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CHAPI'ER I 

INTRODUCTION 

The use of an electrical analogy in computing the behavior of surges 

in pipelines is a new approach to find the most practical way to arrange 

pumps and surge suppression devices where they will cause the least damage. 

It is thought that since the method of determining the parameters in 

an electrical network is a mathematical process, that process or a similar 

one can be used in the analysis of the pipeline phenomenon. The basic equa

tions of heat flow, fluid flow, and electrical flow are of the type called 

Laplace's equation. The solution of this type equation would be similar for 

any of the above types of flow, but the interpretation by the individual is 

different. The electrical engineer interprets his results in terms of volts 

and amperes whereas the hydraulic engineer thinks in terms of pressures and 

velocities. 

The electrical engineers have, as a necessity, had to thoroughly and 

completely solve and interpret the results of variable flow. Perhaps some 

of their results will be useful in limiting pulsations in a pipeline. 



CHAPTER II 

PREVIOUS INVESTIGATIONS 

The phenomenon of variable flow was first noted when water was 

pumped in a closed conduit or was allowed to flow in penstocks. The first 

1 2 notable explanations were by Joukowsky and Allievi. There were then a 

great many investigations performed and as many results as investigators 

were found. To remedy this the hydraulic Division of A. S. M. E. appointed 

a committee on water hammer. The report of this committee is contained in 

the Symposium on Water Hamm9r3 presented at the Century of Progress Exposi-

tion, Chicago, Illinois, June JO, 1933. Most all of the above work was done 

with emphasis on water hammer of opening or closing of a valve. The in-

vestigations of variable flow (pulsations) in a pipeline due to the periodic 

motion of a piston was first published by John Goodman4. The results of his 

paper created interest in the subject. 

J, W. Squire5 of Service Pipeline Company presented a valuable paper 

to the Petroleum Engineering Conference of the A. S. M. E. in 1948, His 

1 Joukowsky, "Water Hammer," Proceedings American~ Works Associa-
11.Qn, 1904, p. 341, Translated by O. Simon. 

2 Lorenzo AllieVi, "General Theory of Perturbed Flow of Water in 
Pressure Conduit," Milan 1903, Translated by E. E. Halmos 1925, 

3 SY11lposium gn Water Hammer, Published in 1933 by The Hydraulics 
Division or A, s. M. E.; S cond Edition 1949 by A. s. M. E. 

4 John Goodman, "Hydraulic Experiments on a Plunger Pump." Proceed
ings Institute of Mechanic,1 Engineers, (February 20, 1903), pp. 123-197. 

5 J. W. Squire, "Pressure Surges and Vibrations in Reciprocating 
Pump Piping," World~ Vol. 128, No. 12, (March 1949), pp. 171-182. 
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paper gave a background of the accomplishment of previous investigations and 

correlated their findings with his. He pointed out the inefficiency of the 

surge removal instruments of that time at high speeds. His recommendations 

were to redesign· the valve and pump connections so as to reduce the surge at 

the start. 

Results obtained by the Division or Engineering Research, Oklahoma 

Agricultural and Mechanical College, gave impetus to the belief that the 

same general results are obtained in pipelines as those obtained in electrical 

transmission lines. Results of present investigations in the Oklahoma In

stitute of Technology are not available for inclusion in this thesis. 



CHAPTER III 

OBJECTIVE 

The objective of this investigation is to arrive at a basis for de

termining the required characteristics of surge suppression equipment which 

effects the maximum suppression of pressure variations in fluid systems. 

Determination of the required characteristics may depend upon measurement of 

system constants that are not at present readily measureable or are at pre

sent ignored. It is also possible that certain factors thought to be of 

prime importance may not have the magnitude or affect commonly attributed 

to these factors. 

This work will be limited to the theoretical aspects only. Verifi

cation and evaluation will be the basis of further study. 



