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PREFACE 

The advent of commercial parallel processing machines in the hardware area and the 

emergence of new programming paradigms such as object-oriented programming in the 

software area have had a positive impact on the development of efficient and reliable 

software. The programming languages are necessary to satisfy sufficiently the requirements 

for parallel and distributed programming applications. It is also necessary that these 

languages support good software engineering methodologies. Object-oriented 

programming has emerged as a paradigm that supports practical software development with 

its ability to represent real-world problems. We are concerned in this dissertation with high­

level language support for distributed computing within the context of an object-oriented 

programming paradigm, along with the dynamic interactions of objects. New language 

concepts and related language constructs are presented. These constructs are included in the 

definition of an object-oriented parallel programming language, and implementation of the 

language is outlined as well. 
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CHAPTER I 

INTRODUCTION 

1.1 Prologue 

Several commercial and experimental object-oriented programming languages have 

been designed and implemented. Some such as C++ [Stroustrup 82-89] and CLOS [CLOS 

88] are extensions of existing conventional or functional programming languages, while 

others such as Smalltalk [Goldberg and Robson 83] and Eiffel [Meyer 88-89] are newly 

designed languages. 

Parallel programming becomes a feasible idea because of the availability of new 

experimental and commercial parallel computers [August et al. 89] [Bakker et al. 87] 

[Baskett and Hennessy 86] [Bronnenberg et al. 86] [Cheng 89] [Dally 88] [DeBenedictis 

88] [Dongarra 87] [Duncan 90] [Emrath 85,88] [Fox 87-89] [Gabriel 86] [Gehringer et al. 

88] [Gottlieb et al. 83] [Haynes et al. 82] [Kuck et al. 86] [Kung 80,82] [LeBlanc et al. 88] 

[Odijk 87] [Padmanabhan 90] [Padua 79, Padua et al. 80] [Seitz et al. 88] [Test et al. 87] 

[Treleaven et al. 86] [Tsukakoshi et al. 87] [Veen 86] [Yew 88]. A number of papers have 

reported research about parallel programming and its language evolution [Ackerman 82] 

[Agerwala and Arvind 82] [Allen and Kennedy 82,85,87] [Andersen 89] [Ardo and 

Philipson 84] [Bal et al. 89] [Carriero and Gelemter 89] [Clapp and Mudge 89] [Cmelik et 

al. 89] [Fox et al. 88] [Gaudiot and Lee 87 ,89] [Gehani and Roome 86-90] [Goguen et al. 

87] [Guama 87,88] [Halstead 85] [Kim and Browne 88] [Kuck et al. 86] [Lamport 74-84] 

[Lee et al. 85] [Lee 88] [Lesser 74] [Li 86] [Luckham et al. 84] [Olsson 86] [Olson 85] 

[PCF 88] [Perrott 79,87] [Polychronopoulos 87,88] [Quinn et al. 88] [Ranka et al. 88] 

[Sabot 88] [Schutz 79] [Tsujino et al. 84] [Weihl 88,89] [Workshop 88]. Other research 
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reports the work on concurrent/parallel programming by extending the existing 

programming languages and systems, such as logic programming languages [Clark and 

Gregory 86] [Clark 87] [Codish and Shapiro 87] [Conery and Kibler 85] [Corsini et al. 89] 

[Lin and Kumar 88] [Shapiro and Takeuchi 83, Shapiro 87 ,89] [Talia 90] [Tebra 87], 

functional programming languages [Goldberg and Hudak 88] [Hudak and Smith 86], 

symbolic programming languages [Halstead 85] [Fidge 88], and procedural languages 

[Guzzi 87] [Karp and Babb 88]. Besides the above, there are a number of concurrent and 

parallel programming language models [Agha 86-89] [Brinch-Hansen 73-87] [Chandy and 

Misra 88] [Dijkstra 68,75] [Hennessy 88,90] [Hoare 73-85] [Liskov 81,88, Liskov et al. 

86,87, Liskov and Shrira 88] [Milner 80] [Olderog and Hoare 86]. 

Since the properties of object-oriented programming are well suited to the nature of 

real-world problems, and since parallel computers provide the potential of speed-up, 

combining these two areas is emerging as an important issue [Agha 89] [SIGPLAN 89] 

[Yonezawa and Tokoro 87] [Wegner 87-90]. Some researchers have already incorporated 

concurrency/parallelism into object-oriented programming languages [America et al. 86] 

[Bennett 87,90] [Corradi and Leonardi 87-90] [Gehani and Roome 88b] [Hur and Chon 
. 

87] [Rose and Steele 87] [Rosing et al. 88] [SIGPLAN 89] [Shibayama 89] [Tripathi and 

Berge 89] [Watanabe and Yonezawa 88] [Yonezawa and Tokoro 87]. Others have built 

object-oriented parallel programming languages and systems [Bershad et al. 88] [Black et 

al. 86] [Chase et al. 89] [Kafura 88, Kafura and Lee 89] [Koszarek 88] [Jul et al. 88] 

[Bjomerstedt and Britts 88] [Yang et al. 89] [Zimmerman and Crichton 89]. The languages 

such as Concurrent C++ [Gehani and Roome 88b] and Emerald [Jul et al. 88], have 

sacrificed some properties of object-oriented programming (e.g., class in Emerald and 

inheritance in Concurrent C++) while achieving concurrency. 

However our basic tenet is that all properties of object-oriented programming must 

be preserved when incorporating concurrency into the programming language. Therefore, 

we take an approach different from the previous approaches. We are interested in 
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incorporating distribution and concurrency within object-oriented programming without 

sacrificing any of the object-oriented features. We are also interested in language concepts 

capable of capturing dynamic interactions of objects. With this objective, we have 

developed a programming language, Parallel-C++, to support parallelism within the object­

oriented programming paradigm [Jo and George 89,91]. Parallel-C++ is based on C++ and 

preserves the properties of object-oriented programming while providing parallel 

programming. It also incorporates language concepts to support object migration. This 

research work is influenced by the work of several authors whose research extends from 

theoretical foundations to specific programming languages [Agha 86-89] [Brinch-Hansen 

73-87] [Chandy and Misra 88] [Dijkstra 68] [Goldberg and Robson 83] [Grogono and 

Bennett 89] [Hoare 73-85] [Liskov 81-88] [Meyer 88-89] [Milner 80] [Nguyen 85] 

[Nygaard and Dahl 78, Nygaard 86] [Stroustrup 83-89] [Wirth 74-90]. One of the 

perceived benefits of the Parallel-C++ programming language is to provide a model of 

dynamic behavior in object-oriented systems. We introduce the new notions of dynamic 

and static objects, and a dynamic relationship between them called ownership. We show 

how these concepts can be incorporated into the programming language. We also illustrate 

the use of these concepts in practical situations. 

This dissertation also includes the implementation scheme of a translator for the 

language Parallel-C++ [Jo et al. 91] on the Intel iPSC/2 hypercube multiprocessor 

computer [Intel 88]. The Parallel-C++ translator translates a Parallel-C++ source code into 

C++ programs supplemented with system primitives and subroutines on the iPSC/2. The 

translation scheme takes advantage of an existing C++ compiler [AT&T 85-89] for the 

iPSC/2. 

The implementation scheme of a compiler and an interpreter for Parallel-C++ is also 

presented. The objective of compilation rather than translation is to generate more efficient 

object codes for the target machine which is here iPSC/2. The run-time storage 

management for distributed and dynamic objects is also described with some examples. 
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Throughout this dissertation, a processor denotes a physical computation unit, and 

a process denotes an abstract computation unit. An object can be mapped into a process in 

an abstract computation machine and can be mapped into a processor in a physical 

computation machine. Processes are called concurrent if their executions have the potential 

to overlap in time. Parallel computation means that parts of program segments (concurrent 

processes) actually execute at the same time by using a number of different processing 

elements. 

The remainder of the dissertation is organized as follows: The rest of the sections 

in this chapter discuss parallel programming within conventional language and object­

oriented programming in general, and surveys related work. The design issues for Parallel­

C++ are described in Chapter 2. Chapter 3 defines the language syntax and semantics with 

several application examples to show the merits of the new concepts and to show how the 

concepts can be applied in practice. There are two implementation schemes, translation and 

compilation. Chapter 4 shows the implementation scheme for the translator. Chapter 5 

gives a compiler-interpreter implementation scheme for Parallel-C++. Chapter 6 discusses 

contributions of this research and suggests possible topics for future research work with 

the conclusion. 

1.2 Parallel Programming and Object -Oriented Programming 

Parallel languages provide features that support the design and implementation of 

parallel algorithms. Programming languages provide two approaches to parallelism in the 

language constructs. The first approach is implicit parallelism. A tangible configuration of 

this is program restructuring, especially in the optimization step of compilation. A serial or 

parallel program can be restructured into a parallel code targeted for a specific parallel 

architecture. In this approach the user is not concerned with the parallelism; the optimizer 

parallelizes the program by restructuring [Allen and Kennedy 82-87] [Kuck et al. 86] 

[Midkiff and Padua 87]. In the second approach the user specifies the parallelism explicitly. 
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Explicit parallelism is user-programmed parallelism using the parallel constructs provided 

by the language. This approach can be accomplished by extending the existing languages 

[PCF 88] or by providing new parallel programming languages [Bal et al. 89]. Despite the 

advances, the use of parallel machines is still limited by the languages that are available. 

Object-oriented programming is another evolution in programming languages. 

Many researchers believe that object-oriented programming provides a natural model to 

represent the real world [Stefik and Bobrow 86]. Several object-oriented programming 

languages have been designed and are being used for practical software development 

[Deutsch 89] [Goldberg and Robson 83] [Grogono 89] [Grogono and Bennett 89] [Kamin 

88,90] [Koschmann and Evens 88] [Lieberherr and Holland 89] [Meyer 88-89] [Peterson 

87] [Raj and Levy 89] [Stroustrup 83-89] [Wasserman 90] [Wegner 86-90] [Wolf 89]. 

While some languages add new concepts to object-oriented programming languages, others 

adapt object-oriented methods to new areas of application such as distributed computing 

[Yokoto and Tokoro 87] [Yonezawa and Tokoro 87]. 

1.2.1 Parallel Programming and Languages 

Programming language design for distributed computing usually follows the 

following three approaches. The first approach is to parallelize existing sequential 

languages. The parallelizing compiler or translator detects program segments, to be 

possibly parallelized, and restructures sequential program to parallel programs. The work at 

Rice [Allen and Kennedy 82-87] and Illinois [Kuck et al. 86] [Padua and Wolfe 86] 

[Polychronopoulos and Banerjee 87, Polychronopoulos 87 -89] are examples of this 

approach. The second approach is extending an existing language by providing language 

constructs to make parallel programing easy and efficient. This approach extends the syntax 

of conventional languages and uses dedicated compilers or translators. This type of 

approach is found in Distributed Smalltalk [Bennett 87,90], PCF Fortran [PCF 88] and 

others [Karp and Babb 88]. The third approach is to design new parallel languages. The 
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work of Emerald [Black et al. 86], Concurrent Smalltalk [Yokoto and Tokoro 87] and 

others [Yonezawa and Tokoro 87] are examples of research using this approach. 

1.2.2 Object-Oriented Prommmin& Systems COOPS) 

Object-oriented programming (QQP) is based on many important language concepts 

such as abstract data types (ADT), encapsulation, dynamic binding, class, object, 

inheritance, polymorphism, and reusability [Olthoff 86] [Snyder 86]. It is also based on 

mathematical models such as universal algebra [Birkhoff 82] [Gratzer 79]. In OOP, the 

important concept is an object. An object encapsulates data structures and operations on 

those. This concept looks similar to data abstraction of abstract data types as occurs in Ada 

[Ada 79,83], CLU [Liskov and Zilles 75, Liskov et al. 77, Liskov and Snyder 79, Liskov 

and Guttag 86, Liskov 87], and Modula [Wirth 77]. Objects communicate with each other 

by passing messages using interface functions of the objects. A class is a template for its 

objects. The notion of class is similar to that of type. Objects which have the same type are 

generated from a class. Each object is distinct by having its own state. The concept of class 

was first introduced in Simula 67 [Franta 78] [Nygaard and Dahl 78]. This concept has 

been adopted in Smalltalk [Goldberg and Robson 83], Eiffel [Meyer 88-89], C++ 

[Stroustrup 83-89] and other object-oriented programming languages. Inheritance and 

dynamic binding facilities make object-oriented programming different from imperative 

programming. Dynamic binding makes typed systems truly generic. For example, in C++, 

virtual functions allow dynamic bindings. Inheritance allows objects to use data and 

functions of the objects defined by parent class. Reusability is another merit of object­

oriented programming. Using inheritance and dynamic binding, the programmer reuses 

pre-written codes for new programs. For a large software system, it may reduce a 

substantial amount of code repetition, and hence it may reduce the cost of software 

development. 
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Another merit of object-oriented programming is that OOP represents much of the 

real world. In the real world, many entities may be regarded as an object. For example, 

those objects are humans, animals, cars, factories, more abstract systems and even atoms. 

They have their own data structures and interface functions. Objects communicate with 

each other by passing messages through interface functions. For example, atoms interact 

with each other, and they are combined to produce compound structures. A system keeps 

its own states even though structures may be similar, and may communicate with other 

systems by calling their interface functions. The distinct internal states of systems make 

them distinguishable from each other. The internal states of a system cannot be accessed by 

others directly, but can be altered by requests from others through the formal interfaces. 

Many object-oriented languages have been developed to support OOP paradigms. Some of 

those are Actor [Agha 86-89], Objective-C [Cox 83,86] [Cox and Schmucker 87], 

Smalltalk [Goldberg and Robson 83,89], Eiffel [Meyer 88-89], Trellis/Owl [O'Brien et al. 

87], C++ [Stroustrup 82-89] and Self [Ungar and Smith 87]. 

In object-oriented programming, we are concerned with what has to be done in a 

module, while also being concerned with how it has to be done as in procedural 

programming. While there are some arguments that object-oriented programming is only an 

extendible typed language [Wirth 90], and real-world relations cannot be well represented 

only by inheritance, it is too early to appreciate the future impact of this on the real 

programming world. Nowadays OOP pervades the programming area and several 

application areas (such as database systems), but it still needs more development of 

theoretical background. However, the applications are growing much faster than the 

development of those theories. Object-oriented languages like Smalltalk are not only 

languages, but are also systems including their programming environments. Object­

oriented programming is radically developed and widely used for graphical user interfaces 

[Myers et al. 90], data base systems [Date 90] [Kim et al. 87] [Maier et al. 86] [Smith and 

Zdonik 87] [Ullman 88], and operating systems design [Shapiro et al. 89]. 
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1.2.2.1 Class and Object 

An object is a unit system in the OOPS, usually being identified by a unique 

identifier, also having a type. An object consists of its own data members and the interface 

operations, called "methods", that operate on those data. These operations provide the 

interface to other objects to access and change the object's data. The data members may be 

altered only by the object's operations (for private members) or can be accessed only by 

other objects (for public members). Other objects request certain operations through these 

interface operations. In OOPS, this is called "message passing". 

A class is a template for its objects. Several objects may be created from a class. 

Initially they all look the same. Different objects are differentiated by their own identifiers, 

and they have their own storage for their data members and may have different values. 

Even if the values for member data are the same, those objects are still different because 

they have their own address spaces. 

1.2.2.2 Inheritance 

Abstract data types (ADT) and objects (classes) originate from the same roots from 

the point of view of information hiding and encapsulation. The main difference between 

these two ideas is in inheritance [Snyder 86] [Stroustrup 89b]. OOPS uses class hierarchy 

to represent the static relationships among the objects. Those relationships can be any one 

of the conventional relationships with real-world entities, such as "is-a" or "has-a". This 

hierarchy can be represented by a tree (for single inheritance) or by a lattice (for multiple 

inheritance). Parent classes are called super-class and children are called sub-class. The 

object created from the sub-class may inherit the properties from the super-class. If a sub­

class can inherit properties from more than one super-class, we call this multiple 

inheritance. These concepts are emphasized as important concepts to explain real-world 

problems in several research reports [Stroustrup 89b]. 
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1.2.3 Pro~ammin~ Langua~e Desi~n and Implementation 

The development of computer hardware leads us to the development of computer 

software which makes use of the hardware. A programming language is one of the 

important tools for developing computer software. Programming languages are not "the 

solution" to software problems, but because of their central role in software, they can help 

to simplify solutions [Fisher 76]. Adoption of an appropriate programming language may 

help to remove the barriers to solving software problems. 

Some of the desirable characteristics of a programming language are the following 

[Fisher 76] [DoD 77]: 

(1) The language should have a complete and unambiguous definition of syntax and 

semantics. 

(2) The language should not be dependent on any particular object machine or any 

particular operating system. 

(3) The language should be able to test and verify its correctness. 

( 4) A parallel language should provide the ability to create and terminate parallel 

processes through the parallel language constructs and/or the parallel system 

primitives. 

(5) Synchronization ability is needed [Dinning 89]. Mutual exclusion to the system 

resources should be obeyed by concurrent processes. 

(6) Exception handling should be provided when arithmetic overflow, exhaustion of 

free space, hardware errors, or any other run-time error occurs. 

1.3 The Language Parallel-C++ 

In this dissertation, we present a new language, Parallel-C++, which allows parallel 

and distributed programming in an object-oriented programming environment [Jo and 

George 89,91]. In distributed object-oriented parallel programming, some of the objects in 
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the system can be distributed on the different address spaces, and those objects can be 

executed in parallel. Parallel-C++ incorporates new language concepts such as 

static/dynamic objects and ownership. 

