. An example of a zero-mean Gaussian surface is illustrated in Figure 

2.5. The average normalized autocorrelation function for 300 independent Gaussian 

surfaces is compared to the theoretical autocorrelation function from equation (2. 7) 

in Figure 2.6. 
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Figure 2.6: Normalized autocorrelation function for a Gaussian surface. 
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2.3 Electromagnetic Analysis 

A discussion of the electromagnetic analysis of scattering should begin with Maxwell's 

equations. Any solution for the time-harmonic electric and magnetic scattered fields 

in a homogeneous medium must satisfy [7] 

y' XE -M-jwµH 

VxH - J +jwlE 

v'·E 
qve 
l 

y'.ff qvm 
- µ 

(2.9) 

where w is the radial frequency, E and H are the electric and magnetic field intensities, 

J and M are the electric and magnetic current densities, and qve and qvm are the 

electric and magnetic charge densities, respectively. Although the magnetic current 

density M and the magnetic charge densities qvm do not represent actual quantities, 

hypothetical equivalent magnetic currents and/ or charges often simplify the treatment 

of the scattering problem. The permittivity and permeability of the material are given 

by 

µ (2.10) 

respectively, where lo ~ 8.854 x 10-12 farads per meter is the permittivity of free 

space, µ0 '.:::'. 4rr x 10-7 henry per meter is the permeability of free space, lr is the 

complex relative permittivity ( dielectric constant), and µr is the relative permeability. · 

In an actual scattering problem, the incident ( or direct) fields induce currents on 

or within the scattering material. Surface current densities are induced upon perfectly 

conducting scatterers, while volume current densities are induced upon dielectric scat-

terers. The scattered field is produced by the radiation of these currents, and the total 
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Figure 2. 7: Physical equivalent model for a perfectly conducting surface. 

field outside of the scattering material is the superposition of the incident and scattered 

fields. Commonly, the differential forms of Maxwell's equations in (2.9) are manip-

ulated to integral equations that can be solved numerically for the unknown current 

densities, and then the scattered field is found by evaluating radiation integrals. 

Often it is convenient to solve for not the actual induced currents but for equivalent 

currents that, when reradiated, give the actual scattered field. An example of this 

technique is illustrated in Figure 2.7 (adapted from [7]), which shows a scattering 

problem for a perfectly conducting surface and its physical equivalent. In the absence 

of a scattering surface (shown in the left picture), the external sources J1 and M 1 

radiate an electric field, E 1 , and magnetic field, H 1 , which are known everywhere. 

In the middle picture, the introduction of the scattering surface gives rise to external 

fields E = E1 + Es and H = H 1 + Hs. The physical equivalent model is shown on the 

right in which the surface is removed and equivalent sources JP and· Mp are placed 

on the boundary. The magnetic current density Mp is zero in the equivalent model 

because the tangential electric fields are zero on a perfectly conducting boundary. The 

electric current source Jp radiates in an unbounded medium and gives valid scattered 

fields in the· region external to the boundary only. The physical equivalent model is 
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used extensively in the moment method numerical technique. Other equivalent models 

can be used for analysis of scatter from dielectric materials. 

Once the scattered fields are found, it is useful to find the surface radar cross 

section (RCS), which is defined to be [13], 

the area intercepting the amount of power that, when scattered isotropic­

ally, produces at the receiver a density that is equal to the density scattered 

by the actual target. 

For two-dimensional targets of interest in this study, the scattering width, [7] 

{2.11} 

represents the radar cross section per unit length, where p is the distance from the 

target to the observation point and Fi and F• are the incident and scattered fields 

(electric or magnetic), respectively. In monostatic scattering (or backscattering), the 

illumination and observation angles are the same, 09 = O.. In all other cases, the 

scattering is bistatic. 

The power scattered from a random rough surface follows a chi-square distribution, 

so it is necessary to average the scattering width for many different surface realizations. 

A Monte Carlo simulation is used to incoherently add the scattered field magnitudes 

for N. independent surfaces. The ensemble average scattering width is then given by 

[21] 

u = lim 271" p [t F~ 2 - ]_ E F~ 2] 
p-+oo N. k=t Fl: N. k=t Fl: ' 

(2.12) 

where Fj and Ft are the incident and scattered fields for the k-th independent surface 

realization. The standard deviation of the estimated scattering width fi for N. samples 

is then given by [15] 

S.D. = 1/{ji.. (2.13) 
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Chapter 3 

REVIEW OF TRADITIONAL 
SCATTERING THEORIES 

This chapter will review three fundamental theories which describe electromagnetic 

scattering-· the Kirchhoff Approximation (KA), the Small Perturbation Model (SPM), 

and the Two-Scale Model (TSM). A section at the end of this chapter will discuss the 

limitations of each theory. 

3.1 Kirchhoff Approximation 

The primary assumption in the Kirchhoff approximation is that the induced surf ace 

current can be approximated by the physical optics (PO) currents [7] 

Jpo = 2ii x Hi, (3.1) 

on planes tangent to the surface, where J po is the induced surface current density, ii is 

the unit vector normal to the surface, and Hi is the incident magnetic field intensity. 

Equation (3.1) is valid for perfectly conducting surfaces with a radius of curvature 

much larger than the incident field wavelength, in the absence of shadowing, and at 

large grazing incidence [7). 

For vertical polarization, the scattered far-field magnetic field intensity is found 
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· Figure 3.1: Geometry for magnetic field integral equation. 

from [7] 

H11(r) = [j'!. 1 J.;(r')(n'. r')H~2)(klr - r'I) dS'] I ' 
4 S r~oo 

(3.2) 

where J8 (r') is the surface current density, r is the observation vector, r' is the source 

vector, ft' is the unit vector normal to the surface at the source point as shown in 

Figure 3.1, and Hi2> is the n-th order Hankel function of the second type. The free-

space wave number is given by k = w.Jjiofa, where w is the radial frequency of the 

incident field, µ0 is the permeability of free space, and fo is the permittivity of free 

space. For horizontally polarized scattering the far-field is found using [7] 

E15(r) = - [kr,o 1 J 15 (r')H~2>(klr - r'I) dS'] , 
4 S r~oo 

(3.3) 

where T/o is the free space intrinsic impedance. The Kirchhoff approximation (KA) 

scattering for vertical and horizontal polarizations is found by substituting the PO 

current of equation (3.1) for Js in equations (3.2) and (3.3), respectively. 

The backscattering coefficient measures the ratio of the scattered field power to 

the incident field power for cases when the illumination and observation angles are 

the same (monostatic scattering). It can be shown that for both horizontal (HH) and 

vertical (VV) polarizations, the backscattering coefficient for a surface with a Gaussian 

height distribution and wave number spectrum (hereafter referred to as a "Gaussian 

surface") is given as [14] 

(O·) - (O·) - 1ri2 exp (- tan2 ()i£2 /4u2) 
O'HH 1 - O'yy 1 - 4 () 4 2/£2 ' cos i O' 

(3.4) 
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where u2 is the variance of the surface height, L is the surface correlation length, and 

r is the reflection coefficient at normal incidence. Since UHH = uvv, it is clear that 

the Kirchhoff approximation predicts no polarization dependence for backscatter. 

When considering electromagnetic scattering from statistically rough surfaces, cer­

tain surface conditions must be satisfied for the Kirchhoff approximation to be valid. 

KA requires that the correlation length must be larger than the wavelength of the 

illuminating field A, or for Gaussian spectral surfaces [15) 

kL > 6. (3.5) 

Additionally, the vertical-scale roughness of the surface must be small enough that 

the average radius of curvature is much larger than the incident wavelength, or for 

Gaussian spectral surfaces [15) 

L2 > 2. 76u .\, 

where u is the standard deviation of the surface height. 

3.2 Small Perturbation Model 

(3.6) 

The small perturbation model (SPM) of Rice [3) can be used for rough surfaces when 

the surface height standard deviation and slope are much smaller than the incident 

wavelength. SPM assumes that the scattered field quantities are functions of the 

surface height and can be expanded as a Taylor series about the mean surface height 

[2). The zeroth order solution for the scattering field yields the specular fields reflected 

from a flat surface, and the first order solution includes the effect of Bragg-resonant 

scattering. 

The Bragg-resonance phenomena can greatly enhance the backscatter of certain 

frequencies from a rough surface. The rough surface can be considered to be a sum­

mation of sinusoids at different amplitudes and frequencies. Under certain conditions, 
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Figure 3.2: Bragg-resonant scattering. 

the incident field may be reflected from the periodic components of the surface in a 

manner that produces constructive interference of the reflected waves at a wavelength 

corresponding to the surface wavelength. For the case of backscattering, the enhance-

ment is best illustrated in Figure 3.2, adapted from [15). When the path difference 2D 

between reflected waves is a multiple of ,\, the waves add coherently thus enhancing 
' 

the reflected energy of that frequency. The Bragg-resonant condition can be stated as 

,\ 
D =n-, 

2 
n = 0, 1,2, ... (3.7) 

or in terms of the wavelength of the surface component, A, and the incident angle 

(referenced to vertical) (Ji, [15) 

2A . (} 
Ts1n i = n, n = 0,1,2, ... , (3.8) 

since D = A sin (Ji. The Bragg scattering mechanism has been shown to be a significant 

contributor to the total scatter from small capillary waves that travel upon large ocean 

waves [15]. 

For a one-dimensional randomly rough surface with dielectric constant t:,. and µ,. = 

1, the backscattering coefficients for horizontal (HH) and vertical (VV) polarizations 

are given by [15] 

where 

cos (Ji - Jt:,. - sin2 (Ji 

cos (Ji + J t:,. - sin2 (Ji' 
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( ) sin2 oi - frVl + sin2 O; 
fr-1 2, 

[ fr cos oi + J fr - sin2 o;] 
(3.10) 

and W(K) is the surface power spectral density function. The Bragg-resonant surface 

wave number, given by K = 2k sin O;, is included in equation {3.9). 

Investigators have found differing conditions under which the small perturbation 

model is valid. All have agreed, however, that for Gaussian surfaces, the height 

standard deviation u and correlation length L should be smaller than the incident 

field wavelength. As a guideline for applicability of SPM, Ulaby et al. [15] state that 

for Gaussian spectral surfaces 

ku < 0.3, 

V2 u / L < 0.3 (3.11) 

must be satisfied. 

3.3 Two-Scale Model 

Many real surfaces have two scales of roughness - a small-scale roughness superim-

posed upon a large-scale roughness. The sea surface approximately fits this description 

as small capillary waves ride upon the large-scale ocean waves [2]. For these types of 

surfaces, the Kirchhoff approximation fails to model the Bragg resonant interactions 

with the small-scale surface features. Similarly, the small perturbation model cannot 

be used because it does not account for the large-scale roughness tilting the surface. 

The two-scale model [4] [5] has been developed to combine the features of both of 

these models into a composite scattering model. The goal of the two-scale model is to 

incoherently add the scattering due to the large-scale roughness using the Kirchhoff 

approximation to the scattering from the first order solution in the small perturbation 
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method with the local angle of incidence adjusted to account for the tilt of the surface. 

Hence, the backscattering coefficients for the two-scale model may be written as 

. <lTSM = <lKA + <lSPM, (3.12) 

where usPM is calculated including the tilt of the small-scale surface by the large-scale 

roughness by using the local angle of incidence rather than the large-scale angle of 

incidence. 

3.4 Limitations 

Traditional scattering theories may fail when assumptions in the models are not satis­

fied or when the surface geometry causes surface self-shadowing. While the two-scale 

model has proven effective in predicting the scattering from rough surfaces at moderate 

grazing angles, at near grazing angles it performs poorly because surface shadowing 

is not considered in the model. For these extreme illumination and scattering angles, 

diffraction into the shadow regions may result in surface currents that when radiated 

produce significant far-field scatter. 

The most straightforward shadowing corrections have used geometrical optics to 

identify the shadowed regions on the scattering surface and to set the current to zero 

in these regions. Beckmann [22] proposed a shadowing function that multiplies the 

scattered field strength by the fraction of the surface that is illuminated. He found that 

errors in the modeled backscatter from very rough lunar surfaces were significantly 

reduced. Subsequent investigation by Brockelman and Hagf ors [23] attempted to 

replace the Beckmann shadowing function for backscattering calculations in favor of 

an empirically-derived shadowing function that considers the fraction of illuminated 

surface elements that are favorably aligned for specular reflection. In this treatment, 
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the shadow-corrected Kirchhoff approximation for the surface current becomes 

JsK(r, ri, r.,) = Si(r, ri)S.,(r, r.,)Jpo(r) (3.13) 

where the Kirchhoff approximation for the surface current is given by equation (3.1), 

and Si and S., are shadowing functions. The incident shadowing function Si(r, ri) is 

unity if the incident field illuminates point r on the surface without first intersecting 

a point on the surface ri and is zero otherwise. Likewise, the scattered shadowing 

function S.,(r, r.,) is unity if the field scattered from point r on the surface propagates 

to the far-field observation point without first striking a point r., on the surface and 

is zero otherwise. Wagner [24] and Sancer [25] further advanced the Brockelman and 

Hagf ors shadowing correction by discussing their results in a more statistical analysis. 

It is important to note that this correction fails to consider the effects of diffraction 

or multiple scattering. 