CHAPTER IV 

DERIVIATION OF FLOW RELATIONS 

1. Derivation of Basic Differential Equations. 

Figure 1 

R.ec,ev,1\9 1---....._--+---1-----
D A 

r 'l'l d 

C 

Fig . l is the horizontal view of the system which will be used in 

this derivation. The pipeline of length x1 is filled with a fluid with an 

average density!", an average pressure Pa, and flowing with an average 

velooity or va' The average flow is then Qa = vaA.• 

The pump is operating upstream and the pistons are moving with a 

motion that oan be oaloulated by use of kinetios. In any case the motion 

is some runotion of time. The rate or flow is also a function or time. 

Thtrt will be a pr111ure whioh will be a runotion ot time. 



A summation of forces at the section will give: 

~ F = Mass x acceleration 
X 

Whereby 

Since 

Then; 

A dP - ARQdx = p~; Adx 

Adv - gg and dP = ~ px dx 
dt - dt 0 

)p =RQ+4 9-Q 
~x A dt 

6 

(1) 

(2) 

It is now noted that another relation can be obtained by considering 

the elemental ring of length dx. The volume of fluid stored in length dx 

during time dt due to the elasticity of the pipe is as follows: 

Let dVP = the volume of fluid stored in the pipe 

J: 2 :a:. 2J '"tC1L dD dx Then, dVP ={_7;°(D + dD) - 4 D dx = 2 

and 

th f dD D D ~ dt ere ore, = ~ ~ ou 

Substituting eq. (5) into eq. (3) gives, 

AD .il dV ::: F- ,.. t d t dx 
P e " 

(3) 

(4) 

( 5) 

( 6) 

Let dVr ~ The volume of fluid stored in the section due to the compressibi

lity or the fluid. 

The bulk modulus of the fluid "K" is defined ass 

or 

K ;;; inoreaae in fressurt 
Diminution in Volume 

K~~ ; 
r 
~ it dt 
dVr t --V 

dVf ~ +tt dt dx 

(7) 

( 8) 
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[1 D l dP 
dVtotal = dVP + dVf = A LK + e EJ ~t dt dx (9) 

The total change in volume must be equal to the difference of the vol

ume of fluid flowing at the ends of the section or~ dx dt = dVt 

.£-2 dx dt = A 01 + D.] .d.f dt dx dX K e\Ej ~t 
(10) 

resulting in 

~ .: A [_L + _!LJ _g_f a X K E e ~t 
(11) 

The similarity of eqs. (2) and (11 to those given by Alleivi6 are 

of great significance for if P = gy and R = 0 they are identical and re-

duce to: 

h = 1 dv 
c) X g dt 

h:~_gz 
'at a dt 

Which are those given by Allievi7 . 

2, Solution of Differential Equations. 

For convenience let L = T and C = A [+ + /; J 
The eqa. (2) and (11) becomes 

.Q.l • RQ + L _g~ 
0 X dt 

(12) 

(13) 

(14) 

(15) 

A 1olution to 1q1. (14) and (15) may be round it' -fi- and ft- oan 

be ,valuated, Thie oan be done by oonaideration or the motion or the fluid 
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at the pump. 

In order to obtain results of a basic nature certain assumptions must 

be made. 

1. The motion of the fluid at point "A" Fig. 1 has the same motion 

as either piston. At the instant shown piston (1) has completed its power 

stroke and started on the suction stroke. The valve "B" is beginning to close 

as shown by the arrow. Piston (2) is starting its power stroke and the valve 

at "C" is opening. 

(a) Assume valves "B" and "C" open or close instantaneously. 

(b) Assume that the pipe is curved such that the motion of "A" is 

the motion at either piston. 

2. The piston rod is long in comparison to the radius of the crank 

shaft. 

3, The pipeline is ideal and does not vary in thickness, diameter, 

or elevation throughout its length. 

Figure 2 
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Figure 3 
p 

.... 

Po --

As piston (2) starts its motion the fluid at "A" will have a velocity 

that varies as a sine curve throughout the action or for 180° Fig. 2, ab c. 

The resultant pressure will be of the same nature, Fig. 3, ~ b c, but dis-

placed by the amount or the static head represented by Po and displaced in 

pha1t by a otrtain angle. That angle¢ is the amount of time that it takes 

tor the pr111urt to aot after the piston is in motion. 

