
THE DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED

PARALLELPROG~NGLANGUAGE

By

CHANG-HYUN JO
II

Bachelor of Economics
Sung Kyun Kwan University

Seoul, Korea
1984

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 1991

--~· '.

Oklahoma State Uuiv. Library

THE DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED

PARALLELPROGRAN.lliUNGLANGUAGE

Thesis Approved:

y

Dean of the Graduate College

140763? '
11

PREFACE

The advent of commercial parallel processing machines in the hardware area and the

emergence of new programming paradigms such as object-oriented programming in the

software area have had a positive impact on the development of efficient and reliable

software. The programming languages are necessary to satisfy sufficiently the requirements

for parallel and distributed programming applications. It is also necessary that these

languages support good software engineering methodologies. Object-oriented

programming has emerged as a paradigm that supports practical software development with

its ability to represent real-world problems. We are concerned in this dissertation with high­

level language support for distributed computing within the context of an object-oriented

programming paradigm, along with the dynamic interactions of objects. New language

concepts and related language constructs are presented. These constructs are included in the

definition of an object-oriented parallel programming language, and implementation of the

language is outlined as well.

111

ACKNOWLEDGMENTS

First and foremost, my profound thanks go to my Ph.D. dissertation advisor, Dr.

K. M. George. None of this could have been done without his consistent guidance, advice,

kindness and humanity thr~:mgh the innumerable meetings and phone calls for many years.

I would like to thank the graduate advisor, Dr. John P. Chandler, for his sincere

and consistent support during my graduate studies. I am also grateful to the other

dissertation advisory committee members, Dr. George E. Hedrick and Dr. Keith A.

Teague, for their encouragement, support, and critical review of my research. I would

especially like to thank Dr. Keith A. Teague for arranging for me to use the iPSC/2 system

in my research. I also wish to express my sincere appreciation to my M.S. thesis advisor

Dr. Donald D. Fisher.

Thanks go to all of my friends, colleagues and office-mates, especially Brendan

Machado who has provided me valuable help and assistance. My thanks also go to Michael

Carter for helping me to use the iPSC/2 system easily, and to Anna Ventris for her kind

help during my graduate studies. I would also like to convey my thanks to Dr. John P.

Chandler and Michael Hearing who have proof-read multiple versions of this dissertation

with care. In particular my thanks go to J. H. Baek and Dr. P. S. Jung who have

enthusiastically participated in the informal AI study group seminars.

Finally and most importantly, my love and thanks go to my parents, Soon-Kyu and

Boon-Sun Jo, who have provided consistent support, belief and love. With gratitude, I

would like to thank my beautiful sons, Hyun-Soo and Jin-Soo, and my lovely wife, Ae­

Kyung, for their love and patience throughout my graduate studies. I love you all forever.

IV

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

1.1 Prologue .
1.2 Parallel Programming and Object-Oriented Programming .

1.2.1 Parallel Programming and Languages
1.2.2 Object-Oriented Programming Systems (OOPS) . .

1.2.2.1 Class and Object
1.2.2.2 Inheritance

1.2.3 Programming Language Design and Implementation .
1. 3 The Language Parallel-C++
1.4 Related Work

1.4.1 Emerald
1.4.2 Distributed Smalltalk
1.4.3 Amber
1.4.4 Sloop
1.4.5 sos
1.4.6 Argus
1.4.7 Concurrent C++ .
1.4.8 Orca
1.4.9 Presto
1.4.10 Other Related Work

Page

1

1
4
5
6
8
8
9
9

11
12
13
14
14
15
16
16
17
18
18

II. OBJECT-ORIENTED PARALLEL PROGRAMMING LANGUAGE 20

2.1 Problem Domain . 20
2.2 Concurrent Language Features 21
2.3 Distributed Object-Oriented Programming 25

2.3.1 Object-Oriented Programming in Distributed Computing . 25
2.3.2 Static and Dynamic Objects 26

2.4 Parallel-C++ SystemView . . . 28
2.5 Ownership 29

2.5.1 Definition of Ownership . 29
2.5.2 Properties of Ownership . 29
2.5.3 Example of Ownership . . . 30
2. 5.4 Characteristics of Ownership 31
2.5.5 Some Questions and Answers 35

2.6 Contribution and Discussion 37

v

Chapter Page

III. PARALLEL-C++ : LANGUAGE DEFINITION 42

3.1 Language Definition 42
3.1.1 Parallel-C++ Overview .. 42
3.1.2 Scope Rules 43
3.1.3 Keywords for Parallelism 43
3.1.4 System Library 44

3.2 Language Extension for Parallelism . 44
3.3 Parallel Statements .. 45

3.3.1 Syntax 46
3.3.2 Usage 46
3.3.3 Semantic Notes 46
3.3.4 Example 47

3.4 Automatic Processor Allocation 47
3.4.1 Syntax 48
3.4.2 Usage 48
3.4.3 Semantic Notes 48
3.4.4 Example ... 49

3.5 Parallel Function Calls 50
3.5.1 Syntax 50
3.5.2 Usage 50
3.5.3 Semantic Notes 51
3.5.4 Example(l) 52
3.5.5 Semantic Discussion(I) . 52
3.5.6 Example(2) 53
3.5.7 Semantic Discussion(2) . 54

3.6 Synchronization ... 55
3.6.1 Syntax 5~
3.6.2 Usage 55
3.6.3 Semantic Notes . . 56
3.6.4 Example 56

3.7 Explicit Process Allocation 57
3.7.1 Syntax 57
3.7.2 Usage 58
3.7.3 Semantic Notes 58
3.7.4 Example 58

3.8 Object Migration ... 59
3.8.1 Syntax 59
3.8.2 Usage 60
3.8.3 Semantic Notes 60
3.8.4 Example ... 62

Vl

Chapter

IV. IMPLEMENTATION SCHEME I (TRANSLATOR)

4.1 Overall Structure of the Parallel-C++ Translator . .
4.2 Base Machine for the Implementation: Intel iPSC/2
4. 3 The Current Implementation of the Translator . . .
4.4 Concurrent Processes

4.4.1 Automatic Processor Allocation (APA) Tree
4.4.2 Nested Structures
4.4.3 Load Distribution with Limited Processors .

4.5 Object Migration
4.6 Example
4. 7 Discussion of Translator Implementation

V. IMPLEMENTATION SCHEME II (COMPILER-IN1ERPRETER)

5. 1 Overall Structure
5. 2 Abstract Machine Model
5. 3 Instruction Set for Conceptual Architecture .
5.4 Run-Time Storage Management

5.4.1 Distributed Storage Management
5.4.2 Distributed Object Management .
5.4.3 Dynamic Object Management ..

5.5 Example
5.6 ASystemView
5. 7 Discussion of Compiler Implementation

VI. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1 Epilogue
6.2 Contribution and Further Research

BIBLIOGRAPHY

Vll

Page

63

63
65
65
67
68
70
75
77
79
84

87

87
91
92
93
93
95
96
99

105
107

108

108
110

112

LIST OF FIGURES

Figures Page

1.1 Comparison of Languages and Systems supporting Concurrency based
on Object Model 12

2.1 Parallel Statements 21

2.2 Precedence Graph of the Parallel Statements 22

2.3 Automatic Processor Allocation Graph 23

2.4 Object Migration Model . . 28

2.5 Parallel-C++ System View 28

2.6 Ownership Hierarchy vs. Inheritance Hierarchy 33

2.7 Various Ownership Relations with Inheritance Hierarchies 34

2.8 Various Communications among Distributed Objects 37

2.9 Comparison of the Scope of Objects 40

2.10 Comparison of Flow of Controls . . 41

4.1 Structure of Parallel-C++ Translator 64

4.2 Current Implementation of Parallel-C++ Translator 66

4.3 Explicit Process Allocation Construct 67

4.4 Explicit Process Allocation Example 68

4.5 A Simple APA Tree and A Process Node Structure 70

4.6 Example Code with Nested Processes 71

4.7 AP A Tree with Nested Processes . 72

4.8 Transformed Binary AP A Tree . . 73

4.9 Process Allocation on the APA Tree 74

4.10 Load Distribution with Limited Processors 76

viii

Figures Page

4.11 Object Migration Constructs: Export/Import 77

4.12 Object Migration Translation Scheme 78

4.13 Translated Export/Import Constructs using C++ and iPSC/2 C Routines 79

4.14 An Example using Object Migration between Distributed Objects 81

4.15 Translated Program using C++ and iPSC/2 C Routines 82

4.16 Output of the Example Program 84

4.17 iPSC/2 C Routines used in Translation . 86

5.1 Parallel-C++ Compiler-Interpreter Structure 87

5.2 Control Flow Transition Diagram . . . 90

5. 3 Abstract Machine Model Architecture . . 92

5.4 The Structure of Object Frame and Dynamic Object Message Format 96

5.5 Run-Time Storage with Dynamic Objects 98

5. 6 Example of Dynamic Object Migration between Static Objects 100

5. 7 Run-Time Storage with Distributed and Dynamic Objects 102

5. 8 Distributed Object Frames 104

5. 9 System View 106

IX

CHAPTER I

INTRODUCTION

1.1 Prologue

Several commercial and experimental object-oriented programming languages have

been designed and implemented. Some such as C++ [Stroustrup 82-89] and CLOS [CLOS

88] are extensions of existing conventional or functional programming languages, while

others such as Smalltalk [Goldberg and Robson 83] and Eiffel [Meyer 88-89] are newly

designed languages.

Parallel programming becomes a feasible idea because of the availability of new

experimental and commercial parallel computers [August et al. 89] [Bakker et al. 87]

[Baskett and Hennessy 86] [Bronnenberg et al. 86] [Cheng 89] [Dally 88] [DeBenedictis

88] [Dongarra 87] [Duncan 90] [Emrath 85,88] [Fox 87-89] [Gabriel 86] [Gehringer et al.

88] [Gottlieb et al. 83] [Haynes et al. 82] [Kuck et al. 86] [Kung 80,82] [LeBlanc et al. 88]

[Odijk 87] [Padmanabhan 90] [Padua 79, Padua et al. 80] [Seitz et al. 88] [Test et al. 87]

[Treleaven et al. 86] [Tsukakoshi et al. 87] [Veen 86] [Yew 88]. A number of papers have

reported research about parallel programming and its language evolution [Ackerman 82]

[Agerwala and Arvind 82] [Allen and Kennedy 82,85,87] [Andersen 89] [Ardo and

Philipson 84] [Bal et al. 89] [Carriero and Gelemter 89] [Clapp and Mudge 89] [Cmelik et

al. 89] [Fox et al. 88] [Gaudiot and Lee 87 ,89] [Gehani and Roome 86-90] [Goguen et al.

87] [Guama 87,88] [Halstead 85] [Kim and Browne 88] [Kuck et al. 86] [Lamport 74-84]

[Lee et al. 85] [Lee 88] [Lesser 74] [Li 86] [Luckham et al. 84] [Olsson 86] [Olson 85]

[PCF 88] [Perrott 79,87] [Polychronopoulos 87,88] [Quinn et al. 88] [Ranka et al. 88]

[Sabot 88] [Schutz 79] [Tsujino et al. 84] [Weihl 88,89] [Workshop 88]. Other research

1

2

reports the work on concurrent/parallel programming by extending the existing

programming languages and systems, such as logic programming languages [Clark and

Gregory 86] [Clark 87] [Codish and Shapiro 87] [Conery and Kibler 85] [Corsini et al. 89]

[Lin and Kumar 88] [Shapiro and Takeuchi 83, Shapiro 87 ,89] [Talia 90] [Tebra 87],

functional programming languages [Goldberg and Hudak 88] [Hudak and Smith 86],

symbolic programming languages [Halstead 85] [Fidge 88], and procedural languages

[Guzzi 87] [Karp and Babb 88]. Besides the above, there are a number of concurrent and

parallel programming language models [Agha 86-89] [Brinch-Hansen 73-87] [Chandy and

Misra 88] [Dijkstra 68,75] [Hennessy 88,90] [Hoare 73-85] [Liskov 81,88, Liskov et al.

86,87, Liskov and Shrira 88] [Milner 80] [Olderog and Hoare 86].

Since the properties of object-oriented programming are well suited to the nature of

real-world problems, and since parallel computers provide the potential of speed-up,

combining these two areas is emerging as an important issue [Agha 89] [SIGPLAN 89]

[Yonezawa and Tokoro 87] [Wegner 87-90]. Some researchers have already incorporated

concurrency/parallelism into object-oriented programming languages [America et al. 86]

[Bennett 87,90] [Corradi and Leonardi 87-90] [Gehani and Roome 88b] [Hur and Chon
.

87] [Rose and Steele 87] [Rosing et al. 88] [SIGPLAN 89] [Shibayama 89] [Tripathi and

Berge 89] [Watanabe and Yonezawa 88] [Yonezawa and Tokoro 87]. Others have built

object-oriented parallel programming languages and systems [Bershad et al. 88] [Black et

al. 86] [Chase et al. 89] [Kafura 88, Kafura and Lee 89] [Koszarek 88] [Jul et al. 88]

[Bjomerstedt and Britts 88] [Yang et al. 89] [Zimmerman and Crichton 89]. The languages

such as Concurrent C++ [Gehani and Roome 88b] and Emerald [Jul et al. 88], have

sacrificed some properties of object-oriented programming (e.g., class in Emerald and

inheritance in Concurrent C++) while achieving concurrency.

However our basic tenet is that all properties of object-oriented programming must

be preserved when incorporating concurrency into the programming language. Therefore,

we take an approach different from the previous approaches. We are interested in

3

incorporating distribution and concurrency within object-oriented programming without

sacrificing any of the object-oriented features. We are also interested in language concepts

capable of capturing dynamic interactions of objects. With this objective, we have

developed a programming language, Parallel-C++, to support parallelism within the object­

oriented programming paradigm [Jo and George 89,91]. Parallel-C++ is based on C++ and

preserves the properties of object-oriented programming while providing parallel

programming. It also incorporates language concepts to support object migration. This

research work is influenced by the work of several authors whose research extends from

theoretical foundations to specific programming languages [Agha 86-89] [Brinch-Hansen

73-87] [Chandy and Misra 88] [Dijkstra 68] [Goldberg and Robson 83] [Grogono and

Bennett 89] [Hoare 73-85] [Liskov 81-88] [Meyer 88-89] [Milner 80] [Nguyen 85]

[Nygaard and Dahl 78, Nygaard 86] [Stroustrup 83-89] [Wirth 74-90]. One of the

perceived benefits of the Parallel-C++ programming language is to provide a model of

dynamic behavior in object-oriented systems. We introduce the new notions of dynamic

and static objects, and a dynamic relationship between them called ownership. We show

how these concepts can be incorporated into the programming language. We also illustrate

the use of these concepts in practical situations.

This dissertation also includes the implementation scheme of a translator for the

language Parallel-C++ [Jo et al. 91] on the Intel iPSC/2 hypercube multiprocessor

computer [Intel 88]. The Parallel-C++ translator translates a Parallel-C++ source code into

C++ programs supplemented with system primitives and subroutines on the iPSC/2. The

translation scheme takes advantage of an existing C++ compiler [AT&T 85-89] for the

iPSC/2.

The implementation scheme of a compiler and an interpreter for Parallel-C++ is also

presented. The objective of compilation rather than translation is to generate more efficient

object codes for the target machine which is here iPSC/2. The run-time storage

management for distributed and dynamic objects is also described with some examples.

4

Throughout this dissertation, a processor denotes a physical computation unit, and

a process denotes an abstract computation unit. An object can be mapped into a process in

an abstract computation machine and can be mapped into a processor in a physical

computation machine. Processes are called concurrent if their executions have the potential

to overlap in time. Parallel computation means that parts of program segments (concurrent

processes) actually execute at the same time by using a number of different processing

elements.

The remainder of the dissertation is organized as follows: The rest of the sections

in this chapter discuss parallel programming within conventional language and object­

oriented programming in general, and surveys related work. The design issues for Parallel­

C++ are described in Chapter 2. Chapter 3 defines the language syntax and semantics with

several application examples to show the merits of the new concepts and to show how the

concepts can be applied in practice. There are two implementation schemes, translation and

compilation. Chapter 4 shows the implementation scheme for the translator. Chapter 5

gives a compiler-interpreter implementation scheme for Parallel-C++. Chapter 6 discusses

contributions of this research and suggests possible topics for future research work with

the conclusion.