Thorsos [26] numerically investigated the conditions under which the Kirchhoff ap­

proximation fails for a Gaussian surface. In this study, Thorsos compared the bistatic 

scattering cross section predicted by the Kirchhoff approximation and the shadowing­

corrected Kirchhoff approximation with the bistatic scattering cross section predicted 

by the exact integral equation method (moment method) of Axline and Fung [27]. 

Thorsos found that the Kirchoff approximation depended most strongly upon the ratio 

of the surface correlation length to the wavelength L/ >.. and the relationship between 

the incident and scattered angles and the root-mean-squared surface slope tp [26]. 

When the ratio of L / >.. > 1, the primary cause of the error in the Kirchhoff approxima­

tion was found to be due to shadowing. The errors are not entirely compensated when 

the Kirchhoff approximation is corrected for shadowing by using geometrical optics 

to find where the shadowing occurs and to set the surface current on these portions 

to zero. When L / >.. < 1, Thorsos introduces an effective correlation length L' which, 

when used in place of the true correlation length L and in conjunction with a shad-
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owing correction, produces accurate results for grazing angles of incidence 09 ~ 20° 

and VJ < 20° [26]. 

Thorsos and Jackson [28] investigated the conditions under which the small per­

turbation theory fails for a Gaussian surface. Like the previous study of the Kirchhoff 

approximation, this investigation compared the bistatic scattering cross section pre­

dicted by small perturbation theory with the bistatic scattering cross section predicted 

by the moment method approach of Axline and Fung [27]. The authors found that the 

first-order small perturbation approximation fails when the surf ace correlation length 

L becomes either too large or too small for fixed root-mean-squared ( rms) surface 

height h [28]. Regions of validity of the first-order approximation were given, and the 

small slope requirement of SPM was investigated. 

More recent investigations have shown that shadowing corrections based upon GO 

fail for vertically polarized illumination and scattering at near-grazing angles of incid­

ence. An analytical investigation by Brown [29] concluded that surface { or creeping) 

waves can propagate into shadowed regions, and a numerical study by Holliday [9] 

found that the shadowing corrections poorly predict the shadow-region currents at 

vertical polarization. West [10] investigated the effects of surface self-shadowing upon 

the backscatter from perfectly conducting, ocean-wave-like surfaces with two-scales 

of roughness at small grazing angles of incidence. The results of this investigation 

suggested that weakly-shadowed small-scale roughness played a significant role in the 

total horizontal and vertical backscatter, while strongly-shadowed roughness only sig­

nificantly contributed to the vertically polarized backscatter. Another study by West 

et al. [30] demonstrated that a sufficient portion of the surface must be illuminated 

directly in order for the Bragg resonance to be established. For small grazing angles 

of incidence, it is clear that shadowing corrections to traditional scattering theories 

are inadequate. 
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Chapter 4 

REVIEW OF THE MOMENT 
METHOD 

The hybrid MM/GTD technique that will be used for the numerical calculations of 

rough surface scattering is an extension of the moment method (MM) of Harrington 

[11). A review of the technique following [31) is given here. 

The moment method (MM) is used to convert integro-differential equations to a 

form easily solvable by computers [11). Two integro-differential equations commonly 

solved in electromagnetic scattering problems are the electric field integral equation 

(EFIE) and magnetic field integral equation (MFIE). The EFIE and MFIE represent 

the current density on the scattering surface in terms of the electric or magnetic field, 

respectively, in the vicinity of the surface. The discretization of the equation produces 

a linear matrix equation that can be solved easily by either direct methods ( matrix 

inversion), or by indirect methods (iterative solutions). Once the unknown surface 

current density is found, the far-field scatter can be calculated by evaluating radiation 

integrals. 
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4.1 Description 

The inhomogeneous equation (EFIE or MFIE) to be solved is represented by 

L[f(x)] = g(x), (4.1) 

where L is a linear integrerdi:fferential operator, f is the unknown function to be 
.. 

determined, and g is the known driving function. The moment method uses a finite 

set of independent basis functions to model the unknown function f as 

N 

f(x)"' L a,Jn(x), (4.2) 
n=l 

where fn(x) are the basis functions and an are unknown coefficients. Substituting 

equation ( 4.2) into equation ( 4.1) gives 

N 

L anL[fn(x)] = g(x), (4.3) 
n=l 

where g( x) is the approximate driving function. 

The residual is defined as the difference between the actual driving function and 

the approximate driving function obtained from the approximate solution, given by 

R = g(x)- g(x) = g(x) - LanL[Jn(x)]. (4.4) 
n 

Since only a finite number of basis functions are used to approximate the driving func­

tion, the exact solution cannot in general be obtained, so the residual in equation ( 4.4) 

cannot be set equal to zero everywhere on the structure. Instead, the moment method 

determines a "best" solution by determining the an 's that force a set of weighted 

averages of the residual to be zero. 

The N unknown coefficients are determined by forming an inner product between 

N appropriately selected weighting functions and both sides of equation (4.3). For a 

general one-dimensional scattering surf ace S, these inner products are of the form 

{w, a) = fs(w* · a) dS, 
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where w* is the complex conjugate of the weighting function and a represents either 

side of equation ( 4.3). The effect of equation ( 4.5) is to evaluate equation ( 4.3) N times 

using independent properties of the functions, thus producing a system of N equations 

and N unknowns. The set of weighting functions Wm must be linearly independent 

to ensure the N equations are linearly independent. Additional constraints on the 

weighting functions are given in [7]. 

Applying the weighting functions, Wm, to equation (4.4) gives the N weighted 

residuals 
N 

Rm = (wm, g) - L O:n(Wm, L(fn)). (4.6) 
n=l 

Setting the weighted residuals equal to zero yields the set of N linear equations and 

N unknowns given by 

N 

L O:n(wm, L(fn)) = (wm,g); m = 1, ... , N. {4.7) 
n=l 

The matrix form of equation ( 4. 7) is 

(4.8) 

where the matrix elements are given by lmn = (wm, L(fn)) and the driving vector 

elements are given by 9m = (wm,g). The unknown coefficients O:n are obtained by 

evaluating 

(4.9) 

completing the approximate solution of the unknown function in equation { 4.2). This 

last step may be performed using direct or iterative methods. 

Choosing appropriate basis and weighting functions can greatly simplify the integ­

rals in the inner product calculations of lmn and 9m and thereby decrease the com-

putational requirements. To simplify the evaluation of the coefficient matrix integral, 

subdomain basis functions may be used. These basis functions exist only over a fi-

nite portion of the scattering surface, so numerical evaluation of the linear operator in 
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Figure 4.1: Current approximation using pulse basis functions. 

equation (4.3) and in the matrix element calculation (wm, L(fn)) is simplified. Sub-

domain basis functions that have been used in electromagnetic scattering problems 

include pulse functions, triangular functions, piecewise linear functions, or sinusoidal 

functions [11]. A pulse function is unity in a given range and zero elsewhere, or 

{ 
1 lm - fl.L/2 $. X $. lm + fl.L/2 

P(l-lm)= , 
0 elsewhere 

(4.10) 

where tl.L is the width of the pulse ( usually chosen to be « ). ) , l is the arc length 

along the surface, and lm is the arc length along the surface at the center of the pulse. 

Figure 4.1 illustrates a surface current approximation using pulse basis functions. 

Dirac delta functions often are chosen for the weighting functions. This technique, 

called point matching or collocation, simplifies (Wm, L(f n)) and (Wm, g) to evaluations 

of L(fn) and g at discrete points on the surface, respectively, causing the residuals to 

be zero at these points. A further simplification of equation (wm,9) can be made by 

using delta functions for both the basis and weighting functions [32]. 

The moment method can be used to solve for the induced current density on any 

arbitrary rough surface that varies in only one-dimension, such as those illustrated in 

Figures 2.1 and 2.2. In order to model the surface current accurately, the surface model 

first must be divided into segments that are typically much smaller than the incident 

field wavelength. Axline and Fung [27] found that a sampling distance tl.L < >./5 is 

adequate for modeling surfaces with a large scale roughness component. For surfaces 

with small scale roughness features and with a small correlation length (L < >.), they 
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recommend choosing the sampling distance in accordance with the surface correlation 

length, or [27] 

f),.L < L/4, ( 4.11) 

in order to prevent aliasing of the surface roughness spectrum. 

Once the surface model is divided into sufficiently small segments, an appropriate 

integral equation that represents the induced surface current density is solved using 

the moment method with pulse basis and delta weighting functions. The integral 

equations are derived using the boundary conditions on either the magnetic or electric 

fields at the surface. The next sections will describe the derivations of these integral 

equations for perfectly conducting, impedance, and low-loss dielectric surfaces. 

4. 2 Perfectly Conducting Surfaces 

On the surface a perfectly conductor, the boundary condition on the magnetic field in 

three dimensions is given by [7] 

Js(r = r') = ft X [Hi(r = r') + H8 (r = r')], (4.12) 

where r' is the position vector of the source point, r is the position vector of the 

observation point, fi is the unit vector normal to the surface, J8 is the surface electric 

current density, and the total magnetic field at the surface is the sum of the incident 

magnetic field Hi and the scattered magnetic field H8 . The scattered magnetic field 

can be written in terms of the unknown surface current as [7] 

l -iklr-r'I 
H 8 (r) = J 8 (r') XV' e I I dS' 

s 41r r - r' 
(4.13) 

where S indicates the scattering surface, and "v' is the gradient with respect to the 

source coordinates. Substituting the scattered magnetic field into equation (4.12) and 
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rearranging yields the three-dimensional magnetic field integral equation (MFIE) [7] 

. { l -iklr-r'I } 
Ii x Hi(r = r') = J.{r = r') - lim Ii x J 8 (r') x V' 4e I I dS' . 

r-+S s 71' r - r' 
{4.14) 

For the two-dimensional, vertically polarized ( transverse electric field to z or TEz) 

scattering from a perfect conductor, the MFIE reduces to the two-dimensional form 

.[11]: 

-H;(l) - 0.5J1(l) + j~ f J1(l1)(n1 • r')H~2>(klr - r'I) dl' 

- LM[J1(l)], ( 4.15) 

where l is the arc length along the scattering surface, H!(l) is the z-directed incident 

magnetic field at the scattering surface, J1(l) is the unknown surface current, Ii' is the 

normal unit vector at the source point, and HF> is the first-order Hankel function of 

the second type. The second term on the right side of equation ( 4.15) gives the near­

field radiation of J1, and the other two terms match the surface boundary condition 

;n(H! + H:) = 0 [7]. The dashed integral in equation (4.15) indicates the principle 

value integral around the singularity at l = l'. Note that the singularity contributes 

-0.5J,(l), thereby making the first term on the right hand side of equation (4.15) 

0.5J,(l). 

The three-dimensional electric field integral equation (EFIE) is derived in terms 

of the boundary condition on the electric field [7] 

Ii x Ei(r = r') + Ii x E8 (r = r') = 0, {4.16) 

where Ii x Ei and Ii x E8 are the tangential components of the incident and scattered 

electric fields, respectively. The scattered electric field can be written in terms of the 

unknown surface electric current density as [7] 

T/ [ f e-iklr-r'I f e-iklr-r'I l 
Es(r) = -_jk k2 ls J.{r') 47l'lr - r'I dS' + \l ls V'. J.(r') 47l'lr - r'ldS' ' (4.17) 
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where 77 is the intrinsic impedance of free space. The three-dimensional form of the 

EFIE is then found by substituting equation (4.17) into the boundary condition in 

equation (4.16), or 

[ 
-jkjr-r'I -jkjr-r'I l 

Jl X Ei(r) = Jl X ji k2 ls Js(r') :1rlr _ r'I dS' + y' ls V' · Js(r') :1rlr _ r'ldS' • 

(4.18) 

For two-dimensional, horizontally polarized (transverse magnetic field to z or TMz) 

scattering from a perfect conductor, the EFIE reduces to the two-dimensional form 

[11]: 

E;(l) - kt j Jz(l1)H~2>(klr - r'I) dl' 

- . LE[Jz(l)], (4.19) 

where 770 is the intrinsic wave impedance of free space, and E! ( l) is the z-directed 

incident electric field at the scattering surface. In equation ( 4.19), the right hand side 

is the near-field radiation of Jz(l) and the left hand side satisfies the surface boundary 

condition, E; + E; = 0. 

As a notational convenience, the integral equations (4.15) and (4.19) may be writ-

ten as 

F; = Lx[J.,(l)] ( 4.20) 

where F; is the known field quantity (H; or E;) and Xis the corresponding operator 

symbol (E or M). The unity magnitude far-field illumination takes the form 

(4.21) 

where F is H (MFIE) or E (EFIE), 

(4.22) 
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Figure 4.2: Equivalent problem to be solved with high loss dielectric scatterer. 

is the vector in the direction of propagation of the illuminating field, and r = a.xx+ ayy 

is the position vector. The far-field scatter tan be found using 

F: = -Lx[J.,(l)]I . 
r-+oo 

( 4.23) 

4.3 High Dielectric-Constant, High-Loss Surfaces 

When the scattering surface is perfectly conducting a true surface current exists. Thus, 

the moment method solves the physical scattering problem directly. When the surface 

is not perfectly conducting a surface current cannot be supported; the field penetrates 

the surface and a volume current density exists. The moment method is not well 

suited for direct application to volume current problems. Instead, the equivalence 

principle [7] is applied as shown in Figure 4.2, yielding both electric ( J) and magnetic 

(M) surface current densities that radiate the desired scattered field. 