In 111, 2, ode is the velooity ourve for pi1ton (l) during its power 

1trokt, In I like mannor Fig, 3, c de 11 the r11ulting preaaure. The 1ver-

111 tlow Q1 11 ~ ~ a1 given by the following, 

Qa • ../r /'\11 Sin wt d(vt) ~ ~ [- Q,, Ooe vt 1: ~ if' ~ 
and the average pr111ure 11 given by Pa~ Po+~ Pm, 
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By use of the Fourier Series a value of V, Q and P may be obtained 

the results of which are shown below. 

v = _g_ v + 7C - 2 v Cos (2wt + 180) + higher harmonics (16) -rr m -rr m 

2 Tr- 2 
Q = ,;:-- Qm + -rr Qm Cos (2wt + 180) + higher harmonics (17) 

P - P + _g_ Pm + -JC - 2 Pm Cos (2wt - ~ + 180) + higher harmonics - 0 "Tr 1T' 

(18) 

Figure 4 

0 ISO 360 6'40 

r11, 4 11 a plot or eq, (17) and a, oan be 111n it i1 a rairl1 oloae 

approximation, The average value or ourve ab o 11 shown below. 

Qa • -i,.-,.[~ Qm + "IC,;:. i Qm Coo (2vt + lSo)J d(vt) 

Qa a • L +" Qm wt J: a ~ Qm ( 19) 
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Assuming that eqs. (17) and (18) are correct as far as average values 

are concerned and by use of the convenient notation of rotating vectors a 

workable solution of eqs. (14) and (15) is obtained as follows. 

Consider a vector A where, A= Cos g + j Sing 

j 2 ~ -1, j3 = -j, and j4 = 1. Also consider the real and imaginary values 

where: 

-Re A:; Cos Q and im A= Sin Q 

Veotor I can be expressed as an exponential A= ejQ and ReA = ReejQ 

With the above in mind, eqs. (17) and (18) are as follows, 

Q = _j_ Qm + Re Tr- 2 Qm ej(2wt + 180) 
"11" -rr 

P P _2_ Pm R It - 2 Pm j ( 2wt - ¢ + 180) 
:a O + -,,r + e 11" e 

(20) 

(21) 

Since both Q and Pare shifted in phase 180° or one complete wave 

length (" ='TT'), and the period of vibration of curve f b g of Fig. 4 is 

halt the period of vibration of curve e b c, then eqs. (20) and (21) can be 

rewritten, 
(22) 

(23) 

Q = 1T- 2 ~ , ,• 
2 ;r . m 

,·· 
'\ rr 

Remembering that w1 is the angular velocity of the new function and 

is related to the angular velocity of the crank by w1 = 2w. For convenience 

the subscript will be dropped, 

Since eqs. (20) - (23) are symbolic, mathematical operations must 

not be performed on them without first determining whether the results pro

duced have a real significance. The chief operations that can be performed 

on those equations are differentation and intergration. With this fact in 
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mind it is now possible to find expressions for~~ and~~ as shown below. 

(24) 

(25) 

By substituting eqs. (24) and (25) into (14) and (15) the following 

set of differential equations are obtained. 

Then, 

~ = RQ + jwLQ - jwQL = (R + jwL)Q - jwLQ1 

~ = jwCP - jwCP1 
'a)x 

Let R + jwL = Z, jwL = z1 , and jwC = I 

(26) 

(27) 

~ = ZQ - Z Q (28) 
~x 1 1 

~=IP - IP (29) -x 1 

There are various ways to solve the above equations. The method used 

is similar to the method of solving electrical transmission line equations. 

By taking the partial of the eqs. (28) and (29) with respect to x and substi

tuting into the new equations the values from eqs. (28) and (29) the follow-

ing results are obtaineda 

and 

~-(.il)= ~ = z _Q_Q ax ~x ax2 ax 
~ u 
dx2::1Yai 

2 a:l = YZP - YZP 
:?Jx2 1 

(30) 

(31) 

(32) 

Th11e equation, are linear and or the eeoond order, the 1olution1 of' 

whioh art of' the f'orm , 
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(34) 

2 Where mis the solution of the auxiliary equation m = ZY, c1 and c2 are 

constants, and Pp is the particular solution and is equal to P1 . 