1.2 Parallel Programming and Object -Oriented Programming

Parallel languages provide features that support the design and implementation of

parallel algorithms. Programming languages provide two approaches to parallelism in the

language constructs. The first approach is implicit parallelism. A tangible configuration of

this is program restructuring, especially in the optimization step of compilation. A serial or

parallel program can be restructured into a parallel code targeted for a specific parallel

architecture. In this approach the user is not concerned with the parallelism; the optimizer

parallelizes the program by restructuring [Allen and Kennedy 82-87] [Kuck et al. 86]

[Midkiff and Padua 87]. In the second approach the user specifies the parallelism explicitly.

5

Explicit parallelism is user-programmed parallelism using the parallel constructs provided

by the language. This approach can be accomplished by extending the existing languages

[PCF 88] or by providing new parallel programming languages [Bal et al. 89]. Despite the

advances, the use of parallel machines is still limited by the languages that are available.

Object-oriented programming is another evolution in programming languages.

Many researchers believe that object-oriented programming provides a natural model to

represent the real world [Stefik and Bobrow 86]. Several object-oriented programming

languages have been designed and are being used for practical software development

[Deutsch 89] [Goldberg and Robson 83] [Grogono 89] [Grogono and Bennett 89] [Kamin

88,90] [Koschmann and Evens 88] [Lieberherr and Holland 89] [Meyer 88-89] [Peterson

87] [Raj and Levy 89] [Stroustrup 83-89] [Wasserman 90] [Wegner 86-90] [Wolf 89].

While some languages add new concepts to object-oriented programming languages, others

adapt object-oriented methods to new areas of application such as distributed computing

[Yokoto and Tokoro 87] [Yonezawa and Tokoro 87].

1.2.1 Parallel Programming and Languages

Programming language design for distributed computing usually follows the

following three approaches. The first approach is to parallelize existing sequential

languages. The parallelizing compiler or translator detects program segments, to be

possibly parallelized, and restructures sequential program to parallel programs. The work at

Rice [Allen and Kennedy 82-87] and Illinois [Kuck et al. 86] [Padua and Wolfe 86]

[Polychronopoulos and Banerjee 87, Polychronopoulos 87 -89] are examples of this

approach. The second approach is extending an existing language by providing language

constructs to make parallel programing easy and efficient. This approach extends the syntax

of conventional languages and uses dedicated compilers or translators. This type of

approach is found in Distributed Smalltalk [Bennett 87,90], PCF Fortran [PCF 88] and

others [Karp and Babb 88]. The third approach is to design new parallel languages. The

6

work of Emerald [Black et al. 86], Concurrent Smalltalk [Yokoto and Tokoro 87] and

others [Yonezawa and Tokoro 87] are examples of research using this approach.

1.2.2 Object-Oriented Prommmin& Systems COOPS)

Object-oriented programming (QQP) is based on many important language concepts

such as abstract data types (ADT), encapsulation, dynamic binding, class, object,

inheritance, polymorphism, and reusability [Olthoff 86] [Snyder 86]. It is also based on

mathematical models such as universal algebra [Birkhoff 82] [Gratzer 79]. In OOP, the

important concept is an object. An object encapsulates data structures and operations on

those. This concept looks similar to data abstraction of abstract data types as occurs in Ada

[Ada 79,83], CLU [Liskov and Zilles 75, Liskov et al. 77, Liskov and Snyder 79, Liskov

and Guttag 86, Liskov 87], and Modula [Wirth 77]. Objects communicate with each other

by passing messages using interface functions of the objects. A class is a template for its

objects. The notion of class is similar to that of type. Objects which have the same type are

generated from a class. Each object is distinct by having its own state. The concept of class

was first introduced in Simula 67 [Franta 78] [Nygaard and Dahl 78]. This concept has

been adopted in Smalltalk [Goldberg and Robson 83], Eiffel [Meyer 88-89], C++

[Stroustrup 83-89] and other object-oriented programming languages. Inheritance and

dynamic binding facilities make object-oriented programming different from imperative

programming. Dynamic binding makes typed systems truly generic. For example, in C++,

virtual functions allow dynamic bindings. Inheritance allows objects to use data and

functions of the objects defined by parent class. Reusability is another merit of object­

oriented programming. Using inheritance and dynamic binding, the programmer reuses

pre-written codes for new programs. For a large software system, it may reduce a

substantial amount of code repetition, and hence it may reduce the cost of software

development.

7

Another merit of object-oriented programming is that OOP represents much of the

real world. In the real world, many entities may be regarded as an object. For example,

those objects are humans, animals, cars, factories, more abstract systems and even atoms.

They have their own data structures and interface functions. Objects communicate with

each other by passing messages through interface functions. For example, atoms interact

with each other, and they are combined to produce compound structures. A system keeps

its own states even though structures may be similar, and may communicate with other

systems by calling their interface functions. The distinct internal states of systems make

them distinguishable from each other. The internal states of a system cannot be accessed by

others directly, but can be altered by requests from others through the formal interfaces.

Many object-oriented languages have been developed to support OOP paradigms. Some of

those are Actor [Agha 86-89], Objective-C [Cox 83,86] [Cox and Schmucker 87],

Smalltalk [Goldberg and Robson 83,89], Eiffel [Meyer 88-89], Trellis/Owl [O'Brien et al.

87], C++ [Stroustrup 82-89] and Self [Ungar and Smith 87].

In object-oriented programming, we are concerned with what has to be done in a

module, while also being concerned with how it has to be done as in procedural

programming. While there are some arguments that object-oriented programming is only an

extendible typed language [Wirth 90], and real-world relations cannot be well represented

only by inheritance, it is too early to appreciate the future impact of this on the real

programming world. Nowadays OOP pervades the programming area and several

application areas (such as database systems), but it still needs more development of

theoretical background. However, the applications are growing much faster than the

development of those theories. Object-oriented languages like Smalltalk are not only

languages, but are also systems including their programming environments. Object­

oriented programming is radically developed and widely used for graphical user interfaces

[Myers et al. 90], data base systems [Date 90] [Kim et al. 87] [Maier et al. 86] [Smith and

Zdonik 87] [Ullman 88], and operating systems design [Shapiro et al. 89].

8

1.2.2.1 Class and Object

An object is a unit system in the OOPS, usually being identified by a unique

identifier, also having a type. An object consists of its own data members and the interface

operations, called "methods", that operate on those data. These operations provide the

interface to other objects to access and change the object's data. The data members may be

altered only by the object's operations (for private members) or can be accessed only by

other objects (for public members). Other objects request certain operations through these

interface operations. In OOPS, this is called "message passing".

A class is a template for its objects. Several objects may be created from a class.

Initially they all look the same. Different objects are differentiated by their own identifiers,

and they have their own storage for their data members and may have different values.

Even if the values for member data are the same, those objects are still different because

they have their own address spaces.

1.2.2.2 Inheritance

Abstract data types (ADT) and objects (classes) originate from the same roots from

the point of view of information hiding and encapsulation. The main difference between

these two ideas is in inheritance [Snyder 86] [Stroustrup 89b]. OOPS uses class hierarchy

to represent the static relationships among the objects. Those relationships can be any one

of the conventional relationships with real-world entities, such as "is-a" or "has-a". This

hierarchy can be represented by a tree (for single inheritance) or by a lattice (for multiple

inheritance). Parent classes are called super-class and children are called sub-class. The

object created from the sub-class may inherit the properties from the super-class. If a sub­

class can inherit properties from more than one super-class, we call this multiple

inheritance. These concepts are emphasized as important concepts to explain real-world

problems in several research reports [Stroustrup 89b].

9

1.2.3 Pro~ammin~ Langua~e Desi~n and Implementation

The development of computer hardware leads us to the development of computer

software which makes use of the hardware. A programming language is one of the

important tools for developing computer software. Programming languages are not "the

solution" to software problems, but because of their central role in software, they can help

to simplify solutions [Fisher 76]. Adoption of an appropriate programming language may

help to remove the barriers to solving software problems.

Some of the desirable characteristics of a programming language are the following

[Fisher 76] [DoD 77]:

(1) The language should have a complete and unambiguous definition of syntax and

semantics.

(2) The language should not be dependent on any particular object machine or any

particular operating system.

(3) The language should be able to test and verify its correctness.

(4) A parallel language should provide the ability to create and terminate parallel

processes through the parallel language constructs and/or the parallel system

primitives.

(5) Synchronization ability is needed [Dinning 89]. Mutual exclusion to the system

resources should be obeyed by concurrent processes.

(6) Exception handling should be provided when arithmetic overflow, exhaustion of

free space, hardware errors, or any other run-time error occurs.

1.3 The Language Parallel-C++

In this dissertation, we present a new language, Parallel-C++, which allows parallel

and distributed programming in an object-oriented programming environment [Jo and

George 89,91]. In distributed object-oriented parallel programming, some of the objects in

10

the system can be distributed on the different address spaces, and those objects can be

executed in parallel. Parallel-C++ incorporates new language concepts such as

static/dynamic objects and ownership.

In developing the concepts of dynamic and static objects, and ownership, we adopt

ideas from object-oriented programming languages, especially C++ [Stroustrup 82-89].

The concepts of class, object, message and their syntax are the same as those in C++. C++

is an inherently sequential language. We extend the C++ language to support object­

oriented parallel programming. The reason for choosing C++ as the base language for

parallel extension is that C++ offers familiar syntax, static type checking, and its base

language C has been widely used (which means many applications such as image

processing are programmed by using it [Brown M89]). But many ideas for language

design and compiler implementation are adopted from other object-oriented languages such

as Smalltalk [Goldberg and Robson 83] and Eiffel [Meyer 88].

The purpose of our work for parallel programming within an object-oriented

paradigm is to:

(1) Suggest a problem domain for object-oriented programming in the distributed

computing environment.

(2) Survey current programming languages and review their distinguishing features for

distributed programming and object-oriented programming.

(3) Design an object-oriented parallel programming language, Parallel-C++, to support

distributed programming within an object-oriented paradigm.

(4) Explore different implementation schemes.

The approach of Parallel-C++ supports an abstraction of the whole system as

opposed to abstraction of process migration, as in the case of languages and systems in the

literature. The newly introduced language constructs "import" and "export" not only

support object mobility, the associated concepts of dynamic object and ownership, but they

also support even more general scenarios such as computation of an expression in different

11

environments. This is because the object responding to a message of a dynamic object is

not the same all the time. For example (assuming an aircraft is hijacked), the reply to a

message from a pilot requesting permission to land at an airport depends on the airport.

From that perspective, management of object migration becomes a consequence and not an

end in itself. Moreover, the "copy-and-delete" semantics of "export" is different from the

semantics followed by the other systems and introduce a different scope of objects.

1.4 Related Work

Besides the work mentioned in the previous sections, other related work is in the

areas of load balancing and process migration. Process migration is abstracted as object

mobility in the object-oriented systems. Several languages are concerned with providing

support for load balancing and object mobility. The notions of process migration and object

mobility, as well as their discussion, are not new. Since the 1970's, process migration and

object migration have been thoroughly discussed in the literature for the several distributed

systems [Artsy and Finkel 89] [Bennett 87,90] [Bjornerstedt and Britts 88] [Douglis and

Ousterhout 87] [Jazayeri 89] [Powell and Miller 83] [Zayas 87]. However, language

support for object mobility based on object-oriented programming is a relatively new

approach. The systems that incorporated this approach are Emerald [Black et al. 86] [Jul et

al. 88], Sloop [Lucco 87], Amber [Chase et al. 89] and SOS [Shapiro et al. 89]. These and

other similar systems, as well as languages, focus on object management and provide

support for explicit management of object mobility. Other related work includes Distributed

Smalltalk [Bennett 87 ,90], Argus [Liskov 88], Presto [Bershad et al. 88], Orca [Bal and

Tanenbaum 88], and Concurrent C++ [Gehani and Roome 88b]. Especially, the works of

[Beck 90] [Shapiro et al. 89b] [Yin et al. 90] focus on the research of parallel languages

and systems based on C++. A comparison of the relevant characteristics of the related

programming languages are summarized in Figure 1.1.

Object Model Base Characteristics Object Support Memory Mechanism

Parallel-C++ Object-Oriented Object Mobility
Parallelism Language Distributed Copy -and-Delete

Emerald Object-Based Object Mobility Primitive Shared Call-by-Object-Reference

Vistnbuted_
Small talk Object-Oriented Object Mobility Primitive Shared Object Sharing

Amber Object-Based Object Mobility Operating
Svstem Shared Remote Object Invocation

Sloop Object-Oriented Object Mobility Language Shared Virtual Object Space

sos Object-Oriented Object Mobility Operating
Svstem Both Move or Copy

Argus Object-Based Location Language Distributed Remote Call-by-Value lndependen

ConcurrentC+ Class-Based Parallel Processes Language Both Transactions

Orca Object-Based ~hared Data Objec Language Both Call-by-Sharing

Presto Object-Oriented Threads System Shared Pre-defmed Object Types

* Object-Oriented = Object+ Class+ Inheritance [Wegner 87]
Class-Based = Object+ Class
Object-Based = Object

Figure 1.1. Comparison of Languages and Systems supporting Concurrency based on
Object Model

In the following sections, a brief outline of related work is provided.

1.4.1 Emerald

12

Emerald is an object-based language and system designed for the construction of

distributed programs [Black et al. 86] [Jul et al. 88]. Emerald provides explicit language

support for fine-grained object location and mobility. Emerald objects consist of data

objects and process objects. In Emerald's object model, local objects are private and remote

objects are to be shared. Emerald supports concurrency between objects in a network, and

supports concurrency of parallel operations within an object. A monitor-like construct is

used for synchronization of concurrent operations. Emerald does not provide either classes

or inheritance. Emerald uses three different implementation styles for objects, namely

global objects, local objects, and direct objects. It provides five primitives for object

location and migration: locate, move, fix, unfix, and refix. It also suggests various kinds of

13

parameter passing modes related to objects, such as call-by-object-reference, call-by-visit,

and call-by-move.

The authors of Emerald report that a prototype implementation targeted to a small

network (DEC Micro-VAX II workstations) has been done. The Emerald implementation is

targeted to shared memory architectures [Jul et al. 88]. These researchers report that

Emerald is intended to run in a modest size network (e.g., within 100 nodes). The

implementation consists of an Emerald compiler and an Emerald kernel. The creation of

objects is accomplished by explicit constructors. The kernel supports code sharing. Remote

objects are managed by an object table in each node. Invocation overhead has been

reported, because the activation records for executing processes must also move when an

object is moved.

1.4.2 Distributed Smalltalk

Distributed Smalltalk (DS) is an implementation of Smalltalk in a distributed system

[Bennett 87,90]. DS and Emerald credit their origins to a common root. DS provides for

object mobility, communication between remote users, direct access to remote objects,

object sharing among users, and distributed applications in the Smalltalk environment. The

presence of the class is required to move and use an object. DS also provides several

design alternatives which could be useful to make implementation decisions of a distributed

object system.

The authors report that Distributed Smalltalk has been implemented on a network of

Sun-2 workstations. The characteristics of the implementation include distributed garbage

collection, access control, and object mobility.

The work related to Distributed Smalltalk is Multiprocessor Smalltalk [Pallas 89].

Multiprocessor Smalltalk discusses a Smalltalk implementation on a multiprocessor system,

and provides related performance analysis.

14

1.4.3 Amber

Amber is a programming system that allows a single application program to run on

a homogeneous network, where each node is a shared-memory multiprocessor [Chase et

al. 89]. Amber uses an existing programming language and operating system to provide

support for concurrency and distribution of programs. The distribution model and mobility

primitives are adopted from Emerald, and Amber's thread and synchronization models

follow those of Presto. The Amber system consists of a C++ preprocessor and a run-time

kernel. Amber programs are written in a subset of C++, enhanced with primitives for

thread and object management. Objects and threads, which provide explicit support for

concurrency, can be created dynamically. A collection of mobile objects can be distributed

among nodes in a network, while interacting with each other through location-independent

invocation. Computational load distribution is determined by the locations of data objects.