The problem is further simplified by using impedance boundary conditions to 

relate the magnetic current density to the electric current density (33]. As illustrated 

in Figure 4.3, an incident plane wave is transmitted into the impedance surface at an 

angle of 01 with respect to the surface normal given by Snell's law of refraction [7] 

() • -1 (ko • ()) 
t = sm ki sm i . (4.24) 

Assuming that the conditions [33] 
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Figure 4.3: Snell's law of refraction for a dielectric surface. 

INI » 1, IIm{N)kp,I» 1 (4.25) 

where N = F,. is the complex refractive index of the scattering medium and p, is the 

radius of curvature of the surface, are met everywhere on the surface, the transmitted 

angle can be approximated to be zero. Hence, the field penetrating into the surface 

propagates as a plane wave in the negative surface normal direction. 

Because the transmitted field propagates in a direction normal to the surface, 

approximate boundary conditions 

(4.26) 

where Z 11 = J µif f 1 is the surface impedance, can be used to relate the tangential E 

and H fields at the interface [33]. In vector form, equation ( 4.26) becomes [33] 

fl x (fl x E) = -z"n x H. ( 4.27) 

The two surface current components can then be related by [34] 

M = -Z11fl xJ, {4.28) 
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thus eliminating the need to solve for M separately. 

The integral equations are found by determining the near-field radiation of the 

electric and magnetic current densities. For vertically polarized scatter, the total 

scattered magnetic field is 

( 4.29) 

where H!(J1) and H!(Mz) are the scattered magnetic fields due to the electric and 

magnetic current densities, respectively. Substituting equation ( 4.29) into the bound-

ary condition at the interface, 

( 4.30) 

gives. 

( 4.31) 

The first two terms on the right hand side are the magnetic field integral equation 

LM[J1(l)] as defined in equation (4.15). The third term represents the near magnetic 

field radiation of the magnetic current density and may be found by applying duality 

[7] to LE[Jz(l)] in equation (4.19). The dual is found by replacing E with H, T/o with 

1/r,0 and J with M, or 

H!(Mz, l) = - 4~
0 
f Mz(l')H~2)(klr - r'I) dl'. (4.32) 

Now substituting the impedance boundary condition of equation ( 4.28), equation 

( 4.32) becomes 

H!(J1, l) - 4~
0 
j ZaJ1(l')H~2)(klr - r'I) dl' 

Z; LE[J1(l)], 
T/o 

(4.33) 

and the two-dimensional MFIE for determining vertically polarized scattering from a 

lossy dielectric scatterer is then given by [35] 

(4.34) 
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The two-dimensional EFIE for finding the horizontally polarized scattering from a 

lossy dielectric surface is developed in a similar manner. The scattered electric field 

is given by 

(4.35) 

where E;(Jz) and E;(M1) are the electric fields radiated by J and M, respectively. 

The tangential electric fields are continuous across the boundary, or 

Ei - -E" z z 

(4.36) 

The first term on the right is given by LE[Jz(l)] in equation (4.19), and the second 

term is the near-field radiation of the magnetic current density found by applying 

duality to LM[J,(l)] in equation (4.15) or 

E:(M,,l) = 0.5M1(l) + j~ f M1(l')(ii' · r')HP\klr - r'I) dl'. {4.37) 

Now substituting the impedance boundary condition of equation ( 4.28) into the dual 

of LM[J,(l)] gives 

E:(M1, l) - -0.5Z,,Jz(l) - j~ f Z11 Jz(l')(ii' · r')H~2)(klr - r'I) dl' 

- -ZaLM[Jz(l)]. (4.38) 

Hence, the EFIE for horizontally polarized scatter from a lossy dielectric surface is 

(4.39) 

Since equations (4.34) and (4.39) each include only the unknown surface current J 

(and not M) they are well suited to solution using moment method techniques. 

4.4 Low-Loss Dielectric Surfaces 

For low-loss dielectric surfaces the conditions in equation ( 4.25) are not satisfied, and 

the impedance boundary condition in equation ( 4.28) can no longer be used to relate 
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Figure 4.4: External and internal equivalent problems. 

the magnetic current density to the electric current density. Instead it is necessary 

to solve for both currents using the moment method. The inclusion of the magnetic 

current density in the calculations doubles the number of unknowns in the problem. 

Internal and external equivalent models are used to double the number of equations 

so that the problem is solvable. 

Following Arvas et al. [36], the scattering problem, shown in the left illustration of 

Figure 4.4, can be separated into external and internal equivalents, as shown in the 

middle and right illustration, respectively. External sources Ji and Mi in the original 

problem radiate in free space in the presence of an obstacle with electric parameters 

t:1 and µ 1 . The external fields are the sum of the incident and scattered fields, 

H - Hi+H8 , (4.40) 

and the internal fields are E 1 and H1 . 

The external equivalent model is used to calculate the fields external to the· dielec-

tric boundary. Here, the obstacle is removed and replaced by surface current densities 

J = n x H, 
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M = EX ii, (4.41) 

placed along the obstacle boundary. The internal electric and magnetic fields are 

chosen to be zero, and the total fields external to the obstacle boundary E and H are 

chosen to be the external fields of the original problem. 

Likewise, the internal equivalent model is used to determine the fields transmitted 

into the dielectric region. In this case, the external space is replaced by the dielectric 

material, and surface current densities 

J' - H 1 Xii 
' 

M' - ii X E 1 
' 

( 4.42) 

are placed on the boundary of the dielectric obstacle. The exterior electric and mag-

netic fields are now chosen to be zero, and the interior fields are chosen to be the 

interior fields of the original problem, E1 and H1 . 

The boundary conditions on the tangential electric and magnetic fields, 

ii x E - ii x E1 = 0, 

ii x H - ii x H1 = 0, ( 4.43) 

must be satisfied in order to validate the external and internal equivalent models. Sub-
•· 

stituting -M = ii X E, M' = ii X E1 ' J = n X H, and -J' = n X H 1 into equation 

(4.43) leads to M' =-Mand J' = -J. 

The integral equations are formed using both the internal and external equivalent 

models. Just inside the boundary in the external equivalent model, the scattered field 

radiated by J and M must cancel out the incident field, expressed as 

(4.44) 

where F represents the field component (either E or H), tan indicates the tangential 

components, s- indicates a surface just inside the boundary, and ext refers to the use 
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of the external electrical parameters. In the internal equivalent model, the scattered 

fields radiated by J' = -J and M' = -M must be zero outside of the boundary. This 

relationship is represented by 

F•(J', M')l!:!,s+ = F8(-J, :-M)l!:!,s+ = 0, (4.45) 

where s+ indicates a surface just outside the boundary and int refers to the use of 

the internal electrical parameters. Adding equations ( 4.44) and ( 4.45) gives a system 

of linear equations 

(4.46) 

that can be solved for J and M using the moment method as before. 

The matrix form of equation ( 4.46) for horizontal polarization can be expressed as 

( 4.47) 

Here LEt is the EFIE LE for finding the near electric field contribution by J, and 

L~t' is the dual of the MFIE LM for finding the near electric field contribution by M 

in the external equivalent model. Both LEt and L'At use the electrical parameters 

fo, µ0 , and k0 of the external medium. Likewise, Lipt gives the near electric field 

contribution by J, and Lt{ gives the near electric field .contribution by M in the 

internal equivalent model. Here, Lip1 is the EFIE LE, and Ltt' is the dual of the 

MFIE LM, both using the internal electrical parameters fi, µ 1 , and k1 . Evaluating 

the matrix equation yields 

Lt[J] + L~'([M] - 0, (4.48) 

where the top equation is for the external equivalent, and the bottom equation is for 

the internal equivalent. The right hand side of each equation represents the incident 

field for the external (top) and internal (bottom) equivalent models. 
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The matrix equation for vertical polarization 

[ L~t' L~t l [ M l = [-Hi ] , 
LEt' L';/ J 0 

(4.49) 

is found by applying duality to equation ( 4.47). Here, LEt' and Lt' are the duals 

of the EFIE LE using external and internal electrical parameters, respectively. LMt 

and LY:/ are the MFIE LM also using the external and internal electrical parameters, 

respectively. Evaluating this matrix equation gives 

Lj;t'[M] + LMt[J] -Hi 
Lt'[M] + Liit[J] o, (4.50) 

again where the top equation is for the external equivalent model, and the bottom 

equation is for the internal equivalent model. 

4.5 Scattering by a Circular Cylinter 

As an example, the moment method is used to solve for tte scattering from infinitely 

long, circular cylinders with complex permittivity £1, corilplex permeability µ 1, and 

a radius a = LOA, as shown in Figure 4.5. The illuminating uniform plane wave is 

perpendicular to the axis of the cylinder, and the far-field scatter is observed at an 

angle ¢' as shown in the diagram. 

The vertical (VV) and horizontal (HH) bistatic scattering width ( scattering cross 

section per unit length) in the exact analytical solution are given by (37] 

respectively, where 

ovv(</>') - !1Tvv(<i>')l 2 , 

UHH(</>') - ! ITHH(</>')12, 

00 

Tvv(</>') - ~:::)-lttnAncosn</>', 
n=O 
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Scattered Field 

Incident Field 

Figure 4.5: Scattering geometry for lossy dielectric cylinder. 

00 

THH(<fa') = :~::)-ltfnBncosn<fa'. (4.52) 
n=O 

The coefficients An and Bn are given by 

B = _ (ki/E1)J~(k1a) - (ko/Eo)J~(koa)Jn(k1a) 
n (ki/E1)H~1>(koa)J~(k1a) - (ko/Eo)H~1>(koa)Jn(k1a)' 

(4.53) 

where k0 = w~ and k1 = w~ are the wave numbers in free space and the 

complex wave number in the lossy dielectric, respectively, and 

{ 
1 n = 0 

fn = 
2 n = 1,2, ... 

(4.54) 

Note that the conductivity of the cylinder material is accounted for by the complex 

permittivity and permeability. 

The radar scattering width was found for four cylinder configurations at both ver­

tical and horizontal polarizations using the moment method with pulse basis function 

widths of tiL = 0.V. and tiL = 0.05.\. The first configuration provided a reference 

for perfectly conducting cylinders, while the other three configurations represented 

soil cylinders at varying degrees of moisture content. At a frequency of 1.8 GHz, the 
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Figure 4.6: Scattering from a perfectly conducting cylinder, vertical polarization. 

complex dielectric constant of soil can range from approximately Er = 3 - jO (for dry 

soil and sand) to Er = 35 - j5 (for moist clay) [15]. For these tests, the dielectric 

constants were chosen to be Er = 3 - jO, Er = 10 - j2, and Er = 35 - j5, which 

correspond to volumetric moisture contents of approximately 0, 0.2, and 0.5 g/cm3 , 

respectively [15]. 

The vertical polarization results for perfect conductors, Er = 3 - jO, Er = lOj - 2, 

and Er = 35 - j5 are shown in Figures 4.6, 4.7, 4.8, and 4.9, respectively. The 

corresponding horizontal polarization results are given in Figures 4.10, 4.11, 4.12, 

and 4.13. 

In each of these figures, the exact analytical solution is compared to the moment 

method solution using pulse basis function widths of 6.L = O.V. and 6.L = 0.05..\. The 

smaller basis functions model the current more accurately, thus giving better far-field 

scatter predictions. Figures 4. 7 and 4.11 also demonstrate the inaccuracy of using the 

moment method with impedance boundary conditions (IBC) for the lossless dielectric 
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Figure 4. 7: Scattering from a dielectric cylinder E,. = 3 - jO, vertical polarization. 
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Figure 4.8: Scattering from a dielectric cylinder E,. = 10 - j2, vertical polarization. 

41 



BISTATIC SCATTERING FROM CIRCULAR CYLINDER 
20 Er• 35 - j 5, Radius • 1.0 l 

~ 
10 w 

t 0 ...... -::-----::.. 
a 
I -10 

e -20 
0 
al 
C 

I -30 Exact 
MM, AL • 0.05 l 

(I) 
-40 MM,AL•0.1 l 

-50 
0 20 40 60 80 100 120 140 160 180 

Scattering Angle (0) 

Figure 4.9: Scattering from a dielectric cylinder fr= 35 - j5, vertical polarization. 
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Figure 4.10: Scattering from a perfectly conducting cylinder, horizontal polarization. 
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Figure 4.11: Scattering from a dielectric cylinder fr = 3 - jO, horizontal polarization. 
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Figure 4.12: Scattering from a dielectric cylinder fr = 10-j2, horizontal polarization. 
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Figure 4.13: Scattering from a dielectric cylinder fr = 35- j5, horizontal polarization. 

case fr = 3 - jO, since the impedance boundary conditions in equation ( 4.28) are not 

satisfied for this dielectric constant. 