In developing the concepts of dynamic and static objects, and ownership, we adopt 

ideas from object-oriented programming languages, especially C++ [Stroustrup 82-89]. 

The concepts of class, object, message and their syntax are the same as those in C++. C++ 

is an inherently sequential language. We extend the C++ language to support object­

oriented parallel programming. The reason for choosing C++ as the base language for 

parallel extension is that C++ offers familiar syntax, static type checking, and its base 

language C has been widely used (which means many applications such as image 

processing are programmed by using it [Brown M89]). But many ideas for language 

design and compiler implementation are adopted from other object-oriented languages such 

as Smalltalk [Goldberg and Robson 83] and Eiffel [Meyer 88]. 

The purpose of our work for parallel programming within an object-oriented 

paradigm is to: 

(1) Suggest a problem domain for object-oriented programming in the distributed 

computing environment. 

(2) Survey current programming languages and review their distinguishing features for 

distributed programming and object-oriented programming. 

(3) Design an object-oriented parallel programming language, Parallel-C++, to support 

distributed programming within an object-oriented paradigm. 

(4) Explore different implementation schemes. 

The approach of Parallel-C++ supports an abstraction of the whole system as 

opposed to abstraction of process migration, as in the case of languages and systems in the 

literature. The newly introduced language constructs "import" and "export" not only 

support object mobility, the associated concepts of dynamic object and ownership, but they 

also support even more general scenarios such as computation of an expression in different 
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environments. This is because the object responding to a message of a dynamic object is 

not the same all the time. For example (assuming an aircraft is hijacked), the reply to a 

message from a pilot requesting permission to land at an airport depends on the airport. 

From that perspective, management of object migration becomes a consequence and not an 

end in itself. Moreover, the "copy-and-delete" semantics of "export" is different from the 

semantics followed by the other systems and introduce a different scope of objects. 

1.4 Related Work 

Besides the work mentioned in the previous sections, other related work is in the 

areas of load balancing and process migration. Process migration is abstracted as object 

mobility in the object-oriented systems. Several languages are concerned with providing 

support for load balancing and object mobility. The notions of process migration and object 

mobility, as well as their discussion, are not new. Since the 1970's, process migration and 

object migration have been thoroughly discussed in the literature for the several distributed 

systems [Artsy and Finkel 89] [Bennett 87,90] [Bjornerstedt and Britts 88] [Douglis and 

Ousterhout 87] [Jazayeri 89] [Powell and Miller 83] [Zayas 87]. However, language 

support for object mobility based on object-oriented programming is a relatively new 

approach. The systems that incorporated this approach are Emerald [Black et al. 86] [Jul et 

al. 88], Sloop [Lucco 87], Amber [Chase et al. 89] and SOS [Shapiro et al. 89]. These and 

other similar systems, as well as languages, focus on object management and provide 

support for explicit management of object mobility. Other related work includes Distributed 

Smalltalk [Bennett 87 ,90], Argus [Liskov 88], Presto [Bershad et al. 88], Orca [Bal and 

Tanenbaum 88], and Concurrent C++ [Gehani and Roome 88b]. Especially, the works of 

[Beck 90] [Shapiro et al. 89b] [Yin et al. 90] focus on the research of parallel languages 

and systems based on C++. A comparison of the relevant characteristics of the related 

programming languages are summarized in Figure 1.1. 



Object Model Base Characteristics Object Support Memory Mechanism 

Parallel-C++ Object-Oriented Object Mobility 
Parallelism Language Distributed Copy -and-Delete 

Emerald Object-Based Object Mobility Primitive Shared Call-by-Object-Reference 

Vistnbuted_ 
Small talk Object-Oriented Object Mobility Primitive Shared Object Sharing 

Amber Object-Based Object Mobility Operating 
Svstem Shared Remote Object Invocation 

Sloop Object-Oriented Object Mobility Language Shared Virtual Object Space 

sos Object-Oriented Object Mobility Operating 
Svstem Both Move or Copy 

Argus Object-Based Location Language Distributed Remote Call-by-Value lndependen 

ConcurrentC+ Class-Based Parallel Processes Language Both Transactions 

Orca Object-Based ~hared Data Objec Language Both Call-by-Sharing 

Presto Object-Oriented Threads System Shared Pre-defmed Object Types 

* Object-Oriented = Object+ Class+ Inheritance [Wegner 87] 
Class-Based = Object+ Class 
Object-Based = Object 

Figure 1.1. Comparison of Languages and Systems supporting Concurrency based on 
Object Model 

In the following sections, a brief outline of related work is provided. 

1.4.1 Emerald 

12 

Emerald is an object-based language and system designed for the construction of 

distributed programs [Black et al. 86] [Jul et al. 88]. Emerald provides explicit language 

support for fine-grained object location and mobility. Emerald objects consist of data 

objects and process objects. In Emerald's object model, local objects are private and remote 

objects are to be shared. Emerald supports concurrency between objects in a network, and 

supports concurrency of parallel operations within an object. A monitor-like construct is 

used for synchronization of concurrent operations. Emerald does not provide either classes 

or inheritance. Emerald uses three different implementation styles for objects, namely 

global objects, local objects, and direct objects. It provides five primitives for object 

location and migration: locate, move, fix, unfix, and refix. It also suggests various kinds of 
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parameter passing modes related to objects, such as call-by-object-reference, call-by-visit, 

and call-by-move. 

The authors of Emerald report that a prototype implementation targeted to a small 

network (DEC Micro-VAX II workstations) has been done. The Emerald implementation is 

targeted to shared memory architectures [Jul et al. 88]. These researchers report that 

Emerald is intended to run in a modest size network (e.g., within 100 nodes). The 

implementation consists of an Emerald compiler and an Emerald kernel. The creation of 

objects is accomplished by explicit constructors. The kernel supports code sharing. Remote 

objects are managed by an object table in each node. Invocation overhead has been 

reported, because the activation records for executing processes must also move when an 

object is moved. 

1.4.2 Distributed Smalltalk 

Distributed Smalltalk (DS) is an implementation of Smalltalk in a distributed system 

[Bennett 87,90]. DS and Emerald credit their origins to a common root. DS provides for 

object mobility, communication between remote users, direct access to remote objects, 

object sharing among users, and distributed applications in the Smalltalk environment. The 

presence of the class is required to move and use an object. DS also provides several 

design alternatives which could be useful to make implementation decisions of a distributed 

object system. 

The authors report that Distributed Smalltalk has been implemented on a network of 

Sun-2 workstations. The characteristics of the implementation include distributed garbage 

collection, access control, and object mobility. 

The work related to Distributed Smalltalk is Multiprocessor Smalltalk [Pallas 89]. 

Multiprocessor Smalltalk discusses a Smalltalk implementation on a multiprocessor system, 

and provides related performance analysis. 
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1.4.3 Amber 

Amber is a programming system that allows a single application program to run on 

a homogeneous network, where each node is a shared-memory multiprocessor [Chase et 

al. 89]. Amber uses an existing programming language and operating system to provide 

support for concurrency and distribution of programs. The distribution model and mobility 

primitives are adopted from Emerald, and Amber's thread and synchronization models 

follow those of Presto. The Amber system consists of a C++ preprocessor and a run-time 

kernel. Amber programs are written in a subset of C++, enhanced with primitives for 

thread and object management. Objects and threads, which provide explicit support for 

concurrency, can be created dynamically. A collection of mobile objects can be distributed 

among nodes in a network, while interacting with each other through location-independent 

invocation. Computational load distribution is determined by the locations of data objects. 

The implementation reported by the authors is on a DEC Fire-fly running the Topaz 

operating system. Amber programs are converted into a set of Topaz tasks, and they are 

- distributed in the network, in which one task executes on each participating node. The 

global virtual memory is implemented by arranging the virtual address space which 

simplifies object migration. 

Sloop can be viewed as a parallel programming language and environment [Lucco 

87]. It is based on an object-oriented model that supports explicit MIMD parallelism. Sloop 

allows explicit assignment of objects to physical processors by providing three operations, 

access, align, and copy. Sloop supports indivisible objects in which only one operation 

invocation executes at a time. Cooperating distributed objects can be located on different 

physical processors in a multiprocessor, and all distributed objects can simultaneously 

execute operations, while interacting with each other using an asynchronous access 
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mechanism. Sloop hides details of the underlying multiprocessor by providing a virtual 

object space which contains a collection of objects that cooperate to solve a problem. 

The authors report that Sloop implementations at AT&T Bell laboratories are 

running on a bus-based multiprocessor (the S/Net), on an experimental 64 processor 

hypercube processor, and on a heterogeneous network of workstations connected by an 

Ethernet. A Sloop program is transformed into a C program by the Sloop compiler. The 

Sloop run-time system, written in C++, uses object relocation heuristics and coroutine 

scheduling to perform mapping and load balancing. 

1.4.5 SQS. 

SOS is a Distributed Object-Oriented Operating System [Shapiro et al. 89] [Shapiro 

et al. 89b]. While SOS uses standard operating system techniques, it also supports 

medium-sized objects, distributed or fragmented objects, and object migration. In SOS, to 

establish a remote service, a client object must acquire a proxy, which is a local interface 

object representing the service and migrating into the client's context at the time of need. 

Such a proxy can process the service locally or remotely. 

SOS, written in C++, is prototyped on top of Unix (SunOS) [Shapiro et al. 89b]. 

The standard C++ tools such as inheritance and coercion methods, as well as a task library 

for coroutine-style programming, are used to provide interface between applications and the 

system. 

SOS incorporates several similar concepts to Parallel-C++ relating to object 

mobility. However, there are still substantial differences between SOS and our work. First 

of all, the approach of SOS is operating system based, whereas our approach is high-level 

language based. Secondly, SOS is concerned with facilitating the implementation of 

compilers, whereas we are concerned with providing high-level language support for 

abstraction and developing a compiler for it. Thirdly, many ideas, such as Dynamic 
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Interface Environment Binding (DIEB), ownership, concurrent language support, new 

control flow and enhanced scope rules, are uniquely suggested in our work. 

1.4.6 ~ 

Argus is an object-based language and system which supports fault-tolerant 

distributed programming by providing location-independent invocation of distributed 

objects [Liskov and Scheifler 82] [Liskov 88]. There are two different entities, Argus 

guardian (which is an abstract object encapsulating resources) and CLU cluster (which 

represents local objects contained inside guardians) in Argus. A guardian resides in a node 

even though its resident location is changeable. A distributed program is composed of a 

number of guardians which can execute in parallel. Data objects storing resources in a 

guardian can be accessed by calling handler procedures. Argus uses a "pass-by-value" (not 

by-reference) parameter passing mode. Argus also provides atomic actions (like 

transactions in database systems) within programming languages like Avalon [Ditlefs et al. 

88]. It does not provide the idea of object migration, but related issues are well discussed. 

A prototype of Argus is implemented on a collection of Micro-VAX II workstations 

operating under Ultrix. 

1.4.7 Concurrent C++ 

Concurrent C extends C by adding concurrent programming facilities [Cmelik et al. 

89] [Gehani and Roome 86, 88, 90]. Concurrent C++ is obtained from Concurrent C by 

adding data abstraction facilities of C++ [Gehani and Roome 88b]. The communication 

model of Concurrent C is based on Ada rendezvous. A Concurrent C program consists of a 

set of processes, which are sequential programs independently executing in parallel. 

Concurrent C provides facilities for operations on processes such as processes creation, 

process termination, process synchronization, and priority specification. Concurrent C 

processes communicate with each other by means of (synchronous and asynchronous) 
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transactions which can be thought of as services called by other processes. Concurrent 

C++ facilitates data abstraction of C++ within concurrent programming in Concurrent C. 

The language extension is made by allowing process variables in Concurrent C as class 

members in C++, and allowing process operations in Concurrent C as member functions in 

C++. Concurrent C++ processes allow multiple threads of control. However, Concurrent 

C++ does not allow inheritance by a derived process. Gehani and Roome report that data 

abstraction and parallel programming facilities seem to be orthogonal; however, the merger 

of Concurrent C and C++ raises several integration issues which might be valuable to 

review. 

Concurrent C has been implemented on several types of systems: a Unix based 

single processor system, a set of VAX computers connected by an Ethernet network, and a 

shared memory multiprocessor system. The shared memory multiprocessor system is 

assumed to be an appropriate architecture for programming in Concurrent C. 

1.4.8 Qrgj, 

Orca adopts a shared data-object model to facilitate distributed programming [Bal 

and Tanenbaum 88]. Shared data are encapsulated within passive objects which are 

instances of abstract data types. Parallel activities are realized by dynamic creation of 

multiple sequential processes. A process can pass its objects as shared parameters to its 

children. Processes communicate indirectly through shared data-objects, which play the 

role of a communication channel between processes because any changes to the object are 

visible to all processes. Such a scheme is similar to call-by-sharing in CLU [Liskov et al. 

77]. Access to shared data is allowed through indivisible operations only, and such access 

is automatically synchronized. 

Bal and Tanenbaum provide the following implementation models: implementation 

in a distributed system, with point-to-point message, and with reliable/unreliable multicast 

message. A prototype implementation has been done on top of the Amoeba distributed 
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operating system. Orca programs are transformed into intermediate codes which can be 

translated into machine-dependent object code on a target system. The implementation is 

based on automatic object replication and object migration performed by a run-time system. 

1.4.9 Presto 

Support of object-oriented parallel programming in a multiprocessor environment is 

the objective of the Presto system [Bershad et al. 88]. C++ with a library and a run-time 

system are the primary components of the Presto system. Presto provides users with a set 

of pre-defined object types useful for writing parallel programs. In Presto, all objects 

execute in a single address space shared by all processors. Thread objects provide fine­

grained control over an execution of a program, and synchronization objects provide 

concurrency control for threads executing simultaneously. Once created, a thread is capable 

of executing operations of an object in parallel with the starting thread. 

Presto has been implemented as a run-time library written in C++ on Sequent 

Balance and Symmetry shared memory multiprocessor machines on top of the Dynix 

operating system. The Presto run-time system maps a user's threads onto physical 

processors, and provides access to a global shared memory. All mappings are transparent 

to the Presto users. A single scheduler object keeps track of all threads that are ready to run 

in each processor object. A user's programs are linked with the Presto library to obtain 

executable programs. 

1.4.10 Other Related Work 

Some operating systems for distributed systems, such as the Sprite operating 

system [Douglis and Ousterhout 87] and the DEMOS/MP operating system [Powell and 

Miller 83], use process migrations as a method by which executing processes transfer 

between processors. Other related work includes Loops [Kempf et al. 87], Linda 

[Gelernter 85] [Leler 90], Flavors [Moon 86], Concurrent Smalltalk [Yokota and Tokoro 
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87], and CLOS [CLOS 88] [Keene 89] in the area of object-oriented programming 

languages and systems. 

The next chapter is devoted to clarifying the problem domain in which we have to 

design new language constructs, and to explaining the concepts that are incorporated into 

Parallel-C++. 



CHAPTER II 

OBJECT-ORIENTED PARALLEL PROGRAMMING LANGUAGE 

2.1 Problem Domain 

Processes are a set of programs. Processes are called sequential when they execute 

sequentially one instruction at a time by following a given thread of control. Using 

sequential processes, we have been doing serial programming in various ways. A 

sequential process delivers the same result with given data [Brinch-Hansen 73]. Many 

specification methods and proof methods of correctness for sequential programming have 

been developed. They allow us to use sequential programming as a tool to express our 

behaviors. 

But nowadays, we have met another genre in our computing. It is known as 

concurrent or parallel programming. Processes are called concurrent if their execution may 

be interleaved or overlapped in arbitrary order in a given time. Many of our actions in real 

life are done by concurrent behaviors. For example, we may have dinner while reading a 

newspaper, watching TV and talking to members of the family. While we drive a car, we 

are watching the road, listening to classical music, pushing the pedal and changing gears. 

In a factory, many control tasks can be done efficiently in parallel. In various ways, 

concurrent action is a natural form of human behavior. The programming that describes our 

lives must be able to express these kinds of parallelism. Parallel programming should be 

able to meet these needs in our lives. Concurrent programming can be achieved in various 

ways such as interleaving, overlapping, pipeling, time-sharing and multi-tasking execution 

of instructions. While concurrency gives the potential for parallelism, parallel processing 

achieves the actual simultaneous executions of parts of operations. Concurrent and parallel 

20 
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programming has been discussed as early as the sixties in the literature [Brinch-Hansen 73-

77] [Dijkstra 68] [Hoare 74-78]. 

During the past decades, we have seen real, experimental and commercial 

concurrent processing machines which use multiple parallel processors. Those machines 

have demonstrated speed-up, efficiency and effectiveness in various research projects [Fox 

87-89]. As a consequence, we need parallel languages to implement parallel algorithms 

efficiently. Some parallel languages have been investigated for achieving such a need in 

parallel computing. 

2.2 Concurrent Language Features 

A well-known representation of concurrent processes is a "parallel statements" 

construct [Dijkstra 68]. The "parallel statements" construct has several concurrent 

statements in the construct [Figure 2.1]. The "parallel statements" construct is well suited to 

structured programming, since a parallel statement has a single fork-point "parbegin" and a 

single join-point "parend". 

begin So; parbegin S1; ... , Sn parend; Sn+l end; 

Figure 2.1. Parallel Statements 

The parallel statements can be depicted by a precedence graph like the one shown in 

Figure 2.2. This language construct facilitates fine-grained parallelism among concurrent 

statements. 