The implementation reported by the authors is on a DEC Fire-fly running the Topaz

operating system. Amber programs are converted into a set of Topaz tasks, and they are

- distributed in the network, in which one task executes on each participating node. The

global virtual memory is implemented by arranging the virtual address space which

simplifies object migration.

Sloop can be viewed as a parallel programming language and environment [Lucco

87]. It is based on an object-oriented model that supports explicit MIMD parallelism. Sloop

allows explicit assignment of objects to physical processors by providing three operations,

access, align, and copy. Sloop supports indivisible objects in which only one operation

invocation executes at a time. Cooperating distributed objects can be located on different

physical processors in a multiprocessor, and all distributed objects can simultaneously

execute operations, while interacting with each other using an asynchronous access

15

mechanism. Sloop hides details of the underlying multiprocessor by providing a virtual

object space which contains a collection of objects that cooperate to solve a problem.

The authors report that Sloop implementations at AT&T Bell laboratories are

running on a bus-based multiprocessor (the S/Net), on an experimental 64 processor

hypercube processor, and on a heterogeneous network of workstations connected by an

Ethernet. A Sloop program is transformed into a C program by the Sloop compiler. The

Sloop run-time system, written in C++, uses object relocation heuristics and coroutine

scheduling to perform mapping and load balancing.

1.4.5 SQS.

SOS is a Distributed Object-Oriented Operating System [Shapiro et al. 89] [Shapiro

et al. 89b]. While SOS uses standard operating system techniques, it also supports

medium-sized objects, distributed or fragmented objects, and object migration. In SOS, to

establish a remote service, a client object must acquire a proxy, which is a local interface

object representing the service and migrating into the client's context at the time of need.

Such a proxy can process the service locally or remotely.

SOS, written in C++, is prototyped on top of Unix (SunOS) [Shapiro et al. 89b].

The standard C++ tools such as inheritance and coercion methods, as well as a task library

for coroutine-style programming, are used to provide interface between applications and the

system.

SOS incorporates several similar concepts to Parallel-C++ relating to object

mobility. However, there are still substantial differences between SOS and our work. First

of all, the approach of SOS is operating system based, whereas our approach is high-level

language based. Secondly, SOS is concerned with facilitating the implementation of

compilers, whereas we are concerned with providing high-level language support for

abstraction and developing a compiler for it. Thirdly, many ideas, such as Dynamic

16

Interface Environment Binding (DIEB), ownership, concurrent language support, new

control flow and enhanced scope rules, are uniquely suggested in our work.

1.4.6 ~

Argus is an object-based language and system which supports fault-tolerant

distributed programming by providing location-independent invocation of distributed

objects [Liskov and Scheifler 82] [Liskov 88]. There are two different entities, Argus

guardian (which is an abstract object encapsulating resources) and CLU cluster (which

represents local objects contained inside guardians) in Argus. A guardian resides in a node

even though its resident location is changeable. A distributed program is composed of a

number of guardians which can execute in parallel. Data objects storing resources in a

guardian can be accessed by calling handler procedures. Argus uses a "pass-by-value" (not

by-reference) parameter passing mode. Argus also provides atomic actions (like

transactions in database systems) within programming languages like Avalon [Ditlefs et al.

88]. It does not provide the idea of object migration, but related issues are well discussed.

A prototype of Argus is implemented on a collection of Micro-VAX II workstations

operating under Ultrix.

1.4.7 Concurrent C++

Concurrent C extends C by adding concurrent programming facilities [Cmelik et al.

89] [Gehani and Roome 86, 88, 90]. Concurrent C++ is obtained from Concurrent C by

adding data abstraction facilities of C++ [Gehani and Roome 88b]. The communication

model of Concurrent C is based on Ada rendezvous. A Concurrent C program consists of a

set of processes, which are sequential programs independently executing in parallel.

Concurrent C provides facilities for operations on processes such as processes creation,

process termination, process synchronization, and priority specification. Concurrent C

processes communicate with each other by means of (synchronous and asynchronous)

17

transactions which can be thought of as services called by other processes. Concurrent

C++ facilitates data abstraction of C++ within concurrent programming in Concurrent C.

The language extension is made by allowing process variables in Concurrent C as class

members in C++, and allowing process operations in Concurrent C as member functions in

C++. Concurrent C++ processes allow multiple threads of control. However, Concurrent

C++ does not allow inheritance by a derived process. Gehani and Roome report that data

abstraction and parallel programming facilities seem to be orthogonal; however, the merger

of Concurrent C and C++ raises several integration issues which might be valuable to

review.

Concurrent C has been implemented on several types of systems: a Unix based

single processor system, a set of VAX computers connected by an Ethernet network, and a

shared memory multiprocessor system. The shared memory multiprocessor system is

assumed to be an appropriate architecture for programming in Concurrent C.

1.4.8 Qrgj,

Orca adopts a shared data-object model to facilitate distributed programming [Bal

and Tanenbaum 88]. Shared data are encapsulated within passive objects which are

instances of abstract data types. Parallel activities are realized by dynamic creation of

multiple sequential processes. A process can pass its objects as shared parameters to its

children. Processes communicate indirectly through shared data-objects, which play the

role of a communication channel between processes because any changes to the object are

visible to all processes. Such a scheme is similar to call-by-sharing in CLU [Liskov et al.

77]. Access to shared data is allowed through indivisible operations only, and such access

is automatically synchronized.

Bal and Tanenbaum provide the following implementation models: implementation

in a distributed system, with point-to-point message, and with reliable/unreliable multicast

message. A prototype implementation has been done on top of the Amoeba distributed

18

operating system. Orca programs are transformed into intermediate codes which can be

translated into machine-dependent object code on a target system. The implementation is

based on automatic object replication and object migration performed by a run-time system.

1.4.9 Presto

Support of object-oriented parallel programming in a multiprocessor environment is

the objective of the Presto system [Bershad et al. 88]. C++ with a library and a run-time

system are the primary components of the Presto system. Presto provides users with a set

of pre-defined object types useful for writing parallel programs. In Presto, all objects

execute in a single address space shared by all processors. Thread objects provide fine­

grained control over an execution of a program, and synchronization objects provide

concurrency control for threads executing simultaneously. Once created, a thread is capable

of executing operations of an object in parallel with the starting thread.

Presto has been implemented as a run-time library written in C++ on Sequent

Balance and Symmetry shared memory multiprocessor machines on top of the Dynix

operating system. The Presto run-time system maps a user's threads onto physical

processors, and provides access to a global shared memory. All mappings are transparent

to the Presto users. A single scheduler object keeps track of all threads that are ready to run

in each processor object. A user's programs are linked with the Presto library to obtain

executable programs.

1.4.10 Other Related Work

Some operating systems for distributed systems, such as the Sprite operating

system [Douglis and Ousterhout 87] and the DEMOS/MP operating system [Powell and

Miller 83], use process migrations as a method by which executing processes transfer

between processors. Other related work includes Loops [Kempf et al. 87], Linda

[Gelernter 85] [Leler 90], Flavors [Moon 86], Concurrent Smalltalk [Yokota and Tokoro

19

87], and CLOS [CLOS 88] [Keene 89] in the area of object-oriented programming

languages and systems.

The next chapter is devoted to clarifying the problem domain in which we have to

design new language constructs, and to explaining the concepts that are incorporated into

Parallel-C++.

CHAPTER II

OBJECT-ORIENTED PARALLEL PROGRAMMING LANGUAGE

2.1 Problem Domain

Processes are a set of programs. Processes are called sequential when they execute

sequentially one instruction at a time by following a given thread of control. Using

sequential processes, we have been doing serial programming in various ways. A

sequential process delivers the same result with given data [Brinch-Hansen 73]. Many

specification methods and proof methods of correctness for sequential programming have

been developed. They allow us to use sequential programming as a tool to express our

behaviors.

But nowadays, we have met another genre in our computing. It is known as

concurrent or parallel programming. Processes are called concurrent if their execution may

be interleaved or overlapped in arbitrary order in a given time. Many of our actions in real

life are done by concurrent behaviors. For example, we may have dinner while reading a

newspaper, watching TV and talking to members of the family. While we drive a car, we

are watching the road, listening to classical music, pushing the pedal and changing gears.

In a factory, many control tasks can be done efficiently in parallel. In various ways,

concurrent action is a natural form of human behavior. The programming that describes our

lives must be able to express these kinds of parallelism. Parallel programming should be

able to meet these needs in our lives. Concurrent programming can be achieved in various

ways such as interleaving, overlapping, pipeling, time-sharing and multi-tasking execution

of instructions. While concurrency gives the potential for parallelism, parallel processing

achieves the actual simultaneous executions of parts of operations. Concurrent and parallel

20

21

programming has been discussed as early as the sixties in the literature [Brinch-Hansen 73-

77] [Dijkstra 68] [Hoare 74-78].

During the past decades, we have seen real, experimental and commercial

concurrent processing machines which use multiple parallel processors. Those machines

have demonstrated speed-up, efficiency and effectiveness in various research projects [Fox

87-89]. As a consequence, we need parallel languages to implement parallel algorithms

efficiently. Some parallel languages have been investigated for achieving such a need in

parallel computing.

2.2 Concurrent Language Features

A well-known representation of concurrent processes is a "parallel statements"

construct [Dijkstra 68]. The "parallel statements" construct has several concurrent

statements in the construct [Figure 2.1]. The "parallel statements" construct is well suited to

structured programming, since a parallel statement has a single fork-point "parbegin" and a

single join-point "parend".

begin So; parbegin S1; ... , Sn parend; Sn+l end;

Figure 2.1. Parallel Statements

The parallel statements can be depicted by a precedence graph like the one shown in

Figure 2.2. This language construct facilitates fine-grained parallelism among concurrent

statements.

22

so
J.

l 1
St Sn

J.
Sn+l

Figure 2.2. Precedence Graph of the Parallel Statements

When using the 11parbegin/parend 11 construct, programmers should guarantee

independence of statements in the construct if the compiler does not check for

dependencies. To diminish this burden of programmers, another parallel block construct

for automatic processor allocation, llautobegin/autoendll, can be provided. The

llautobegin/autoendll construct shifts the burden of enforcing parallelism from the

programmer to the compiler. The compiler uses the restructuring algorithms to check for

dependencies. Having determined the dependencies, the code is parallelized. If all

statements are mutually independent, this is the same as a 11parbegin/parend11 statement:

While processing this construct, an automatic processor allocator translates the program

segment specified in the construct to a virtual execution graph, which is used to check

interdependency among the statements. An automatic processor allocator congregates the

dependent statements into a block at each dependency checking step. Finally, the automatic

processor allocator maps the disjoint program segments to the dependent processors. This

procedure is illustrated in Figure 2.3. Suppose we have a sequence of statements, So, ... ,

and Sn, to be executed. In Figure 2.3, the leftmost figure represents a sequential execution

ofthe statements. In the sequential execution, the symbol II ~~~represents a dependency of

the statements, and the symbol 11 ···> 11 represents a textual order of the statements. For

example, II So ~ S2 II means that the execution of the statement S2 depends on the

execution of the statement So (which means that S2 cannot be executed before/while So

23

executes), and "So···> S1" simply means that the statement So is placed before the

statement S 1 in a program.

<serial>

G)
c) Q

''\

@J (' G
CQ
~

serial order

<parbeg i n/parend> <autobegin/autoend>

@ @
+ + + 1 l + e @

..;. G) parallel C0 ..;.

@
execution 1

G) ! l + +
+ +

G) G)
+ +

@ @
wrong parallel order: right parallel order:

arbitrary processor allocation automatic processor allocation

where si : statements, i = 0, ... , n (number of statements),
"--+" means a dependency and
"·····•" means a textual order.

Figure 2.3. Automatic Processor Allocation Graph

Based on the information given in the leftmost figure which shows serial execution

of the program segment, we may have two versions of parallel execution, using different

parallel constructs such as "parbegin/parend" (middle figure) and "autobegin/autoend"

(rightmost figure) which have different semantics. In the "parbegin/parend" figure, after the

execution of the statement So, the statements, S1, S2, and S3, are arbitrarily parallelized

without checking interdependencies among the statements. As a consequence, this

execution of the parallelized statements leads to a wrong result. Since the execution of the

24

statement S3 depends on the execution of the statement S2, the statements S2 and S3 cannot

be arbitrarily parallelized, and they must execute sequentially. In the "autobegin/autoend"

figure, the statements S2 and S3 are serialized into a block, and they can execute with

another block of the statement S 1 in parallel. This kind of automatic restructuring of a

concurrent program is done by an automatic processor allocator in the parallelizing

transl<itor/compiler.

From the point of view of granularity of parallelism, we have only discussed the

language features necessary to support fine-grained parallelism. We now introduce a

language construct, "explicit process allocation", which may be useful for medium-grained

parallelism.

We may explicitly assign processes to a number of parallel statements. In this case,

parallel statements may be represented by several blocks of concurrent processes, and each

process block consists of sequential statements in it. This language construct, the "explicit

process allocation" (shown in detail in the next chapter), is initiated from the "parallel

compound statement" [Dijkstra 68] and Ada "tasks" [Ada 79,83].

The statements assigned by an "explicit process allocation" construct are in a critical

region. The statements among processes are mutually exclusive and the processes defined

by the construct are completely independent of each other.

In general, we apply the rule of disjointness [Brinch-Hansen 73] to the parallel

construct. The disjointness implies that a variable "vi" changed by a statement "Si" cannot

be referenced by other statements. A compiler may provide a facility to check the

interdependencies between concurrent process statements at compilation time. But this

method does not guarantee to find dependent variables in the concurrent statements, with

pointer variables, reference variable and the address of the variables being the typical

examples of this case. We cannot find out their values at compilation time, because values

are not assigned statically. Because they can be changed dynamically, those values can be

known at run-time only. To prevent erroneous or unpredictable programs using such

25

variables and common variables accessible by several concurrent processes, we need

another language construct to exchange information of such variables between concurrent

processes. Several language facilities for synchronization such as semaphores, critical

regions and monitors, have been suggested in the literature. With a distributed memory

facility without any local memory, message passing is the well-known method to

communicate among concurrent processes. A prospective parallel language may include a

synchronization construct "send/receive" to communicate and exchange data between

concurrent processes. The "explicit process allocation" construct supports programming in

medium-grained parallelism. Also, the parallel language may include language constructs

like "parallel function calls" for medium and large-grained parallelism. We define the above

language features in detail in the next chapter.

So far, we have discussed parallel programming in modular and structured

programming only. In the next section, we discuss parallel programming with an object­

oriented programming paradigm.

2.3 Distributed Object-Oriented Programming

2.3.1 Object-Oriented Programming in Distributed Computing

One of the barriers to parallelism in the conventional serial languages is access to .

common variable and global constructs. Local modularization, like objects in object­

oriented programming, can be one of the solutions to achieving medium-grained and large­

grained parallelism.

In distributed memory architecture, the cost of frequent communications among the

distributed small computations is very high. To expect better efficiency and to reduce the

frequency of communication, the other kind of computations may be considered. In this

case, the modularization of the computation with local variables is necessary. This kind of

module can be represented by an object in the object-oriented programming paradigm. An

26

object includes local data and interface operations. Local data in an object can be modified

only by its operations in the object. Objects communicate with each other by using these

interface operations.

This section describes the idea which has been developed to allow object-oriented

programming in a distributed computing environment. The major ideas and concepts in the

design of the programming language Parallel-C++, which has incorporated object-oriented

programming within parallel and distributed computing, are presented here.

2.3.2 Static and Dynamic Objects

The key concept in C++ is the class [Stroustrup 86]. Parallel-C++ adopts this

concept to support data abstraction and information hiding. The class is a template from

which several objects can be defined. Objects are instances of classes. An object consists of

local states and methods which may modify its local states. There are two kinds of objects,

static objects and dynamic objects, in our distributed object-oriented programming system:

(1) A static object (free object) is a stationary object. A static object may

own any number of dynamic objects. A static object can be also viewed as a

master object which controls other objects in a system.