Of most interest is the ability of the moment method solution to predict the loc-

ations and magnitudes of the relative maximums and the locations of the nulls in the 

scatter. Tables 4.1 and 4.2 give the average absolute magnitude errors for the scatter 

cross-section and the locations of the relative maximums and nulls, respectively, for ho-

rizontal and vertical polarizations. When the pulse basis function width is !),.L = O.LX, 

the moment method code predicts the magnitudes of the relative maximums to within 

an average of 1.6 dB for VV and 0.4 dB for HH polarization. The angular locations 

for these relative maximums are predicted within approximately 2°. Using a smaller 

pulse basis function !),.L = 0.05.X decreases the average magnitude errors to approxim-

ately 0.83 dB and 0.18 dB for vertical and horizontal polarizations, respectively, and 

the average relative maximum angular placement to within 1 °. The null locations are 

predicted to within an average of 2.5° for 1),.£ = 0.1.X and 1.5° for !),.L = 0.05.X. Also 
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Table 4.1: Average Magnitude Errors (dB) for Circular Cylinder Scattering. 

~L = O.LX ~L = 0.05A 
VV Relative Maximum 1.5079 0.8298 

VV0° 1.2443 0.4651 
vv 90° 4.8168 2.1944 
vv 180° 0.1370 0.05418 

HH Relative Maximum 0.3872 0.1843 
HH 0° 0.2573 0.1481 
HH 90° 0.7748 0.2326 
HH 180° 0.1147 0.04717 

Table 4.2: Average Angular Placement Errors (0 ) for Circular Cylinder Scattering. 

~L = 0.lA 
VV Relative Maximums 2.1 
HH Relative Maximums 1.8 

VV Nulls 2.5 
HH Nulls 2.0 

~L = 0.05A 
1.0 
0.9 
1.5 
1.0 

given in Table 4.1 are the scatter cross-section predictions for three scattering angles 

of interest, 0°, goo, and 180°. The largest errors occurred at vertical polarization for 

goo, where the moment method solutions were in error by an average of 4.8 dB for 

~L = O.lA and 2.2 dB for ~L = 0.05A. 

4.6 Limitations 

Since the induced current on the scattering surface must be divided into small seg-

ments, finite computer resources may prevent electrically large surfaces from being 

completely modeled using the moment method. Instead, the numerically modeled sur-

face must be truncated on each side, causing the technique to incorrectly predict the 

surface current at these unrealistic edges. When the erroneous surface current density 

is radiated, it affects not only the far-field scatter but also changes the illumination of 
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Figure 4.14: Effects of illumination angle on the Thorsos weighting function. 

the modeled surface segments, which can further degrade the accuracy of the far-field 

scatter. 

To avoid the edge effect problems, the illuminating field of equation ( 4.21) can 

be altered so that its magnitude is negligible at the edges. Thorsos [26] gives an 

electromagnetically valid tapered field 

Fi(r) - exp {iki · r[l + w(r)] - (x - z cot 09 }2 / l} 
IFil - exp[(x-ycot09 ) 2/g2] 

where g is a tapering parameter and 

( ) _ 2(x -ycot09 ) 2/g2 -1 
w r - (k . (} )2 . g SIIl g 

( 4.55) 

(4.56) 

Equation ( 4.55) satisfies the wave equation when kig sin 09 » 1. Thorsos also gives 

another, more complicated weighting function that remains valid to a lower grazing 

angle. 

As shown in Figure 4.14, the illumination angle can greatly affect the illumination 

pattern of the Thorsos weighting function. For large grazing angles, a large portion 

of the surface is illuminated, and the illumination tapers off slowly to an insignificant 

value at the surface edges. When the illumination angle approaches grazing, the 

tapered field becomes a narrow beam that does not resemble realistic illumination. 

Only a small portion of the surface receives strong illumination, and the length of the 

surface model must be increased accordingly. 
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Figure 4.15: Rounded wedge scattering geometry. 
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Figure 4.16: Effects of illumination weighting function, vertical polarization. 

The detrimental effects of the artificial surfaces edges on the MM solution can 

be seen in the MM analysis of scattering from a perfectly conducting wedge with a 

rounded apex, as shown in Figure 4.15. The radius of curvature of the apex is 0.5-X, the 

interior angle of the wedge is 120°, and the extensions are 10,\ long. Figures 4.16 and 

4.17 compare the backscattering cross-sections predicted by the MM with and without 

weighting functions for vertical and horizontal polarizations, respectively. When the 

illuminating field is not tapered, the truncated surface causes the MM to predict 

edge diffraction, which incorrectly illuminates the scattering surface and propagates 

to the far-field region. The Thorsos weighting function significantly reduces the edge 

effects at moderate grazing angles, but significant edge effects are still seen for smaller 

47 



0 

SCATTERING FROM ROUNDED WEDGE 
Horizontal Polarization 

p .. 
1: .. .... , ... 

I•• ,4::: 
·~.:: j~••'. ,..~ • .:, t. : 

' ,. :,t.:·-: ; f • -··· ... 

MM w/o weighting 
MM with Thorsos weighting 

-40 ......... ...._....__....__.__.__.___.____...~___.~~..__~....__....__._ ___ .._. 
0 20 40 00 ~ 100 120 1~ 100 1~ 

Grazing Angle ( °) 

Figure 4.17: Effects of illumination weighting function, horizontal polarization. 

grazing angles. The singularities at 60° and 120° in the plots are due to the specular 

reflections from the front and back extensions. 
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Chapter 5 

HYBRID MM/GTD TECHNIQUE 

The scattering calculations are performed using adaptations of Burnside's hybrid 

MM/GTD technique [12], which allows for certain classes of infinite surfaces to 

be modeled without the truncation normally associated with the standard moment 

method. Instead of truncating the current, the hybrid technique predicts the form 

of the current on infinite extensions of portions of the surface using the geometrical 

theory of diffraction (GTD) and calculates the rest of the current using the standard 

moment method. Burnside's original technique only applies to perfectly conducting 

surfaces. For impedance and low-loss dielectric boundaries, the equations in the hy­

brid technique must be adapted to account for volume current densities. 

Much of the discussion in this chapter is based upon West's implementation of 

the hybrid technique for an arbitrary, perfectly-conducting rough surface, as shown in 

Figure 5.1. West's code served as the foundation for two further adaptations by West 

and Sturm - one for impedance (lossy dielectric) surfaces representative of moist soil 

and water [38] and another for low-loss dielectric surfaces representative of dry soil 

and sand at microwave frequencies. 
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Figure 5.1: Arbitrary scattering surface. 

5 .1 Perfectly Conducting Surf aces 

The dashed section of the surface in Figure 5.1 represents the actual, perfectly con-

ducting rough surface while the solid line represents infinitely long, planar extensions. 

The extensions are chosen such that all points on the actual surface are shadowed 

from all points on the extension ( except of course at the intersection points B and C). 

Because the surface is arbitrary, little is known initially about the current between 

points A and D. Thus, the current in this region is described using standard MM pulse 

basis functions with impulse testing functions (yielding point matching) centered on 

the basis functions. 

Since the extensions are shadowed from the arbitrary surface points, the fields at 

the surface of the extensions can be entirely described as the sum of a field diffracted 

from point B or C plus the geometrical optical (GO) incident and reflected fields: 

(5.1) 

where Ft is the total field, Fi is the incident field, F8 is the scattered field, FGo is 

the geometrical optics incident and reflected fields, and Fd is the diffracted field. The 

current on the extension is obtained by applying the surface boundary conditions to 

equation (5.1 ), yielding the physical optics current associated with the GO fields plus 

an additional current component associated with the diffracted field (the "diffraction-
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Figure 5.2: Diffracted field in the vicinity of the extensions. 

field current"): 

(5.2) 

Since the extension is flat and perfectly conducting, the PO current is known exactly a 

priori. (Note that if the extension is shadowed from the incident field the PO current is 

simply zero). However, the diffracted field, and therefore the diffraction-field current, 

is not known initially and must be determined using the moment method. Since it 

extends to infinity, use of ordinary sub-domain MM basis functions to describe this 

current would lead to an infinite order system of linear equations that cannot be 

solved. Instead it is recognized that at distances far enough away from the diffraction 

point the diffracted field is ray optical. Thus, the form of the diffracted field at the 

extension beyond points A or D is given by 

(5.3) 

where r is the distance from the diffraction point, F0 is the magnitude of the incident 

field, B.z is the unit vector out of the page, and f(</>) is an arbitrary function of 

the angular cylindrical coordinate with the diffraction point as the origin, as shown in 

Figure 5.2. Applying the surf ace boundary condition J 8 = ii x H yields the diffraction 

currents 

( vertical polarization) 

(horizontal polarization) 
(5.4) 

where a.1 is a unit vector in the direction tangential to the surface and Jo is an un­

known weighting coefficient. We now see that a single basis function of the form of 
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equation (5.4) can he used to include the diffraction current from the diffraction point 

to infinity in the hybrid numerical technique. An additional match point is added for 

the diffraction current on each extension, as indicated as an X to the left of point A 

and to the right of point D in Figure 5.1, bringing the total number of match points to 

N + 2. This, combined with the known physical optics currents, entirely describes the 

current on the infinite extensions. Since there are no discontinuities on the modeled 

surface, no artificial· edge effects are introduced. 

It should he noted that the forms of the diffraction-field current in equation (5.4) 

are not valid when the shadow boundary is along the extension. However, in section 5.5 

it will be shown that errors in the current when the illumination grazes the extension 

do not significantly affect the far-field scattering. The removal of the artificial edge 

diffraction appears to be the most important purpose of the GTD basis function. 

The current on the entire surface may now he written as 

(5.5) 

where JMM is the current between points A and D described by ordinary MM pulse 

basis functions: 

N 

JMM(l) - a.1 I: CimP(l - lm), ( vertical polarization) 
m=l 

N 

- 3.z I: CimP(l - lm), (horizontal polarization), (5.6) 
m=l 

where P(l - lm) is a pulse function centered at lm and Cim are unknown weighting 

coefficients to be found via the moment method. The diffraction current for vertical 

polarization is 

J•(I) = { (5.7) 
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and for horizontal polarization is 

Ja(I) = { 
l < A 

l > D 
(5.8) 

where l is the arc length along the surface as shown in Figure 5.1, and r is the distance 

along the extension from the diffraction point to the source point. The physical optics 

current J po on the front and back faces is given by 

{ 
2ft x Hi l < A, l > D 

Jpo(l) = 
0 elsewhere 

Substituting equation (5.5) into equation ( 4.20) gives 

(5.9) 

(5.10) 

Because the Jpo is entirely known a priori and Lx[] is a linear operator, the physical 

optics term may be moved to the left hand side, giving 

(5.11) 

Thus, the physical optics current simply appears as a field source term in the hybrid 

technique. Evaluating equation ( 5.11) at the centers of the basis functions (point 

matching or collocation), plus at two additional points on the extensions yields N + 2 

algebraically linear equations with N + 2 unknowns. Solving this system yields the 

moment weighting coefficients am, completing the MM solution of the current. The 

far field scatter is then determined from 

F 6 = -Lx[JMM + h + Jpo)I · 
r-+oo 

(5.12) 

5.2 High Dielectric-Constant, High-Loss Surfaces 

The hybrid MM/GTD technique can be extended to apply to equations (4.34) and 

( 4.39) to find the scattering from lossy dielectric surfaces of the type shown in Figure 
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5.1 with little modification. The surface current between points A and D is again 

divided into pulse basis functions as described in equation {5.6), and the diffraction­

current basis functions are unchanged from equation {5.4) since the diffracted field 

is still ray optical at suitable distances from the diffraction point [39]. The physical 

optics current needs to be modified slightly since the surface is no longer perfectly 

conducting: 

{ 
(1 - r)n x Hi l < A, l > D 

Jpo(l) = , 
0 elsewhere 

(5.13) 

where r is the appropriate parallel (vertical) polarized or perpendicular {horizontal) 

polarized reflection coefficient on the front and back extensions. {Note that equation 

(5.13) reduces to (5.9) with a perfectly conducting surface.) Substituting equation 

(5.5) (with the modified Jpo) into equation (4.34) and moving the known terms to 

the left hand (source) side yields 

· Za 
-H'(l) - LM[Jpo(l)] - 2 LE[Jpo(l)] 

. T/o 

= LM[JMM(l) + h(l)] + Z; LE[JMM(l) + Jd(l)]. 
T/o 

(5.14) 

Similarly, the EFIE becomes 

Ei(l) - LE[Jpo(l)] - ZaLM[Jpo(l)] 

= LE[JMM(l) + Jd(l)] + ZaLM[JMM(l) + h(l)]. (5.15) 

The GTD basis functions from equation (5.4) are used here to model the interac-

tions between the diffraction current on the extensions and the current segments in the 

moment method region. Since the propagation constant k is different in each media, 

these GTD basis functions do not meet the boundary conditions on the impedance 

surface and therefore are not truly valid. However, tests show that the exact current 

is not needed to achieve acceptable results. Again, the main effect of the diffraction 
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current is to eliminate the artificial edge effects that can greatly affect the illumination 

and far-field backscatter. 