By differentiating (35) with respect to x. 

/if x C ' ;;;;;-zy - yzy x e - 2 y Lil. e ,_ · 

Q = c.JaL e V'Zrx _ c _iZY: e-v'ZYx + ZlQl 
X 1 Z 2 Z Z 

Let Z =. /Z 
C Vy (37) and ~ = vzy 

(35) 

(36) 

(38) 

Also let P and Q be the pressure and volume current at the end 
r r 

of the pipe (receiving end) where x = o. 

Substituting those values into eqs. (!5') and (36) 

when x = O 

a.nd 

and 
(pr - P1) + (ZcQr _ Z1'/0.l) 

cl -= -
2 

(39) 

(Pr - P1) - (Zc~ 
ZlQl 

- 8' ) 
02 = -

2 
(40) 

Substituting the values of c1 and c2 into (35) and (36) 

Z1 Z1 
(Pr - P1) + (QrZc - ?f Ql) "'x (Pr - Pl) - (QrZc - °? Ql) -}( x 

p = eu + - ~~ e + pl 
X 2 2 

(41) 



by rearranging and using the following relations 

~X -)( X 
e + e Gosh~ x = + 

2 

Therefore: 

and 

e ~x - e- ~x 
Sinh ·)$ X = ---"""---

2 

if x = x1 P and Q are the sending end pressure and flow. Then 
s s 

By rearranging eqs. (45) and (46) 

and 

3, Explanation of Equations . 

14 

(42) 

(43) 

(44) 

(45) 

(46) 

In order to give some physical interpretation to eqs. (41) and (43) 

they oan be thought of as travelling waves in the pipeline. For convenience 

8 they oan be abbreviated as follows. 

S Kimbark, E. W. Electrical Transmission 2f ~ !B£ Signals. 
John Wiley and Sons: Chapter 6, pp. 92-134. 
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Let p+ ~ P;e~ x ~ t tr -P1) + (Q,.Zc - Z~l )] e ~x (49) 

p- = p- e~x.:: t l(p - P) - Q Z + 2~ 1Je-)s'x (50) 
r 1..2 r 1 r c 0 

Q+ = Q; e )Sx = t[(Pr - Pl) + '<r - Z1~g.vx (51) 

zc 

+ PX - pl= p 
- + }$' X - -tx 

+ P = P e + P e 
r r 

+ - - ~ X - - ~X 
= Q + Q = Qr e + Qr e 

(52) 

(53) 

(54) 

+ -I~ is now clear that P and P are components of the receiving end r r . 
+ -pressures and likewise Qr amd Qr are components of' the recejving end flow. 

It is now necessary to examine in detail the nature of' the exponential func-

tions occurring jn the above equations. As defined by eq. (38) 

'/.::vz.y = V (R + jwL) (jwC) 

Since both Zand Y are complex vzY will be complex also, and may be 

expressed as: '6 .:: o< + j f! where O(' and f' are constants. 

then e "jx = e«x ej~ x 

e-)fx = e-C(x e -j~ x 

(55) 

{ 56) 

(57) 

Now consider eel(x, As x increases the product°'x increases and e«x 

increases, therefore miltiplication of P; by eo(.x changes the magnitude only. 

The second factor ejt' x = Cos~ x + j Sin,4 x .: i ~ always has a 

constant magnitude but has a phase angle which is directly proportional to x. 

Therefore multiplication of P; by ej~x changes the phase of P; only and 

multiplication bye )/x changes both phase and magnitude. 

As we go away from the receiving end {or toward the sending end), in 

+¥x each unit of distance the pressure Pr is increased in magnitude by the 
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constant factor eo<: and is advanced in phase by the constant increment~ 

radians. Since a traveling wave is characterized by a retardation of phase 

+ + )/x the first term of eq. (53) P =Pre is a wave traveling from the pump 

-~x ~x toward the receiving end. Since e is the reciprocal of e it decreases 

the phase from the receiving end to the source and p- = P; e-~x is a wave 

traveling toward the source. 