22 

so 
J. 

l 1 
St Sn 

J. 
Sn+l 

Figure 2.2. Precedence Graph of the Parallel Statements 

When using the 11parbegin/parend 11 construct, programmers should guarantee 

independence of statements in the construct if the compiler does not check for 

dependencies. To diminish this burden of programmers, another parallel block construct 

for automatic processor allocation, llautobegin/autoendll, can be provided. The 

llautobegin/autoendll construct shifts the burden of enforcing parallelism from the 

programmer to the compiler. The compiler uses the restructuring algorithms to check for 

dependencies. Having determined the dependencies, the code is parallelized. If all 

statements are mutually independent, this is the same as a 11parbegin/parend11 statement: 

While processing this construct, an automatic processor allocator translates the program 

segment specified in the construct to a virtual execution graph, which is used to check 

interdependency among the statements. An automatic processor allocator congregates the 

dependent statements into a block at each dependency checking step. Finally, the automatic 

processor allocator maps the disjoint program segments to the dependent processors. This 

procedure is illustrated in Figure 2.3. Suppose we have a sequence of statements, So, ... , 

and Sn, to be executed. In Figure 2.3, the leftmost figure represents a sequential execution 

ofthe statements. In the sequential execution, the symbol II ~~~represents a dependency of 

the statements, and the symbol 11 ···> 11 represents a textual order of the statements. For 

example, II So ~ S2 II means that the execution of the statement S2 depends on the 

execution of the statement So (which means that S2 cannot be executed before/while So 
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executes), and "So···> S1" simply means that the statement So is placed before the 

statement S 1 in a program. 

<serial> 

G) 
c ) Q 

''\ 

@J (' G 
CQ 
~ 

serial order 

<parbeg i n/parend> <autobegin/autoend> 

@ @ 
+ + + 1 l + e @ 

..;. G) parallel C0 ..;. 

@ 
execution 1 

G) ! l + + 
+ + 

G) G) 
+ + ... ... 

@ @ 
wrong parallel order: right parallel order: 

arbitrary processor allocation automatic processor allocation 

where si : statements, i = 0, ... , n (number of statements), 
"--+" means a dependency and 
"·····•" means a textual order. 

Figure 2.3. Automatic Processor Allocation Graph 

Based on the information given in the leftmost figure which shows serial execution 

of the program segment, we may have two versions of parallel execution, using different 

parallel constructs such as "parbegin/parend" (middle figure) and "autobegin/autoend" 

(rightmost figure) which have different semantics. In the "parbegin/parend" figure, after the 

execution of the statement So, the statements, S1, S2, and S3, are arbitrarily parallelized 

without checking interdependencies among the statements. As a consequence, this 

execution of the parallelized statements leads to a wrong result. Since the execution of the 
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statement S3 depends on the execution of the statement S2, the statements S2 and S3 cannot 

be arbitrarily parallelized, and they must execute sequentially. In the "autobegin/autoend" 

figure, the statements S2 and S3 are serialized into a block, and they can execute with 

another block of the statement S 1 in parallel. This kind of automatic restructuring of a 

concurrent program is done by an automatic processor allocator in the parallelizing 

transl<itor/compiler. 

From the point of view of granularity of parallelism, we have only discussed the 

language features necessary to support fine-grained parallelism. We now introduce a 

language construct, "explicit process allocation", which may be useful for medium-grained 

parallelism. 

We may explicitly assign processes to a number of parallel statements. In this case, 

parallel statements may be represented by several blocks of concurrent processes, and each 

process block consists of sequential statements in it. This language construct, the "explicit 

process allocation" (shown in detail in the next chapter), is initiated from the "parallel 

compound statement" [Dijkstra 68] and Ada "tasks" [Ada 79,83]. 

The statements assigned by an "explicit process allocation" construct are in a critical 

region. The statements among processes are mutually exclusive and the processes defined 

by the construct are completely independent of each other. 

In general, we apply the rule of disjointness [Brinch-Hansen 73] to the parallel 

construct. The disjointness implies that a variable "vi" changed by a statement "Si" cannot 

be referenced by other statements. A compiler may provide a facility to check the 

interdependencies between concurrent process statements at compilation time. But this 

method does not guarantee to find dependent variables in the concurrent statements, with 

pointer variables, reference variable and the address of the variables being the typical 

examples of this case. We cannot find out their values at compilation time, because values 

are not assigned statically. Because they can be changed dynamically, those values can be 

known at run-time only. To prevent erroneous or unpredictable programs using such 
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variables and common variables accessible by several concurrent processes, we need 

another language construct to exchange information of such variables between concurrent 

processes. Several language facilities for synchronization such as semaphores, critical 

regions and monitors, have been suggested in the literature. With a distributed memory 

facility without any local memory, message passing is the well-known method to 

communicate among concurrent processes. A prospective parallel language may include a 

synchronization construct "send/receive" to communicate and exchange data between 

concurrent processes. The "explicit process allocation" construct supports programming in 

medium-grained parallelism. Also, the parallel language may include language constructs 

like "parallel function calls" for medium and large-grained parallelism. We define the above 

language features in detail in the next chapter. 

So far, we have discussed parallel programming in modular and structured 

programming only. In the next section, we discuss parallel programming with an object­

oriented programming paradigm. 

2.3 Distributed Object-Oriented Programming 

2.3.1 Object-Oriented Programming in Distributed Computing 

One of the barriers to parallelism in the conventional serial languages is access to . 

common variable and global constructs. Local modularization, like objects in object­

oriented programming, can be one of the solutions to achieving medium-grained and large­

grained parallelism. 

In distributed memory architecture, the cost of frequent communications among the 

distributed small computations is very high. To expect better efficiency and to reduce the 

frequency of communication, the other kind of computations may be considered. In this 

case, the modularization of the computation with local variables is necessary. This kind of 

module can be represented by an object in the object-oriented programming paradigm. An 
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object includes local data and interface operations. Local data in an object can be modified 

only by its operations in the object. Objects communicate with each other by using these 

interface operations. 

This section describes the idea which has been developed to allow object-oriented 

programming in a distributed computing environment. The major ideas and concepts in the 

design of the programming language Parallel-C++, which has incorporated object-oriented 

programming within parallel and distributed computing, are presented here. 

2.3.2 Static and Dynamic Objects 

The key concept in C++ is the class [Stroustrup 86]. Parallel-C++ adopts this 

concept to support data abstraction and information hiding. The class is a template from 

which several objects can be defined. Objects are instances of classes. An object consists of 

local states and methods which may modify its local states. There are two kinds of objects, 

static objects and dynamic objects, in our distributed object-oriented programming system: 

(1) A static object (free object) is a stationary object. A static object may 

own any number of dynamic objects. A static object can be also viewed as a 

master object which controls other objects in a system. 

(2) Dynamic objects can be moved from one static object to another. One or 

more dynamic objects can be owned by a static object. A dynamic object 

owned by a static object can be moved to another static object. 

Parallel-C++ incorporates another important concept which is "Distributed Object­

Oriented Parallel Programming". In distributed object-oriented parallel programming, 

objects can be distributed to have their own processors and hence they can be executed in 

parallel on their respective processors. Conceptually, a static object is bound to a processor 

and this binding does not change during the lifetime of the object. However, in the case of 

a dynamic object this binding varies. Several dynamic objects can be owned by a static 

object. Once an object is owned by any static object (or process), other objects (or 
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processes) cannot access the methods and data structures of such an object. An object as 

one of the instances of the class can be accessed by only one object (or process) which 

owns that object at any time. A dynamic object can communicate with its owner by using 

the owner's methods. 

Dynamic objects can be exported and imported by other objects. Permission to 

access objects owned by other processes can be gained by using "export/import" constructs 

only. The basic construct is shown in the language definition in the next chapter. Unlike in 

Modula [Wirth 77] and in Eiffel [Meyer 88], the terms "export" and "import" are used in 

relation to dynamic objects only. An object does not export itself, and the visibility of 

imported object is limited to the importing object. One process can export its objects to 

another process, while its counterpart can import that object. The exported object is queued 

into the import-list of the destination object (or process). Dynamic objects possess features 

for dynamic interaction with the enclosing environment. 

One of the models for interaction among the concurrent computational objects for a 

distributed system is communication. Communication models provide interactions among 

independent objects while preserving encapsulation and information hiding in a 
. 

computational object. "Export/import" constructs enable synchronous communication 

between the objects (or processes) by using dynamic objects. Once a dynamic object is 

exported, then the importing object can access this incoming object, and the exporting 

object (or process) cannot access this object anymore. Not only the logical address of this 

exported dynamic object has been changed, but the address space of this object has also 

been changed in the distributed computing system. This imported object responds to the 

messages with the new environment provided by the enclosing object (or process). This 

basic conceptual model is illustrated in Figure 2.4. (The corresponding language construct 

is shown later in the next chapter.) 
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Figure 2.4. Object Migration Model 

Figure 2.5. Parallel-C++ System View 
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A system for our distributed object-oriented parallel programming language, 

Parallel-C++, can be implemented in various parallel computers. A system view for the 

implementation shows the general scheme of the implementation and mapping of the 

components in the system (Figure 2.5). A system is composed of class layer, object layer, 
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virtual layer and physical layer. From the point of view of the object layer, a program 

consists of static objects and dynamic objects which are instantiated from their own classes 

in the class layer. Each object can be mapped into a process in the process layer. Processes 

reside on the physical processors. 

2.5 Ownership 

The relationship between the importing object and the corresponding dynamic 

object is called ownership. Ownership is a relation representing interactions between a 

static object and the corresponding dynamic object. When a dynamic object is exported to a 

certain static object, its ownership also changes. The definition of ownership is as follows. 

2.5.1 Definition of Ownership 

An object "s" owns an object "d" if and only if 

(1) "s" alone can directly invoke methods of "d"; 

(2) "d" can directly invoke only methods of "s", and 

(3) any communication between "d" and other objects must be directed through 

"s". 

Then "s" is called an owner of "d". 

An ownership between two disjoint sets of objects Sand D, where S is the set of 

static objects and D is the set of dynamic objects, is a binary relationship (Si, dk), where 

Si E S and dk E D. When a static object "si" exports a dynamic object "dk" to another static 

object "s(, ownership is changed from (si, dk) to (Sj, dk), where Si, Sj E S and dk E D. 

2.5.2 Properties of Ownership 

If the static object "si" owns the dynamic object "dk", then 

(1) the static object "si" owns the communication control for dynamic object 

"dk" exclusively,and 



(2) the result of computation of dynamic object "dk" is determined by the 

environment provided by static object "si". 

30 

Dynamic objects also follow static inheritance properties. A dynamic object looks 

up its own methods first. If the necessary methods cannot be found, then the dynamic 

object continues to look up the methods by tracing the inheritance hierarchy which has been 

statically defmed and finds the inherited methods. The external environment of the dynamic 

object is provided by the static object. It can affect the evaluation of these methods. These 

properties are shown by distributed object processing and object migration. 

(1) By distributed object processing, several concurrent objects are executable 

in parallel and they may exchange current states by means of communication 

among objects. 

(2) By virtue of object migration, a dynamic object may react differently in 

different environments wherdt resides, while it keeps data integrity. 

2.5.3 Example of Ownership 

For example, in a real-time air-traffic control system, suppose that we have two 

airports "Dallas" and "OK_City", and we have two airplanes "American" and "United". 

"Dallas" and "OK_City" are instances of a class "airport", whereas "American" and 

"United" are instances of a class "plane". Ownership can be defined between the airports 

and planes. Ownership in this case indicates which airport is exclusively monitoring the 

plane. When these planes travel from one city to another, the ownership will be changed. 

Ownership shows this relation. 

Let S = { Dallas, OK_City } and 

D = { American, United }, then 

the possible ownership relations are 

R = { (Dallas, American), (Dallas, United), 

(OK_City, American), (OK_City, United) }. 



31 

2.5.4 Characteristics of Ownership 

(1) Ownership is different from inheritance. Inheritance hierarchy may or may not be 

the same as ownership hierarchy. Class hierarchy is static all the time. Ownership 

can be defined by any static objects and dynamic objects in the system. The owner 

of a dynamic object need not be an object instantiated from its super-class. The 

owner may be super, sub or a sibling in class hierarchy. 

(2) Theoretically it is possible to have a hierarchy of objects related by ownership. In 

that case, all descendants defined by ownership also move when a dynamic object 

moves. (However, in our experimental language Parallel-C++, only one level of 

ownership is allowed.) Again the above descendants are not necessarily the objects 

instantiated from sub-class in class hierarchy. 

(3) Reference to a dynamic object in a different address space (address in which other 

objects are) is only done by object migration. The "export/import" constructs 

support object migration (shown in the next chapter). Reference to an exported 

object is not allowed. 

(4) Dynamic objects may respond differently to the methods according to the 

environments where they reside currently. We call this Dynamic Inteiface 

Environment Binding (DIEB). The DIEB facilitates a computation in different 

environments. A current owner provides a computation environment to a dynamic 

object. 

(5) A global variable like a static variable cannot be defined, assigned or referenced in 

a dynamic object because the address space of the object is changeable at run-time. 

(6) When a dynamic object is exported, its state is also moved, and the address of the 

shared methods of its class can be found by tracing inheritance hierarchy, which is 

static in a system. 
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When an object moves to a new owner (importing object), its state is moved at the 

same time. This model preserves more of the properties of abstraction, encapsulation and 

information hiding than shared variables do. The information kept in an object is retained 

and the integrity of that object is preserved as it moves. This model represents situations 

that occur in many real-world situations. For example, in child adoption, the circumstance 

(environment of interaction) of a child has been changed, but his own characteristics and 

inclinations are preserved by the child initially. But new education can change his moral 

values and knowledge. Figure 2.6 depicts such an example that uses object migration. In 

Figure 2.6, classes are depicted by using ovals, and objects are depicted by using boxes. 

Super and sub classes are connected by lines. Thin dotted lines represent instantiation of 

objects from their respective classes. Thick dott~d lines represent ownerships between 

dynamic objects and their owners. Figure 2.6<a> illustrates an ownership defined between 

the objects instantiated from sibling classes. Figure 2.6<b> illustrates an ownership 

defined between the object instantiated from a super-class and the object instantiated from a 

sub-class. The figures of left-hand side depict the situation before export/import operations, 

and the figures of right-hand side depict the situation after export/import operations. 

Figure 2. 7 shows various examples of ownership relations in detail. Also it 

illustrates the ownership relation when "export/import" operations are applied to the 

examples. The figures on the left, such as <a> and <b>, illustrate various ownership 

relations with the inheritance hierarchy. In the figures, arrows represent ownership 

relations. A dotted circle or a box represents an exported object instantiated from its class. 

A bold circle or a box represents an imported object from its class. We assume "Pi" is an 

exporting process and "Pj" is an importing process. 



(before export/import) 
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<b> Super-Sub Class Case 

Figure 2.6. Ownership Hierarchy vs. Inheritance Hierarchy 
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Figure 2.7. Various Ownership Relations with Inheritance Hierarchies 
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2.5.5 Some Questions and Answers 

We may have several questions about distributed objects. Here, we list possible 

questions and suggest some solutions. 

( 1) Can any object be the owner of any other object? 

Theoretically yes. But the owner should be defined in the syntax anyway. So not all 

objects are interchangeable dynamically between static and dynamic objects in a program. 

(Practically, for example, the owner is a static object enclosing dynamic objects as 

members in Parallel-C++. The objects used in an export construct can be assumed to be 

dynamic objects.) 

(2) When (under what condition) does an object become an owner? 

Theoretically, once a static object owns and gets communication control of dynamic 

objects, it becomes an owner. Syntactically, if a static object has dynamic objects like class 

objects as members, then ownership is declared. (Actually, there is no necessity for explicit 

syntax for static or dynamic objects in Parallel-C++, but once an object is declared in the 

same way as object-as-member, it is assumed that the enclosing object is static and the 

enclosed object is dynamic. Also a dynamic object can be found in an export construct.) 

(3) When (how) does ownership change? 

Once a dynamic object moves to another object, then ownership changes. If a 

dynamic object "dk" moves from current owner "si" to a new owner "sj", the ownership (s, 

d) may change thus: 

(Sj,dk) ~ (Sj,dk). 

Syntactically, this is done by "export/import" constructs. Dynamic interaction 

among distributed objects is done by ownership change. The computation of a dynamic 

object may be affected by the environment provided by its current owner. The external 

environment of a dynamic object is dynamically bound at run-time. 
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Inheritance hierarchy is static in Parallel-C++. Ownership change does not affect 

inheritance hierarchy at all. An object which moves to another environment is still an 

instance of class statically defined already. This conserves inheritance hierarchy all the 

time. 

(4) How can communications be done among objects? 

If a dynamic object is owned by an owner, all communication should go through 

such an owner. The owner provides a communication line from outside to the inner 

dynamic objects. This embedded communication provides a mechanism for information 

hiding and for Dynamic Interface Environment Binding (DIEB). Suppose we have different 

scenarios: 

(4.a) Communication between dynamic objects and dynamic objects (Figure 

2.8<a>): 

No direct communication between dynamic objects (for example, "dm" and "dn" in 

Figure 2.8<a>) is allowed, unless those dynamic objects reside at the same static object 

(for example, "dk" and "d0 " in Figure 2.8<a>). The computation of a dynamic object is 

dependent on the enclosing environment provided by its owner. So the computation 

resulting from direct communication between dynamic objects may be different from the 

results expected in a different environment. Communication through the enclosing owner to 

dynamic objects ensures the results computed in the environment provided by the owner. 