Both equations (5.14) and (5.15) can be evaluated at the N +2 matching points, and 

the resulting linear system algebraic equations solved to give the unknown coefficients 

an, completing the numerical solution. The far-field scattering from the surface is then 

found by evaluating 

(5.16) 

or 

(5.17) 

5.3 Low-loss Dielectric Surfaces 

The integral equations for the low-loss dielectric case can be applied to the hybrid 

MM/GTD technique by adding the contributions of the known physical optics currents 

and the unknown diffracted-field currents on the extensions. The physical optics 

electric and magnetic currents are given by 

and 

{ 
(1- r)n x Hi 

Jpo(l) = 
0 

l < A,l > D 

elsewhere 

{ 
(1 + r)Ei x n l < A, l > D 

Mpo(l) = , 
0 · elsewhere 

(5.18) 

(5.19) 

where f is the appropriate parallel (vertical) polarized or perpendicular (horizontal) 

polarized reflection coefficient on the front and back extensions. The near-field radi-

ation of these currents are added to the source terms in the right hand side of equations 

{4.48) and (4.50), as 
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Lt[J] + Lt-t'[M] - Lint[J ] Lint'[M ] -E po- M PO• (5.20) 

and 

Lift'[M] + LMt[J] - -Hi - Lift'[Mpo] - LMt[Jpo] 

L~t'[M] + Lt-t[J] - Lint'[M ] Lint[J ] -E po- M PO• (5.21) 

As noted in the previous section for high-loss dielectric surfaces, the GTD basis func­

tions from equation (5.4) are used for modeling the interaction between the diffraction 

current on the extensions and the moment method current segments, even though it 

is known that these basis functions do not meet the boundary conditions because of 

the difference in the propagation constant kin each medium. Again, the GTD current 

merely eliminates the adverse effects of artificially truncating the surface current. 

Once the system of equations is solved for the unknown coefficients for the electric 

and magnetic current densities on the moment method segments and the unknown 

diffraction-current coefficients on the extension, the far-field scattering from the surface 

is found by evaluating 

H11 - Lift'[MMM+Md+Mpo]I +LMt[JMM+h+Jpo]I · (5.22) 
r-+oo r-+oo 

5.4 Implementation Considerations 

West [10] implemented the hybrid MM/GTD technique for perfectly conducting sur­

faces, and West and Sturm [38] implemented adaptations for both high-loss and low­

loss dielectric surfaces. The C++ code was developed and tested using Pentium-

based personal computers running the Linux 1.2.13 operating system and the GNU 

G++/GCC compiler (version 2.7). Sixteen IBM RS/6000 320H workstations running 

the AIX 3.2 operating system were used extensively for the application of the code to 
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arbitrary scattering problems. Some of the C++ code utilizes numerical algorithms 

taken from the Meschach [40] and Amos [41] libraries, and the epsilon convergence­

acceleration algorithm [42] [43] was implemented by O'Leary [44]. 

This section describes implementation details for the hybrid MM/GTD technique 

for each surface configuration - perfectly conducting, high-loss, and low-loss dielectric. 

The section's organization follows the steps taken by the code in the solution process. 

First, the terms in the linear system of equations must be evaluated. This is done 

by calculating the source terms (the incident field and the near-field radiation of the 

physical optics current) and the MM interaction matrix (near-field radiation of the 

MM and diffraction-current basis functions). Next, the linear system is solved using 

LU decomposition and back substitution. Finally, the far-field radiation of the currents 

gives the total scattered field. 

5.4.1 Evaluation of the Linear System 

For a given incident angle, the source vector in the linear system of equations must 

be calculated. Each component of this vector is the summation of the incident field 

and near-field radiation of the known physical optics current, Lx[Jpo], evaluated at 

the center of the corresponding surface segment. The calculation of the incident field 

is a simple evaluation of a complex exponential term, 

pi = exp(-jk · r) = exp[-jko(x0 cos 09 + Yo sin09 )], (5.23) 

where (x 0 , y 0 ) is the observation point on the surface. 

The evaluations of LM[Jpo] in equation (4.15) and LE[Jpo] in equation (4.19) are 

much more computationally expensive. These integrals find the electric and magnetic 

fields, respectively, at the surface segment contributed by the infinitely extending 

physical optics current. The infinite integrations of the rapidly oscillating and slowly 

decaying integrands converge quite slowly. Convergence can be dramatically increased 

57 



by evaluating the integrals as infinite series and applying the epsilon convergence­

acceleration algorithm [42] [43]. 

The infinite integrations 

LM[Jpo(l)] = 0.5Jpo(l) + j~ f Jpo(l')(ii' · r')Hf2>(klr - r'I) dl', (5.24) 

and 

LE[Jpo(l)] = k;o j Jpo(l')H~2>(klr - r'I) dl', (5.25) 

are evaluated using an infinite series of the form 

00 

3PO [N(k, 11)] = L ~N!:0 ,.(k, 11) exp {jko(x' cos 09 + y' sin09 )}, (5.26) 
n=l 

where ~ = O.OL\ is the step size, N(k, 11) represents an evaluation of the near-field 

operator N using a propagation constant k and intrinsic impedance T/, 

x' - Xe+ (n - 0.5)~ cos <p6 

y' - Ye+ (n - 0.5)~sin<p6 , (5.27) 

are the coordinates of the source point, (xe, Ye) are the coordinates of the end point 

of the modeled surf ace ( on the extension), and O 9 and <p6 are the grazing illumination 

angle and angle of the infinite extension, as shown in Figure 5.1. 

For perfectly conducting surfaces, the infinite series then becomes 

for vertical polarization and 

for horizontal polarizations. The operators 1l~e~r and £:!elf,. are given by 

1l~e~,.(k, TJ) - j~ cos T/JHi2>{kR), 

£.HH (k ) _!]_4Ho(2)(kR), near , T/ 
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(5.28) 

(5.29) 

(5.30) 

{5.31) 



where 

R - Ir - r'I = J(x - x')2 + (y - y')2, 

cost/J - ~[(r-r')·n]. 

The large argument approximation for the Hankel function [7] 

X-+ oo, 

(5.32) 

(5.33) 

(5.34) 

was used for x > 50.X in equations (5.30) and (5.31), thereby decreasing the amount of 

total execution time .required for evaluation of the scattering by approximately 10%. 

For impedance surfaces, the near-field radiation for vertical polarization is given 

by 

(5.35) 

where the reflection coefficient r is given by 

r = (Z11 cos Ot - T/O cos 0,)/(Za cos ()t + T/O cos 0,), (5.36) 

cos Ot = 1, and 0, = 1r /2 - () 9 is the illumination angle referenced to vertical. For 

horizontal polarization, the near-field radiation is 

(5.37) 

For low-loss dielectric surfaces, the source terms must be found for both the ex­

ternal and internal equivalent models. In the external equivalent model, the near-field 

radiation of the physical optics current for horizontal polarization is 

where now the cosine of the angle of the transmitted field is given by 

(5.39) 
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and the reflection coefficient r is given in equation (5.36). For the internal equivalent 

model, 

For vertical polarization, equations (5.38) and {5.40) are used with the dual quantities 

l/Z11 and 1/T/d replacing Z 11 and T/d, respectively. 

The interaction matrix describes the near-field radiation of each unknown current 

basis function at every match point. It includes both the pulse basis functions in 

the moment method region of the surface and the GTD basis functions that describe 

the infinitely extending GTD current on the extensions. Evaluations of Lx[JMM] are 

unchanged from that given by Axline and Fung (27]. Pulse basis and impulse testing 

functions (yielding point matching) are used for the moment method region. Given 

below are the matrix elements for indices m = O, 1, ... , N -1 and n = 0, 1, ... , N -1. 

Note that for low-loss dielectric surfaces, the interaction matrix contains 2N x 2N 

elements. 

For perfectly conducting surfaces, the vertical polarization interaction matrix ele-

ments are given by 

m=n 
(5.41) 

m#n 

where t!,.Lm is the width of them-th surface segment. For horizontal polarization, the 

elements are 

HH { A(ko, TJo) m = n 
zmn = ' 

' HH t!,.Lm£near(ko, TJo) m / n 
{5.42) 

where 

·k [ 2 ] A(k, 71) = - : t!,.Lm 1 - i; ln('Ykt!,.Lm/4) , {5.43) 

and 1 = 0.6552612 is Euler's number. For both equations {5.41) and {5.42), the source 

is the current on the n-th surface segment, and the observation is the center of the 
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m-th segment. 

For surfaces satisfying the impedance boundary conditions, the vertical polariza-

tion interaction matrix elements are 

vv { 0.5 - (Za/775)A(ko, 7Jo) 

zm,n = !),.Lm [1i~e~r(ko, 7Jo) - (Za/775)£;;/!,.(ko, 7Jo)] 

m=n 
(5.44) 

m =f=. n 

and for horizontal polarization 

m=n 
(5.45) 

m =/- n 

Finally, for low-loss dielectric surfaces, both the horizontal polarization interaction 

matrix elements are given by 

A(ko, 7Jo) m=n 
(5.46) 

m=n 
(5.47) 

m =f=. n 

m=n 
(5.48) 

m=f=.n 

and 

m=n 
(5.49) 

m =/- n 

The vertical polarization matrix elements use equations (5.46) through (5.49) with the 

dual quantities 1/Zs and l/7Jd replacing Zs and 7Jd, respectively. 

When the source current is the infinitely extending diffraction-current, an eval-

uation of Lx[Jd] is required. As with the near-field radiation of the physical optics 

current in the source calculations, this evaluation involves the infinite integration of 
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a rapidly oscillating, slowly converging integrand well suited to acceleration via the 

epsilon algorithm. The infinite series used to evaluate 

LM[Jd(l)] = 0.5Jd(l) + j~ f Jd(l')(ii' · r')H~2)(klr - r'I) dl', (5.50) 

and 

(5.51) 

are of the form 

00 

sGTD [N!!ar(k, 11), Bn] = L ~N(k, 11)B:TD(Rd, k), (5.52) 
n=l 

where 

(5.53) 

is the distance between the diffraction point (xd, Yd) and the source point (x', y') given 

by 

x' - Xe+ (n - 0.5)~ COS<P8 

y' - Ye + ( n - 0.5)~ sin <Ps· (5.54) 

The GTD basis functions are 

BfT D ( r, k) = exp( - j kr) / y'r ( vertical polarization) (5.55) 

BfTD(r, k) = e~p(-jkr)/ri.5 (horizontal polarization). (5.56) 

The near-field radiation of the GTD currents on a perfectly conducting surface is 

then 

(5.57) 

and 

(5.58) 
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for vertically and horizontally polarized illumination. For impedance surfaces, the 

near-field radiation of the GTD currents for vertical and horizontal polarizations are 

given by 

Zm,nL=GTD = sGTD [1-l~e~r(ko, 7Jo), BfTD] - (Za/7J2)SGTD [£!!(ko, 7Jo), BfTD]' 

(5.59) 

and 

For horizontal polarization in the low-loss dielectric case, 

Zm,n+NL=GTD = sGTD [1-l~e~r(kd, 7Jd), BfTD] ' 

Zm+N,nln=GTD= SGTD [£!!(kd,7]d), BfTD]' 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

Again, for vertical polarization the dual quantities are used in these matrix element 

equations. 

Finally, the matrix form of the linear system of equations can be solved using the 

LU Decomposition algorithm. 

5.4.2 Far-field Scattering Calculations 

The radiation of JMM in equations (5.16) and (5.17) is accomplished using the far-field 

approximations given by Axline and Fung [27]. By using these approximations and 

by using the large argument approximations for the Hankel functions, the integrations 

in Lx[Jd(l)JL-+oo can be evaluated in terms of Fresnel integrals. LM[h(l)JL-+oo and 
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LE[Jd(l)J become 

where 

L M [ B1 ( k, TJ)] L-+oo aj2eJ31r I 4 cos 8~ cI> .r{ Ax~)/ vA 

LM[ B2(k, TJ )] L-+oo aj,J31r/4 cos (J~ cI> I(x~) 

LE[B1(k, TJ)JL-+oo - -a27Jf!1rl4cI>.r(Ax~)/vA 

LE[B2(k, TJ)JL-+oo - -a7Jei1r/4 c1>J(xe') 

A k0 (l - sin 8~), 

(5.65) 

(5.66) 

8~ = 8a + 'Pa, 8a is the scattering angle (referenced to vertical), 'Pa is the angle the 

infinite extension makes with the horizontal, (xd, Yd) is the diffraction point, x~ is the 

distance between A and B ( or C and D) on the surface, a is the basis function weight 

determined by the moment method solution, and .r is the Fresnel integral 

.r(x) = 100 exp [-i(rr/2)r2] dr. (5.67) 

The duals of these equations may be formed by making the substitutions l/Za for Z8 

and l/TJ for T/· 

Evaluation of Lx[Jpo(l)]I requires more consideration. Using the approxima-
r-+oo 

tion of Axline and Fung yields an integrand that does not decay out to infinity, and 

therefore technically has no solution. The integral is in the form [45] 

(5.68) 

where µ(z) and t/J(z) are functions of the complex variable z, and v is a large, real 

multiplicative constant. Furthermore, µ(z) is real on the real axis, and t/J(z) is slowly 
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varymg. This type of integral can be expanded in terms of the end points using 

integration by parts as [45] 

t/J(x) ·,, (x)lb 1 { d (1P) 1 . }b . I= . e! " --.- - - -e!11" + (higher order terms). 
Jvµ:r:(x) a (Jv)2 dx µ:r: µ:r: a 

(5.69) 

The exact integral was evaluated at a very large (but finite) observation range. The 

far-field scatter for the physical optics current for horizontal polarization is then 

LE [J PO ( l)] L-+oo 
= -jryd1r/4 1 1 dko(:r:e(sinll,+sinll;)+Ye(cosll,+cosll;)] (5.70) 

sin()~ + sin o; ../&rko ' 

and for vertical polarization is 

LM[Jpo(l)JL-+oo 

= _ cosO"d31r/4 1 1 eiko[:r:e(sinll,+sinll;)+Ye(cosll,+cos/1;)] (5.71) 
/J sin()~ + sin o: v'&rko ' 

( front face) 

(back face) 
(5.72) 

5.5 Evaluation of the Hybrid MM/GTD Technique 

The full hybrid MM/GTD technique can be tested only for surface geometries that 

permit the addition of infinite extensions that are shadowed from all points of the 

main scattering surface ( except the intersection points), as shown in Figure 5.1. A 

simple surface that meets the requirements of this type of surface is a wedge with a 

rounded apex, as shown in Figure 4.15. The geometry of this surface is identical to 

the perfectly conducting surface discussed in section 4.6. The apex of the wedge is 

rounded off with a radius of curvature of 0.5,\, and the interior angle of the wedge is 

120°. 
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Figure 5.3: Vertical scattering from perfectly conducting rounded wedge. 