It should now be evident that in eq. (41) Px is the sum of two waves, 

the incident wave and the re.fleeted wave, where the incident wave is travel-

ing away from the source and the reflected wave is reflected from the receiv-

ing end back toward the source. 

The above results are similar to those found by Allievi, for he found 

the surge pressure was the sum of two traveling waves, thus 

Px = F1(-X + at) + F2(,c - a'.b) + P1 

Qx = F1(i + at) - F2(X - a:t.) + Ql 

... 
( 58a) 

(58b) 

The change in phase of a traveling wave in unit distance is,.(1radians; 

in distance x, it is,6x radians. The wave length ~is defined as the distance 

in which the phase changes by a whole revolution, or by 2"1T radians. Hence 

~ ~ - 2 11' radians 

or "' - ~ ft. per cycle 

~ = ~ radians per ft. 

Since a ="c, 

( 59) 

(60) 

(61) . 

(62) 

where "a" is the velocity of propagation in rt. per sec. and c is the fre-

quency in cycles per second, 

then (63) 

In eqs. (41) and (43) there are four traveling wave1J two pressure 

wave, and two flow wave, or two forward and two backward wavee. The ratio 

of the forward pre11ure to the forward flow 11 
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1:- = -z 
Q- C 

( 65) 

Equations (64) and (65) show that the ratio of forward pressure to 

forward flow is Zc and is independent of the terminal conditions. This value 

is the characteristic impedance of the pipeline and its value is, by eq. (37) 

z = a:-= (R + jwI, 
c V Y jwC 

# - Sec 
ft5 

(.37) 

If R = 0 or is small in comparison to wr., then Zc is a constant and 

real, Z = jwL .:: Z1 and ~=-L=z 
~ yzy C 

Definer- as the reflection coefficient. 

fleeted wave to the :incident wave. 
p - pl Defining Z = _x ___ _ 

X QX - Ql 

It is the ratio of the re-

(66) 

therefore (Pr - P1) = Zr (Qr - Q1) and substituting these values into 

eqs, (49) - {52) and taking the ratio of reflected to incident waves there re-

aults (67) 

In a like manner by using Q+, Q-

- z - z r .:: ~+ = - Zr z° 
C r 

( 68) 

When Zr a o, the pressure surge is totally reflected with reversal 

or sign ( ,- = -1), The flow is totally reflected, but no rever sal of sign 

occurs ( r ;;: 1) I 

When Zr .:: oo the pressure surge ia reflected with no reversal of sign, 

but the flow will have a reversal of 1ign, 
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When Zr= Zc, ,- = O, and the incident wave is total]y absorbed by 

the end conditions. This is the condition which those interested in supression 

of surges strive to obtain in their equipment. If this match is not present 

there is a great possibility of progressively increasing pressures. The ratio 

of Zr to Zc is an important parameter in the analysis of the pipeline, 

P1 and Q1 are the vertical displacements of the pressure and flow waves 

from the wt axis. 

From eq. (66) the sending end impedance is defined as 

(69) 

When Zc = Zr (no reflected wave) from eqs, (47) and (48) and R ~ O, 

then (P8 - P1) Cosh ~x1 - Z0 (Qs - Q1) SinhVx1 {70) 
Zc = Zr = Zc ....... ---------~-~---------

Z0 ( Qs - Q1) Coshtx1 - (P s - P1) Sinh"tx1 

Therefore by rearranging and solving for Zs the following relation is 

obtained a (71) 

The significance of eq. (71) is that if there is no surge the sending 

end impedance is also matched with the characteristic impedance. 