(4.b) Communication between dynamic objects and owner (Figure 2.8<b>): 

An owner can communicate with its dynamic objects using the methods of these 

dynamic objects defined already (for example, "fj" communicates with "d0 " in Figure 

2.8<b> ). An owner cannot communicate directly with dynamic objects owned by other 

objects. Communication must go through the communication line provided by their owner 

(for example, "dm" communicates with "fj" through the communication line provided by 

"fi" in Figure 2.8<b>). 
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( 4.c) Communication between owner and owner (Figure 2.8<c> ): 

Communication between owners is done by calling each other's methods (for 

example, the communication between "fi" and "fj" has been done in conventional way in 

Figure 2.8<c>). 

<a> Dynamic - Dynamic Communication 

<b> Dynamic - Owner Communication 

<c> Owner - Owner Communication 

Figure 2.8. Various Communications among Distributed Objects 

2.6 Contribution and Discussion 

In the previous sections we have shown how object-oriented programming can be 

extended a level further by incorporating semi-persistent dynamic objects; semi-persistent 

because their lifetimes can be spanned by the lifetimes of more than one object. The totality 
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of objects in the system consists of static objects and dynamic objects. A static object can 

be a master object which owns some dynamic objects which may be floating from one 

object (process) to another object (process) in the system. This situation occurs very 

frequently in the familiar real-world, examples being aircrafts (controlled by distributed 

airports) in an air-traffic-control-system, communication messages (passed by distributed 

nodes) in local area networks and process migrations (from one resource to another) in load 

balancing (resource sharing), etc. 

Object mobility can be obtained as a consequence of the change in ownership 

relation between objects which defines a new dynamic relation among objects. An 

ownership relation between static and dynamic objects can be changed while conserving the 

static class hierarchy. 

When the ownership of an object is changed due to export, the importing object 

may own this exported object. Ownership does not mean the overlay of their address 

spaces (e.g., object frames and activation records). Static and dynamic objects have their 

own address spaces. The ownership concept is orthogonal to the inheritance notion and 

hence does not interfere with the class hierarchy. To be truly object-oriented parallel 

programming, the conflict between concurrency and inheritance should be avoided. In 

Parallel-C++, the inheritance is static. The class hierarchy is constructed at compile time, 

and the system keeps its class-list, object-list, and class hierarchy at all times. When a 

method is called by an object, the system looks up the method table for the object. If the 

method looked up is not found at the current object, the system traces the class hierarchy 

already defined, and finds the desired method from the super-class. Even if the dynamic 

object migrates to another static object, the class hierarchy is still conserved and the 

inheritance can be traced. The instance variables in objects are not shared data. 

A static object (or process) can export its objects to another static object (process), 

while its counterpart can import that object. The exported object is placed in the import-list 

of the destination object (or process). When objects are exported and imported among the 
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processes, the environments of the objects will change. Object environment includes 

storage for the object frame, which consists of object name, class name, frame size, 

instance variables, pointer to the address of member functions, and other necessary 

information for the management of the object. If an object is exported, then the exporting 

object purges it from its environment. The importing object establishes an environment for 

it to communicate with the imported object. There are two kinds of environments for a 

dynamic object, internal environment and external environment. The internal environment 

of an object consists of its data structures and methods, including the ones it obtains via 

inheritance. The external environment is the environment enclosing the dynamic object. The 

external environment depends on the static object which owns the dynamic object. The 

external environment affects the communication between the static and dynamic objects. 

The internal environment of the dynamic object moves with it, but the external environment 

does not. The internal environment of an exported object is bound to the external 

environment which is provided by the importing object. By this Dynamic Interface 

Environment Binding (DIEB), an object behaves differently according to the environment 

in which it resides. Ownership guarantees encapsulation and protection of dynamic objects. 

The basic implementation scheme including the run-time memory management for this new 

concept is more specifically described in Chapter 4 and Chapter 5. 

Parallel-C++ adds enhancement to the scope of the objects. An object in C++ may 

have either static or dynamic scope. In C++, an object can be instantiated from the 

beginning [Figure 2.9<a>] or in the middle of a program [Figure 2.9<b>] and it still lives 

until the end of program unless the destructor operation of the class is issued to kill it. Once 

the object's life ends, it cannot be restored again. In Parallel-C++, however, a dynamic 

object can be exported at any time from any process that owns it [Figure 2.9<c> ], and the 

process which imports this object inherits the environment [Figure 2.9<d>], and the object 

can also be imported again with the current states. If the object is not exported, then its 
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scope ends within the current owner. Moreover, the lifetime of a dynamic object extends 

over all the importing objects. In general, static objects have static scope. 

<C++> 
begin • begin instance 

• instance 

l destruct 

end • destruct end 

<a> <b> 

<Dynamic Objects> 

begin • instance begin 

• export • import 

end end L-. 
<c> <d> 

Figure 2.9. Comparison of the Scope of Objects 

The language constructs "export/import" are different from Ada "rendezvous" [Ada 

79,83] from the point of view of control. Figure 2.10 illustrates the differences in control 

flow between this construct and related constructs, such as "functions", "coroutines" and 

Ada "rendezvous". Programming using dynamic objects can simulate other control flow 

schemes provided by those related constructs. 



<Functions> 
main function I call r·········· 

(~;i"i)"' 

r······· .. ·i ............ . 
<Coroutines> 

program; programi 

! ..... (;;;;;;;;;;)· ···! ! ........................ . 
......................... ! 

! ........................ . 

<Ada Rendezvous> 
task; taski 

cani.. ................ Ientry 
rendezvou 

(suspended) 

r·················· 

<Dynamic Objects> 
process; processi processk 

export ............... import I 
(Ieee~ import 

gomg) export ............... l(wait until 
imported) 

Figure 2.1 0. Comparison of Flow of Controls 

Parallel-C++ language definitions and examples are given in the next chapter. 
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CHAPTER III 

PARALLEL-C++ : LANGUAGE DEFINITION 

3.1 Language Definition 

A programming language has three main characteristics [Schmidt 86]: 

( 1) Syntax: the appearance and structure of its sentences, 

(2) Semantics: the assignment of meanings to the sentences, and 

(3) Pragmatics: the usability of the language. 

In this chapter, we define the syntax and semantics of an object-oriented parallel 

programming language, Parallel-C++. We also show some examples of the usage of each 

new language construct. Implementation schemes for this language are shown in the 

following chapters. Language definitions through the syntax and semantics of the language 

should verify the correctness of the implementations. 

3.1.1 Parallel-C++ Overview 

The programming language C++ [Stroustrup 86] is a superset of the programming 

language C [Kernighan and Ritchie 78,88]. Parallel-C++ is an extension of C++ for 

allowing object-oriented programming in parallel and distributed programming 

environments [Jo and George 89,91]. Since the language definition for the serial 

programming part of Parallel-C++ is almost the same as that of the C and C++ languages, 

the language definition in this section does not provide a detailed description of the serial 

part of the language. Even though we do not provide all of the language features, we 

describe the language features which are new and which are different from existing 
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languages. The language definitions that minimally show the salient features of the new 

language are described here. 

Even though we mostly explain new language constructs by using existing 

language features, we try to avoid depending entirely on those languages that are 

sometimes too specific. The reason for our approach, which provides independent (or 

portable) modules of new language grammar, is to allow readers to import these ideas into 

their own models efficiently. 

3.1.2 Scope Rules 

A Parallel-C++ program consists of one or more translation/compilation unit(s) 

stored in one or more file(s). Files for translation/compilation should have the name with 

"*.c" for source programs and "*.h" for header files. The current implementation of 

Parallel-C++ expects header files to be defined before the translation/compilation of source 

program. 

The scope rules for variable names, except dynamic objects, in a program usually 

follow the conventional scope of C++. But the scope of a dynamic object is local to its 

owner which is a static object. Variables declared in a dynamic object are local to that 

object. Export/lmport operations may change the scope of a dynamic object. Once a 

dynamic object is exported, it is no longer available to its owner. The scope of an exported 

dynamic object is limited to the object importing such a dynamic object. 

3.1.3 Keywords for Parallelism 

In addition to the keywords defined in C++, Parallel-C++ has reserved some 

identifiers for use as keywords for object-oriented parallel programming. Those are the 

following. 
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keywords 

parbegin parend I I parallel statements 

autobegin 

parallel_commands 

process 

parallel_functions 

send 

autoend // automatic processor allocation 

export 

3.1.4 System Library 

end_parallel_commands //explicit process allocation 

end_process 

end_parallel_functions 

recv 

import 

II explicit process definition 

II parallel function calls 

II synchronization 

II object migration 

The functions, types and macros of the standard library are declared in system 

library files. Besides these, Parallel-C++ provides other header files, "msg.h", "token.h", 

"global.h" to support translation option. Because the Parallel-C++ translator automatically 

includes these files when a user performs a translation, so programmers need not explicitly 

include it. The header file "global.h" is included by the translator, compiler and interpreter 

programs. The header file "msg.h" defines functions and classes for message passing. 

Another header file "token.h" is for declaration of token codes used in translation. The 

"global.h" file declares global data structures and defines other necessary functions and 

classes. Other system files and header files, for the translation and compilation, are 

specifically described later in the sections describing implementation issues. Users can be 

concerned with only the system standard libraries or user-defined files which they use with 

translation/compilation. 

3.2 Language Extension for Parallelism 

To achieve explicit parallelism with an existing serial object-oriented language (such 

as C++), some extensions to that language are necessary. Those language extensions 

include the constructs for parallel statements, automatic process allocation, parallel function 
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calls, synchronization, explicit process allocation and object migration. Here we define 

syntax and semantics for those new language constructs which we have designed and 

incorporated in Parallel-C++. In the syntax definition, we use "Gothic" letters for the 

keywords (which are mostly new constructs), and "Italic" letters for the non-terminal 

symbols. The symbol":" is used as the meaning of "is defined as", and the symbol "I" is 

used as "or". The symbol "opt" appears in the right-lower side of non-terminal means 

"optional". We do not go through all the symbols at the terminal symbol level, because 

those parts are conventionally well defined in the existing base languages, which are here C 

and C++. Those parts of the grammar are skipped and denoted using the":" symbol. An 

example usage of each language construct is also provided. We show here six kinds of 

typical extensions. We assume the newly extended grammars are derived from the non-

terminal "statement". 

a-program 

statement 
parallel-statement 
automatic-processor-allocation-statement 
parallel-function-call-statement 
synchronization-statement 
explicit-process-allocation-statement 
object-migration-statement 

The following sections of this chapter are dedicated to the definition 

of the language extensions of an object-oriented programming language while achieving 

parallelism. 

3.3 Parallel Statements 

A "parallel statements" construct allows parallel execution of the statements 

enclosed by it. 



3.3.1 Syntax 

parallel-statement 

compound-statement 

declaration-list 

statement -list 

3.3.2 Usage 

parbegin compound-statement parend 

{ declaration-listopt statement-listopt 

declaration 
declaration declaration-list 

statement 
statement statement-list 

parbegin { statements } parend; 

where parbegin: 
parend: 
statements: 

3.3.3 Semantic Notes 

parallel statements begin 
parallel statements end 
optional parallel statements 

(1) The statements in this construct are concurrently executable, and may 

execute in parallel at the run-time. 

(2) Syntactically speaking, a "parallel statements" construct can be nested. 

(3) When using a "parallel statements" construct, a user should guarantee that 

the execution of parallel statements in this construct are independent and 

mutually exclusive of each other to be parallelized successfully. 

(4) The variables defined or used in the construct are strictly local. 
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(5) A parallelizing compiler binds the divided part of statements inside into one 

or more parallel blocks, as many as the number of processors that are 

allowed to use simultaneously in the system. 

(6) Fine-grained parallelism is supported. 



3.3 .4 Example 

Suppose we have a program segment like the following: 

parbegin 
{ 

} 
parend; 

a= b + 1; 
c = d; 
e = f *pi; 
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All three statements, So, S2 and S3, are independently executable, because there is 

no dependency among the variables used in the statements. However, the example given 

below illustrates the improper use of the construct. 

parbegin 
{ 

} 
parend; 

X= y + 1; 
w=z; 
y =X* pi; 

II related to S2 

II error: dependent on So 

In this example, So and S2 are dependent on each other. Because the variables "x" 

and "y" are used in both statements, the results may be different according to the order of 

their executions. The dependency checking by programmers is not an easy task unless the 

number of statements used in the construct is very small. In practice we need a parallelizing 

compilation facility to check program dependency automatically and to provide the 

capability to restructure programs. The next section shows a basic construct for doing such 

automatic checking and restructuring. 

3.4 Automatic Processor Allocation 

User may use an "automatic processor allocation" construct to diminish the burdens 

in checking the dependencies among the statements in a "parallel statements" construct. The 
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automatic restructurer in compilation step restructures the statements in such a construct 

into parallelized blocks of statements after interdependency checking. At run-time the 

restructured blocks of statements are executed in parallel. 

3.4.1 Syntax 

automatic-processor-allocation-statement: 

compound-statement 

declaration-list 

statement -list 

3.4.2 Usage 

autobegin { statements 

where autobegin: 
autoend: 
statements: 

3.4.3 Semantic Notes 

autobegin compound-statement autoend; 

{ declaration-listopt statement-listopt 

declaration 
declaration declaration-list 

statement 
statement statement-list 

autoend; 

automatic restructuring begin 
automatic restructuring end 
optional statements to be parallelized 

(1) The statements in this construct are concurrently executable if no 

dependency is found, and may execute in parallel at run-time. 

(2) If all statements to be parallelized in this construct are mutually independent, 

this has the same effect as a "parallel statements" construct. Even in this 

case, the blocks of restructured statements may not be the same as those of 

a "parallel statements" construct. 

(3) The optimizer module in the parallelizing compiler draws a virtual graph 

during the checking of dependencies among the statements in the construct, 



then restructures the program by blocking the dependent statements into 

several independent blocks. 

(4) The run-time interpreter (Automatic Processor Allocator) executes the 

parallelized statements by running the independent blocks of codes on the 

parallel processors. 

(5) Fine-grained parallelism is supported. 

3.4.4 Example 

For the following program segment: 

So: 
autobegin 
{ 

a= x + 1; 
b =X* pi; 
c = b- 1; 
z =alb; 

auto end; 

.... ' 

I I related to S4 
II related to S3 
I I dependent on S2 
II dependent on S1 and S2 

Thus program segment will be restructured like the following: 

So; 
parbegin 
{ 

I I Block1: on the processori 
II Block2: on the processorj 
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The parallelized program segment will be executed in the sequence of: So first, 

Block1(S1) and Block2(S2 and S3) in parallel, then S4, and Sn finally. 
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The constructs, which have been described, are able to support fine-grained 

parallelism. Independent blocks of codes can be modularized in large size. The next 

construct is for parallel programming of large independent modules. 

3.5 Parallel Function Calls 

For the parallel execution of independent medium or large modules of program, the 

construct "parallel function calls" is provided. Independent sets of functions can be invoked 

in parallel by using this construct. Some research work has been reported in a similar area 

[Bane:rjee 86] [Li and Yew 88]. 

3.5.1 Syntax 

parallelfunction-call-statement : parallel_functions 

function-statement 

function-call 

. function-name 

return-var 

parameter-list 

3.5.2 Usage 

parallel_functions 
{ 

{ function-statement 
end__parallel_functions; 

function-callopt function-statementopt 

function-name ( parameter-listopt ); 
return-var = function-name ( parameter-listopt ); 

identifier 

identifier 

parameter 
parameter, parameter-list 

function-namei (parameter-list); 

return-var = function-nomen (parameter-list); 
} 
end_parallel_functions; 



where parallel_functions: 
end_parallel_functions: 
function-namej: 
parameter -list: 
retum-var: 

3.5.3 Semantic Notes 

parallel function call begin 
parallel function call end 
calling function name 
optional parameter list 
return variable 
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(1) The functions in this construct may be concurrently invoked and executed in 

parallel at run-time. 

(2) Only function call statements can appear in this construct. 

(3) Access to global variables from a "parallel function calls" construct is not 

allowed unless the synchronization construct is used (shown in Section 

3.6). 

(4) Theoretically, the control flow has as many concurrent threads as the 

number of functions in this construct (However practically, it can have only 

as many parallel threads as the number of available processors to which 

parallel function calls can be mapped.). 

(5) The maximum speed-up obtained is proportional to the number of 

processors assigned to this construct. 

(6) The processes, which were allocated to some parallel functions and finished 

their execution, wait until other processes are finished. All processes used 

with this "parallel function calls" construct are synchronized (or joined) at 

the end of this construct. The "end_parallel_functions" statement acts as a 

barrier. 

(7) The use of this construct in a recursive fashion is not permitted. 

(8) Coarse-grained parallelism is supported. 
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3.5.4 Example(l) 

Suppose we have the following program segment, with two functions, "funcl" and 

"func2". In the "parallel function calls" construct, those two functions are concurrently 

invoked (in S 1 and S2), executed in parallel, and synchronized at the end of the construct. 