(2) Dynamic objects can be moved from one static object to another. One or

more dynamic objects can be owned by a static object. A dynamic object

owned by a static object can be moved to another static object.

Parallel-C++ incorporates another important concept which is "Distributed Object­

Oriented Parallel Programming". In distributed object-oriented parallel programming,

objects can be distributed to have their own processors and hence they can be executed in

parallel on their respective processors. Conceptually, a static object is bound to a processor

and this binding does not change during the lifetime of the object. However, in the case of

a dynamic object this binding varies. Several dynamic objects can be owned by a static

object. Once an object is owned by any static object (or process), other objects (or

27

processes) cannot access the methods and data structures of such an object. An object as

one of the instances of the class can be accessed by only one object (or process) which

owns that object at any time. A dynamic object can communicate with its owner by using

the owner's methods.

Dynamic objects can be exported and imported by other objects. Permission to

access objects owned by other processes can be gained by using "export/import" constructs

only. The basic construct is shown in the language definition in the next chapter. Unlike in

Modula [Wirth 77] and in Eiffel [Meyer 88], the terms "export" and "import" are used in

relation to dynamic objects only. An object does not export itself, and the visibility of

imported object is limited to the importing object. One process can export its objects to

another process, while its counterpart can import that object. The exported object is queued

into the import-list of the destination object (or process). Dynamic objects possess features

for dynamic interaction with the enclosing environment.

One of the models for interaction among the concurrent computational objects for a

distributed system is communication. Communication models provide interactions among

independent objects while preserving encapsulation and information hiding in a
.

computational object. "Export/import" constructs enable synchronous communication

between the objects (or processes) by using dynamic objects. Once a dynamic object is

exported, then the importing object can access this incoming object, and the exporting

object (or process) cannot access this object anymore. Not only the logical address of this

exported dynamic object has been changed, but the address space of this object has also

been changed in the distributed computing system. This imported object responds to the

messages with the new environment provided by the enclosing object (or process). This

basic conceptual model is illustrated in Figure 2.4. (The corresponding language construct

is shown later in the next chapter.)

Static
Objecli

import

Static
Objecl:_j

Static
Objecli

export
import

Static
Objecl:_j

before export/import after export/import

Figure 2.4. Object Migration Model

Figure 2.5. Parallel-C++ System View

2.4 Parallel-C++ System View

Class
Layer

Object
Layer

Virtual
Layer

Physical
Layer

28

A system for our distributed object-oriented parallel programming language,

Parallel-C++, can be implemented in various parallel computers. A system view for the

implementation shows the general scheme of the implementation and mapping of the

components in the system (Figure 2.5). A system is composed of class layer, object layer,

29

virtual layer and physical layer. From the point of view of the object layer, a program

consists of static objects and dynamic objects which are instantiated from their own classes

in the class layer. Each object can be mapped into a process in the process layer. Processes

reside on the physical processors.

2.5 Ownership

The relationship between the importing object and the corresponding dynamic

object is called ownership. Ownership is a relation representing interactions between a

static object and the corresponding dynamic object. When a dynamic object is exported to a

certain static object, its ownership also changes. The definition of ownership is as follows.

2.5.1 Definition of Ownership

An object "s" owns an object "d" if and only if

(1) "s" alone can directly invoke methods of "d";

(2) "d" can directly invoke only methods of "s", and

(3) any communication between "d" and other objects must be directed through

"s".

Then "s" is called an owner of "d".

An ownership between two disjoint sets of objects Sand D, where S is the set of

static objects and D is the set of dynamic objects, is a binary relationship (Si, dk), where

Si E S and dk E D. When a static object "si" exports a dynamic object "dk" to another static

object "s(, ownership is changed from (si, dk) to (Sj, dk), where Si, Sj E S and dk E D.

2.5.2 Properties of Ownership

If the static object "si" owns the dynamic object "dk", then

(1) the static object "si" owns the communication control for dynamic object

"dk" exclusively,and

(2) the result of computation of dynamic object "dk" is determined by the

environment provided by static object "si".

30

Dynamic objects also follow static inheritance properties. A dynamic object looks

up its own methods first. If the necessary methods cannot be found, then the dynamic

object continues to look up the methods by tracing the inheritance hierarchy which has been

statically defmed and finds the inherited methods. The external environment of the dynamic

object is provided by the static object. It can affect the evaluation of these methods. These

properties are shown by distributed object processing and object migration.

(1) By distributed object processing, several concurrent objects are executable

in parallel and they may exchange current states by means of communication

among objects.

(2) By virtue of object migration, a dynamic object may react differently in

different environments wherdt resides, while it keeps data integrity.

2.5.3 Example of Ownership

For example, in a real-time air-traffic control system, suppose that we have two

airports "Dallas" and "OK_City", and we have two airplanes "American" and "United".

"Dallas" and "OK_City" are instances of a class "airport", whereas "American" and

"United" are instances of a class "plane". Ownership can be defined between the airports

and planes. Ownership in this case indicates which airport is exclusively monitoring the

plane. When these planes travel from one city to another, the ownership will be changed.

Ownership shows this relation.

Let S = { Dallas, OK_City } and

D = { American, United }, then

the possible ownership relations are

R = { (Dallas, American), (Dallas, United),

(OK_City, American), (OK_City, United) }.

31

2.5.4 Characteristics of Ownership

(1) Ownership is different from inheritance. Inheritance hierarchy may or may not be

the same as ownership hierarchy. Class hierarchy is static all the time. Ownership

can be defined by any static objects and dynamic objects in the system. The owner

of a dynamic object need not be an object instantiated from its super-class. The

owner may be super, sub or a sibling in class hierarchy.

(2) Theoretically it is possible to have a hierarchy of objects related by ownership. In

that case, all descendants defined by ownership also move when a dynamic object

moves. (However, in our experimental language Parallel-C++, only one level of

ownership is allowed.) Again the above descendants are not necessarily the objects

instantiated from sub-class in class hierarchy.

(3) Reference to a dynamic object in a different address space (address in which other

objects are) is only done by object migration. The "export/import" constructs

support object migration (shown in the next chapter). Reference to an exported

object is not allowed.

(4) Dynamic objects may respond differently to the methods according to the

environments where they reside currently. We call this Dynamic Inteiface

Environment Binding (DIEB). The DIEB facilitates a computation in different

environments. A current owner provides a computation environment to a dynamic

object.

(5) A global variable like a static variable cannot be defined, assigned or referenced in

a dynamic object because the address space of the object is changeable at run-time.

(6) When a dynamic object is exported, its state is also moved, and the address of the

shared methods of its class can be found by tracing inheritance hierarchy, which is

static in a system.

32

When an object moves to a new owner (importing object), its state is moved at the

same time. This model preserves more of the properties of abstraction, encapsulation and

information hiding than shared variables do. The information kept in an object is retained

and the integrity of that object is preserved as it moves. This model represents situations

that occur in many real-world situations. For example, in child adoption, the circumstance

(environment of interaction) of a child has been changed, but his own characteristics and

inclinations are preserved by the child initially. But new education can change his moral

values and knowledge. Figure 2.6 depicts such an example that uses object migration. In

Figure 2.6, classes are depicted by using ovals, and objects are depicted by using boxes.

Super and sub classes are connected by lines. Thin dotted lines represent instantiation of

objects from their respective classes. Thick dott~d lines represent ownerships between

dynamic objects and their owners. Figure 2.6<a> illustrates an ownership defined between

the objects instantiated from sibling classes. Figure 2.6 illustrates an ownership

defined between the object instantiated from a super-class and the object instantiated from a

sub-class. The figures of left-hand side depict the situation before export/import operations,

and the figures of right-hand side depict the situation after export/import operations.

Figure 2. 7 shows various examples of ownership relations in detail. Also it

illustrates the ownership relation when "export/import" operations are applied to the

examples. The figures on the left, such as <a> and , illustrate various ownership

relations with the inheritance hierarchy. In the figures, arrows represent ownership

relations. A dotted circle or a box represents an exported object instantiated from its class.

A bold circle or a box represents an imported object from its class. We assume "Pi" is an

exporting process and "Pj" is an importing process.

(before export/import)

·•·•···•····•··········

class
Hierarchy

(after export/import)

~ ······················•···
r--0-l_d -P._ar_e_n_t .,, ,.--N..,;:~:::."~.._P_ar_en_t-,1

A-Child objects Old-~arent I .--N-e~:·:a.~P-ar-e-nt..,, A-Child

(before export/import)

A-Child

7 - -....................... o·;~~rship

- t o:z~;~~hip·······

<a> Sibling Class Case

class
Hierarchy

objects

(after export/import)

A-Child

! .
•utiiiUIIIIIIIIIIIIIol;~~~;lhiPIIIIIIIIIIIIIUIIIIUIIP

 Super-Sub Class Case

Figure 2.6. Ownership Hierarchy vs. Inheritance Hierarchy

33

34

Inheritance Hierarchy Ownership

Pi Pj
r-30 1
. .
l 2 l
•••noooooouooooooo.

<c>

Pi ~
/""' 1
: 2 : 3

6S

Pi Pj

(2) <a> <c> <d>

Pi Pj

(3) <a> <c> <d>

Pi

/···~1
~ 2 ~ 3

c60

Pi

["28·················1
l 3 l
••••••••••••••u .. .-4

Pj

(4) <a> <c> <d>

(before export) (after import) (before export) (after import)

Figure 2.7. Various Ownership Relations with Inheritance Hierarchies

35

2.5.5 Some Questions and Answers

We may have several questions about distributed objects. Here, we list possible

questions and suggest some solutions.

(1) Can any object be the owner of any other object?

Theoretically yes. But the owner should be defined in the syntax anyway. So not all

objects are interchangeable dynamically between static and dynamic objects in a program.

(Practically, for example, the owner is a static object enclosing dynamic objects as

members in Parallel-C++. The objects used in an export construct can be assumed to be

dynamic objects.)

(2) When (under what condition) does an object become an owner?

Theoretically, once a static object owns and gets communication control of dynamic

objects, it becomes an owner. Syntactically, if a static object has dynamic objects like class

objects as members, then ownership is declared. (Actually, there is no necessity for explicit

syntax for static or dynamic objects in Parallel-C++, but once an object is declared in the

same way as object-as-member, it is assumed that the enclosing object is static and the

enclosed object is dynamic. Also a dynamic object can be found in an export construct.)

(3) When (how) does ownership change?

Once a dynamic object moves to another object, then ownership changes. If a

dynamic object "dk" moves from current owner "si" to a new owner "sj", the ownership (s,

d) may change thus:

(Sj,dk) ~ (Sj,dk).

Syntactically, this is done by "export/import" constructs. Dynamic interaction

among distributed objects is done by ownership change. The computation of a dynamic

object may be affected by the environment provided by its current owner. The external

environment of a dynamic object is dynamically bound at run-time.

36

Inheritance hierarchy is static in Parallel-C++. Ownership change does not affect

inheritance hierarchy at all. An object which moves to another environment is still an

instance of class statically defined already. This conserves inheritance hierarchy all the

time.

(4) How can communications be done among objects?

If a dynamic object is owned by an owner, all communication should go through

such an owner. The owner provides a communication line from outside to the inner

dynamic objects. This embedded communication provides a mechanism for information

hiding and for Dynamic Interface Environment Binding (DIEB). Suppose we have different

scenarios:

(4.a) Communication between dynamic objects and dynamic objects (Figure

2.8<a>):

No direct communication between dynamic objects (for example, "dm" and "dn" in

Figure 2.8<a>) is allowed, unless those dynamic objects reside at the same static object

(for example, "dk" and "d0 " in Figure 2.8<a>). The computation of a dynamic object is

dependent on the enclosing environment provided by its owner. So the computation

resulting from direct communication between dynamic objects may be different from the

results expected in a different environment. Communication through the enclosing owner to

dynamic objects ensures the results computed in the environment provided by the owner.

(4.b) Communication between dynamic objects and owner (Figure 2.8):

An owner can communicate with its dynamic objects using the methods of these

dynamic objects defined already (for example, "fj" communicates with "d0 " in Figure

2.8). An owner cannot communicate directly with dynamic objects owned by other

objects. Communication must go through the communication line provided by their owner

(for example, "dm" communicates with "fj" through the communication line provided by

"fi" in Figure 2.8).

37

(4.c) Communication between owner and owner (Figure 2.8<c>):

Communication between owners is done by calling each other's methods (for

example, the communication between "fi" and "fj" has been done in conventional way in

Figure 2.8<c>).

<a> Dynamic - Dynamic Communication

 Dynamic - Owner Communication

<c> Owner - Owner Communication

Figure 2.8. Various Communications among Distributed Objects

2.6 Contribution and Discussion

In the previous sections we have shown how object-oriented programming can be

extended a level further by incorporating semi-persistent dynamic objects; semi-persistent

because their lifetimes can be spanned by the lifetimes of more than one object. The totality

38

of objects in the system consists of static objects and dynamic objects. A static object can

be a master object which owns some dynamic objects which may be floating from one

object (process) to another object (process) in the system. This situation occurs very

frequently in the familiar real-world, examples being aircrafts (controlled by distributed

airports) in an air-traffic-control-system, communication messages (passed by distributed

nodes) in local area networks and process migrations (from one resource to another) in load

balancing (resource sharing), etc.

Object mobility can be obtained as a consequence of the change in ownership

relation between objects which defines a new dynamic relation among objects. An

ownership relation between static and dynamic objects can be changed while conserving the

static class hierarchy.

When the ownership of an object is changed due to export, the importing object

may own this exported object. Ownership does not mean the overlay of their address

spaces (e.g., object frames and activation records). Static and dynamic objects have their

own address spaces. The ownership concept is orthogonal to the inheritance notion and

hence does not interfere with the class hierarchy. To be truly object-oriented parallel

programming, the conflict between concurrency and inheritance should be avoided. In

Parallel-C++, the inheritance is static. The class hierarchy is constructed at compile time,

and the system keeps its class-list, object-list, and class hierarchy at all times. When a

method is called by an object, the system looks up the method table for the object. If the

method looked up is not found at the current object, the system traces the class hierarchy

already defined, and finds the desired method from the super-class. Even if the dynamic

object migrates to another static object, the class hierarchy is still conserved and the

inheritance can be traced. The instance variables in objects are not shared data.

A static object (or process) can export its objects to another static object (process),

while its counterpart can import that object. The exported object is placed in the import-list

of the destination object (or process). When objects are exported and imported among the

39

processes, the environments of the objects will change. Object environment includes

storage for the object frame, which consists of object name, class name, frame size,

instance variables, pointer to the address of member functions, and other necessary

information for the management of the object. If an object is exported, then the exporting

object purges it from its environment. The importing object establishes an environment for

it to communicate with the imported object. There are two kinds of environments for a

dynamic object, internal environment and external environment. The internal environment

of an object consists of its data structures and methods, including the ones it obtains via

inheritance. The external environment is the environment enclosing the dynamic object. The

external environment depends on the static object which owns the dynamic object. The

external environment affects the communication between the static and dynamic objects.

The internal environment of the dynamic object moves with it, but the external environment

does not. The internal environment of an exported object is bound to the external

environment which is provided by the importing object. By this Dynamic Interface

Environment Binding (DIEB), an object behaves differently according to the environment

in which it resides. Ownership guarantees encapsulation and protection of dynamic objects.

The basic implementation scheme including the run-time memory management for this new

concept is more specifically described in Chapter 4 and Chapter 5.

Parallel-C++ adds enhancement to the scope of the objects. An object in C++ may

have either static or dynamic scope. In C++, an object can be instantiated from the

beginning [Figure 2.9<a>] or in the middle of a program [Figure 2.9] and it still lives

until the end of program unless the destructor operation of the class is issued to kill it. Once

the object's life ends, it cannot be restored again. In Parallel-C++, however, a dynamic

object can be exported at any time from any process that owns it [Figure 2.9<c>], and the

process which imports this object inherits the environment [Figure 2.9<d>], and the object

can also be imported again with the current states. If the object is not exported, then its

40

scope ends within the current owner. Moreover, the lifetime of a dynamic object extends

over all the importing objects. In general, static objects have static scope.