Eq. (70) may be rearranged and 1n t1rm1 or impedance, only 

(72) 

and from eqs, (4,) and (46) and Ra 0 

P - P, Zr Ooeh k'x1 + Z0 S1nh ,Vx __ l 
:.L_.. a Zs~ Zc -·------------------
Q8 - Q1 Zc Ooeh 'lfx1 + Zr Sinh 'af x1 

(73) 

4, Explanation or A11um1d and Derived Parameters. 

a, Flow Reeistanoe. 

The resistano, to tlow ha1 been a1eum1d to vary linearly with the 

flow. This is!~~~ only when the rlow is laminar, other oas11 will be 
,...1(1/-·-/-
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investigated later in this paper. 

In eq. (1) for laminar flow R has the value shown below when f = .§it 
Nr, 

N =~ 
r u ' 

o = f~2 = 128 u Q and 
"'r 2 D 1'T D4 

128 
R = -71' 

u 

4 ' D 

lb - Sec 

ft5 
·· per ft. of length (74) 

Equation (74) gives the value of R which is a property of the fluid 

and the· pipe size. 

b. Flow Inertance. 

The inertance per unit length is given by 

wL = ~ 
A 

lb. Sec per ft. of length 
rt5 

(75) 

The inertance is dependent on the speed of the pump, the fluid flowing, and 

the pipe. 

c. Capacitance. 

The capacitance per unit length is given by 

1 1 D ) ft5 we= wA ( K + E ; lb_ Sec per unit length 

and it like the inertance, is dependent on the speed, fluid, and pipe. 

d. Characteristic Impedance. 

The oharaoterietic impedance is d.erived as 

Z = (R + .1wI, 
c jwC 

lb - Sec 
rt5 

(76) 

(77) 

and is independent of the length or the pipeline. By rearranging the numera

tor of eq. (77) the ratio ..fi..1 will be used for a comparison with unity 
'W I 

(coefficient or j). j + ...R.. (?8) 
wL 

e. Propagation Conste.nt. 
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The propagation constant 'If is derived as)$ ..:: V (R + jwL) ( jwC) (79) 

By rearranging the first term of eq. (79) the relation (78) is obtained. 

f. Comparison of different fluids at a specified temperature (70° F) and 

small diameter pipe (4") gives the following results. 

TABLE I 

-- R 
Fluid SQ. Gr. Viscosit;y Densit;y R wL wL ~ Diff. 

Water 1 2,04 X 10 -5 1.93 0.067 222 0.0003 0.03 

Crude oil 0.86 2,4 X 10-4 1.4 0.46 183 0.0025 0.25 

Crude oil 0,9.3 1 X 10-J 1.8 .3 • .3 206 0.016 1.6 

For larger diameter pipes or for a higher speed the frictional re

sistance will have an even smaller effect on either Zc or't(. 

For an increasing viscosity (decreasing temperature) the frictional 

resistance will become more noticeable, but the value may be found by using 

eq. (74). 

g. If R is small the following relations are obtained 

z.:: !TwL.:: £ 
C V ]~ ~ (80) 

't-=V(jwL) {jwC).::jwv'Ec (81) 

Where Zc is real and 'l{ is pure imaginary and since "t:: 0<+ j /3, 

then o( -= 0 and 

( 82) 

and from eq. (6.3) 

w 1 1 
a ~ - ~ --- = ---

/3 VLC II.ta (l + l !2) 
y( K E e 

( 8.3) 

and ( 60) 
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The last relation in (8J) is the commonly accepted value of the ve-

locity of propagation of the wave when R-= 0. 

and 

If eqs. (80) and (~l) hold, then eqs. (42) and (44) become 

Px:::: (Pr - P1) Gosh j~x + Zc (Qr - Q1) Sinh j,,.dx + P1 

(84) 

(85) 

Eqs. (84) and (85) give a more usable function to calculate Pxand Qx· 

h. Fc.r water in a 4 in. pipe with the value of L-= 22.2, C = 2.58 x 10-9, 

and w = 10 rad. per sec., 

then ~ = w ~ = 2 ,4 x 10-3 rad , per ft. of length 

and "a" w 1 I -= .a = - -= 4150 ft 
1v VTc 

The wave length}\=~= 2620 ft. sec. 

i. Terminal Impedance. 