After joining from concurrent threads, the next serial statement S3 is executed. 

int func1(int x) 
int func2(int y) 

main() 
{ 

{ x++; 
{ y = y + 10; 

return x; } 
return y; } 

int arg = 0; int sos = 0; int sub 1 = 0; int sub2 = 0; 

parallel_functions 
{ 

} 

sub1 = 
sub2 = 

end_parallel_functions; 

func1(arg); 
func2(arg); 

sos = subl + sub2; 

} 

3.5.5 Semantic Discussion(!) 

II sub1 = 1; 
II sub2 = 10; 

II sos: sum of subs= 11 

In the example in Section 3.5.4, the parallel statements S 1 and S2 can be executed 

either in the same processor or in different processors. In a distributed memory system, it 

is possible that the statements sl and s2 execute in parallel on different processors with 

their own local memories. Then the variable "sos" in the statement S3 in the main program 

may not have the correct answer "11" unless the values of variables, "sub1" and "sub2", in 

the main processor memory have been updated with new values somehow. At least the 

values of "sub1" and "sub2" in the statement S3 would have to be updated when the 
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parallel statements are joined just before the execution of statement S3. The compiler or 

translator should generate the codes necessary to return the current values of these variables 

executed in different processor's memory to the main processor's memory. Even if the 

current values of variables in their local memories have been updated, the variables in the 

main processor's memory have not been updated yet. For example, the following pseudo-

code segment is generated by the Parallel-C++ translator between the end of the parallel 

function calls construct and the statement S3 in the restructured program. In distributed 

memory system without any shared memory, every communication between different 

address spaces should be done by message passing only. The constructs, "send" and 

"recv", used here for communications, are defined and explained in the next section. 

if(my _node == process_for_S 1) 
send(sub1, main_process, msg_type_1); 

if(my_node == process_for_S2) 
send(sub2, main_process, msg_type_2); 

if(my_node == main_process) 
{ 

recv(process_for_S 1, sub 1, msg_type_l ); 
recv(process_for_S2, sub2, msg_type_2); 

3.5.6 Example(2) 

I I return result from S 1 

II return result from S2 

I I receive the results 

Can we send a parameter "arg" and receive a return value in the same "arg"? This 

example exhibits more of the difficulties with parallel evaluations in the distributed system. 

The following example provides the motivation to examine this problem. In this example 

we have used the same variable "arg" in both parallel function calls by referencing its 

address. This causes non-deterministic results from their parallel execution. 



void func1(int *x) 
void func2(int *y) 

{ (*x)++; 
{ (*y)= (*y) + 10; 

} 
} 

main() 
{ 

S1: 
S2: 

S3: 
} 

int arg = 0; 

parallel_functions 
{ 

II possible arguments --7 
funcl(&arg); II arg = {0 110} --7 
func2(&arg); II arg = {0 I 1} --7 

} 
end_parallel_functions; 

arg++; II arg = {21 11112} ? 

3.5.7 Semantic Discussion(2) 

possible results 
{1111} ? 
{10111}? 
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In the example in Section 3.5.6, we passed parameters by address for parallel 

function calls. Since the sequence of execution of parallel function calls is non-

deterministic, the function "func1(&arg)" may take the value of "arg" as either "0" (before 

the statement S2 is executed) or "10" (after the execution of S2) and the function 

"func2(&arg)" may take the value of "arg" as either "0" (before the statement SI is 

executed) or "1" (after the execution of S I). To make it worse, after the execution of both 

functions, "arg" has the result of either "1" or "11" (by S I), or either "1 0" or "11" (by S2). 

Thus the execution of the statement S3 results in "2", "11", or "12" for the value of "arg" 

according to its previous value. So we need to guarantee that the value of argument always 

be correct, here with the initial value of "0". The conditions to be satisfied by parameters of 

functions in a "parallel function calls" construct are the following: 

(1) the same variable cannot be passed as argument for more than one function 

when we use "pass-by-address" in a parallel function calls construct. (If we 

need to, another copy of the variable should be used for it.), 
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(2) the same variable or address cannot be used for both arguments and return 

variables, and 

(3) the same return variables for each parallel function statement cannot be 

used. Each return variable should be distinct. 

We know they may not cover all the issues to be discussed, but those rules are the 

minimum restrictions to get integrity of data from parallel function evaluations. 

3.6 Synchronization 

For communication between parallelized blocks and objects, the synchronization 

constructs "send" and "recv" are provided. 

3.6.1 Syntax 

synchronization-statement send-statement 
recv-statement 

send-statement send (message-id, destination-process-id, message-type); 
send (message-id, destination-process-id); 

recv-statement recv (source-process-id, message-id, message-type); 
recv (source-process-id, message-id); 

message-id identifier I constant 

message-type identifier I constant 

source-process-id identifier I constant 

destination-process-id identifier I constant 

3.6.2 Usage 

send (message-id, destination-process-id, message-type); 

recv (source-process-id, message-id, message-type); 

where send(): 
recv(): 

message sending statement 
message receiving statement 



message identifier to be sent 
optional message type 
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message-id: 
message-type: 
source-process-id: 
destination-process-id: 

process identifier sending a message 
process identifier receiving a message 

3.6.3 Semantic Notes 

(1) The "send" construct is for sending a message to the destination process. 

(2) The "recv" construct is for receiving an incoming message from the source 

process. 

(3) The communication is either synchronous or asynchronous. 

(4) In the case of synchronous communication, the source process sends a 

message to the destination process by hand-shaking. 

(5) In the case of asynchronous communication, a message sent from a source 

process is placed in the message-queue of the corresponding destination 

process. The destination process retrieves the message, with the expected 

message type, and which has been sent from the process defined by 

"source-process-id". The process that issued the "recv" command 

postpones its execution until receiving such a message, if no same-typed 

message has arrived yet at the message-queue. 

( 6) Process identifiers and optional message types are used to identify the 

proper messages. 

3.6.4 Example 

A usage example of this construct is shown with an example of the "explicit process 

allocation" construct in the next section. 
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3. 7 Explicit Process Allocation 

Parallel-C++ also provides a construct to support explicit process allocation by 

users. This construct is based on the "parallel compound" construct [Dijkstra 68], the 

"guard and parallel commands" of Hoare's CSP [Hoare 78] and Ada "tasks" [Ada 79,83]. 

This construct is useful when we explicitly allocate parallel processes to some portions of a 

program which can be executed concurrently. 

In a distributed processor architecture, assuming the availability of sufficient 

processors, each process can be mapped into a physical processor during execution. This 

feature illustrates one of the differences between Parallel-C++ and other C++ based 

languages. 

3.7.1 Syntax 

explicit-process-allocation-statement 

process-statements 

process-statement 

compound-statement 

number-of-processes 

process-id 

declaration-list 

statement-list 

parallel_commands (number-of-processes) 
{ process-statements } 
end_parallel_commands; 

process-statement 
process-statement process-statements 

process (process-id) 
compound-statement 

end_process; 

{ declaration-listopt statement-listopt 

identifier I constant 

identifier I constant 

declaration 
declaration declaration-list 

statement 
statement statement-list 
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3. 7.2 Usar:e 

parallel_commands (number-of-processes) 
{ 

process (process-id) { statements; } end _process; 

process (process-id) { statements; end_process; 
} 
end_parallel_commands; 

where number-of-processes: total number of processes in the construct. 
process-id: process identifier 
statements: optional statements 

3.7.3 Semantic Notes 

( 1) This construct allows users to allocate parallel processes explicitly to the 

concurrent portion of the programs. 

(2) All the processes may execute concurrently and independently at run-time. 

They are capable of communicating with each other. 

(3) Parallel_commands can be nested. 

(4) "Number_of_processes" indicates the total number of processes in the 

construct. 

(5) The process identifier is an identifier or an integer constant. 

3.7.4 Example 

In this example, two concurrent processes, "process(PO)" and "process(Pl)", 

which perform miscellaneous calculations in parallel, are defined by using an explicit 

process allocation construct. During the calculations, they communicate with each other by 

using the synchronization constructs, "send" and "recv". 

In this example, the "process(PO)" sends a value "0" of variable "x" to the 

"process(Pl)", and it waits until the "process(Pl)" sends a message. The "process(Pl)" 

receives the value of "x" from the "process(PO)" through "z", evaluates an expression 
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using "z", sends the current value of "z" to the "process(PO)", and proceeds to the next 

statement. The "process(PO)" receives the value of "z" through "y", and executes the 

remaining computations . 

. 
parallel_commands (2) 
{ 

process(PO) { 

} 
process(Pl) { 

} 
end_parallel_commands; 

x=O; 
send(x, PI); 
recv(Pl, y); 
X= y + 1; 
cout << x; 
end_process; 

recv(PO, z); 
z++; 
send(z, PO); 
cout << z; 
end_process; 

3.8 Object Migration 

//x =2 

II z = 1 

One of the valuable ideas incorporated in Parallel-C++ is distributed static/dynamic 

objects. Their salient features have been described in Chapter 2. Dynamic objects support 

distributed computing without losing important features of object-oriented programming, 

such as inheritance and information hiding. The constructs "export/import" support 

migrations of dynamic objects among static objects in a distributed computing system. 

3.8.1 Syntax 

object-migration-statement 

export-statement 

export-statement 
import-statement 

export (object-id, destination-object-id); 



impon-statement 

source-object-id 

destination-object-id 

import-object-variable 

class-id 

object-id 

class-name 

object-name 

process-name 

3.8.2 Usage 

import-object-variable 
= import (class-id); 
import-object-variable 
= import (class-id, source-object-id); 

object-name I process-name 

object-name I process-name 

object-name 

class-name 

object-name 

identifier 

identifier 

process (identifier) I process (constant) 
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export (object-id, destination-object-it!); 

impon-object-variable = 

where object-id: 

3.8.3 Semantic Notes 

class-id: 
import-object-variable: 
destination -object-id: 

source-object-id: 

import (class-id); 
import (class-id, source-object-id); 

exported object identifier 
class identifier for the imported object 
object name for the imported object 
destination (importing) object 
identifier or process name 
source (exporting) object identifier or 
process name 

(1) The "export" construct exists to export an object to other objects (or 

processes). The exported object is placed in the import-list of the destination 

object (or process). 

(2) The "import" construct is for importing any object of the given class and 

binding it to the import-object-variable. Giving class identifier and import-



object-variable allows a more generic form of anonymous object 

instantiation than giving a specific object. 

(3) The object (or process) that issued the "export" statement can continue its 

execution even if no object (or process) imports the exported object. 

(4) When the importing object (or process) issues the "import" statement, 

however, if no object (or process) exports such an object, then the 

importing object (or process) must postpone execution until a required 

object arrives at the import-list. 
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(5) If an object has been exported once, it cannot be exported again (when the 

"copy-and-delete" rule is applied); if such an object is needed again, it can 

be imported. (For example, returning a result from an object which has 

performed a certain calculation to the requesting/client object, which here 

means that the exporting object re-issues an object import.) 

(6) If a "copy-and-remain" rule is applied after a copy of an object is exported 

out, the same object is still available in the current owner. This kind of 

scheme is useful for some applications such as message broadcasting and 

process copy. However, the current Parallel-C++ implementation adopts a 

"copy-and-delete" rule only. 

(7) The necessary codes for export/import objects, such as object construction 

from a given class name, initialization and copying information for an 

importing object, are generated by the parallelizing compiler (or translator), 

and these are executed by the run-time interpreter. 

(8) "Source-object-id" or "destination-object-id" may be either a static object 

identifier or a process name. 

(9) "Class-id" is a class name of the imported object. 
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3.8.4 Example 

Revisiting the child adoption example that we have mentioned in Chapter 2 (Figure 

2.6 in Section 2.5.4), assume that a child has been adopted. 

parallel_commands(2) 
{ 

} 

process(Old_Parents) 
{ 

child A_ Child; 
export( A_ Child, process(New _Parents)); 

} 
process(N ew _Parents) 
{ 

} 

New_Child = import(child); 
New _Child.education(); 

end_parallel_commands; 

II class "child" 
II adoption 

II adopted 

In the example code, a child object "A_Child" is exported by a process 

"Old_Parents", and it is imported by another process "New_Parents". An imported child 

has been initiated by the object "New_Child" in the importing process. Even if the 

circumstance of this child has been changed, his own characteristics are kept. (Even if the 

environment of the child object has been changed from "Old_Parents" to "New _Parents", 

"A_Child" object's own states are kept in "New_Child" object.) Only the importing 

process "New_Parents" (by assuming that such a process is a static object) can change the 

states of its imported object "New_Child" (here, by using the "education()" method). If the 

object "A_Child" is once exported, the exporting process "Old_Parents" cannot directly 

access the states of the exported object, unless it uses a communication provided by the 

current owner "New_Parents" (by assuming that such a process is an owner object). A 

discussion of issues related to export and import of dynamic objects is found in Chapter 2. 

The next chapter describes the implementation scheme of a translator emphasizing 

the translation of the salient features of Parallel-C++. 



CHAPTER IV 

. IMPLEMENTATION SCHEME I (TRANSLATOR) 

This chapter describes the implementation of a translator for the language Parallel­

C++ [Jo et al. 91] on the Intel iPSC/2 hypercube multiprocessor computer [Intel 88]. The 

translation scheme takes advantage of an existing C++ compiler and system calls for the 

iPSC/2. We focus on the implementation of two important language constructs. 

(1) The language construct "parallel_commands" ~which provides support for 

explicit concurrent process allocation. The concurrent processes can be 

mapped into parallel processors at run-time. 

(2) The language constructs "export/import" - which provide support for 

object migration between objects and processes in the system. 

We describe the implementation schemes in general and translation of the salient 

features of Parallel-C++ in particular. Relevant algorithms and a complete example are also 

given. 

4.1 Overall Structure of the Parallel-C++ Translator 

The Parallel-C++ translator translates a Parallel-C++ source code into a collection 

of C++ programs, system primitives and subroutines for the Intel iPSC/2 [Intel 88]. The 

overall structure of the translator is shown in Figure 4.1. Borrowing existing facilities from 

the C++ compiler [AT&T 85,86,89,89b] and system utilities, the Parallel-C++ 

environment provides a more sophisticated tool to implement problem-solving techniques 

(e.g., simulation) and in some cases a more efficient code. Even though the translation 
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scheme takes advantage of existing facilities, the new language features incorporated into 

Parallel-C++ make the translator design a difficult task. 

Parallel-C++ 

Translation 

C++ & System Calls 
oniPSC/2 

Figure 4.1. Structure of Parallel-C++ Translator 

The Parallel-C++ translator extracts parallelism using the parallel constructs 

provided by the language and generates the necessary parallelized C++ codes by adding 

system primitives and library functions. The translator works as follows: 

(1) reads an input Parallel-C++ source program, 

(2) identifies parallel sections, 

(3) performs pre-optimization (for parallel code generation), 

(4) performs parallel code generation, 

(5) performs post-optimization (for efficient and pretty code generation), and 

(6) outputs parallelized C++ source program supplemented with the system 

calls and library functions on the target machine. 

The Parallel-C++ translator can be viewed as a high-level language transformer. It 

translates Parallel-C++ code into source code for a C++ compiler for the iPSC/2. To 

facilitate parallel execution in the hypercube, the original source program written in Parallel-
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C++ is transformed using several steps. One of the steps is to identify parallel sections in a 

program. Parallel sections are transformed into node programs for the iPSC/2 that can be 

executed concurrently. 

4.2 Base machine for the Implementation: Intel iPSC/2 

The Intel's Personal Super Computer (referred to as the iPSC/2) [Intel 88] is one of 

the parallel processing computer systems [Almasi and Gottlieb 89] [Dongarra 87] [Fox 

88,89]. The iPSC/2 is a multiple-instruction, multiple-data (MIMD) stream machine that 

uses message-passing communication, using distributed memory in each node. The system 

consists of four main functional components - a cube, processing nodes, a system resource 

manager(SRM) and a network. The nodes are connected together to form a cube. Each 

node contains a 32-bit microcomputer using an Intel 80386 processor, an 80387 numeric 

coprocessor, an optional VX vector processor and an optional SX scalar processor with a 

local memory capacity ranging from one to sixteen megabyte(s). Currently the Parallel-C++ 

translator and compiler are dependent on the architecture of the iPSC/2 system. But the 

concepts of the parallel language constructs in Parallel-C++ can be adapted to 

implementation on other systems such as distributed memory parallel machines and 

supercomputers, with few modifications in the synchronization and other requirements of 

their compilers and translators. 

4.3 The Current Implementation of the Translator 

The current implementation of the Parallel-C++ translator is written in C++ on the 

iPSC/2. The translator consists of a main program and several header files (Figure 4.2). 

The main program "main.c" generates several parallelized C++ programs. A header file 

"token.h 11 defines tokens to be used for detecting parallel segments in a program, and 

another header file II global.h II defines global data structures and other necessary programs 

including function/class definitions used for string manipulation, nesting structure 
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detection, fork-join concurrent constructs and Automatic Processor Allocation Tree (APA 

Tree). 

I Parallel-C++ Source I 
r-----------------+----------------, 
1 Parallel-C++ Translator 1 
I I 

: l"main.c" ll"global.h"l l"token.h"l l"sub.c" I : 
::::::::::::::::::1::::::::::::::::: 
: Translated C++ Program : 

. : I "host.c" II "node.c" I I "pcpp.h"l l"msg.h"l : 
~----------------- ----------------~ 

Figure 4.2. Current Implementation of Parallel-C++ Translator 

A Parallel-C++ program is translated into several C++ source programs 

accompanied with header files. The translated program consists of "host.c", "node.c", 

"pcpp.h" and "msg.h". Two programs, "host.c" and "node.c", are needed for a system like 

the iPSC/2. Generally the "host" program acts as a supervisor, while the "node" program 

actually performs most of the calculation. The main part of the Parallel-C++ program is 

separated into these two parts as necessary. The "pcpp.h" is a header file generated from 

the Parallel-C++ source file to be used by those, "host.c" and "node.c", programs. It 

generally includes header files and function/class definitions in a source program. The 

"msg.h" is a header file provided by the translator for data structures and some definitions 

used at run-time. 