The results plotted in Figures 5.3 and 5.4 compare the scattering from a perfectly 

conducting rounded wedge predicted by the hybrid MM/GTD technique with the 

scattering predicted by the moment method with a Thorsos illumination weighting 

function for vertical and horizontal polarizations, respectively. Artificial edge effects 

due to the truncation of the surface model are quite apparent in the standard moment 

method results. In the hybrid MM/GTD analysis, however, the extensions of the 

surface are infinite, and adverse edge effects are not present in the predicted scatter. 

Using the hybrid MM/GTD results for a perfectly conducting wedge as a refer-

ence, the backscattering width was calculated for wedges with dielectric constants 

fr = 3 - jO, fr = 10 - j2, and fr = 35 - j5. These results are plotted in Figures 

5.5 and 5.6 for vertical and horizontal polarizations, respectively. Most prominent 

are the singularities at 60° and 120° due to the specular reflections from the front and 

back faces of the wedge. At other scattering angles, no exact solution for the backs-

catter is available for dielectric surfaces, although some reduction in the backscatter 
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Figure 5.4: Horizontal scattering from perfectly conducting rounded wedge. 
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Figure 5.5: Scattering from rounded-apex wedge: vertical polarization. 

67 



0 

~ 

! -10 

1 
J -20 
cl, 

~ 
0 
1:11 -30 -; 

I ""° 
-50 

0 

SCATIERING FROM ROUNDED WEDGE 
Horizontal Polarization 

·:~~f:: : h\ /I:: 
: ~ \\ I/: ~ 

'H' • \' /I' 'It' ,;: ~ ' ,.._ __ ....... , : ~., 
1,: .. ',, _,, : ~'~ 
,: ! \ ----- / \ \\ 
I// ',...... ..,," \ \\ 

It • -------·· • ,, 
I/ I \ \\ 

I! : •, ':'I. ,,, : ·. \\ 
/,' / \ \\ 

II I \ '1'. 
,,, l \ \~ 

// / Perfectly Conducting \ '.\ 
,,,. 35·5 \,~ 

'/1/ £1• -J \\\ 
, e, • 10 - j 2 , , , 

'- ,/ e:r•3-JO '\ ' . . . . : \ . . . . 
20 40 60 80 100 120 140 160 180 

Grazing Angle (a) 

Figure 5.6: Scattering from rounded-apex wedge: horizontal polarization. 

Table 5.1: Reductions in the rounded wedge backscatter, vertical polarization. 

Reduction (dB) 
fr IC,I Expected Observed Error {dB) 

35-j5 0.7127 2.9416 2.7680 0.1736 
10-j2 0.5252 5.5932 5.0905 0.5027 
3-jO 0.2679 11.4390 10.8398 0~5992 

is expected due to reductions in the magnitude of the normal-incidence flat-surface 

reflection coefficient. Tables 5.1 and 5.2 compare the magnitude of the reflection coef­

ficients to the observed reduction in the backscatter at normal incidence (Og = 90°), 

for vertical and horizontal polarizations. Note that the observed reduction is merely 

the difference between the backscatter for a perfect conductor and that for the dielec-

tric surface of interest. The hybrid MM/GTD backscatter is within 0.6 dB of the 

backscatter that would be predicted from the normal-incidence reflection coefficient 

for each configuration and for both polarizations. 

When the illumination grazes the extensions for Og - 30° and Og - 150°, the 
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Table 5.2: Reductions in the rounded wedge backscatter, horizontal polarization. 

Reduction (dB) 
fr 1r ,,1 Expected I Observed I Error {dB} 

35-j5 0.7127 2.9416 3.0303 -0.0887 
10-j2 0.5252 5.5932 5.8867 -0.2935 
3-jO 0.2679 11.4390 11.7670 -0.3280 

diffraction-field is not ray optical, and the currents predicted by equation 5.4 should 

be in error. Nevertheless, the erroneous current does not seem to matter as the far-field 

backscatter does not show any abnormalities or discontinuities at these illumination 

angles. This observation is consistent with a study by Booysen et al. [46] that used 

a hybrid technique that didn't include the effects of GTD currents at all, but still 

achieved accurate results. Therefore, it appears that the most important effect of the 

GTD currents is to prevent artificial edge effects from contributing to the illumination 

and far-field scatter. 
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Chapter 6 

APPLICATION 

In this chapter, the hybrid MM/GTD technique is used to investigate the effects of 

small-scale roughness in the shadowed portions of dielectric surfaces that represent 

geological features. This investigation closely parallels an investigation by West [10] 

which concluded that shadowed roughness can significantly contribute to backscatter 

from perfectly conducting surfaces. When the roughness is weakly shadowed, West 

found that these contributions were apparent for both horizontal and vertical po­

larizations. For deeply shadowed roughness, however, the shadowed roughness only 

contributed to the vertically polarized backscatter. West's findings suggest that a 

binary description of the surface self-shadowing is not accurate for extremely small 

grazing angles, especially for vertical polarization. 

6.1 Description 

West used two types of surf aces to investigate the effects of shadowed roughness on 

the far-field backscatter. The first model, shown in Figure 6.1 and hereafter referred to 

as the "weak-shadowing surface", resembles a near-breaking ocean wave. The surface 

between the crests is described by 

y' = ln(sec x'), lx'I ~ 1r /6, (6.1) 
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FULL STOKES WAVE SURFACE PROFILE 
STOKES WAVB.ENGTH • 25 l 

C I 
'1········ I l r '.·········· l 

- -·-··--···r-···--··--··--··-··-r···--······-··-··· r······-·········-r·· 

: : . . 
1 ... L.. ................. L ......... . .............. ! ... .... . .. ········-~·-··················· -~---

~ ; 

0 ... [ ............. ··! ............... +- .. . ········!· ··················}··· 

-15 -10 -5 0 5 10 15 

X (A.) 

Figure 6.1: Large-scale displacement for full Stokes wave with sharp crests. 

where x' and y' are normalized coordinates of a single-cycle of a Longuet-Higgins 

Stokes wave with a wavelength of 25A, where A is the illumination wavelength [47]. 

Planar extensions are extended beyond points A and D to infinity at an angle 30° from 

horizontal. This configuration yields crests with internal angles equal to that of an 

ideal Stokes wave {120°). In Figure 6.2, the sharp crests have been rounded off with 

an adjustable radius-of-curvature (here 2A) to prevent strong edge diffraction from 

overwhelming the scatter from the distributed surface. As the illumination strikes the 

weak-shadowing surface from the right, the front crest (on the right) casts a shadow 

onto the surface in the Stokes wave trough. When the illumination grazing angle 

reaches 0°, however, the entire back portion of the surface is in the shadow of the front 

crest. However, this shadowing is considered "weak" because the shadow boundary is 

very close to the roughness on the back crest. A second type of scattering surface, the 

"deep-shadowing surface", is formed by setting the back half of the Stokes wave trough 

displacement to zero, as shown in Figure 6.3. The right crest of this surface casts 
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Figure 6.2: Large-scale displacement for full Stokes wave with rounded crests. 

HALF STOKES WAVE SURFACE PROFILE 
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Figure 6.3: Large-scale displacement for half Stokes wave with rounded crests. 
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Figure 6.4: "Rough-in-shadow" geometry for weak-shadowing surface. 

a deep shadow over the Stokes wave trough when the grazing angle is very small. 

For this reason, West used this type of surface to investigate the effects of deeply 

shadowed roughness features on the backscatter. 

A Gaussian small-scale roughness is added to each type of surface using either the 

"rough-in-shadow" or "smooth-in-shadow" roughness configurations. As the name 

suggests, the rough-in-shadow configuration includes roughness in the shadowed por-

tions of the surface, as would be expected for a true scattering surface. Figures 6.4 and 

6.5 show a typical rough-in-shadow surface configuration for the weak-shadowing and 

deep-shadowing surfaces, respectively. Here, the roughness is added to the surface 

between points B and E only. Roughness is not extended to point C on the front face 

of the surface because it would be unrealistically directly illuminated at small grazing 

angles. The spectrum of the roughness is given by equation (2.8) with uh = 0.045..\ 

and L = 0.2..\. For the smooth-in-shadow configuration, roughness is included only in 

the directly illuminated portions of the surface, from point E to point F where the 
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Figure 6.5: "Rough-in-shadow" geometry for deep-shadowing surface. 

incident shadow boundary intersects the surf ace, as shown in Figures 6.6 and 6. 7 for 

the weak-shadowing and deep shadowing surfaces with a grazing illumination angle of 

99 =10°. 

By comparing the backscatter from the rough-in-shadow and smooth-in-shadow 

surfaces, the relative contributions of the shadowed roughness features can be determ­

ined, and the applicability of shadowing corrections to the two-scale model can be 

investigated. West [10) found that deeply shadowed roughness can significantly con­

tribute to the backscatter from perfectly conducting surfaces for vertical polarization. 

For horizontal polarization, however, deeply shadowed roughness did not signific-

antly contribute to the backscatter. These conclusions confirmed analytical studies 

by Barrick [8) and Holliday [9) that concluded strong surface currents are induced into 

shadowed regions for vertical polarization. 

Unlike West's study, which used a perfectly conducting surface model for ocean­

wave surfaces, the investigation in this report examines backscattering from the weak-
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shadowing and deep-shadowing surfaces usmg dielectric constants typical of soil. 

Three dielectric constants were chosen to represent a variety of surface conditions, 

f.,. = 3 - jO for dry sand, f,. = 10 - j2 for "typical soil", and f.,. = 35 - j5 for very 

moist soils. It should be noted that the Stokes-wave representation of the surface geo­

metry used here does not accurately model the large-scale displacements of geological 

surfaces. Instead, these surfaces provide a way to control the shadowing and allow 

for the results to be compared directly to the results in West's investigation. 

Each modeled surface is divided into 0.05.\ wide moment-method segments, and 

the front and back crests are rounded off with radii-of-curvature 2.0.\ and 5.0~, re­

spectively. The Gaussian roughness with a correlation length L = 0.2.\ and a height 

standard deviation u = 0.045~ is added to the large scale surface displacement for 

each of the two roughness configurations - rough-in-shadow and smooth-in-shadow. 

West's results for a perfectly conducting surface are reproduced and compared with 

results for surfaces with dielectric constants f,. = 3-jO, f,. = 10-j2, and f,. = 35-j5. 

The results are discussed the final section of this chapter. 

6.2 Backscattering Calculations 

In this section, the backscattering results are presented for the weak-shadowing and 

deep-shadowing surfaces of Figures 6.2 and 6.3, respectively. The backscatter cross­

section for each polarization is shown along with the two-scale model predictions, 

found by integrating the appropriate small-perturbation model backscattering coeffi­

cient in equation (3.9) along the illuminated portion of the surface with the incident 

angle adjusted to account for the local surface tilt. The two-scale model calculations 

do not include the predictions by the Kirchhoff approximation because this model is 

known to fail in the presence of surface self-shadowing [9]. 

The numerical investigation is designed to reveal the importance of shadowed 
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roughness for a variety of scattering surfaces representative of geological features. 

The results are presented separately for each surf ace, and the discussion will focus 

upon three aspects of the results. First, the two-scale model predictions are com­

pared to the numerical backscatter for each polarization. A threshold of 2 dB is used 

to define "agreement" between the two-scale predictions and the observed numerical 

backscatter. The two-scale model predictions are not expected to agree with the 

numerical backscatter for very small grazing angles where surface self-shadowing oc­

curs. Second, the rough-in-shadow backscatter is compared to the smooth-in-shadow 

backscatter using the same 2 dB threshold for agreement. A large difference in the 

backscattering for these roughness configurations indicates that shadowed roughness 

features are contributing significantly to the backscatter. Finally, the ratio of the 

rough-in-shadow backscatter at 30° to the rough-in-shadow backscatter at 0° is used 

to give a rough-estimate of the strength of the shadowing. A large ratio suggests that 

the backscatter is greatly reduced when the surface is shadowed. 