From examination of eqs. (17) and (18) it is easy to see that 

P6 - P1 -= P2 Cos (2wt + 180 - ¢) and Q6 - Q1 = Q Cos (2wt + 180). 

If this is true then, 

z .:: (:g) s 
Q2 

Cos (2wt + 180 .. ~) 
Cos (2wt + 180J 

(86) 

If there is no lag between the motion of the piston and the pressure rise 

(¢; O), Z6 is the ratio of the amplitudes of the pressure and flow curves. 

This may be in either of two forms. 

Z .:: ii- 2 P II ;r_ 2 Q -= :mm 
s -rr ml 7f"' m 

(87) 

Z6 may be calculated from eq. (87) if the amplitude of the pressure and flow 

9 Cosh j~x -= Cos, x 
10 

Ibid. 

and Sinh j~x = j Sin~ K 
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curves are known. The pressure wave may be found by use of an oscillcgraph. 

The flow amplitude may be calculated from the original equation of motion of 

the piston, Q = (Arw) Sin wt=~ Sin wt 

If the phase angle¢ is not zero the value of Zs is calculated from 

eq. (S6). 

In any case Zr may be found from eq. (72). 

5. Effects of Turbulent Flow. 

The possibility of the assumption in eq. (1) that the pressure gradi-

ent varies linearily with the flow is in error when the Reynolds number is 

between 2000 and 106. Since the pressure gradient varies with Ql.?5 eq. (1) 

is not readily solved. For the purpose of obtaining a reasonable workable 

solution, assume that the pressure varies with Q2• The eqs. (26) and (27) 

becomes 

~.: RQ2 + jwLQ - jwLQ1 

~..f = jwCP - jwCP1 C,x 

(88) 

(89) 

where R in eq. ( M) does not have the same value as be.fore. 

In a manner similar to the solution of eqs, (26) and (27) taking the 

partial of eq, (S8) with r espect to x gives, 

~ = (2RQ + jwL) l_Q. and by substituting i nto eq. (89) obtain 
)x2 1x 

l:P2 = jwC (2RQ + jwL) (P - P1) (90) 

For simplicity let 't = jwC (2RQ = jwL) and t he solution of eq. (90) is, 

P -= r1 (Q) e '!5x + f2(Q) e - 'tx + P1 (91) 

Now take the partial of eq , (91) with r espect to x, substitute that value 

into eq, (88) and obtain eq. (92) as shown below: 
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:: = r1(Q)~e )Ix - r2(Q)~e-~x and 

1/t ~Q2 + jwL (Q - Q1)] = f 1 (Q) e 'tx - r2 (Q) e -~x (92) 

Let g(Q) = 1/2( [RQ2 + jwL (Q - Q1ij and eq. (92) redtlces to 

g(Q) = f 1(Q) e lSX - r2(Q) e-~x (93) 

Next consider a method of finding the values of r1 (Q) and f2(Q) by 

use of the following boundary conditions; when x = o, P = Pr, Q = Qr, and 

g(Q) = g(~). By substituting these values into eqs. (91) and (92) and solv

ing for r1(Q) and f2(Q) eq. (94) is obtained. 

f1(Q) = t [<Pr - P1)+ g(~u and f2(Q) = t Dpr - P1) - g(Qrfl (94) 

By substituting the above values i.nto eqs. (91) and (93) the following results 

are obtained: 

p - P1 = t Dpr - P1) + g(QrU e~x + t Upr - P1) - g(~)] e-~x (95a) 

g(Q) -= 1' Upr - P1) + g(Qr)] e °' x - t [<Pr - P1) - g(Qr>J e - ~ x (95b) 

and rearranging in terms of the hyperbolic functions 

P - P1 = (Pr - P1) Cosh ~x + g(Qr) Sinh ix 

g(Q) = g(Qr) Cosh tx + (Pr - P1) Sinh ~ x 

The above equations are similar to those obtained betore. 