<C++>
begin • begin instance

• instance

l destruct

end • destruct end

<a>

<Dynamic Objects>

begin • instance begin

• export • import

end end L-.
<c> <d>

Figure 2.9. Comparison of the Scope of Objects

The language constructs "export/import" are different from Ada "rendezvous" [Ada

79,83] from the point of view of control. Figure 2.10 illustrates the differences in control

flow between this construct and related constructs, such as "functions", "coroutines" and

Ada "rendezvous". Programming using dynamic objects can simulate other control flow

schemes provided by those related constructs.

<Functions>
main function I call r··········

(~;i"i)"'

r······· .. ·i
<Coroutines>

program; programi

! (;;;;;;;;;;)· ···! !
......................... !

!

<Ada Rendezvous>
task; taski

cani.. Ientry
rendezvou

(suspended)

r··················

<Dynamic Objects>
process; processi processk

export import I
(Ieee~ import

gomg) export l(wait until
imported)

Figure 2.1 0. Comparison of Flow of Controls

Parallel-C++ language definitions and examples are given in the next chapter.

41

CHAPTER III

PARALLEL-C++ : LANGUAGE DEFINITION

3.1 Language Definition

A programming language has three main characteristics [Schmidt 86]:

(1) Syntax: the appearance and structure of its sentences,

(2) Semantics: the assignment of meanings to the sentences, and

(3) Pragmatics: the usability of the language.

In this chapter, we define the syntax and semantics of an object-oriented parallel

programming language, Parallel-C++. We also show some examples of the usage of each

new language construct. Implementation schemes for this language are shown in the

following chapters. Language definitions through the syntax and semantics of the language

should verify the correctness of the implementations.

3.1.1 Parallel-C++ Overview

The programming language C++ [Stroustrup 86] is a superset of the programming

language C [Kernighan and Ritchie 78,88]. Parallel-C++ is an extension of C++ for

allowing object-oriented programming in parallel and distributed programming

environments [Jo and George 89,91]. Since the language definition for the serial

programming part of Parallel-C++ is almost the same as that of the C and C++ languages,

the language definition in this section does not provide a detailed description of the serial

part of the language. Even though we do not provide all of the language features, we

describe the language features which are new and which are different from existing

42

43

languages. The language definitions that minimally show the salient features of the new

language are described here.

Even though we mostly explain new language constructs by using existing

language features, we try to avoid depending entirely on those languages that are

sometimes too specific. The reason for our approach, which provides independent (or

portable) modules of new language grammar, is to allow readers to import these ideas into

their own models efficiently.

3.1.2 Scope Rules

A Parallel-C++ program consists of one or more translation/compilation unit(s)

stored in one or more file(s). Files for translation/compilation should have the name with

"*.c" for source programs and "*.h" for header files. The current implementation of

Parallel-C++ expects header files to be defined before the translation/compilation of source

program.

The scope rules for variable names, except dynamic objects, in a program usually

follow the conventional scope of C++. But the scope of a dynamic object is local to its

owner which is a static object. Variables declared in a dynamic object are local to that

object. Export/lmport operations may change the scope of a dynamic object. Once a

dynamic object is exported, it is no longer available to its owner. The scope of an exported

dynamic object is limited to the object importing such a dynamic object.

3.1.3 Keywords for Parallelism

In addition to the keywords defined in C++, Parallel-C++ has reserved some

identifiers for use as keywords for object-oriented parallel programming. Those are the

following.

44

keywords

parbegin parend I I parallel statements

autobegin

parallel_commands

process

parallel_functions

send

autoend // automatic processor allocation

export

3.1.4 System Library

end_parallel_commands //explicit process allocation

end_process

end_parallel_functions

recv

import

II explicit process definition

II parallel function calls

II synchronization

II object migration

The functions, types and macros of the standard library are declared in system

library files. Besides these, Parallel-C++ provides other header files, "msg.h", "token.h",

"global.h" to support translation option. Because the Parallel-C++ translator automatically

includes these files when a user performs a translation, so programmers need not explicitly

include it. The header file "global.h" is included by the translator, compiler and interpreter

programs. The header file "msg.h" defines functions and classes for message passing.

Another header file "token.h" is for declaration of token codes used in translation. The

"global.h" file declares global data structures and defines other necessary functions and

classes. Other system files and header files, for the translation and compilation, are

specifically described later in the sections describing implementation issues. Users can be

concerned with only the system standard libraries or user-defined files which they use with

translation/compilation.

3.2 Language Extension for Parallelism

To achieve explicit parallelism with an existing serial object-oriented language (such

as C++), some extensions to that language are necessary. Those language extensions

include the constructs for parallel statements, automatic process allocation, parallel function

45

calls, synchronization, explicit process allocation and object migration. Here we define

syntax and semantics for those new language constructs which we have designed and

incorporated in Parallel-C++. In the syntax definition, we use "Gothic" letters for the

keywords (which are mostly new constructs), and "Italic" letters for the non-terminal

symbols. The symbol":" is used as the meaning of "is defined as", and the symbol "I" is

used as "or". The symbol "opt" appears in the right-lower side of non-terminal means

"optional". We do not go through all the symbols at the terminal symbol level, because

those parts are conventionally well defined in the existing base languages, which are here C

and C++. Those parts of the grammar are skipped and denoted using the":" symbol. An

example usage of each language construct is also provided. We show here six kinds of

typical extensions. We assume the newly extended grammars are derived from the non-

terminal "statement".

a-program

statement
parallel-statement
automatic-processor-allocation-statement
parallel-function-call-statement
synchronization-statement
explicit-process-allocation-statement
object-migration-statement

The following sections of this chapter are dedicated to the definition

of the language extensions of an object-oriented programming language while achieving

parallelism.

3.3 Parallel Statements

A "parallel statements" construct allows parallel execution of the statements

enclosed by it.

3.3.1 Syntax

parallel-statement

compound-statement

declaration-list

statement -list

3.3.2 Usage

parbegin compound-statement parend

{ declaration-listopt statement-listopt

declaration
declaration declaration-list

statement
statement statement-list

parbegin { statements } parend;

where parbegin:
parend:
statements:

3.3.3 Semantic Notes

parallel statements begin
parallel statements end
optional parallel statements

(1) The statements in this construct are concurrently executable, and may

execute in parallel at the run-time.

(2) Syntactically speaking, a "parallel statements" construct can be nested.

(3) When using a "parallel statements" construct, a user should guarantee that

the execution of parallel statements in this construct are independent and

mutually exclusive of each other to be parallelized successfully.

(4) The variables defined or used in the construct are strictly local.

46

(5) A parallelizing compiler binds the divided part of statements inside into one

or more parallel blocks, as many as the number of processors that are

allowed to use simultaneously in the system.

(6) Fine-grained parallelism is supported.

3.3 .4 Example

Suppose we have a program segment like the following:

parbegin
{

}
parend;

a= b + 1;
c = d;
e = f *pi;

47

All three statements, So, S2 and S3, are independently executable, because there is

no dependency among the variables used in the statements. However, the example given

below illustrates the improper use of the construct.

parbegin
{

}
parend;

X= y + 1;
w=z;
y =X* pi;

II related to S2

II error: dependent on So

In this example, So and S2 are dependent on each other. Because the variables "x"

and "y" are used in both statements, the results may be different according to the order of

their executions. The dependency checking by programmers is not an easy task unless the

number of statements used in the construct is very small. In practice we need a parallelizing

compilation facility to check program dependency automatically and to provide the

capability to restructure programs. The next section shows a basic construct for doing such

automatic checking and restructuring.

3.4 Automatic Processor Allocation

User may use an "automatic processor allocation" construct to diminish the burdens

in checking the dependencies among the statements in a "parallel statements" construct. The

48

automatic restructurer in compilation step restructures the statements in such a construct

into parallelized blocks of statements after interdependency checking. At run-time the

restructured blocks of statements are executed in parallel.

3.4.1 Syntax

automatic-processor-allocation-statement:

compound-statement

declaration-list

statement -list

3.4.2 Usage

autobegin { statements

where autobegin:
autoend:
statements:

3.4.3 Semantic Notes

autobegin compound-statement autoend;

{ declaration-listopt statement-listopt

declaration
declaration declaration-list

statement
statement statement-list

autoend;

automatic restructuring begin
automatic restructuring end
optional statements to be parallelized

(1) The statements in this construct are concurrently executable if no

dependency is found, and may execute in parallel at run-time.

(2) If all statements to be parallelized in this construct are mutually independent,

this has the same effect as a "parallel statements" construct. Even in this

case, the blocks of restructured statements may not be the same as those of

a "parallel statements" construct.

(3) The optimizer module in the parallelizing compiler draws a virtual graph

during the checking of dependencies among the statements in the construct,

then restructures the program by blocking the dependent statements into

several independent blocks.

(4) The run-time interpreter (Automatic Processor Allocator) executes the

parallelized statements by running the independent blocks of codes on the

parallel processors.

(5) Fine-grained parallelism is supported.

3.4.4 Example

For the following program segment:

So:
autobegin
{

a= x + 1;
b =X* pi;
c = b- 1;
z =alb;

auto end;

.... '

I I related to S4
II related to S3
I I dependent on S2
II dependent on S1 and S2

Thus program segment will be restructured like the following:

So;
parbegin
{

I I Block1: on the processori
II Block2: on the processorj

49

The parallelized program segment will be executed in the sequence of: So first,

Block1(S1) and Block2(S2 and S3) in parallel, then S4, and Sn finally.

50

The constructs, which have been described, are able to support fine-grained

parallelism. Independent blocks of codes can be modularized in large size. The next

construct is for parallel programming of large independent modules.

3.5 Parallel Function Calls

For the parallel execution of independent medium or large modules of program, the

construct "parallel function calls" is provided. Independent sets of functions can be invoked

in parallel by using this construct. Some research work has been reported in a similar area

[Bane:rjee 86] [Li and Yew 88].

3.5.1 Syntax

parallelfunction-call-statement : parallel_functions

function-statement

function-call

. function-name

return-var

parameter-list

3.5.2 Usage

parallel_functions
{

{ function-statement
end__parallel_functions;

function-callopt function-statementopt

function-name (parameter-listopt);
return-var = function-name (parameter-listopt);

identifier

identifier

parameter
parameter, parameter-list

function-namei (parameter-list);

return-var = function-nomen (parameter-list);
}
end_parallel_functions;

where parallel_functions:
end_parallel_functions:
function-namej:
parameter -list:
retum-var:

3.5.3 Semantic Notes

parallel function call begin
parallel function call end
calling function name
optional parameter list
return variable

51

(1) The functions in this construct may be concurrently invoked and executed in

parallel at run-time.

(2) Only function call statements can appear in this construct.

(3) Access to global variables from a "parallel function calls" construct is not

allowed unless the synchronization construct is used (shown in Section

3.6).

(4) Theoretically, the control flow has as many concurrent threads as the

number of functions in this construct (However practically, it can have only

as many parallel threads as the number of available processors to which

parallel function calls can be mapped.).

(5) The maximum speed-up obtained is proportional to the number of

processors assigned to this construct.

(6) The processes, which were allocated to some parallel functions and finished

their execution, wait until other processes are finished. All processes used

with this "parallel function calls" construct are synchronized (or joined) at

the end of this construct. The "end_parallel_functions" statement acts as a

barrier.

(7) The use of this construct in a recursive fashion is not permitted.

(8) Coarse-grained parallelism is supported.

52

3.5.4 Example(l)

Suppose we have the following program segment, with two functions, "funcl" and

"func2". In the "parallel function calls" construct, those two functions are concurrently

invoked (in S 1 and S2), executed in parallel, and synchronized at the end of the construct.

After joining from concurrent threads, the next serial statement S3 is executed.

int func1(int x)
int func2(int y)

main()
{

{ x++;
{ y = y + 10;

return x; }
return y; }

int arg = 0; int sos = 0; int sub 1 = 0; int sub2 = 0;

parallel_functions
{

}

sub1 =
sub2 =

end_parallel_functions;

func1(arg);
func2(arg);

sos = subl + sub2;

}

3.5.5 Semantic Discussion(!)

II sub1 = 1;
II sub2 = 10;

II sos: sum of subs= 11

In the example in Section 3.5.4, the parallel statements S 1 and S2 can be executed

either in the same processor or in different processors. In a distributed memory system, it

is possible that the statements sl and s2 execute in parallel on different processors with

their own local memories. Then the variable "sos" in the statement S3 in the main program

may not have the correct answer "11" unless the values of variables, "sub1" and "sub2", in

the main processor memory have been updated with new values somehow. At least the

values of "sub1" and "sub2" in the statement S3 would have to be updated when the

53

parallel statements are joined just before the execution of statement S3. The compiler or

translator should generate the codes necessary to return the current values of these variables

executed in different processor's memory to the main processor's memory. Even if the

current values of variables in their local memories have been updated, the variables in the

main processor's memory have not been updated yet. For example, the following pseudo-

code segment is generated by the Parallel-C++ translator between the end of the parallel

function calls construct and the statement S3 in the restructured program. In distributed

memory system without any shared memory, every communication between different

address spaces should be done by message passing only. The constructs, "send" and

"recv", used here for communications, are defined and explained in the next section.

if(my _node == process_for_S 1)
send(sub1, main_process, msg_type_1);

if(my_node == process_for_S2)
send(sub2, main_process, msg_type_2);

if(my_node == main_process)
{

recv(process_for_S 1, sub 1, msg_type_l);
recv(process_for_S2, sub2, msg_type_2);

3.5.6 Example(2)

I I return result from S 1

II return result from S2

I I receive the results

Can we send a parameter "arg" and receive a return value in the same "arg"? This

example exhibits more of the difficulties with parallel evaluations in the distributed system.

The following example provides the motivation to examine this problem. In this example

we have used the same variable "arg" in both parallel function calls by referencing its

address. This causes non-deterministic results from their parallel execution.

void func1(int *x)
void func2(int *y)

{ (*x)++;
{ (*y)= (*y) + 10;

}
}

main()
{

S1:
S2:

S3:
}

int arg = 0;

parallel_functions
{

II possible arguments --7
funcl(&arg); II arg = {0 110} --7
func2(&arg); II arg = {0 I 1} --7

}
end_parallel_functions;

arg++; II arg = {21 11112} ?

3.5.7 Semantic Discussion(2)

possible results
{1111} ?
{10111}?

54

In the example in Section 3.5.6, we passed parameters by address for parallel

function calls. Since the sequence of execution of parallel function calls is non-

deterministic, the function "func1(&arg)" may take the value of "arg" as either "0" (before

the statement S2 is executed) or "10" (after the execution of S2) and the function

"func2(&arg)" may take the value of "arg" as either "0" (before the statement SI is

executed) or "1" (after the execution of S I). To make it worse, after the execution of both

functions, "arg" has the result of either "1" or "11" (by S I), or either "1 0" or "11" (by S2).

Thus the execution of the statement S3 results in "2", "11", or "12" for the value of "arg"

according to its previous value. So we need to guarantee that the value of argument always

be correct, here with the initial value of "0". The conditions to be satisfied by parameters of

functions in a "parallel function calls" construct are the following:

(1) the same variable cannot be passed as argument for more than one function

when we use "pass-by-address" in a parallel function calls construct. (If we

need to, another copy of the variable should be used for it.),

55

(2) the same variable or address cannot be used for both arguments and return

variables, and

(3) the same return variables for each parallel function statement cannot be

used. Each return variable should be distinct.

We know they may not cover all the issues to be discussed, but those rules are the

minimum restrictions to get integrity of data from parallel function evaluations.

3.6 Synchronization

For communication between parallelized blocks and objects, the synchronization

constructs "send" and "recv" are provided.

3.6.1 Syntax

synchronization-statement send-statement
recv-statement

send-statement send (message-id, destination-process-id, message-type);
send (message-id, destination-process-id);

recv-statement recv (source-process-id, message-id, message-type);
recv (source-process-id, message-id);

message-id identifier I constant

message-type identifier I constant

source-process-id identifier I constant

destination-process-id identifier I constant

3.6.2 Usage

send (message-id, destination-process-id, message-type);

recv (source-process-id, message-id, message-type);

where send():
recv():

message sending statement
message receiving statement

message identifier to be sent
optional message type

56

message-id:
message-type:
source-process-id:
destination-process-id:

process identifier sending a message
process identifier receiving a message

3.6.3 Semantic Notes

(1) The "send" construct is for sending a message to the destination process.