The translation schemes used, and the corresponding algorithms, are described in 

the following sections. 
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4.4 Concurrent Processes 

In Parallel-C++, the "parallel_commands" construct is provided to support explicit 

process allocation (discussed in Section :l7). It provides support for the explicit generation 

of concurrent processes that can be executed in parallel on a multiprocessor machine. The 

"parallel_commands" construct combined with "object migration" construct (discussed in 

Section 3.8) provides a programming environment for distributed applications such as load 

balancing. The syntax and semantics of such language constructs are defined in the 

previous chapter. The usage of the construct is briefly shown again in Figure 4.3. Here we 

recall that all of the processes in the construct may execute concurrently and independently 

at nin-time. These concurrent processes are capable of communicating with each other. The 

parameter "number of processes" indicates the intended total number of concurrent 

processes in the construct. 

parallel_commands (number-of-processes) 
{ 

process (process-icl) statements; } end_process; 

process (process-id) { statements; end_process; 
} 
end_parallel_commands; 

Figure 4.3. Explicit Process Allocation Construct 

Figure 4.4 shows a simple illustrative example of the use of explicit process 

allocation in a program segment. The program consists of two processes (Po and Pl). Each 

process consists of a block of sequential statements (Si and Sj in Po, and Sm and S0 in P1). 
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The two processes may concurrently execute and they can communicate with each other by 

sending messages. The "end_parallel_commands" statement acts as a synchronization 

point. The next section illustrates how this program segment can be processed by the 

Parallel-C++ translator. 

parallel_commands (2) 
{ 

process( PO) 

} ... 
process(P1) { 

} ... 
} 
end_parallel_commands; 

Figure 4.4. Explicit Process Allocation Example 

4.4.1 Automatic Processor Allocation (APA) Tree 

In order to allocate processors automatically to concurrent processes, the translator 

generates an Automatic Processor Allocation tree (AP A tree) using the APA tree generation 

algorithm (Algorithm 1). If there are enough processors available on the target machine, 

each process in the explicit process allocation may be mapped using a one-to-one mapping 

into an individual physical processor. 



Input: a parallel_commands construct in a Parallel-C++ program. 

Output: an APA tree representing concurrent process nodes. 

Method: initially make a root to represent a parallel_commands construct; 
repeat while (not end_of_construct in a source) 
{ 

parse a source program to identify concurrent processes; 
if (find concurrent_process) 
{ push process_ level into the process stack; 

if (same process_ level with current node) 
{ make a sibling node; 

else if (lower process_level) 
{ parse parents node 

to find a node of same process level; 
generate an appropriate node; } 

else if (higher process_level) 
{ generate a child node; 

} 
else if (find end_of_process) 
{ pop process_ level from the process stack; } 
keep current information in each token to use at the code generation step; 

Algorithm 1. APA Tree Generation 
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In an APA tree, each node represents a process in a "parallel_commands" construct. 

The Parallel-C++ translator generates an APA tree (as shown in Figure 4.5<a>) when the 

parallel_commands construct (in Figure 4.4) is parsed. Figure 4.5<b> shows the structure 

of a process node, Pi> in the AP A tree. 

In Figure 4.5<a>, two processes "Po" and "Pt" are placed on two nodes. Those 

two nodes are leaf nodes which may execute in parallel. Each node may be assigned to a 

processor, and the necessary code to keep this information is generated and placed in the 

translated programs. For example, using the information kept in each process node, each 

concurrent process in a "parallel_commands" construct has been translated to codes like 

"if(mynode() == process_id) { ... }" using C++ code and iPSC/2 C routines (An example 

translation is shown later in Section 4.6.). 



,..-------------, .----------,1 

'L..------,,....,.----' ---+: 
I 

I 

L-------------J 

.<a> A Simple AP A Tree 

Process Node Number 
Process Depth 
Leaf Node Tag 
Processor Assigned 
Pointer to Token 
Pointer to Parent 
Pointer to Child 
Pointer to Sibling.L 
Pointer to Sibling.R 

<b> A Process Node Structure 

Figure 4.5. A Simple APA Tree and A Process Node Structure 
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As mentioned earlier, this example depicts a simple case. The "parallel_commands" 

construct can be more complicated, however. Such an example is considered in the next 

section. 

4.4.2 Nested Structures 

Parallel_commands constructs can be nested within another parallel_commands 

construct. Figure 4.6 shows a skeleton example of such a situation with a maximum 

nesting level of four. 



parallel_commands(2) 
{ 

process(1a) 
{ Si; 

} 

parallel_commands(2) 
{ 

} 

process(2a) 
{ 
end _process; 
process(2b) 
{ 
end _process; 

end_pamllel_commands; 

end _process; 

process(l b) 
{ 

parallel_commands( 1) 
{ 

process(2c) 
{ 

parallel_commands(3) 
{ 

} 

process(3a) 
{ 
end _process; 
process(3b) 
{ 

parallel_commands(2) 
{ 

} 

process(4a) 
{ 
end_process; 
process(4b) 
{ 
end_process; 

end_parallel_commands; 
} 
end _process; 
process(3c) 
{ 
end_process; 

end_parallel_commands; 
} 
end_process; 

} 
end_parallel_commands; 

} 
end_process; 

} 
end_parallel_commands; 

//level 1 
II statement Sj 

//level2 

//level2 

//level 1 

//level2 

//level 3 

//level 3 

//level 4 

//level4 

//level 3 

Figure 4.6. Example Code with Nested Processes 
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In Figure 4.6, there are 10 nested processes in a program segment. Figure 4.7 

shows the APA tree corresponding to the code segment. The "parallel_commands" 

construct has two processes in levell, "la" and "lb". Process "la" in levell has two child 

processes, "2a" and "2b", and so on. The leaf nodes, "2a", "2b", "3a", "4a", "4b" and 

"3c", correspond to concurrent processes at the lowest level. Since they do not have any 

children, they can be executed in parallel. The number of leaf nodes represents the 

maximum level of parallel processing. To facilitate processor allocation,· this tree is 

transformed into a binary APA tree form. Figure 4.8 shows the transformed binary APA 

tree. After transforming an APA tree into a binary AP A tree, the APA routine allocates 

processors to process nodes in the tree using the process mapping algorithm (Algorithm 2). 

level 0 

level 1 

level 2 

level 3 

level 4 

Figure 4.7. APA Tree with Nested Processes 



Figure 4.8. Transformed Binary APA Tree 

Input: an APA tree. 

Output: a transformed APA tree in which parallel processors are allocated to concurrent process 
nodes. 

Method: initially transform input APA tree to the binary APA tree; 
traverse the tree to find out concurrent leaf nodes; 
calculate the total number of leaf nodes(= necessary_processors); 
get the total number of available processors in the system(= available _processors); 
if (necessary _processors> available _processors) 

call Process Node Boxing Algorithm (Algorithm 3); 
repeat traverse until (finished): · 
{ 

if(leaf_node) 
{ 

if (the node is boxed) 
assign the first processor to the leaf node; 

else assign the next available processor to the leaf node; 
} 
else trace the processor identifiers assigned to its child nodes, 

assign these processors to this internal node, and 
keep this information for using at the code generation step; 

Algorithm 2. Process Mapping 
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The process mapping algorithm starts by checking leaf nodes in a depth-first search 

and determines the nodes that may run concurrently. In this particular example, the starred 

nodes ("*") in Figure 4.9 are those leaf nodes which may initially run concurrently at run­

time. The APA routine assigns available processors to these leaf nodes. Once the 

processors are assigned to every leaf node, these numbers are traced from the leaf nodes to 

the parents. This processor assignment information is provided to the translator. The 

processor allocation is illustrated in Figure 4.9. In Figure 4.9, the number attached to the 

upper-right side of each leaf node represents the processor identifier assigned to each leaf 

node. 

Figure 4.9. Process Allocation on the APA Tree 

The Parallel-C++ translator uses the information given by the AP A routine to 

generate appropriate parallel codes in the translated program. The parallel codes consist of a 

host program and a node program for the iPSC/2, and they ensure correct control flow 
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within the "parallel_ commands" construct. For example, the beginning parts of the parallel 

constructs given in the example code in Figure 4.6 are translated as follows: 

if((mynode()==O) II (mynode()==1)) 
{ 

if(mynode()==O) 

if(mynode()==1) 

4.4.3 Load Distribution with Limited Processors 

II process(! a) 

II statement Sj 

II process(2a) 

II process(2b) 

In the preceding discussion, it was assumed that sufficient physical processors are 

available to be allocated to concurrent processes in "parallel_commands" constructs. 

However, this assumption is not possible except in the case of very small programs. 

Therefore, algorithms need to be developed to map processes to processors in a many-to-

one fashion. Figure 4.10 depicts a process load distribution scheme with a limited number 

of processors using the preceding example of the previous section (Figure 4.6-4.9). It is 

assumed that the total number of available processors in the system is four. Using a depth­

first search, the process node boxing algorithm (Algorithm 3) examines the first three leaf 

nodes until the number of processors (which is the number of assigned processors 

subtracted from the number of necessary processors) is equal to the total number of 

available processors. The boxed nodes are the first three leaf nodes to be checked in this 

particular example. The APA routine next assigns the first available processor to those 

nodes in a box, and assigns the remaining processors to the rest of the nodes (by using 

Algorithm 2). In this particular example, processor "0" is assigned to nodes "2a", "2b" and 

"3a", and processors "1", "2" and "3" are assigned to nodes "4a", "4b" and "3c", 

respectively. Those processors assigned to leaf nodes are traced to the upper-level parent 
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nodes by the APA routine. The code generation routine uses this information later to 

generate the appropriate C++ codes and system calls on the target machine. 

level 1 

I 

level 3: 

level 4 

Figure 4.10. Load Distribution with Limited Processors 

Input: a transfonned APA tree. 

Output: a transfonned APA tree in which some concurrent process nodes are boxed. 

Method: necessary_processors =total number of leaf nodes; 
available_processors = total number of available processors; 
assigned_processors = 0; 
repeat traverse until (stop) 
{ 

if (leaf_node) 
{ 

assigned_processors = assigned_processors + 1; 
if ((necessary_processors- assigned_processors) >= (available_processors- 1)) 

{ this node is boxed; } 
else stop; 

Algorithm 3. Process Node Boxing 
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So far, in this chapter, the translation scheme of the "parallel_commands" construct 

has been described. Object migration is another important concept in Parallel-C++. The 

next section outlines this concept and the associated translation scheme. 

4.5 Object Migration 

Parallel-C++ provides facilities to export and to import dynamic objects between 

static objects (or processes) in the system. This concept of object movement, in which 

objects travel from one object (or process) to another, is called object migration. As 

explained in the previous chapters, there are two kinds of objects in Parallel-C++: (1) 

dynamic objects - objects that migrate, and (2) static objects - stationary objects (or 

processes) that do not migrate. Using "export/import" constructs, dynamic objects can 

travel around among static objects (or processes). Such a static object is called the owner of 

the corresponding dynamic object. The corresponding language construct is explained in 

Section 3.8 and is also shown in Figure 4.11. 

export (object-id, destination-object-id); 

import-object-variable = import (class-id); 
import (class-id, source-object-id); 

Figure 4.11. Object Migration Constructs: Export/Import 

We recall that the function of the "export" construct is to export a dynamic object to 

other objects (processes), and the function of the "import" construct is to import a dynamic 

object of the given class. The exported object is placed in the import-list of the destination 

object (process). The imported object is bound to the "import-object-variable". The process 
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that issued the "export" statement continues its execution even if no object (process) 

imports such an exported object. When the importing object (process) issues the "import" 

statement, however, if no object (process) exports such an object, then the importing object 

(process) must postpone execution until the required object arrives at the import-list. These 

"export/import" constructs support object migration, which can represent practical real­

world problems such as air-traffic control systems, dynamic load balancing problems 

[Cybenko 89], network simulations [Jo et al. 89], dynamic file migration [Gavish and 

Sheng 90], and real-time robot simulation [Cox and Gehani 87] [Cox 88] [Cox et al. 88], 

etc. in a natural way. 

80bj<et; oxpmt I Objoot; I 
import 

Nodej Nodcj 

before export/import 

Source 

export(OBJECT, process(OBJECT _J)); 

OBI= import(CLASS); 

D Objectj 

~export 8BJ 
import 

Nodei 

after export/import 

Translation 

send(OBJECT) to Objectj; 
delete(OBJECT) from Object;; 

OBJ =new CLASS; 
receive(OBJ); 

Figure 4.12. Object Migration Translation Scheme 

Export/import constructs in Parallel-C++ are translated using the scheme shown in 

Figure 4.12. The translated C++ code with iPSC/2 C routines for the example segment of 

code are shown in Figure 4.13. An importing object (or process) instantiates a new object 

of the same type to import a dynamic object from an exporting object (or process). The 
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state of the new object is replaced by the state of the imported object. The exporting object 

(or process) sends the current state of the object by sending the contents of the memory 

region from the current object (or process) to the object region in the importing object (or 

process). There may be a possible waiting time for the importing object. Once the message 

containing the exported object arrives at the buffer of the importing object (or process), the 

exporting object (or process) continues execution of the statements following the "export" 

statement. 

Source: 

Translation: 

Source: 

Translation: 

export (OBJECT, process(OBJECT_J)); 

csend(PC_MSG_EXPORT, &OBJECT, sizeof(OBJECT), OBJECT_J, 
PC_APPL_PID); 

OBJ = import (CLASS); 

CLASS OBJ; 
crecv(PC_MSG_IMPORT, &OBJ, sizeof(OBJ)); 

Figure 4.13. Translated Export/Import Constructs using C++ and iPSC/2 C Routines 

4.6 Example 

Figure 4.14 is an example of a simplified version of a practical program illustrating 

object migration. It combines the constructs discussed earlier, and provides a 

comprehensive example. The program simulates an air-traffic-control system. There are 

three airports, "OK-City", "Phoenix" and "Dallas", and three airplanes, "American", 

"United" and "Western", controlled by those airports, respectively. There are three 

concurrent processes, "Oklahoma", "Arizona" and "Texas", in which those airports reside. 

It is assumed that an airplane can be controlled by only one airport at a given time. Once 
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control is transferred over to the destination airport by export/import, the original airport 

cannot directly control that airplane anymore. The state and information are hidden in an 

airplane object, and no other airport object can access them. When an airplane object is 

exported, the airport object importing such an airplane object takes over the state and 

information of the imported airplane. This program is translated (as shown in Figure 4.15) 

and executed by using the translation scheme outlined in this chapter. Figure 4.16 is the 

run-time output of this program. 



II Parallei-C++ EXPORT/IMPORT Test Program. 