The results represent the ensemble average backscattering cross-section for 40 

independent surfaces and over 2800 hours of computational time. For the rough-in­

shadow configuration, a rough surf ace was generated, and the backscatter was found for 

grazing angles of incidence ranging from 30° to 0° in 0.5° increments. The smooth-in­

shadow configuration requires an independent surf ace to be generated for each incident 

angle, greatly increasing the amount of computational work. Due to finite computer 

resources, the backscatter was found only for grazing angles of incidence ranging from 

20° to 0° in 1 ° increments. 

6.2.1 Perfectly Conducting Reference Surfaces 

The backscattering results for perfectly conducting surfaces are shown in Figure 6.8 

for the weak-shadowing surface and Figure 6.9 for the deep-shadowing surface. These 
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Figure 6.8: Backscattering for perfectly conducting weak-shadowing surface. 

results are presented as benchmarks against which the backscattering from impedance 

and dielectric surfaces can be compared. Most notable on these plots are the angles 

at which the back side of the surface is entirely shadowed by the front crest, thus caus-

ing the smooth-in-shadow configuration to be entirely smooth. Complete shadowing 

occurs at 0.5° for the weak-shadowing surface and 7° for the deep-shadowing surface. 

The shadow-corrected two-scale model predictions are within 2 dB of the numer­

ical backscatter for the weak-shadowing surface down to approximately 10° for both 

vertical and horizontal polarizations. The two-scale model predictions for the deep­

shadowing surface, however, were within 2 dB of the numerical backscatter only down 

to 24.5° for vertical polarization and 16° for horizontal polarization. At smaller graz-

ing angles for either surface, the two-scale model over-predicts the backscatter by as 

much as 8 dB. The two-scale model backscatter drops to zero at 0.5° for the weak­

shadowing surf ace and 7° for the deep-shadowing surf ace. The entire back side of the 

surf ace is shadowed by the front crest at these angles, and no surface roughness is 
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Figure 6.9: Backscattering for perfectly conducting deep-shadowing surface. 

directly illuminated. 

For the weak-shadowing surface, the rough-in-shadow and smooth-in-shadow backs-

cattering calculations agree to within 2 dB down to 7° for vertical polarization and 

2° for horizontal polarization. The vertically polarized smooth-in-shadow backscatter 

decreases more rapidly than the corresponding rough-in-shadow backscatter for graz­

ing angles less than 7°, and by 0° the smooth-in-shadow backscatter is approximately 

25 dB less than the rough-in-shadow backscatter. Likewise, the horizontally polarized 

smooth-in-shadow backscatter drops at approximately 2° and by 0° is about 14 dB less 

than the horizontally polarized rough-in-shadow backscatter. These results suggest 

that weakly shadowed roughness features near the back crest contribute significantly 

to the backscatter for either polarization. 

The rough-in-shadow and smooth-in-shadow calculations for the deep-shadowing 

surface suggest that deeply shadowed roughness features contribute only to the ver-

tically polarized backscatter. The vertically polarized scatter in the rough-in-shadow 
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and smooth-in-shadow configurations agree to within 2 dB down to a grazing angle of 

8°. The smooth-in-shadow backscatter then drops from -2.5 dB at 8° to -33 dB at 7° 

{ as the surface roughness disappears). At these same angles the rough-in-shadow res­

ults do not show a sudden drop as the grazing angle decreases, and it is impossible to 

tell that the surface is entirely shadowed by the front crest from the scattering alone. 

However, unlike the vertical polarization results, the horizontally polarized scatter 

from the rough-in-shadow and smooth~-in-shadow surfaces agrees to within 2 dB for 

all grazing angles. 

It is interesting to compare the ratio of the backscatter at 30° to the backscatter at 

0° for both polarizations. For the weak-shadowing surface, the vertical backscatter at 

30° is 21.6 dB more than the vertical backscatter at 0°, and the horizontal backscatter 

ratio is 35.9 dB. The vertical and horizontal backscattering ratios are 23.5 dB and 

42.0 dB, respectively, for the deep-shadowing surface. These relatively low 30° /0° 

ratios for both polarizations in the weak-shadowing surface and for vertical polarization 

in the deep-shadowing surf ace further support the conclusion that weakly shadowed 

roughness is important and that deeply shadowed roughness is important only for 

vertical polarization. 

6.2.2 Moist Clay Surface ( Er = 35 - j5) 

The backscattering results plotted in Figure 6.10 and 6.11 are for weak-shadowing 

and deep-shadowing surfaces that have a dielectric constant fr = 35 - j5, which is 

representative of moist clay surfaces [15]. Here, the impedance boundary conditions 

of equation ( 4.25) are satisfied, and the integral equations for this type of surface 

are used in the hybrid MM/GTD technique. The plots are similar to those for 

perfectly conducting surfaces, although the backscattering cross-sections at 30° grazing 

are reduced in magnitude by about 6.5 dB for vertical polarization and 2.8 dB for 
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Figure 6.10: Backscattering for "moist-clay" weak-shadowing surface. 
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horizontal polarization. 

The two-scale model predictions agree with the calculated backscatter to within 

2 dB down to approximately 17° (VV) and 10.5° (HH) for the weak-shadowing surface 

and 21.5° (VV) and 16.5° (HH) for the deep-shadowing surface. The backscatter is 

over-predicted by the two-scale model for smaller grazing angles where some of the 

roughness is directly illuminated. The two-scale model predictions drop to zero when 

the entire surface roughness is in the shadow of the front crest, at 0.5° for the weak­

shadowing surface and at 7° for the deep-shadowing surface. 

The smooth-in-shadow and rough-in-shadow numerical calculations for the weak­

shadowing surface agree to within 2 dB for grazing angles down to approximately 2° 

for vertical polarization and 3° for horizontal polarization. At lower grazing angles of 

incidence the smooth-in-shadow results drop off significantly as the amount of rough­

ness on the surface decreases. When the illumination grazes the surface at 0°, the 

difference between the smooth-in-shadow and rough-in-shadow results is 22 dB for 

vertical and 14 dB for horizontal. It is clear that weakly shadowed roughness con­

tinue to contribute to the backscatter, even for imperfectly conducting surfaces that 

resemble moist clay. 

The deep-shadowing surface backscatter indicates that deeply-shadowed roughness 

contributes to the vertically polarized backscatter for surfaces with this dielectric con­

stant. The vertically polarized backscattering cross-section for the smooth-in-shadow 

configuration agrees with the rough-in-shadow backscatter to within 2 dB down to go 

grazing. Between go and 6° the smooth-in-shadow backscatter drops by approximately 

20 dB, and by 0° is nearly 11 dB less than the rough-in-shadow backscatter. The hori­

zontal smooth-in-shadow backscatter is within 2 dB of the horizontal rough-in-shadow 

backscatter for all grazing angles of incidence except for near 7° grazing, where it is 

some 4.2 dB less than the rough-in-shadow backscatter. It is at this angle that the 
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incident shadow boundary grazes the roughness on the back of the surface. Below 7°, 

the roughness in the smooth-in-shadow configuration disappears. 

The rough-in-shadow backscattering ratios {30° /0°) provide further insight into the 

effectiveness of shadowing for these surface types. For the weak-shadowing surface, 

the ratio is 25.6 dB for vertical polarization and 33.8 dB for horizontal polarization. 

The backscattering ratios for the deep-shadowing surface are 30.6 dB and 42.4 dB for 

vertical and horizontal polarizations respectively. The weak-shadowing ratios support 

the conclusion that weakly shadowed roughness is important for backscattering in both 

polarizations. Likewise, it appears from the deep-shadowing ratios that shadowing 

is slightly more effective for vertical polarization than it is for a perfect conductor. 

However, deeply shadowed roughness on an impedance surface may still contribute 

to the vertically polarized, but not horizontally polarized backscatter. 

6.2.3 Average Soil Surface (Er= 10 - j2) 

Using the hybrid MM/GTD technique for low-loss dielectric surfaces, the backscatter 

was calculated for weak-shadowing and deep-shadowing surfaces with a dielectric con­

stant of fr = 10-j2, a value chosen to represent a "typical" value for soil. The results 

are shown in Figures 6.12 and 6.13. Here, the backscattering is again reduced from 

the perfectly conducting case. At 30° grazing, the vertically polarized backscatter is 

reduced by about 10.8 dB from the perfectly conducting case, and the reduction is 

approximately 3.3 dB for horizontal polarization. 

For this dielectric constant, the two-scale model predictions agree with the cal­

culated backscatter down to approximately 14.5° (VV) and 9.5° (HH) for the weak­

shadowing surface and 17.5° (VV) and 14.5° (HH) for the deep-shadowing surface. 

The hybrid MM/GTD calculations drop more quickly than the two-scale predictions 

for smaller grazing angles of incidence. 
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Figure 6.12: Backscattering for a "typical-soil" weak-shadowing surface. 
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Figure 6.13: Backscattering for a "typical-soil" deep-shadowing surface. 
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The vertically polarized smooth-in-shadow and rough-in-shadow scatter for the 

weak-shadowing surface follow each other closely down to approximately 4°, where 

the smooth-in-shadow scatter drops in magnitude until it is almost 17.5 dB less than 

the rough-in-shadow scattering at 0°. The horizontal smooth-in-shadow scatter also 

drops much like the vertical scatter. At 2° the. horizontal smooth-in-shadow scatter 

begins to drop compared to the rough-in-shadow scatter, and by 0° is about 16.4 dB 

less. The contributions by the weakly shadowed roughness appear to be less for this 

dielectric constant than for the previous two cases. 

The vertically polarized backscatter from the smooth-in-shadow configuration in 

the deep-shadowing case drops off by about 16 dB between 8° and 7°, at which point 

the roughness disappears. The backscattering cross-section then rises back to within 

6. 7 dB of the rough-in-shadow vertical backscatter at a grazing illumination angle of 

0°. The cause of this rise is most likely numerical error. The horizontally polarized 

scatter is not affected significantly by the presence or absence of roughness in the 

shadowed region. The smooth-in-shadow backscatter is within 2 dB of the rough-in­

shadow backscatter for all grazing angles except 7°, where it is 2. 7 dB less than the 

rough-in-shadow backscattering cross-section. These results indicate that although 

deeply shadowed roughness still contributes to the vertically polarized backscatter, 

the contributions are less significant than the contributions to the backscatter from 

perfect conducting or the "moist-clay" surfaces. 

The 30° /0° backscattering ratios for the weak-shadowing surface are 25.8 dB and 

33.1 dB for vertical and horizontal polarizations, respectively. The deep-shadowing 

surface backscattering ratios are 34.8 dB for vertical polarization and 44.8 dB for hori­

zontal polarization. The relatively low ratios in the weak-shadowing case again suggest 

that weakly shadowed roughness contributes to the backscatter for both polarizations, 

although shadowing is more effective for this dielectric constant. The deep-shadowing 
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Figure 6.14: Backscattering for a "dry-sand" weak-shadowing surface. 

ratios also reflect the contribution of the shadowed roughness for vertical polarization. 

6.2.4 Dry Sand Surface (Er= 3 - jO) 

Figure 6.14 shows the backscattering from a weak-shadowing, low-loss dielectric sur­

face with dielectric constant fr = 3 - jO, and Figure 6.15 shows the same for the 

deep-shadowing configuration. The backscatter at 30° is reduced by approximately 

18. 7 dB at vertical and about 6.8 dB at horizontal polarization from the perfectly con-

ducting case. Again, good agreement is shown between the two-scale model and the 

numerical backscatter down to approximately 10° (VV) and 8.5° (HH) for the weak­

shadowing surface and 17° (VV) and 15° (HH) for the deep-shadowing surface. The 

two-scale model over-predicts the backscatter for small grazing angles of incidence. 

In the weak-shadowing results, the smooth-in-shadow backscatter follows the rough-

in-shadow scatter down to 3° grazing for vertical and 2° grazing for horizontal polar-

ization. As with the previous surfaces, the vertical smooth-in-shadow backscatter falls 
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Figure 6.15: Backscattering for a "dry-sand" deep-shadowing surface. 

severely from the rough-in-shadow scatter at lower grazing angles as the amount of 

roughness on the smooth-in-shadow surface decreases. The difference is about 16 dB 

at 0°. The horizontal smooth-in-shadow drops at 2°, and the difference between the 

rough-in-shadow and smooth-in-shadow scatter is about 19 dB at 0° grazing. Still, 

some contribution is seen from the weakly shadowed roughness at both polarizations. 

The deep-shadowing results show a continued contribution by deeply shadowed 

roughness for vertical polarization. The smooth-in-shadow backscatter is within 2 dB 

of the rough-in-shadow backscatter down to 10° and 9° for vertical and horizontal 

polarizations, respectively. As with the "typical soil" deep-shadowing surface, the 

vertically polarized smooth-in-shadow backscatter drops at 7° where the back portion 

of the surface is entirely shadowed. Again, the smooth-in-shadow vertical backscatter 

rises at smaller grazing angles until it is only about 5 dB less than the rough-in-shadow 

backscatter at 0°. Numerical errors are thought to be the reason for the rise. The 

slight decrease in the horizontal smooth-in-shadow backscatter at small grazing angles 
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is probably too small to be significant, especially since the backscatter is already 

considerably reduced from the perfectly conducting case. 