(2) The "recv" construct is for receiving an incoming message from the source

process.

(3) The communication is either synchronous or asynchronous.

(4) In the case of synchronous communication, the source process sends a

message to the destination process by hand-shaking.

(5) In the case of asynchronous communication, a message sent from a source

process is placed in the message-queue of the corresponding destination

process. The destination process retrieves the message, with the expected

message type, and which has been sent from the process defined by

"source-process-id". The process that issued the "recv" command

postpones its execution until receiving such a message, if no same-typed

message has arrived yet at the message-queue.

(6) Process identifiers and optional message types are used to identify the

proper messages.

3.6.4 Example

A usage example of this construct is shown with an example of the "explicit process

allocation" construct in the next section.

57

3. 7 Explicit Process Allocation

Parallel-C++ also provides a construct to support explicit process allocation by

users. This construct is based on the "parallel compound" construct [Dijkstra 68], the

"guard and parallel commands" of Hoare's CSP [Hoare 78] and Ada "tasks" [Ada 79,83].

This construct is useful when we explicitly allocate parallel processes to some portions of a

program which can be executed concurrently.

In a distributed processor architecture, assuming the availability of sufficient

processors, each process can be mapped into a physical processor during execution. This

feature illustrates one of the differences between Parallel-C++ and other C++ based

languages.

3.7.1 Syntax

explicit-process-allocation-statement

process-statements

process-statement

compound-statement

number-of-processes

process-id

declaration-list

statement-list

parallel_commands (number-of-processes)
{ process-statements }
end_parallel_commands;

process-statement
process-statement process-statements

process (process-id)
compound-statement

end_process;

{ declaration-listopt statement-listopt

identifier I constant

identifier I constant

declaration
declaration declaration-list

statement
statement statement-list

58

3. 7.2 Usar:e

parallel_commands (number-of-processes)
{

process (process-id) { statements; } end _process;

process (process-id) { statements; end_process;
}
end_parallel_commands;

where number-of-processes: total number of processes in the construct.
process-id: process identifier
statements: optional statements

3.7.3 Semantic Notes

(1) This construct allows users to allocate parallel processes explicitly to the

concurrent portion of the programs.

(2) All the processes may execute concurrently and independently at run-time.

They are capable of communicating with each other.

(3) Parallel_commands can be nested.

(4) "Number_of_processes" indicates the total number of processes in the

construct.

(5) The process identifier is an identifier or an integer constant.

3.7.4 Example

In this example, two concurrent processes, "process(PO)" and "process(Pl)",

which perform miscellaneous calculations in parallel, are defined by using an explicit

process allocation construct. During the calculations, they communicate with each other by

using the synchronization constructs, "send" and "recv".

In this example, the "process(PO)" sends a value "0" of variable "x" to the

"process(Pl)", and it waits until the "process(Pl)" sends a message. The "process(Pl)"

receives the value of "x" from the "process(PO)" through "z", evaluates an expression

59

using "z", sends the current value of "z" to the "process(PO)", and proceeds to the next

statement. The "process(PO)" receives the value of "z" through "y", and executes the

remaining computations .

.
parallel_commands (2)
{

process(PO) {

}
process(Pl) {

}
end_parallel_commands;

x=O;
send(x, PI);
recv(Pl, y);
X= y + 1;
cout << x;
end_process;

recv(PO, z);
z++;
send(z, PO);
cout << z;
end_process;

3.8 Object Migration

//x =2

II z = 1

One of the valuable ideas incorporated in Parallel-C++ is distributed static/dynamic

objects. Their salient features have been described in Chapter 2. Dynamic objects support

distributed computing without losing important features of object-oriented programming,

such as inheritance and information hiding. The constructs "export/import" support

migrations of dynamic objects among static objects in a distributed computing system.

3.8.1 Syntax

object-migration-statement

export-statement

export-statement
import-statement

export (object-id, destination-object-id);

impon-statement

source-object-id

destination-object-id

import-object-variable

class-id

object-id

class-name

object-name

process-name

3.8.2 Usage

import-object-variable
= import (class-id);
import-object-variable
= import (class-id, source-object-id);

object-name I process-name

object-name I process-name

object-name

class-name

object-name

identifier

identifier

process (identifier) I process (constant)

60

export (object-id, destination-object-it!);

impon-object-variable =

where object-id:

3.8.3 Semantic Notes

class-id:
import-object-variable:
destination -object-id:

source-object-id:

import (class-id);
import (class-id, source-object-id);

exported object identifier
class identifier for the imported object
object name for the imported object
destination (importing) object
identifier or process name
source (exporting) object identifier or
process name

(1) The "export" construct exists to export an object to other objects (or

processes). The exported object is placed in the import-list of the destination

object (or process).

(2) The "import" construct is for importing any object of the given class and

binding it to the import-object-variable. Giving class identifier and import-

object-variable allows a more generic form of anonymous object

instantiation than giving a specific object.

(3) The object (or process) that issued the "export" statement can continue its

execution even if no object (or process) imports the exported object.

(4) When the importing object (or process) issues the "import" statement,

however, if no object (or process) exports such an object, then the

importing object (or process) must postpone execution until a required

object arrives at the import-list.

61

(5) If an object has been exported once, it cannot be exported again (when the

"copy-and-delete" rule is applied); if such an object is needed again, it can

be imported. (For example, returning a result from an object which has

performed a certain calculation to the requesting/client object, which here

means that the exporting object re-issues an object import.)

(6) If a "copy-and-remain" rule is applied after a copy of an object is exported

out, the same object is still available in the current owner. This kind of

scheme is useful for some applications such as message broadcasting and

process copy. However, the current Parallel-C++ implementation adopts a

"copy-and-delete" rule only.

(7) The necessary codes for export/import objects, such as object construction

from a given class name, initialization and copying information for an

importing object, are generated by the parallelizing compiler (or translator),

and these are executed by the run-time interpreter.

(8) "Source-object-id" or "destination-object-id" may be either a static object

identifier or a process name.

(9) "Class-id" is a class name of the imported object.

62

3.8.4 Example

Revisiting the child adoption example that we have mentioned in Chapter 2 (Figure

2.6 in Section 2.5.4), assume that a child has been adopted.

parallel_commands(2)
{

}

process(Old_Parents)
{

child A_ Child;
export(A_ Child, process(New _Parents));

}
process(N ew _Parents)
{

}

New_Child = import(child);
New _Child.education();

end_parallel_commands;

II class "child"
II adoption

II adopted

In the example code, a child object "A_Child" is exported by a process

"Old_Parents", and it is imported by another process "New_Parents". An imported child

has been initiated by the object "New_Child" in the importing process. Even if the

circumstance of this child has been changed, his own characteristics are kept. (Even if the

environment of the child object has been changed from "Old_Parents" to "New _Parents",

"A_Child" object's own states are kept in "New_Child" object.) Only the importing

process "New_Parents" (by assuming that such a process is a static object) can change the

states of its imported object "New_Child" (here, by using the "education()" method). If the

object "A_Child" is once exported, the exporting process "Old_Parents" cannot directly

access the states of the exported object, unless it uses a communication provided by the

current owner "New_Parents" (by assuming that such a process is an owner object). A

discussion of issues related to export and import of dynamic objects is found in Chapter 2.

The next chapter describes the implementation scheme of a translator emphasizing

the translation of the salient features of Parallel-C++.

CHAPTER IV

. IMPLEMENTATION SCHEME I (TRANSLATOR)

This chapter describes the implementation of a translator for the language Parallel­

C++ [Jo et al. 91] on the Intel iPSC/2 hypercube multiprocessor computer [Intel 88]. The

translation scheme takes advantage of an existing C++ compiler and system calls for the

iPSC/2. We focus on the implementation of two important language constructs.

(1) The language construct "parallel_commands" ~which provides support for

explicit concurrent process allocation. The concurrent processes can be

mapped into parallel processors at run-time.

(2) The language constructs "export/import" - which provide support for

object migration between objects and processes in the system.

We describe the implementation schemes in general and translation of the salient

features of Parallel-C++ in particular. Relevant algorithms and a complete example are also

given.

4.1 Overall Structure of the Parallel-C++ Translator

The Parallel-C++ translator translates a Parallel-C++ source code into a collection

of C++ programs, system primitives and subroutines for the Intel iPSC/2 [Intel 88]. The

overall structure of the translator is shown in Figure 4.1. Borrowing existing facilities from

the C++ compiler [AT&T 85,86,89,89b] and system utilities, the Parallel-C++

environment provides a more sophisticated tool to implement problem-solving techniques

(e.g., simulation) and in some cases a more efficient code. Even though the translation

63

64

scheme takes advantage of existing facilities, the new language features incorporated into

Parallel-C++ make the translator design a difficult task.

Parallel-C++

Translation

C++ & System Calls
oniPSC/2

Figure 4.1. Structure of Parallel-C++ Translator

The Parallel-C++ translator extracts parallelism using the parallel constructs

provided by the language and generates the necessary parallelized C++ codes by adding

system primitives and library functions. The translator works as follows:

(1) reads an input Parallel-C++ source program,

(2) identifies parallel sections,

(3) performs pre-optimization (for parallel code generation),

(4) performs parallel code generation,

(5) performs post-optimization (for efficient and pretty code generation), and

(6) outputs parallelized C++ source program supplemented with the system

calls and library functions on the target machine.

The Parallel-C++ translator can be viewed as a high-level language transformer. It

translates Parallel-C++ code into source code for a C++ compiler for the iPSC/2. To

facilitate parallel execution in the hypercube, the original source program written in Parallel-

65

C++ is transformed using several steps. One of the steps is to identify parallel sections in a

program. Parallel sections are transformed into node programs for the iPSC/2 that can be

executed concurrently.

4.2 Base machine for the Implementation: Intel iPSC/2

The Intel's Personal Super Computer (referred to as the iPSC/2) [Intel 88] is one of

the parallel processing computer systems [Almasi and Gottlieb 89] [Dongarra 87] [Fox

88,89]. The iPSC/2 is a multiple-instruction, multiple-data (MIMD) stream machine that

uses message-passing communication, using distributed memory in each node. The system

consists of four main functional components - a cube, processing nodes, a system resource

manager(SRM) and a network. The nodes are connected together to form a cube. Each

node contains a 32-bit microcomputer using an Intel 80386 processor, an 80387 numeric

coprocessor, an optional VX vector processor and an optional SX scalar processor with a

local memory capacity ranging from one to sixteen megabyte(s). Currently the Parallel-C++

translator and compiler are dependent on the architecture of the iPSC/2 system. But the

concepts of the parallel language constructs in Parallel-C++ can be adapted to

implementation on other systems such as distributed memory parallel machines and

supercomputers, with few modifications in the synchronization and other requirements of

their compilers and translators.

4.3 The Current Implementation of the Translator

The current implementation of the Parallel-C++ translator is written in C++ on the

iPSC/2. The translator consists of a main program and several header files (Figure 4.2).

The main program "main.c" generates several parallelized C++ programs. A header file

"token.h 11 defines tokens to be used for detecting parallel segments in a program, and

another header file II global.h II defines global data structures and other necessary programs

including function/class definitions used for string manipulation, nesting structure

66

detection, fork-join concurrent constructs and Automatic Processor Allocation Tree (APA

Tree).

I Parallel-C++ Source I
r-----------------+----------------,
1 Parallel-C++ Translator 1
I I

: l"main.c" ll"global.h"l l"token.h"l l"sub.c" I :
::::::::::::::::::1:::::::::::::::::
: Translated C++ Program :

. : I "host.c" II "node.c" I I "pcpp.h"l l"msg.h"l :
~----------------- ----------------~

Figure 4.2. Current Implementation of Parallel-C++ Translator

A Parallel-C++ program is translated into several C++ source programs

accompanied with header files. The translated program consists of "host.c", "node.c",

"pcpp.h" and "msg.h". Two programs, "host.c" and "node.c", are needed for a system like

the iPSC/2. Generally the "host" program acts as a supervisor, while the "node" program

actually performs most of the calculation. The main part of the Parallel-C++ program is

separated into these two parts as necessary. The "pcpp.h" is a header file generated from

the Parallel-C++ source file to be used by those, "host.c" and "node.c", programs. It

generally includes header files and function/class definitions in a source program. The

"msg.h" is a header file provided by the translator for data structures and some definitions

used at run-time.

The translation schemes used, and the corresponding algorithms, are described in

the following sections.

67

4.4 Concurrent Processes

In Parallel-C++, the "parallel_commands" construct is provided to support explicit

process allocation (discussed in Section :l7). It provides support for the explicit generation

of concurrent processes that can be executed in parallel on a multiprocessor machine. The

"parallel_commands" construct combined with "object migration" construct (discussed in

Section 3.8) provides a programming environment for distributed applications such as load

balancing. The syntax and semantics of such language constructs are defined in the

previous chapter. The usage of the construct is briefly shown again in Figure 4.3. Here we

recall that all of the processes in the construct may execute concurrently and independently

at nin-time. These concurrent processes are capable of communicating with each other. The

parameter "number of processes" indicates the intended total number of concurrent

processes in the construct.

parallel_commands (number-of-processes)
{

process (process-icl) statements; } end_process;

process (process-id) { statements; end_process;
}
end_parallel_commands;

Figure 4.3. Explicit Process Allocation Construct

Figure 4.4 shows a simple illustrative example of the use of explicit process

allocation in a program segment. The program consists of two processes (Po and Pl). Each

process consists of a block of sequential statements (Si and Sj in Po, and Sm and S0 in P1).

68

The two processes may concurrently execute and they can communicate with each other by

sending messages. The "end_parallel_commands" statement acts as a synchronization

point. The next section illustrates how this program segment can be processed by the

Parallel-C++ translator.

parallel_commands (2)
{

process(PO)

} ...
process(P1) {

} ...
}
end_parallel_commands;

Figure 4.4. Explicit Process Allocation Example

4.4.1 Automatic Processor Allocation (APA) Tree

In order to allocate processors automatically to concurrent processes, the translator

generates an Automatic Processor Allocation tree (AP A tree) using the APA tree generation

algorithm (Algorithm 1). If there are enough processors available on the target machine,

each process in the explicit process allocation may be mapped using a one-to-one mapping

into an individual physical processor.

Input: a parallel_commands construct in a Parallel-C++ program.

Output: an APA tree representing concurrent process nodes.

Method: initially make a root to represent a parallel_commands construct;
repeat while (not end_of_construct in a source)
{

parse a source program to identify concurrent processes;
if (find concurrent_process)
{ push process_ level into the process stack;

if (same process_ level with current node)
{ make a sibling node;

else if (lower process_level)
{ parse parents node

to find a node of same process level;
generate an appropriate node; }

else if (higher process_level)
{ generate a child node;

}
else if (find end_of_process)
{ pop process_ level from the process stack; }
keep current information in each token to use at the code generation step;

Algorithm 1. APA Tree Generation

69

In an APA tree, each node represents a process in a "parallel_commands" construct.

The Parallel-C++ translator generates an APA tree (as shown in Figure 4.5<a>) when the

parallel_commands construct (in Figure 4.4) is parsed. Figure 4.5 shows the structure

of a process node, Pi> in the AP A tree.

In Figure 4.5<a>, two processes "Po" and "Pt" are placed on two nodes. Those

two nodes are leaf nodes which may execute in parallel. Each node may be assigned to a

processor, and the necessary code to keep this information is generated and placed in the

translated programs. For example, using the information kept in each process node, each

concurrent process in a "parallel_commands" construct has been translated to codes like

"if(mynode() == process_id) { ... }" using C++ code and iPSC/2 C routines (An example

translation is shown later in Section 4.6.).

,..-------------, .----------,1

'L..------,,....,.----' ---+:
I

I

L-------------J

.<a> A Simple AP A Tree

Process Node Number
Process Depth
Leaf Node Tag
Processor Assigned
Pointer to Token
Pointer to Parent
Pointer to Child
Pointer to Sibling.L
Pointer to Sibling.R

 A Process Node Structure

Figure 4.5. A Simple APA Tree and A Process Node Structure

70

As mentioned earlier, this example depicts a simple case. The "parallel_commands"

construct can be more complicated, however. Such an example is considered in the next

section.