#include <stream.h> 
char* obj(int); 
class plane { int Name; 

public: 
plane(int n, int d) 

int Destine; 

Name = n; Destine = d; 
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plane() 
cout<<"Airplane "<<Obj(Name)«" instantiated.\n"; } 

cout«"An airplane arrived.\n"; } 

}; 

void take_off(int Port) 
void landing(int Port) 

printf("%s is taking-off from %s.\n",obj(Name),obj(Port)); } 
printf("%s is landing at %s(%s).\n", 

obj(Name) ,obj(Port) ,obj(Destine)); } 

class airport 
public: 

int Port; int Wing; int Destine; 
airport(int a, int p, int d); 

}; 

airport::airport(int a, int p, int d) { Port= a; Wing= p; Destine= d; 

char* obj(int i) 

cout « "Airport "«obj(Port)«" instantiated.\n"; 
plane Flight(Wing, Destine); 
printf("%s controls %s.\n" ,obj(Port) ,obj(Wing)); 
Flight.take_off(Port); 
export( Flight, process(Destine)); 
x = import(plane); 
x.landing( Port); 

switch(i) { case 0 : return("OKLAHOMA"); 
case 1 : return("ARIZONA"); 
case 2 : return("TEXAS"); 
case 3: return("OK_CITY"); 
case 4 : return("PHOENIX"); 
case 5: return("DALLAS"); 
case 6: return("AMERICAN"); 
case 7 : return("UNITED"); 
case 8 : return("WESTERN"); 
default : return("NONE"); 

main() { int OKLAHOMA=O; int ARIZONA=1; int TEXAS =2; 
int OK_ CITY =3; int PHOENIX=4; int DALLAS =5; 
int AMERICAN=6; int UNITED =7; int WESTERN=8; 
parallel_commands(3) 
{ process(OKLAHOMA) { airport OK_City(OK_CITY, AMERICAN, ARIZONA); 

} e nd_process; 
process(ARIZONA) { airport Phoenix(PHOENIX, UNITED, TEXAS); 

} end_process; 
process(TEXAS) { airport Dallas(DALLAS, WESTERN, OKLAHOMA); 

} end_process; 
end_parallel_commands; 

Figure 4.14. An Example using Object Migration between Distributed Objects 
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/* <host.c> Parallei-C++ (c) 1990 */ 

#include "pcpp.h" 
main() { 

getcube("Parallei-C++","4","default",O); 
setpid(PC_HOST_PID); . 
load("node",PC_ALL_NODES,PC_APPL_PID); 
message_class msg; 
csend(PC_MSG_TYPE_I, &msg, sizeof(msg), PC_ALL_NODES ,PC_APPL_PID); 
csend(PC_MSG_PAR_CO, &msg, sizeof(msg), PC_ALL_NODES, PC_APPL_PID); 
{ II parallel_commands 

{ II process } II end _process 

} II end_par_com 
crecv(PC_MSG_TYPE_L, &msg, sizeof(msg)); 
killcube(PC_ALL_NODES, PC_ALL_PIDS); 
relcube("Parallei-C++"); 

} II end_of_host_main 

I* <node.c> Parallei-C++ (c) 1990 */ 

#include "pcpp.h" 
main() { 

my_node = mynode(); 
my_pid = mypid(); 
message_class msg; 
crecv(PC_MSG_TYPE_I, &msg, sizeof(msg)); 
if(my_node < NO_OF _NODES) { 

} 

int OKLAHOMA=O; int ARIZONA=1; int TEXAS =2; 
int OK_CITY =3; int PHOENIX=4; int DALLAS =5; 
int AMERICAN=6; int UNITED =7; int WESTERN=8; 
crecv(PC_MSG_PAR_CO, &msg, sizeof(msg)); 
{ II parallel_commands 

if((my_node==O)) 
{ II process 

} II end_process 
if((my_node==1 )) 
{ II process 

} II end_process 
if((my_node==2)) 
{ II process 

} II end_process 
} II end_par_com 

airport OK_City(OK_CITY, AMERICAN, ARIZONA); 

airport Phoenix(PHOENIX, UNITED, TEXAS); 

airport Dallas(DALLAS, WESTERN, OKLAHOMA); 

if(my_node==O) { waitall(1 ,PC_ALL_PIDS);} 
if(my_node==O) { 

csend(PC _MSG_ TYPE_L,&msg,sizeof(msg) ,my host(), PC_HOST _PI D);} 
} II end of node_main 

Figure 4.15. Translated Program using C++ and iPSC/2 C Routines 



/* <pcpp.h> Parallei-C++ (c) 1990 *I 

#include <Stdio.h> 
#include <Stream.h> 
#include "msg.h" 

char* obj(int); 

class plane { 

} ; 

class airport { int Port; int Wing; int Destine; 
public: 

airport(int a, int p, int d); 
}; 

airport::airport(int a, int p, int d) 
{ 

Port = a; Wing = p; Destine = d; 
cout « "Airport "«obj(Port)«" instantiated.\n"; 
plane Flight(Wing, Destine); 
printf("%s controls %s.\n",obj(Port),obj(Wing)); 
Flight.take_off( Port); 
csend(PC_MSG_EXPORT,&Fiight,sizeof(Fiight),Destine,PC_APPL_PID); 
plane x; 
crecv(PC_MSG_IMPORT,& x ,sizeof( x )); 
x.landing(Port); 

char* obj(int i) 
{ : 
} 

/* "msg.h" Parallei-C++ (c) 1990 *I 

II msg type for Parallei-C++ programs 
#define NO_ OF _NODES 32 
class message_class { I* misc. class def. *I 

} ; 

II "fork.h" 
#include <errno.h> 

Figure 4.15. (Continued) 
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IINode(lD) 

(0) 
(2) 
(1) 

(0) 
(2) 
(1) 

(0) 
(2) 
(1} 

(0) 
(2) 
(1) 

(0) 
(2) 
(1) 

(0) 
(2) 
(1) 

Airport OK_ CITY instantiated. 
Airport DALLAS instantiated. 
Airport PHOENIX instantiated. 

Airplane AMERICAN instantiated. 
Airplane WESTERN instantiated. 
Airplane UNITED instantiated. 

OK CITY controls AMERICAN. 
DALLAS controls WESTERN. 
PHOENIX controls UNITED. 

AMERICAN is taking-off from OK_ CITY. 
WESTERN is taking-off from DALLAS. 
UNITED is taking-off from PHOENIX. 

An airplane arrived. 
An airplane arrived. 
An airplane arrived. 

II Node(i) allocated 

II for Process(OKLAHOMA) 
II for Process(1EXAS) 
II for Process( ARIZONA) 

II export/import occurred 

WESTERN is landing at OK_CITY(OKLAHOMA). 
UNITED is landing at DALLAS(TEXAS). 
AMERICAN is landing at PHOENIX(ARIZONA). 

Figure 4.16. Output of the Example Program 

4.7 Discussion of Translator Implementation 
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Besides the APA tree technique, "fork/join" constructs have been used 

experimentally to translate parallel constructs. For each concurrent process, a pair of 

"fork/join" constructs is generated and executed. The forked segments of code execute 

concurrently using child processes generated from a parent process at run-time. This 

scheme is useful to parallelize concurrent processes for a single processor system, or for a 

limited number of processors on the multiprocessor system. In a single processor system, 

the "fork/join" concurrency can be used to utilize concurrent processes. In a distributed 

processor system, for a maximum speed-up, the upper level processes in an APA tree may 

be assigned to parallel processors that are somewhat limited, and then "fork/join" 

parallelization can be used for the rest of the processes in the lower level. 
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Besides plainly generating a "fork/join" code for each process, automatic program 

partitioning using computation weights can be assigned to parallel processes. Researchers 

such as Sarkar [Sarkar 90] have investigated the "fork/join" parallelizing problems by 

instruction reordering. Another remaining problem of translation for explicit process 

allocation is load balancing among the involved processes. 

The parallelizing translator ofParallel-C++ is relatively easy to implement by using 

existing facilities, because the translator can be built on the top of the C++ compiler and 

operating system in the target machine. Compatibility with existing C++ is not affected. 

The current implementation relies much on static information, such as the number 

of available processors in the system, given at translation time. The translation using 

dynamic information given at run-time is more useful in real programming. 

Translation techniques are not always good for fine-grained parallelism. Much time 

is spent on communication and on checking dependencies to satisfy data synchronization 

for concurrent execution of partially parallelized portions of codes. Programming using 

medium-grained or large-grained parallelism, such as parallel modules, parallel function 

calls and parallel objects, should be used to achieve concurrency with run-time data 

integrity. 

For the structures of a translated program, linked-lists are used for each token or a 

line of code. Linked-lists, consisting of several objects or structures, make translation 

easier for dynamic insertion, deletion and appending statements than any other data 

structure does. Using a parser (instead of iteration structures of the main translation part, 

which is currently used), more sophisticated manipulation of translation for the nested 

program can be expected. 

Figure 4.17 includes iPSC/2 C routines which have been used in the translation. 

Using the information kept in concurrent sections of codes, appropriate iPSC/2 C routines 

are generated in the translated program. 
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void attachcube(char *cubename); II attach to a cube and make it the current cube 

void crecv(long typesel, char *buf, long len); 
II send a message and wait for completion 

void csend(long type, char *buf, long len, long node, long pid); 
II send a message and wait for completion 

void getcube(char *cubename, char *cubetype, char *srmname, long keep); 
II allocate a cube 

void killcube(long node, long pid); II terminate and clear out a process(es) 

void load(char *filename, long node, long pid); 
II load a node process 

unsigned long mclock(); II return the time 

long myhost(); II obtain the node id of the host machine 

long my node(); II obtain the node id of the calling process 

long mypid(); II obtain process id of the calling process 

long numnodes(); II obtain the number of nodes in the cube 

void relcube(char *cubename); II release a cube 

void setpid(long pid); II sets process id of a host process 

void waitall(long node, long pid); II wait for all the specified processes to complete 

Figure 4.17. iPSC/2 C Routines used in Translation 

Based on the experience of parallelizing translation, we have investigated basic 

implementation schemes of a parallelizing compilation for this particular language and 

system. In the next chapter, we describe the implementation schemes for the Parallel-C++ 

compiler-interpreter in general. 



CHAPTERV 

IMPLEMENTATION SCHEME II (COMPILER-INTERPRETER) 

This chapter describes the design of an implementation scheme for a Parallel-C++ 

compiler-interpreter targeted to an abstract machine which is assumed to be a 

multiprocessing computer like the iPSC/2 hypercube system. One of the objectives of this 

project is to study the issues that arise in the compilation of distributed programming 

languages. In this work, attention is focused on the storage management scheme. 

5.1 Overall Structure 

The Parallel-C++ compiler-interpreter implementation consists of two phases, 

compilation and interpretation. These two phases are illustrated in Figure 5.1. 

Optimizer 

Error Handler 

Automatic Restructurer 

I I 

P arallelizing 
Automatic 
Processor 
Allocation 

( Parallel-C++ )-+1 COMPILER J--.IINTERPRETER t-+C Output) 

Figure 5.1. Parallel-C++ Compiler-Interpreter Structure 
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The Parallel-C++ compilation is further subdivided into four phases, lexical 

analysis, syntax analysis, code generation and automatic restructuring. The components, 

which are part of the compilation, consists of lexical analyzer, syntax analyzer, code 

generator, automatic restructurer, symbol table manager, error handler and optimizer. The 

lexical analyzer reads a Parallel-C++ source program and produces a sequence of tokens, 

while constructing a symbol table by calling the symbol table manager. If the lexical 

analyzer encounters lexical errors, then the error handler is invoked. The specification of 

the parser is provided by the Parallel-C++ grammar. Intermediate code is generated while 

parsing by calling the code generator. The code generator produces intermediate code based 

on the semantic rules defined by the grammar. The symbol table manager also helps at this 

stage to handle temporary variables which can be generated while parsing. The syntax 

analyzer also performs the task of error handling such as identifying, locating, and 

reporting syntactic errors, by calling the error handler. When performing a compilation, the 

compiler performs automatic restructuring. The automatic restructurer restructures some 

parts of the intermediate code to be parallelized by using the information explicitly given in 

the program. For example, with a user-defined parallel construct "autobegin/autoend", the 

automatic restructuring routine checks interdependencies of the statements in the construct. 

This routine divides the statements into independently and concurrently executable blocks 

of statements. Each block consists of instructions that must be executed sequentially. The 

automatic restructurer constructs a virtual execution graph to check the interdependency of 

the segments, and congregates the dependent statements into blocks at each dependency­

checking step. The intermediate code generated by the compiler is targeted to a MIMD type 

abstract machine. 

The interpreter executes the target program (which is here the intermediate code 

generated by the compiler). The tasks of "parallel execution" and "automatic processor 

allocation" are done by the interpreter. The concurrent blocks of statements, which are 

automatically parallelized and restructured at the compilation step, can be mapped into 
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respective processors assigned by the automatic processor allocation routine. Such 

parallelized statements can be concurrently executed by the interpreter at run-time. The 

interpreter mainly executes the serial program segments on the main processor, and 

activates the necessary number of processors when it meets parallel sections. To do this, 

the interpreter uses a flag to denote one of the two possible modes, serial and parallel. At a 

given time during interpretation, the interpreter can be in one of two possible modes. In 

serial mode, the interpreter executes an object code segment one instruction at a time. When 

the interpreter meets a parallel construct, it switches to parallel mode. The actions 

associated with mode switching include run-time actions such as automatic processor 

allocation. An initial message passing may occur when it is needed (e.g., to transfer initial 

data). When the mode switching is complete, all of the processors allocated for the parallel 

constructs concurrently execute their portions of the program. After parallel execution, 

when the interpreter meets the end of the parallel construct (the join point), the execution 

mode switches to the serial mode. At this point, all concurrent processes must have 

terminated and control is transferred to the main processor. The main processor takes care 

of execution of the serial part of code until it meets another parallel construct again. The 

transition diagram of this control flow is shown in Figure 5.2. In the present scheme, the 

parallel constructs at higher level are handled along with the lower level. 



Parallel A_ Parallel 

+======~ 

Pi : Processors, i = 0, ... , n (No. of Processors) 
Execution modes: Serial/ Parallel 

Figure 5.2. Control Flow Transition Diagram 
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Current implementation of the compiler-interpreter is targeted to the iPSC/2, and 

consists of several programs, implemented in C++. Typical programs among them are 

"host.c", "node.c", "global.h", "lex.yy.c" and "y.tab.c". The programs "lex.yy.c" and 

"y.tab.c" are the lexical analyzer and syntax analyzer, respectively. Those two programs 

are generated by using Unix system tools, LEX [Lesk and Schmidt 75] and YACC 

[Johnson 78] [Sullivan 86]. The syntax analyzer, "y.tab.c", indirectly performs target code 

generation, code restructuring, code optimization, symbol table management, and 

error/information message generation by calling necessary modules such as the code 

generator and the lexical analyzer. The lexical analyzer, "lex.yy.c", includes all lexical 

definitions and symbol-table management functions. The program "global.h" includes all 

global function definitions, variable declarations, class definitions, other general definitions 

and sub-programs, such as code generator, message generation functions, and other 

miscellaneous functions. The three programs, "lex.yy.c", "y.tab.c" and "global.h", are 

included in the main program, "host.c", and the interpreter, "node.c". They are compiled 

and linked together to make the executable code, "host" and "node". The main program 

"host.c" calls the syntax analyzer module, from which the lexical analyzer and code 
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generator are invoked. After finishing code generation, "host.c" sends initial messages to 

the interpreter, "node.c", which executes the target code generated by the compiler. The 

main program, "host.c", is executed on the host processor, and copies of the interpreter, 

"node.c", are executed on node processors. The interpreter executes the serial part of the 

target code on the main processor, and the parallel part of the code on the parallel 

processors, designated by the automatic processor allocator while switching parallel/serial 

mode. 

5.2 Abstract Machine Model 

Since we are interested in compilers for a distributed memory machine, an abstract 

machine model based on Intel iPSC/2 is used. Such an abstract machine is hypothetically a 

multiprocessor system with local memory, and is capable of parallel processing. A 

schematic view of an abstract machine model is shown in Figure 5.3. The abstract machine 

is assumed to have a general-purpose register architecture, and consists of a host processor 

and several node processors. The interconnection network is assumed to be the same as the 

iPSC/2 [Intel 88]. The operating system is assumed to be a Unix-like operating system that 

is capable of file management, input/output management, system supervisor, device 

interfaces, interprocess communication, central processing unit (CPU) scheduling, process 

management, multi-tasking management, user interface, memory management, 

communication network control, and etc. The host and the nodes are inter-connected by a 

communication network. The host processor has a system control unit, a network control 

unit, an input/output device control unit, and input/output devices. A node is an 

independent processor which is equipped with a CPU, a local memory, and network/bus 

interface units. 
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Figure 5.3. Abstract Machine Model Architecture 

5.3 Instruction Set for Conceptual Architecture 
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The intermediate code is assumed to be the instruction set of the virtual machine. 

The basic form of an instruction is a quadruple [Aho et al. 86]. This intermediate code is 

machine-independent, and can be subsequently translated to the machine code for the target 

machine. (The current implementation allows the interpreter to execute the intermediate 

code directly, which is generated by the compiler, on the iPSC/2.) Each instruction has an 

operation and three operands. The format of a quadruple is "(operation-code, operand-1, 

operand-2, operand-3)". For example the quadruple"(+, y, z, x)" has the same meaning as 

the operation "x <- y + z". The instruction for the general-purpose register architecture has 

explicit operands, either registers or memory locations. Therefore, the variable names 

shown in the example quadruple, such as "x", "y", and "z", are supposed to appear, in the 
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actual code, as symbolic addresses of those variables to be located in memory, or as 

registers to be allocated to those variables. Storage for objects is allocated in the heap area 

of the memory. The code for object communication includes identifiers of the objects. At 

run-time, those object identifiers are converted into actual addresses of the storages for the 

objects. For example, an export statement is translated to the code "(operation-export, 

exported-object, object/process flag, destination-object)". The "operation-export" tells that 

this operation is for exporting an object. The "exported-object" operand is the identifier of 

the object to be exported. The "object/process flag" tells the destination of this export 

operation, either object or process. The "destination-object" is the identifier of the 

destination object (or process) for this export operation. At run-time, when an object is to 

be passed to another processor (for example, object export occurred), the address and 

length of the storage for the object are calculated. Then the stream of bytes is passed by 

value to the destination object in a distributed memory model (current implementation 

model). However, the address of the object (or the object identifier itself) can be passed by 

reference to the destination in a shared memory model. 

5.4 Run-Time Storage Management 

The cost associated to parallel processing is primarily in run-time storage 

management for a distributed memory system. In this section we describe the run-time 

storage management for Parallel-C++. 

5.4.1 Distributed Storage Management 

Run-time data structures include class-lists, object-lists, import-lists, object frames, 

stacks and heaps. All processors keep their own run-time data structures in their local 

memory. At run-time the general data storage management for the program is done using 

the stack model [Gries 71]. Each processor has its own stack in its local memory. In our 

scheme for the distributed memory system, when the parallel processors are invoked, the 
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main processor distributes copies of the current environment to all of the parallel processors 

involved. Each parallel processor keeps its own activation records until the task allocated to 

it is completed. When the interpretation switches to the serial mode from the parallel mode, 

the area occupied by the current environment is freed. 

The current values of all of the variables in the activation records and the symbol­

table in the main processor are sent to the local memories of the processors involved when 

the processing mode switches to the parallel mode. The symbol table serves as a message 

to transfer current values of variables between processors. When the main processor sends 

this information, it also sends the current system time. Distributed processors involved in 

parallel computing receive a message of the symbol-table with current system time. After 

concurrently performing their portion of the calculation as defined in the parallelized target 

code, those distributed processors update time-tags of the variables involved in the 

calculations and send a message of the updated symbol-table with such information. After 

receiving such messages from the parallel processors, by using the time-tag information, 

the main processor updates the values of the variables which had been updated by the 

previous distributed computing. The interpreter manipulates all of those operations which 

have been described here, and controls all involved processors, using the information 

specified in the target code which has been parallelized and restructured by the compiler. 