The backscattering ratios for the weak-shadowing surface are 24.9 dB for vertical 

and 30.0 dB for horizontal, while the dee~shadowing surface backscattering ratios 

are 36.2 dB and 41.8 dB for vertical and horizontal polarizations, respectively. These 

ratios support the conclusion that shadowing is more effective for this dielectric con­

stant than for the perfectly conducting case. Weakly shadowed roughness contributes 

to the backscatter for both polarizations, and deeply shadowed roughness contributes 

to the vertically polarized backscatter. 

6.3 Surface Current Magnitudes 

To investigate the currents in the shadowed regions that might be induced by either 

diffraction or multiple scattering, the current magnitude along the deep-shadowing 

surface from the moment method solution is normalized to the current magnitude on 

the illuminated front face far from the diffraction point and plotted in Figure 6.16 

for a perfectly conducting surface with an illumination angle of 10° grazing. At this 

angle, the front crest shadows much of the surface, but from between approximately 

x = -13.5 and x = -5 the rough surface features are directly illuminated. The 

locations of the shadows have been indicated on the figure. 

It is clear that strong surface currents are induced onto the roughness for vertical 

polarization, even when the surface is deeply shadowed. The surface current for 

vertical polarization drops to an average of about 30% of the maximum just left of 

the front wave crest but rises to an average of about 50% just right of the illuminated 

roughness. The current for horizontal polarization is much weaker, falling to about 

5% of the maximum to the left of the front crest and rising to less than 20% to the 

right of the illuminated roughness. The shadowed currents for this illumination angle 
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Figure 6.16: Current magnitudes for 09 - 10°, perfect conductor, deep-shadowing 
surface. 

may be explained by diffraction and multipath scatter into the shadowed region. 

In the cases of impedance and dielectric surfaces, the moment method solution 

yields equivalent surface currents, not the true induced currents. However, these 

equivalent currents are responsible for the radiated fields and give insight into the 

scattering mechanisms involved. Figures 6.17, 6.18, and 6.19 show the normalized 

surface currents for an impedance surface fr = 35 - j5 and dielectric surfaces with 

fr = 10 - j2 and fr = 3 - jO for a grazing illumination angle of 10°. 

The relative shadow-region current magnitudes are reduced considerably from the 

perfectly conducting case. For the impedance surface fr = 35 - j5, the normalized 

current magnitude for vertical polarization drops to approximately 12% of maximum 

in the shadow. The current for horizontal polarization drops even lower, to about 

4% of maximum just left of the crest but rises to about 12% near the illuminated 

roughness. The currents are relatively small for the dielectric surfaces as well. For 

fr = 10 - j2, the vertical current magnitude is observed to drop to about 12% and 
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Figure 6.17: Current magnitudes for 09 = 10°, fr = 35 - j5, deep-shadowing surface. 

ROUGH-IN-SHADOW SURFACE CURRENT 
Et= 10 • j2, GRAZING ILLUMINATION ANGLE-10 o 

1.2 ..................... .......................... ............................................................ . ...................... . 

--w 
1.0 .................... . . ... . ... . ... . ... . ... . ... .. . .......................................... Hl:t.. ... . ... . . .. 

! 
8' 

:::i; 0.8 .SMADOW .......................................................... SHADOW................. .. ...................... . 

0.6 ...................... ·························· ..................................................................................... . 

0.0 .__ ____ ........ ____ ........__~ ____ ......___.,_..._ _ __, 

-20 ·10 0 10 20 

X {A) 

Figure 6.18: Current magnitudes for ()9 = 10°, fr = 10 - j2, deep-shadowing surface. 
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Figure 6.19: Current magnitudes for 09 = 10°, fr= 3 - jO, deep-shadowing surface. 

rise to about 20% of maximum near the illuminated roughness. For fr = 3 - jO the 

magnitude of the current for both polarizations drops to about 6% left of the crest and 

rises to near 15% near the illuminated roughness. Note that for the dielectric surfaces, 

only the magnitude of the magnetic current ( M) is included in the plots, although the 

results appear quite similar when plotting J. 

For a grazing illumination angle of 0°, all of the induced current in the shadowed 

region must be attributed to diffraction around the front wave crest, as the front 

crest entirely shadows the surface and none of the half Stokes wave trough is directly 

illuminated. In Figure 6.20, the shadow-region current magnitudes for a perfect con­

ductor are reduced considerably from the 10° case but are still relatively strong for 

vertical polarization. The average current magnitudes for vertical and horizontal po-

larizations are 25% and 4% of the maximum, respectively. Figures 6.21, 6.22, and 6.23 

show the normalized current magnitudes for 0° grazing illumination using fr = 35-j5, 

fr = 10 - j2 and fr = 3 - jO. 
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Figure 6.21: Current magnitudes for 09 = O°, lr = 35 - j5, deep-shadowing surface. 
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Figure 6.22: Current magnitudes for ()9 = 0°, fr = 10 - j2, deep-shadowing surface. 
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Weak shadow-region currents are observed on all three dielectric surfaces. The 

magnitude of the vertical polarization current drops to approximately 12%, 8%, and 

5% of the maximum for surfaces with dielectric constants fr = 35 - j5, fr = 10 - j2, 

and fr = 3 - jO, respectively. The currents in the shadowed region for horizontal 

polarization are about 3% of the maximum for fr = 35 - j5 and fr = 10 - j2 but 

are slightly higher ( approximately 6% of maximum) for fr = 3 - jO. The increase 

in the current magnitude for horizontal polarization agrees with the slight difference 

between the observed rough-in-shadow and smooth-in-shadow results for fr= 3 - jO, 

but again this current is not likely to be very significant as the backscatter is very low 

for this dielectric constant. 

6.4 Discussion 

Diffraction into the shadowed region and multiple scattering are thought to be the 

primary scattering mechanisms to explain the enhanced vertically polarized backscat­

ter for perfect conductors. Barrick [8] used an exact modal formulation to study near­

grazing scattering from perfectly conducting and finite conductivity sea surface models 

resembling near-braking Stokes waves. The investigation concluded that simple on/ off 

shadowing descriptions are very inaccurate for vertical polarization. In a similar study, 

Holliday et al. used an analytical approximation to find the current in the shadowed re­

gion of a perfectly conducting scattering surface. This study also found that significant 

currents are induced on the shadowed portions of the surface for vertical polarization. 

The results in an investigation by West [10] support the Barrick and Holliday et al. 

findings. 

In the case of imperfectly conducting surfaces like those investigated in this study, 

the effects of surface self-shadowing have not been extensively investigated. However, 

in the ideal case of diffraction by a dielectric wedge, a decreasing dielectric constant 
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is known to affect the strength of the diffracted field. Tiberio et al. [48) developed 

a form of the uniform geometrical theory of diffraction for a wedge with impedance 

faces based upon an exact solution given by Maliuzhinets [49). In these studies, as 

the dielectric constant of the wedge faces decreases the strength of the field in the 

shadow region decreases for vertical polarization and increases for horizontal polariz­

ation. Hence, a decreasing dielectric constant for rough surface scattering problems 

is expected to increase the effectiveness of shadowing for vertical polarization and to 

decrease the effectiveness of shadowing for horizontal polarization. 

From the plots of the backscattering and the current magnitudes for the various sur­

faces in this investigation, it can be concluded that weakly-shadowed roughness may 

contribute to both vertically and horizontally polarized backscatter. Deeply-shadowed 

roughness only appears to contribute to the vertically polarized backscatter. As ex­

pected, the strength of the shadowing is observed to increase for vertical polarization. 

The expected decrease in the strength of the shadowing for horizontal polarization is 

not observed, although a slight difference is noted between the rough-in-shadow and 

smooth-in-shadow backscatter for fr= 3 - jO. 

The shadowing-corrected two-scale model accurately predicts the backscatter from 

the test surfaces down to approximately 20°. For smaller grazing angles of incidence, 

only a portion of the roughness is directly illuminated, and the portion that is illumin­

ated is not be enough to establish a Bragg-resonance effect [30). Therefore, two-scale 

model predictions are higher than the observed numerical backscatter ( until the entire 

surface is in the shadow of the front crest). A two-scale model uncorrected for shad­

owing would be expected to over-predict the scattering even more severely. However, 

a recent experiment found the opposite to be true. In the Mountain Top Experiment, 

Mockapetris [50) compared the bistatic scattering from land surfaces near White Sands 

Missile Range to the scattering predicted by the two-scale model. The model assumed 
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the surface to be perfectly conducting and included a small-scale roughness superim­

posed upon the known large-scale characteristics of the land surface. Surprisingly, the 

experimental measurements of the horizontally polarized scattering agreed with the 

numerically predicted scatter rather well in spite of the fact that the two-scale model 

did not include a correction for shadowing. 

Although the conclusions in this report do not support the Mockapetris findings, it 

should be noted that the scale of the surfaces used here are much smaller than actual 

land surfaces used in the Mockapetris study. A direct comparison between the studies, 

therefore, is not entirely meaningful. However, the effects of shadowing should be the 

same regardless of the scale of the surface. Even if it were possible to model extremely 

large surfaces using the hybrid MM/GTD technique, it would be very difficult to 

duplicate numerically the experimental results found in the Mockapetris study due to 

the various inhomogeneities in the surface dielectric constant and vegetation effects. 

Further investigation is warranted. 
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Chapter 7 

SUMMARY AND CONCLUSIONS 

The hybrid MM/GTD numerical technique has been extended to allow the calculation 

of scattering from lossy and low-loss dielectric media. This approach overcomes some 

of the shortcomings of the traditional MM technique by modeling large portions of 

the scattering surface using basis functions in the form of the GTD current on these 

sections. By modeling the entire surface in this way, truncation of the modeled sur­

face is avoided, thus preventing the non-physical edge effects that are apparent in 

the far-field scatter of the current in the traditional MM solution. Tests of the new 

technique on canonical and practical scattering problems validate the derivation and 

implementation of the two-dimensional integral equations. 

The hybrid technique was used to investigate the effects of small-scale roughness in 

the shadowed portions of dielectric surfaces that crudely represent geological features. 

A weak-shadowing surface model was generated using a near-breaking Stokes wave 

with rounded crests. When the illumination grazes the front crest of this surface at 

a very small angle, the front crest casts a shadow over the entire Stokes wave trough 

and back crest. The illumination shadow boundary is near the shadowed roughness 

on the back crest. Hence, scattering results from this model indicate the contributions 

of weakly shadowed roughness features on the back crest. A deep-shadowing surface 

model was generated by setting the large-scale displacement of the back Stokes wave 

crest to zero. For small grazing angles in this configuration, the illumination shadow 
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boundary is several wavelengths from the roughness on the back side of the surf ace. 

The contributions of the deeply-shadowed roughness features were investigated in this 

way. 

The ensemble average backscattering cross-sections were found for 40 independent 

rough surface realizations for each of two roughness configurations. The rough-in­

shadow configuration included a Gaussian roughness with a correlation length of L = 

0.2>. and a height standard deviation of u = 0.045>. along the entire Stokes wave 

trough. The smooth-in-shadow configuration included this roughness only on portions 

of the Stokes wave that are not shadowed from the incident field by the front wave 

crest. The dielectric constant of the scattering surf ace was chosen to represent a wide 

range of surface conditions ranging from perfectly conducting to moist clay ( lr = 

35 - j5), typical soil ( lr = 10 - j2), and dry sand ( lr = 3 - jO). The backscattering 

cross-sections were found for grazing angles of incidence ranging from 30° down to 0°. 

The numerical results indicate that weakly shadowed roughness features signific­

antly contribute to the horizontally and vertically polarized backscatter. This con­

tribution is most pronounced for perfectly conducting surfaces, but the effect is also 

observed for each of the other three dielectric constants tested. Deeply shadowed 

roughness features contribute significantly to the backscatter for vertical polariza­

tion only, although a slight contribution to the horizontally polarized backscatter is 

observed at low grazing angles for the lossless dielectric surface, lr = 3 - jO. An 

examination of the ratio of the rough-in-shadow backscattering cross-sections at 30° 

to the rough-in-shadow backscattering cross-sections at 0° confirm the contributions 

by the roughness features in the shadow region. The backscatter from the shadowed 

roughness can be explained by currents induced into the shadow by diffraction from 

the front crest and by multiple scattering effects. The normalized surface current mag­

nitudes were plotted along the deep-shadowing surface, and it was found that currents 
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with magnitudes between 10% and 40% of the maximum were found in the shadowed 

region for vertical polarization. 

The results indicate that optically-derived shadowing descriptions are not sufficient 

to describe the illumination of rough two-scale surfaces at low grazing angles. The 

shadowing is best characterized by a combination of weak and deep shadowing condi­

tions. Weakly shadowed roughness has been shown to contribute significantly to the 

backscatter for either polarization, while deeply shadowed roughness only contributes 

to the vertically polarized backscatter. The two-scale model predictions are accurate 

down to approximately 20° grazing, below which the two-scale model over-predicts 

the backscatter. 
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