4.4.2 Nested Structures

Parallel_commands constructs can be nested within another parallel_commands

construct. Figure 4.6 shows a skeleton example of such a situation with a maximum

nesting level of four.

parallel_commands(2)
{

process(1a)
{ Si;

}

parallel_commands(2)
{

}

process(2a)
{
end _process;
process(2b)
{
end _process;

end_pamllel_commands;

end _process;

process(l b)
{

parallel_commands(1)
{

process(2c)
{

parallel_commands(3)
{

}

process(3a)
{
end _process;
process(3b)
{

parallel_commands(2)
{

}

process(4a)
{
end_process;
process(4b)
{
end_process;

end_parallel_commands;
}
end _process;
process(3c)
{
end_process;

end_parallel_commands;
}
end_process;

}
end_parallel_commands;

}
end_process;

}
end_parallel_commands;

//level 1
II statement Sj

//level2

//level2

//level 1

//level2

//level 3

//level 3

//level 4

//level4

//level 3

Figure 4.6. Example Code with Nested Processes

71

72

In Figure 4.6, there are 10 nested processes in a program segment. Figure 4.7

shows the APA tree corresponding to the code segment. The "parallel_commands"

construct has two processes in levell, "la" and "lb". Process "la" in levell has two child

processes, "2a" and "2b", and so on. The leaf nodes, "2a", "2b", "3a", "4a", "4b" and

"3c", correspond to concurrent processes at the lowest level. Since they do not have any

children, they can be executed in parallel. The number of leaf nodes represents the

maximum level of parallel processing. To facilitate processor allocation,· this tree is

transformed into a binary APA tree form. Figure 4.8 shows the transformed binary APA

tree. After transforming an APA tree into a binary AP A tree, the APA routine allocates

processors to process nodes in the tree using the process mapping algorithm (Algorithm 2).

level 0

level 1

level 2

level 3

level 4

Figure 4.7. APA Tree with Nested Processes

Figure 4.8. Transformed Binary APA Tree

Input: an APA tree.

Output: a transformed APA tree in which parallel processors are allocated to concurrent process
nodes.

Method: initially transform input APA tree to the binary APA tree;
traverse the tree to find out concurrent leaf nodes;
calculate the total number of leaf nodes(= necessary_processors);
get the total number of available processors in the system(= available _processors);
if (necessary _processors> available _processors)

call Process Node Boxing Algorithm (Algorithm 3);
repeat traverse until (finished): ·
{

if(leaf_node)
{

if (the node is boxed)
assign the first processor to the leaf node;

else assign the next available processor to the leaf node;
}
else trace the processor identifiers assigned to its child nodes,

assign these processors to this internal node, and
keep this information for using at the code generation step;

Algorithm 2. Process Mapping

73

74

The process mapping algorithm starts by checking leaf nodes in a depth-first search

and determines the nodes that may run concurrently. In this particular example, the starred

nodes ("*") in Figure 4.9 are those leaf nodes which may initially run concurrently at run­

time. The APA routine assigns available processors to these leaf nodes. Once the

processors are assigned to every leaf node, these numbers are traced from the leaf nodes to

the parents. This processor assignment information is provided to the translator. The

processor allocation is illustrated in Figure 4.9. In Figure 4.9, the number attached to the

upper-right side of each leaf node represents the processor identifier assigned to each leaf

node.

Figure 4.9. Process Allocation on the APA Tree

The Parallel-C++ translator uses the information given by the AP A routine to

generate appropriate parallel codes in the translated program. The parallel codes consist of a

host program and a node program for the iPSC/2, and they ensure correct control flow

75

within the "parallel_ commands" construct. For example, the beginning parts of the parallel

constructs given in the example code in Figure 4.6 are translated as follows:

if((mynode()==O) II (mynode()==1))
{

if(mynode()==O)

if(mynode()==1)

4.4.3 Load Distribution with Limited Processors

II process(! a)

II statement Sj

II process(2a)

II process(2b)

In the preceding discussion, it was assumed that sufficient physical processors are

available to be allocated to concurrent processes in "parallel_commands" constructs.

However, this assumption is not possible except in the case of very small programs.

Therefore, algorithms need to be developed to map processes to processors in a many-to-

one fashion. Figure 4.10 depicts a process load distribution scheme with a limited number

of processors using the preceding example of the previous section (Figure 4.6-4.9). It is

assumed that the total number of available processors in the system is four. Using a depth­

first search, the process node boxing algorithm (Algorithm 3) examines the first three leaf

nodes until the number of processors (which is the number of assigned processors

subtracted from the number of necessary processors) is equal to the total number of

available processors. The boxed nodes are the first three leaf nodes to be checked in this

particular example. The APA routine next assigns the first available processor to those

nodes in a box, and assigns the remaining processors to the rest of the nodes (by using

Algorithm 2). In this particular example, processor "0" is assigned to nodes "2a", "2b" and

"3a", and processors "1", "2" and "3" are assigned to nodes "4a", "4b" and "3c",

respectively. Those processors assigned to leaf nodes are traced to the upper-level parent

76

nodes by the APA routine. The code generation routine uses this information later to

generate the appropriate C++ codes and system calls on the target machine.

level 1

I

level 3:

level 4

Figure 4.10. Load Distribution with Limited Processors

Input: a transfonned APA tree.

Output: a transfonned APA tree in which some concurrent process nodes are boxed.

Method: necessary_processors =total number of leaf nodes;
available_processors = total number of available processors;
assigned_processors = 0;
repeat traverse until (stop)
{

if (leaf_node)
{

assigned_processors = assigned_processors + 1;
if ((necessary_processors- assigned_processors) >= (available_processors- 1))

{ this node is boxed; }
else stop;

Algorithm 3. Process Node Boxing

77

So far, in this chapter, the translation scheme of the "parallel_commands" construct

has been described. Object migration is another important concept in Parallel-C++. The

next section outlines this concept and the associated translation scheme.

4.5 Object Migration

Parallel-C++ provides facilities to export and to import dynamic objects between

static objects (or processes) in the system. This concept of object movement, in which

objects travel from one object (or process) to another, is called object migration. As

explained in the previous chapters, there are two kinds of objects in Parallel-C++: (1)

dynamic objects - objects that migrate, and (2) static objects - stationary objects (or

processes) that do not migrate. Using "export/import" constructs, dynamic objects can

travel around among static objects (or processes). Such a static object is called the owner of

the corresponding dynamic object. The corresponding language construct is explained in

Section 3.8 and is also shown in Figure 4.11.

export (object-id, destination-object-id);

import-object-variable = import (class-id);
import (class-id, source-object-id);

Figure 4.11. Object Migration Constructs: Export/Import

We recall that the function of the "export" construct is to export a dynamic object to

other objects (processes), and the function of the "import" construct is to import a dynamic

object of the given class. The exported object is placed in the import-list of the destination

object (process). The imported object is bound to the "import-object-variable". The process

78

that issued the "export" statement continues its execution even if no object (process)

imports such an exported object. When the importing object (process) issues the "import"

statement, however, if no object (process) exports such an object, then the importing object

(process) must postpone execution until the required object arrives at the import-list. These

"export/import" constructs support object migration, which can represent practical real­

world problems such as air-traffic control systems, dynamic load balancing problems

[Cybenko 89], network simulations [Jo et al. 89], dynamic file migration [Gavish and

Sheng 90], and real-time robot simulation [Cox and Gehani 87] [Cox 88] [Cox et al. 88],

etc. in a natural way.

80bj<et; oxpmt I Objoot; I
import

Nodej Nodcj

before export/import

Source

export(OBJECT, process(OBJECT _J));

OBI= import(CLASS);

D Objectj

~export 8BJ
import

Nodei

after export/import

Translation

send(OBJECT) to Objectj;
delete(OBJECT) from Object;;

OBJ =new CLASS;
receive(OBJ);

Figure 4.12. Object Migration Translation Scheme

Export/import constructs in Parallel-C++ are translated using the scheme shown in

Figure 4.12. The translated C++ code with iPSC/2 C routines for the example segment of

code are shown in Figure 4.13. An importing object (or process) instantiates a new object

of the same type to import a dynamic object from an exporting object (or process). The

79

state of the new object is replaced by the state of the imported object. The exporting object

(or process) sends the current state of the object by sending the contents of the memory

region from the current object (or process) to the object region in the importing object (or

process). There may be a possible waiting time for the importing object. Once the message

containing the exported object arrives at the buffer of the importing object (or process), the

exporting object (or process) continues execution of the statements following the "export"

statement.

Source:

Translation:

Source:

Translation:

export (OBJECT, process(OBJECT_J));

csend(PC_MSG_EXPORT, &OBJECT, sizeof(OBJECT), OBJECT_J,
PC_APPL_PID);

OBJ = import (CLASS);

CLASS OBJ;
crecv(PC_MSG_IMPORT, &OBJ, sizeof(OBJ));

Figure 4.13. Translated Export/Import Constructs using C++ and iPSC/2 C Routines

4.6 Example

Figure 4.14 is an example of a simplified version of a practical program illustrating

object migration. It combines the constructs discussed earlier, and provides a

comprehensive example. The program simulates an air-traffic-control system. There are

three airports, "OK-City", "Phoenix" and "Dallas", and three airplanes, "American",

"United" and "Western", controlled by those airports, respectively. There are three

concurrent processes, "Oklahoma", "Arizona" and "Texas", in which those airports reside.

It is assumed that an airplane can be controlled by only one airport at a given time. Once

80

control is transferred over to the destination airport by export/import, the original airport

cannot directly control that airplane anymore. The state and information are hidden in an

airplane object, and no other airport object can access them. When an airplane object is

exported, the airport object importing such an airplane object takes over the state and

information of the imported airplane. This program is translated (as shown in Figure 4.15)

and executed by using the translation scheme outlined in this chapter. Figure 4.16 is the

run-time output of this program.

II Parallei-C++ EXPORT/IMPORT Test Program.

#include <stream.h>
char* obj(int);
class plane { int Name;

public:
plane(int n, int d)

int Destine;

Name = n; Destine = d;

81

plane()
cout<<"Airplane "<<Obj(Name)«" instantiated.\n"; }

cout«"An airplane arrived.\n"; }

};

void take_off(int Port)
void landing(int Port)

printf("%s is taking-off from %s.\n",obj(Name),obj(Port)); }
printf("%s is landing at %s(%s).\n",

obj(Name) ,obj(Port) ,obj(Destine)); }

class airport
public:

int Port; int Wing; int Destine;
airport(int a, int p, int d);

};

airport::airport(int a, int p, int d) { Port= a; Wing= p; Destine= d;

char* obj(int i)

cout « "Airport "«obj(Port)«" instantiated.\n";
plane Flight(Wing, Destine);
printf("%s controls %s.\n" ,obj(Port) ,obj(Wing));
Flight.take_off(Port);
export(Flight, process(Destine));
x = import(plane);
x.landing(Port);

switch(i) { case 0 : return("OKLAHOMA");
case 1 : return("ARIZONA");
case 2 : return("TEXAS");
case 3: return("OK_CITY");
case 4 : return("PHOENIX");
case 5: return("DALLAS");
case 6: return("AMERICAN");
case 7 : return("UNITED");
case 8 : return("WESTERN");
default : return("NONE");

main() { int OKLAHOMA=O; int ARIZONA=1; int TEXAS =2;
int OK_ CITY =3; int PHOENIX=4; int DALLAS =5;
int AMERICAN=6; int UNITED =7; int WESTERN=8;
parallel_commands(3)
{ process(OKLAHOMA) { airport OK_City(OK_CITY, AMERICAN, ARIZONA);

} e nd_process;
process(ARIZONA) { airport Phoenix(PHOENIX, UNITED, TEXAS);

} end_process;
process(TEXAS) { airport Dallas(DALLAS, WESTERN, OKLAHOMA);

} end_process;
end_parallel_commands;

Figure 4.14. An Example using Object Migration between Distributed Objects

82

/* <host.c> Parallei-C++ (c) 1990 */

#include "pcpp.h"
main() {

getcube("Parallei-C++","4","default",O);
setpid(PC_HOST_PID); .
load("node",PC_ALL_NODES,PC_APPL_PID);
message_class msg;
csend(PC_MSG_TYPE_I, &msg, sizeof(msg), PC_ALL_NODES ,PC_APPL_PID);
csend(PC_MSG_PAR_CO, &msg, sizeof(msg), PC_ALL_NODES, PC_APPL_PID);
{ II parallel_commands

{ II process } II end _process

} II end_par_com
crecv(PC_MSG_TYPE_L, &msg, sizeof(msg));
killcube(PC_ALL_NODES, PC_ALL_PIDS);
relcube("Parallei-C++");

} II end_of_host_main

I* <node.c> Parallei-C++ (c) 1990 */

#include "pcpp.h"
main() {

my_node = mynode();
my_pid = mypid();
message_class msg;
crecv(PC_MSG_TYPE_I, &msg, sizeof(msg));
if(my_node < NO_OF _NODES) {

}

int OKLAHOMA=O; int ARIZONA=1; int TEXAS =2;
int OK_CITY =3; int PHOENIX=4; int DALLAS =5;
int AMERICAN=6; int UNITED =7; int WESTERN=8;
crecv(PC_MSG_PAR_CO, &msg, sizeof(msg));
{ II parallel_commands

if((my_node==O))
{ II process

} II end_process
if((my_node==1))
{ II process

} II end_process
if((my_node==2))
{ II process

} II end_process
} II end_par_com

airport OK_City(OK_CITY, AMERICAN, ARIZONA);

airport Phoenix(PHOENIX, UNITED, TEXAS);

airport Dallas(DALLAS, WESTERN, OKLAHOMA);

if(my_node==O) { waitall(1 ,PC_ALL_PIDS);}
if(my_node==O) {

csend(PC _MSG_ TYPE_L,&msg,sizeof(msg) ,my host(), PC_HOST _PI D);}
} II end of node_main

Figure 4.15. Translated Program using C++ and iPSC/2 C Routines

/* <pcpp.h> Parallei-C++ (c) 1990 *I

#include <Stdio.h>
#include <Stream.h>
#include "msg.h"

char* obj(int);

class plane {

} ;

class airport { int Port; int Wing; int Destine;
public:

airport(int a, int p, int d);
};

airport::airport(int a, int p, int d)
{

Port = a; Wing = p; Destine = d;
cout « "Airport "«obj(Port)«" instantiated.\n";
plane Flight(Wing, Destine);
printf("%s controls %s.\n",obj(Port),obj(Wing));
Flight.take_off(Port);
csend(PC_MSG_EXPORT,&Fiight,sizeof(Fiight),Destine,PC_APPL_PID);
plane x;
crecv(PC_MSG_IMPORT,& x ,sizeof(x));
x.landing(Port);

char* obj(int i)
{ :
}

/* "msg.h" Parallei-C++ (c) 1990 *I

II msg type for Parallei-C++ programs
#define NO_ OF _NODES 32
class message_class { I* misc. class def. *I

} ;

II "fork.h"
#include <errno.h>

Figure 4.15. (Continued)

83

IINode(lD)

(0)
(2)
(1)

(0)
(2)
(1)

(0)
(2)
(1}

(0)
(2)
(1)

(0)
(2)
(1)

(0)
(2)
(1)

Airport OK_ CITY instantiated.
Airport DALLAS instantiated.
Airport PHOENIX instantiated.

Airplane AMERICAN instantiated.
Airplane WESTERN instantiated.
Airplane UNITED instantiated.

OK CITY controls AMERICAN.
DALLAS controls WESTERN.
PHOENIX controls UNITED.

AMERICAN is taking-off from OK_ CITY.
WESTERN is taking-off from DALLAS.
UNITED is taking-off from PHOENIX.

An airplane arrived.
An airplane arrived.
An airplane arrived.

II Node(i) allocated

II for Process(OKLAHOMA)
II for Process(1EXAS)
II for Process(ARIZONA)

II export/import occurred

WESTERN is landing at OK_CITY(OKLAHOMA).
UNITED is landing at DALLAS(TEXAS).
AMERICAN is landing at PHOENIX(ARIZONA).