(96a) 

(96b) 

The con1tant1 Land C have the aame value••• given in eqs. (75) and 

(76), 'but R ha, a new value, it ia R • ~2 (97) 

By rearranging the term, or g(Q) and~ a compari1on or the value, or 

the r1tio1 Sf and !Qf with unity will be 1hown to have little effect in the 

determination ot P and Q, 

J'rom Table II tor increa1ins Reynold•' numbers and decreasing r the 

product QR increa1e1 1lowl7 and the ratio~ remains em.all in relation to 

j until a large value or Nr ia reached. In this table w is conaidered 
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constant, but in reality it would increase as the flow Q increased resulting 

in a further reduction of 8¥,. 

TABLE II 

Nr f Q R QR QR/wL 

5000 0.04 0.0475 0.049 0.0023 0.000093 

8000 0.035 0.076 0.043 0.00.32 0.0000.31 

19000 O.OJ 0.18 0.0.37 0.0067 0.00027 

50000 0.025 0,475 0.0.31 0.015 0.00059 

120000 0.02 1.14 0.025 0.028 0.0011 

106 0.015 9,5 0.019 0.176 0.0071 

4x106 0.0125 J8.0 0.015 0.585 0.0236 

107 0.0115 95,0 0.014 1. .35 0.055 

By neglecting the product QR or assuming that it does not affect the 

problem, eqs. (95) and (96) reduce to eqs. (84) and (85), The elimination of 

the product QR is not advisable for all fluids until a thorough investigation 

of the fluid, pipe, and pump has been carried out. 

It is thought that the best procedure to follow is to start with 

eq, (5) and decide which factors have the most influence, then an analysis 

of the particular installation can be made with the use of the preceeding 

derived relations. 

6. Impedance Matching. 

It has been shown by eqs. (64) and (67) that the chara.cteristic im-

pedance is independent of end conditions and where there is no r&flection; 

z .: z . 
C r 

Since it is desirous to eli~inate the pressure surge 
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some device should be placed at the end of the pipe with an impedance which 

will match that or the characteristic impedance. 

Figure 5 

1 Pump 

z. z, Z, Zp 

I 
I 

I 

~ .. 25:1 ,. I 

Fig, 5, 

In a like manner the impedance of the pump mu1t be matched with z1 to give Z0 , 

Such that 

It that 11 done, at section A looking toward the pump, the impedanoe 

11 Za· At 1,otion B looking toward the end, the impedance 11 Zc and, of course, 

at any point between A and B the impedance i1 Z0 , 



CHAPTER V 

INTERPRETATION OF RESULTS AND RECOMMENPATIONS 

The frictional resistance should be investigated for each individual 

installation, especially where the fluid viscosity is high or the temperature 

ie low. The results or Tables I and II are by no means a thorough investiga

tion or the frictional influence, nor were they intended to be conclusive. 

The purpose of Tables I and II are indications of the effects of resistance 

in that range. 

Using the reasoning in Chapter IV, Section 6 it seems logical that an 

impedance match of the pump and of any particular surge removal device may be 

found if a valve was placed at section "A" in Fig, 5, This could be accom

plished by closing the valve and varying either the speed of the pump or 

pressure in the surge suppressor until the fluctuations or pressure were re

moved, The results or this test would help to predict the aotions or the 

surge euppraesor when installed in any given system at either and or the 

pipe. 

It is the author's belief the.t if the values o.f impedances of the 

eyetem are evaluated then a system or eleotrioal impedanoae can be con

structed which will help predict the results of any particular pipeline sys

tem, The electrical network is recommended for two reasons. The cost of 

building an electrical network is much smaller than if an actual pipeline 

were used, and the analysis of electrical networks has been developed to a 

high degree of. accuracy. 

Considerable theoretical work should be done on determining methods 
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or building the required impedance in surge suppression devices. 

Further work should be done to determine the character or matching 

impedanoes as the wave length varies or as the line terminates on fractional 

wave lengths. It is known that in electrical transmission line theory that 

the matohing impedanoe changes from a capacitance to an inertiance each quar

ter wave length. 

Theoretical work should be verified in the laboratory and later the 

laboratory results should be verified in actual field systems. 
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