This time-tag scheme brings in another communication overhead to the system. However, 

it is one of the solutions to solve data integrity problems occurring in distributed memory 

systems. 

Besides this kind of complexity involved in data updating, there is also 

communication overhead through message-passing. This kind of communication overhead 

causes a major burden, reducing the efficiency of computing in a distributed memory 

system. This scheme, due to the characteristics of a distributed memory computer, limits 

the use of shared variables among the parallel code segments and the use of non-local 

variables in the parallel function calls. Because the use of shared variables needs lock-step 
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synchronization and message passing, the communication overhead for the frequent use of 

shared variables may adversely affect the efficiency of distributed computing. Therefore in 

our system, if necessary, access to shared variables is allowed only by using a 

synchronization construct. It helps a parallelizing compiler to detect easily the accessing of 

variables in different address spaces, and to produce communication code for it efficiently. 

In a shared memory system, much of this kind of burden can be eliminated by passing (or 

using) pointers (or addresses) to the distributed objects and variables in a global virtual 

address space. 

5.4.2 Distributed Object Mana~ment 

For the distributed object management, the heap model is used [Goldberg and 

Robson 83]. The traditional stack model is not adequate for the dynamic data storage 

management for the objects because the lifetime of an object is not fully scoped within a 

function or an object. All of the classes are grouped into the class-list. Each processor 

keeps a copy of class-list in its local memory. An object instantiated from a class is 

represented by a contiguous region of memory, like a C++ object [Stroustrup 89b]. Each 

object has its own data storage to keep its current state of member data. All of the objects 

instantiated from each class are placed in the object-list. Each processor keeps its own 

object-list to record all objects which are either instantiated in the processor or imported 

from other processors. Each object has an object frame, stored in the heap storage, to keep 

the necessary information for the object. Each entry in the object-list has a pointer to its 

object frame in the heap, and also has a pointer to its class in the class-list. An object frame 

includes an object identifier, a pointer to its class in the class-list, an integer variable to keep 

its object frame size, a static/dynamic object tag, a pointer to its owner (for the dynamic 

object frame) or a pointer to the dynamic object-list (for the static object frame), a pointer to 

the imported object-list (for the static object frame), data members (An object of derived 

class also includes/concatenates data members defined in the base class.), a pointer to the 
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member function area, and a tag of access level - private or public .(Figure 5.4<a> ). Each 

object can use this information to perform its operations properly. 

Object Identifier 

Pointer to Class 

Object Frame Size 

Static/Dynamic Tag 

Pointer to Owner/Dynamic Objects Source I Destination I Object Frame 

Pointer to Imported-Objects 

Data Members 

Pointer to Member Functions 

Access Level 

<a> Object Frame <b> Dynamic Object Message Format 

Figure 5.4. The Structure of Object Frame and Dynamic Object Message Format 

5.4.3 Dynamic Object Management 

In Parallel-C++, dynamic objects can be exported and imported among static 

objects (or processes). We remind the reader that there are two kinds of environments for a 

dynamic object: (1) the internal environment is made up of the data structures and methods 

of an object; and (2) the external environment is the environment enclosing the dynamic 

object. The internal environment of the dynamic object moves with it, but the external 

environment does not. The internal environment of an exported object is bound to the 

external environment which is provided by an importing object. We call this Dynamic 

Interface Environment Binding (DIEB). By this DIEB, an object behaves differently 

according to the environment in which it resides. 
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When an object (or process) exports a dynamic object, it also exports the internal 

environment of the dynamic object by sending a dynamic object message (Figure 5.4<b>) 

to the destination object (or process). This affects heap storage as follows; (1) the internal 

environment of the dynamic object is deleted from the exporting object, (2) the internal 

environment for the imported object is established in the importing object, (3) the heap 

segment for the exported object is freed from the exporting object (copy-and-delete 

semantics). Also, when an object meets a destructor, the area occu~ied by the object is 

freed (by following the conventional scope rule). 

Establishing the new environment consists of several steps. The instantiated (or 

imported) object is included in the object-list. The pointer to its class in the class-list is 

modified. In a distributed memory environment, the physical address of the dynamic object 

in the importing object (or process) becomes different from the previous address in the 

exporting object (or process). At the same time its object frame is allocated in the heap, and 

the necessary pointers and values are updated (e.g., updating the value of pointer to the 

owner of the imported dynamic object). 

Figure 5.5<a> and 5.5<b> show snapshots of the run-time storage for distributed 

and dynamic objects on parallel processors. In this example figure, we have three 

processors, "Po", "Pi" and "Pj". Especially "Po" is a main processor, and "Pi" and "Pj" are 

distributed processors which are executable concurrently. We assume that each processor 

has its own local storage. The object "object-x" is instantiated from the class "class-x" and 

its environment is established in the processor "Pi"· After "object-x" is imported by the 

processor "Pj", the new environment for this imported object is established in the processor 

"Pj" and the old environment for the exported object is freed from the processor "Pi". The 

run-time storage, stacks and heaps for dynamic objects, are managed by the respective 

processors in which those objects reside at that time. The stack and heap areas are assumed 

to be at the opposite ends of a portion of memory. 
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5.5 Example 

As a practical example to illustrate the run-time storage management scheme, 

especially for the management of distributed and dynamic objects, we consider the 

following scenario. Several airplane objects are concurrently controlled by several airport 

objects. Only one airport object can control a plane object at a time. This situation occurs 

often in several distributed systems. A skeletal implementation code of the scenario is 

shown in Figure 5.6. This example code is developed using the "parallel_commands" 

construct and the "export/import" constructs explained in the previous chapter. In this 

example, the main process allocates two concurrent processes, "Oklahoma" and "Arizona". 

These processes can be mapped to parallel processors and can be concurrently executed at 

run-time. In these processes, the airport objects, "OK-City" and "Phoenix", are instantiated 

from the airport class. We assume that airport "OK-City" sends a plane "American" to the 

airport "Phoenix". In this example, the airport objects are static objects and the plane 

objects are dynamic objects. 

The objects distributed in different processors can have the same name. But those 

objects are physically different and have their own data structures and methods. The 

"importing-object-variable" (for example, "Flight" used in the "import" construct in Figure 

5.6) can be used as an anonymous object instantiation for the given class (for example 

"plane" in the "import" construct in Figure 5.6). The given class helps a generic 

instantiation of its object. The initial status of the imported object "Flight" is essentially the 

same as the exported object "American". The run-time interpreter takes care of this kind of 

initialization details according to the state of the imported object. 
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/*Example Scenario: Airport "OK_ City" (on "Pi", "OKLAHOMA") sends a plane 
"American" to "Phoenix" (on "Pj", "ARIZONA"). */ 

class plane { int enviro; 

public: 

II For line(i) 
II refer to 
II Figure 5.7<i> 

void takeoff() { ... enviro = owner -7weather; ... } 
void landing() { ... enviro = owner 4weather; ... } 

}; 

class airport { int weather; 

public: 

} ; 

main() { 

{ 

} 

control_takeoff(plane Flight) { Flight.takeoff(); 
export(Fiight, Airport_id); } II line(c) 

II Airport_id = {Phoenix, ... } 

control_landing(plane Flight) { Flight= lmport(plane); II line(c') 

parallel_commands(No.of.Airports) 

process( OKLAHOMA) 
{ 

airport OK_City; 
for(;;) 
{ switch(real.time.input) 

{ 

Flight.landing(); } 
II Flight= {American, ... } 

II line(a) 

case(create): plane American; II line(b) 

} ... 

} 
} 

case(takeoff): OK_City.control_takeoff(American); 
case( landing): OK_ City .control_landing( ... ) ; 

process(AR I ZONA) 
{ : 

} ... 

airport Phoenix; 
for(;;) 
{ switch(real.time.input) 

{ 

II line(a') 

case(create): plane ... ; II line(b') 

} 
} 

case(takeoff): Phoenix.control_takeoff( ... ) ; 
case(landing): Phoenix.control_landing(Airplane_id); 

end_parallel_commands; II line( d) 

Figure 5.6. Example of Dynamic Object Migration between Static Objects 
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Consistent with the characteristics of the target machine - distributed memory, 

access to global variables and the usage of the pointer variable in the member functions of 

dynamic objects are not allowed. Necessary information should be passed by value. When 

no free area can be allocated to the object due to memory fragmentation, heap compaction is 

done by moving all of the object frames to the lower-end of the heap area, and the related 

object pointers should be updated. While some languages like C++ need explicit 

deallocation of objects, other object-oriented systems, such as Smalltalk or Lisp-based 

systems, use garbage collection to deallocate objects [Atkins and Nackman 88]. Actually 

the effects of the "export/import" constructs play the role of implicit deallocation and 

allocation of dynamic objects. 

As an example, Figure 5.7 (a, b, c and d) provides snap-shots of the run-time 

memory organization for the execution of the dynamic object migration example in Figure 

5.6. (Figure 5.7<i> matches the line number "i" in Figure 5.6.) In this particular example, 

we have three processors, "Po", "Pi" and "Pj". The main processor "Po" allocates two 

parallel processors "Pi" and "Pj ". A process in the example program is mapped into a 

processor in the figure. The airport object "OK-City" (on "Pi") sends a plane object 

"American/Flight" to the airport object "Phoenix" (on "Pj"). This example shows the run­

time storage management for Parallel-C++ with emphasis on object level. 
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The planes, taking off and landing, may need weather information of the airports. 

The member functions, "takeoff" and "landing", of the plane objects use the pointer, 

"owner", to get current weather information from the member data, "weather", of the 

airport objects. The owner's address can be taken from the variable, "pointer to the 

owner", in the object's frame which has been established in the memory where the 

importing object resides. When the importing object establishes the imported object's 

frame, the importing object sets its value of "this" - which is a pointer to the importing 

object itself- to the "owner" pointer in the imported object's frame. The exported plane can 
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get local weather information from the various environments of the importing airports. The 

computation in the environment provided by the exporting object can be different from the 

computation in the environment provided by the importing object, while changing the 

ownership. This is one of the typical examples for Dynamic Interface Environment 

Binding. For example, in Figure 5.8, the plane "American" (in the exporting process "Pi") 

takes off with the "windy" weather condition of the airport "OK-City", and the plane 

"Flight" (which is actually the same object as "American" - only its symbolic name is 

changed in the importing process "Pj" after export/import) is landing with the "cloudy" 

weather condition of the airport "Phoenix". Figure 5.8 shows the object frames (magnified 

from the object frames shown in Figure 5.7) of the distributed objects in several processors 

while changing ownership by "export/import" operations~ 

5.6 A System View 

We show a specific system view for this particular example. (Refer to Section 2.4 

for a Parallel-C++ system view in general.) Conceptually we may view a Parallel-C++ 

system on the distributed processor as an environment consisting of a set of four layers -

class layer, object layer, virtual layer and physical layer. Each layer is mapped to the layer 

below. Figure 5.9 illustrates the four layers using the example in the previous section. The 

environment "Air_Traffic_Control_System" has several classes, such as "Airport" and 

"Plane". The objects "OK_ City" and "Phoenix" are the instances of class "Airport", and the 

objects "American" and "United" are the instances of class "Plane". We remind the reader 

that the class layer and object layer have instantiation relation, the object layer and virtual 

layer have virtual implementation relation, and the virtual layer and physical layer have 

physical mapping relation. Figure 5.9<a> shows the system view before "export" and 

"import" operations (Line-c and line-c' in Figure 5.6), and Figure 5.9<b> shows the 

change in system view after such operations. Dotted line with arrow shows the ownership 

(for example, "OK_City" owns "American" in Figure 5.9<a>). 
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5.7 Discussion of Compiler Implementation 

In the distributed memory, it is assumed that the storage for a dynamic object 

should be allocated in the local memory of the processor in which the importing object 

resides. The high cost for frequent communication between distributed objects can 

deteriorate the benefit of the distributed dynamic object-oriented programming. Because of 

the characteristics of distributed memory systems (without any shared memory), global 

variables or pointer variables cannot be used, and pass-by-reference mode cannot be used 

for the parameter passing, especially with the dynamic objects. Those restrictions are 

cumbersome barriers for users to make sophisticated programs. The development of a 

better scheme and a more sophisticate run-time system is needed to solve that problem. 

Fine-grained parallelism does not seem to be a promising scheme for this kind of parallel 

model. Better efficiency can be expected when medium/coarse-grained parallelism is 

pursued. Without using objects in simple conventional parallel programming, optimization 

cost (to do interdependency checking or restructuring, for example) is not negligible. The 

cost for fine-grained parallelism, such as parallel programming in the statement level, 

outweighs its benefits. Efficiency should be properly measured and carefully considered. 



CHAPTER VI 

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 

6.1 Epilogue 

This dissertation presents the programming language design concepts, language 

definition, semantics and implementation schemes for a distributed object-oriented parallel 

programming language, Parallel-C++. The language incorporates novel concepts that 

support object-oriented programming within a distributed computing environment. Parallel­

C++ is a high-level language that supports object-oriented parallel and distributed 

programming. 

We have also presented an implementation scheme for a Parallel-C++ translator. 

The translation techniques described in this dissertation have been used in the 

implementation of the prototype Parallel-C++ translator which is currently running on the 

Intel iPSC/2. 

Furthermore, based on the experience gained from implementing the translator, the 

implementation scheme for a compiler has also been defined. Run-time storage 

management is well illustrated and exemplified. 

Parallel-C++ is an extension of the C++ language. Language constructs are added 

to support explicit parallelism within the object-oriented programming paradigm. Parallel­

C++ preserves the properties of object-oriented programming, such as information hiding 

and inheritance, while providing support for parallel and distributed computing. In Parallel­

C++ there are two kinds of objects: (1) static objects that reside at a certain process at a 

certain time; and (2) dynamic objects that float from one static object (or process) to 

another. This concept can support object migration. However, the concept of static objects 
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is relative to the concept of dynamic objects. Dynamic objects can be exported/imported 

between static objects in a distributed system. Parallel-C++ also supports explicit 

parallelism and implicit parallelism. Compared with the other notions, it provides a very 

readable and simple code for object distribution and movement in application programs. 

Cost of object movement in the distributed memory is high compared to that in a shared 

memory system. The discussion of the object mobility in the distributed memory system 

provides a new approach. Most systems for object mobility available in the literature have 

addressed the issue of object mobility in the context of a single address space and a shared 

memory. Programming using distributed and dynamic objects in Parallel-C++ provides a 

new control flow and shows a different scope rule. Major new ideas and concepts of the 

programming language design presented in this dissertation are: 

(1) Distributed dynamic objects and static objects. 

(2) Ownership which is a dynamic relationship between objects. 

(3) Dynamic Interface Environment Binding (DlEB) which permits computation 

of objects in different environments. 

(4) A new approach to distributed object-oriented parallel programming. 

(5) Implementation schemes for dynamic objects in a distributed computing 

environment. 

The parallelizing translator implementation described in this dissertation has been 

targeted to an Intel iPSC/2 hypercube multiprocessing system. The implementation 

schemes for a compiler and run-time interpreter are also provided. The major 

implementation schemes suggested are: 

(1) A translator dynamically parallelizing programs for explicit parallelism. 

(2) Automatic processor allocation for distributed programs. 

(3) Support for object movements on the physically distributed address space. 

( 4) Distributed memory allocation for each local processor. 
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(5) Implicit deallocation of the freed area for the exported objects and implicit 

allocation of the environment for the imported objects. 

( 6) A compiler implementation scheme restructuring programs for 

implicit/explicit parallelism in the distributed memory computing 

environment. 

6.2 Contribution and Further Research 

The main contribution of distributed and dynamic objects is to provide new control 

flow of programs. This is illustrated with other control flows provided by existing 

programming languages (as shown in Section 2.6). Programming using dynamic objects 

can also simulate other control flow schemes. 

Dynamic objects also add enhancement to the scope rules (as shown in Section 

2.6). Dynamic objects are semi-persistent, because their lifetimes are spanned over other 

static objects importing such objects. 

One of the main characteristics of programming language is expressiveness. Parallel 

language constructs suggested in Parallel-C++ help programmers write simple and readable 

parallel programs. A programmer may define concurrency explicitly in his program. The 

parallelizing translator or compiler may detect and restructure the program in which 

concurrency is implicitly or explicitly defined. 

Another distinguishing characteristic of this work is that the current implementation 

shows the implementation scheme of distributed objects based on a distributed memory 

computing system, while most other work has been done using models based on shared 

memory systems. The implementation of distributed objects and object migration in the 

shared memory system is much simpler than that in the distributed memory system. It is 

also possible to think of a hybrid model which has distributed memory with shared 

resources such as printers and disks. 
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Besides the refinements to the work suggested in this dissertation, the valuable 

issues for future work also include development of formaVmathematical models [Manes 

and Arbib 86], and formal semantics [America et al. 86] [Hennessy 88,90] [Schmidt 86] of 

distributed dynamic objects. The development of proof methods, specification methods 

[Meyer 85], and debugging methods [McDowell and Helmbold 89] [Utter and Pancake 89] 

for proving correctness of program using dynamic objects are other important problems to 

be addressed. 
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