Figure 4.16. Output of the Example Program

4.7 Discussion of Translator Implementation

84

Besides the APA tree technique, "fork/join" constructs have been used

experimentally to translate parallel constructs. For each concurrent process, a pair of

"fork/join" constructs is generated and executed. The forked segments of code execute

concurrently using child processes generated from a parent process at run-time. This

scheme is useful to parallelize concurrent processes for a single processor system, or for a

limited number of processors on the multiprocessor system. In a single processor system,

the "fork/join" concurrency can be used to utilize concurrent processes. In a distributed

processor system, for a maximum speed-up, the upper level processes in an APA tree may

be assigned to parallel processors that are somewhat limited, and then "fork/join"

parallelization can be used for the rest of the processes in the lower level.

85

Besides plainly generating a "fork/join" code for each process, automatic program

partitioning using computation weights can be assigned to parallel processes. Researchers

such as Sarkar [Sarkar 90] have investigated the "fork/join" parallelizing problems by

instruction reordering. Another remaining problem of translation for explicit process

allocation is load balancing among the involved processes.

The parallelizing translator ofParallel-C++ is relatively easy to implement by using

existing facilities, because the translator can be built on the top of the C++ compiler and

operating system in the target machine. Compatibility with existing C++ is not affected.

The current implementation relies much on static information, such as the number

of available processors in the system, given at translation time. The translation using

dynamic information given at run-time is more useful in real programming.

Translation techniques are not always good for fine-grained parallelism. Much time

is spent on communication and on checking dependencies to satisfy data synchronization

for concurrent execution of partially parallelized portions of codes. Programming using

medium-grained or large-grained parallelism, such as parallel modules, parallel function

calls and parallel objects, should be used to achieve concurrency with run-time data

integrity.

For the structures of a translated program, linked-lists are used for each token or a

line of code. Linked-lists, consisting of several objects or structures, make translation

easier for dynamic insertion, deletion and appending statements than any other data

structure does. Using a parser (instead of iteration structures of the main translation part,

which is currently used), more sophisticated manipulation of translation for the nested

program can be expected.

Figure 4.17 includes iPSC/2 C routines which have been used in the translation.

Using the information kept in concurrent sections of codes, appropriate iPSC/2 C routines

are generated in the translated program.

86

void attachcube(char *cubename); II attach to a cube and make it the current cube

void crecv(long typesel, char *buf, long len);
II send a message and wait for completion

void csend(long type, char *buf, long len, long node, long pid);
II send a message and wait for completion

void getcube(char *cubename, char *cubetype, char *srmname, long keep);
II allocate a cube

void killcube(long node, long pid); II terminate and clear out a process(es)

void load(char *filename, long node, long pid);
II load a node process

unsigned long mclock(); II return the time

long myhost(); II obtain the node id of the host machine

long my node(); II obtain the node id of the calling process

long mypid(); II obtain process id of the calling process

long numnodes(); II obtain the number of nodes in the cube

void relcube(char *cubename); II release a cube

void setpid(long pid); II sets process id of a host process

void waitall(long node, long pid); II wait for all the specified processes to complete

Figure 4.17. iPSC/2 C Routines used in Translation

Based on the experience of parallelizing translation, we have investigated basic

implementation schemes of a parallelizing compilation for this particular language and

system. In the next chapter, we describe the implementation schemes for the Parallel-C++

compiler-interpreter in general.

CHAPTERV

IMPLEMENTATION SCHEME II (COMPILER-INTERPRETER)

This chapter describes the design of an implementation scheme for a Parallel-C++

compiler-interpreter targeted to an abstract machine which is assumed to be a

multiprocessing computer like the iPSC/2 hypercube system. One of the objectives of this

project is to study the issues that arise in the compilation of distributed programming

languages. In this work, attention is focused on the storage management scheme.

5.1 Overall Structure

The Parallel-C++ compiler-interpreter implementation consists of two phases,

compilation and interpretation. These two phases are illustrated in Figure 5.1.

Optimizer

Error Handler

Automatic Restructurer

I I

P arallelizing
Automatic
Processor
Allocation

(Parallel-C++)-+1 COMPILER J--.IINTERPRETER t-+C Output)

Figure 5.1. Parallel-C++ Compiler-Interpreter Structure

87

•

88

The Parallel-C++ compilation is further subdivided into four phases, lexical

analysis, syntax analysis, code generation and automatic restructuring. The components,

which are part of the compilation, consists of lexical analyzer, syntax analyzer, code

generator, automatic restructurer, symbol table manager, error handler and optimizer. The

lexical analyzer reads a Parallel-C++ source program and produces a sequence of tokens,

while constructing a symbol table by calling the symbol table manager. If the lexical

analyzer encounters lexical errors, then the error handler is invoked. The specification of

the parser is provided by the Parallel-C++ grammar. Intermediate code is generated while

parsing by calling the code generator. The code generator produces intermediate code based

on the semantic rules defined by the grammar. The symbol table manager also helps at this

stage to handle temporary variables which can be generated while parsing. The syntax

analyzer also performs the task of error handling such as identifying, locating, and

reporting syntactic errors, by calling the error handler. When performing a compilation, the

compiler performs automatic restructuring. The automatic restructurer restructures some

parts of the intermediate code to be parallelized by using the information explicitly given in

the program. For example, with a user-defined parallel construct "autobegin/autoend", the

automatic restructuring routine checks interdependencies of the statements in the construct.

This routine divides the statements into independently and concurrently executable blocks

of statements. Each block consists of instructions that must be executed sequentially. The

automatic restructurer constructs a virtual execution graph to check the interdependency of

the segments, and congregates the dependent statements into blocks at each dependency­

checking step. The intermediate code generated by the compiler is targeted to a MIMD type

abstract machine.

The interpreter executes the target program (which is here the intermediate code

generated by the compiler). The tasks of "parallel execution" and "automatic processor

allocation" are done by the interpreter. The concurrent blocks of statements, which are

automatically parallelized and restructured at the compilation step, can be mapped into

89

respective processors assigned by the automatic processor allocation routine. Such

parallelized statements can be concurrently executed by the interpreter at run-time. The

interpreter mainly executes the serial program segments on the main processor, and

activates the necessary number of processors when it meets parallel sections. To do this,

the interpreter uses a flag to denote one of the two possible modes, serial and parallel. At a

given time during interpretation, the interpreter can be in one of two possible modes. In

serial mode, the interpreter executes an object code segment one instruction at a time. When

the interpreter meets a parallel construct, it switches to parallel mode. The actions

associated with mode switching include run-time actions such as automatic processor

allocation. An initial message passing may occur when it is needed (e.g., to transfer initial

data). When the mode switching is complete, all of the processors allocated for the parallel

constructs concurrently execute their portions of the program. After parallel execution,

when the interpreter meets the end of the parallel construct (the join point), the execution

mode switches to the serial mode. At this point, all concurrent processes must have

terminated and control is transferred to the main processor. The main processor takes care

of execution of the serial part of code until it meets another parallel construct again. The

transition diagram of this control flow is shown in Figure 5.2. In the present scheme, the

parallel constructs at higher level are handled along with the lower level.

Parallel A_ Parallel

+======~

Pi : Processors, i = 0, ... , n (No. of Processors)
Execution modes: Serial/ Parallel

Figure 5.2. Control Flow Transition Diagram

90

Current implementation of the compiler-interpreter is targeted to the iPSC/2, and

consists of several programs, implemented in C++. Typical programs among them are

"host.c", "node.c", "global.h", "lex.yy.c" and "y.tab.c". The programs "lex.yy.c" and

"y.tab.c" are the lexical analyzer and syntax analyzer, respectively. Those two programs

are generated by using Unix system tools, LEX [Lesk and Schmidt 75] and YACC

[Johnson 78] [Sullivan 86]. The syntax analyzer, "y.tab.c", indirectly performs target code

generation, code restructuring, code optimization, symbol table management, and

error/information message generation by calling necessary modules such as the code

generator and the lexical analyzer. The lexical analyzer, "lex.yy.c", includes all lexical

definitions and symbol-table management functions. The program "global.h" includes all

global function definitions, variable declarations, class definitions, other general definitions

and sub-programs, such as code generator, message generation functions, and other

miscellaneous functions. The three programs, "lex.yy.c", "y.tab.c" and "global.h", are

included in the main program, "host.c", and the interpreter, "node.c". They are compiled

and linked together to make the executable code, "host" and "node". The main program

"host.c" calls the syntax analyzer module, from which the lexical analyzer and code

91

generator are invoked. After finishing code generation, "host.c" sends initial messages to

the interpreter, "node.c", which executes the target code generated by the compiler. The

main program, "host.c", is executed on the host processor, and copies of the interpreter,

"node.c", are executed on node processors. The interpreter executes the serial part of the

target code on the main processor, and the parallel part of the code on the parallel

processors, designated by the automatic processor allocator while switching parallel/serial

mode.

5.2 Abstract Machine Model

Since we are interested in compilers for a distributed memory machine, an abstract

machine model based on Intel iPSC/2 is used. Such an abstract machine is hypothetically a

multiprocessor system with local memory, and is capable of parallel processing. A

schematic view of an abstract machine model is shown in Figure 5.3. The abstract machine

is assumed to have a general-purpose register architecture, and consists of a host processor

and several node processors. The interconnection network is assumed to be the same as the

iPSC/2 [Intel 88]. The operating system is assumed to be a Unix-like operating system that

is capable of file management, input/output management, system supervisor, device

interfaces, interprocess communication, central processing unit (CPU) scheduling, process

management, multi-tasking management, user interface, memory management,

communication network control, and etc. The host and the nodes are inter-connected by a

communication network. The host processor has a system control unit, a network control

unit, an input/output device control unit, and input/output devices. A node is an

independent processor which is equipped with a CPU, a local memory, and network/bus

interface units.

~ ry

:
:

~ ry

Inter-connection
Network

System
Control
Unit Host

I

J/0 Units

Figure 5.3. Abstract Machine Model Architecture

5.3 Instruction Set for Conceptual Architecture

92

The intermediate code is assumed to be the instruction set of the virtual machine.

The basic form of an instruction is a quadruple [Aho et al. 86]. This intermediate code is

machine-independent, and can be subsequently translated to the machine code for the target

machine. (The current implementation allows the interpreter to execute the intermediate

code directly, which is generated by the compiler, on the iPSC/2.) Each instruction has an

operation and three operands. The format of a quadruple is "(operation-code, operand-1,

operand-2, operand-3)". For example the quadruple"(+, y, z, x)" has the same meaning as

the operation "x <- y + z". The instruction for the general-purpose register architecture has

explicit operands, either registers or memory locations. Therefore, the variable names

shown in the example quadruple, such as "x", "y", and "z", are supposed to appear, in the

93

actual code, as symbolic addresses of those variables to be located in memory, or as

registers to be allocated to those variables. Storage for objects is allocated in the heap area

of the memory. The code for object communication includes identifiers of the objects. At

run-time, those object identifiers are converted into actual addresses of the storages for the

objects. For example, an export statement is translated to the code "(operation-export,

exported-object, object/process flag, destination-object)". The "operation-export" tells that

this operation is for exporting an object. The "exported-object" operand is the identifier of

the object to be exported. The "object/process flag" tells the destination of this export

operation, either object or process. The "destination-object" is the identifier of the

destination object (or process) for this export operation. At run-time, when an object is to

be passed to another processor (for example, object export occurred), the address and

length of the storage for the object are calculated. Then the stream of bytes is passed by

value to the destination object in a distributed memory model (current implementation

model). However, the address of the object (or the object identifier itself) can be passed by

reference to the destination in a shared memory model.

5.4 Run-Time Storage Management

The cost associated to parallel processing is primarily in run-time storage

management for a distributed memory system. In this section we describe the run-time

storage management for Parallel-C++.

5.4.1 Distributed Storage Management

Run-time data structures include class-lists, object-lists, import-lists, object frames,

stacks and heaps. All processors keep their own run-time data structures in their local

memory. At run-time the general data storage management for the program is done using

the stack model [Gries 71]. Each processor has its own stack in its local memory. In our

scheme for the distributed memory system, when the parallel processors are invoked, the

94

main processor distributes copies of the current environment to all of the parallel processors

involved. Each parallel processor keeps its own activation records until the task allocated to

it is completed. When the interpretation switches to the serial mode from the parallel mode,

the area occupied by the current environment is freed.

The current values of all of the variables in the activation records and the symbol­

table in the main processor are sent to the local memories of the processors involved when

the processing mode switches to the parallel mode. The symbol table serves as a message

to transfer current values of variables between processors. When the main processor sends

this information, it also sends the current system time. Distributed processors involved in

parallel computing receive a message of the symbol-table with current system time. After

concurrently performing their portion of the calculation as defined in the parallelized target

code, those distributed processors update time-tags of the variables involved in the

calculations and send a message of the updated symbol-table with such information. After

receiving such messages from the parallel processors, by using the time-tag information,

the main processor updates the values of the variables which had been updated by the

previous distributed computing. The interpreter manipulates all of those operations which

have been described here, and controls all involved processors, using the information

specified in the target code which has been parallelized and restructured by the compiler.

This time-tag scheme brings in another communication overhead to the system. However,

it is one of the solutions to solve data integrity problems occurring in distributed memory

systems.

Besides this kind of complexity involved in data updating, there is also

communication overhead through message-passing. This kind of communication overhead

causes a major burden, reducing the efficiency of computing in a distributed memory

system. This scheme, due to the characteristics of a distributed memory computer, limits

the use of shared variables among the parallel code segments and the use of non-local

variables in the parallel function calls. Because the use of shared variables needs lock-step

95

synchronization and message passing, the communication overhead for the frequent use of

shared variables may adversely affect the efficiency of distributed computing. Therefore in

our system, if necessary, access to shared variables is allowed only by using a

synchronization construct. It helps a parallelizing compiler to detect easily the accessing of

variables in different address spaces, and to produce communication code for it efficiently.

In a shared memory system, much of this kind of burden can be eliminated by passing (or

using) pointers (or addresses) to the distributed objects and variables in a global virtual

address space.

5.4.2 Distributed Object Mana~ment

For the distributed object management, the heap model is used [Goldberg and

Robson 83]. The traditional stack model is not adequate for the dynamic data storage

management for the objects because the lifetime of an object is not fully scoped within a

function or an object. All of the classes are grouped into the class-list. Each processor

keeps a copy of class-list in its local memory. An object instantiated from a class is

represented by a contiguous region of memory, like a C++ object [Stroustrup 89b]. Each

object has its own data storage to keep its current state of member data. All of the objects

instantiated from each class are placed in the object-list. Each processor keeps its own

object-list to record all objects which are either instantiated in the processor or imported

from other processors. Each object has an object frame, stored in the heap storage, to keep

the necessary information for the object. Each entry in the object-list has a pointer to its

object frame in the heap, and also has a pointer to its class in the class-list. An object frame

includes an object identifier, a pointer to its class in the class-list, an integer variable to keep

its object frame size, a static/dynamic object tag, a pointer to its owner (for the dynamic

object frame) or a pointer to the dynamic object-list (for the static object frame), a pointer to

the imported object-list (for the static object frame), data members (An object of derived

class also includes/concatenates data members defined in the base class.), a pointer to the

96

member function area, and a tag of access level - private or public .(Figure 5.4<a>). Each

object can use this information to perform its operations properly.

Object Identifier

Pointer to Class

Object Frame Size

Static/Dynamic Tag

Pointer to Owner/Dynamic Objects Source I Destination I Object Frame

Pointer to Imported-Objects

Data Members

Pointer to Member Functions

Access Level

<a> Object Frame Dynamic Object Message Format

Figure 5.4. The Structure of Object Frame and Dynamic Object Message Format

5.4.3 Dynamic Object Management

In Parallel-C++, dynamic objects can be exported and imported among static

objects (or processes). We remind the reader that there are two kinds of environments for a

dynamic object: (1) the internal environment is made up of the data structures and methods

of an object; and (2) the external environment is the environment enclosing the dynamic

object. The internal environment of the dynamic object moves with it, but the external

environment does not. The internal environment of an exported object is bound to the

external environment which is provided by an importing object. We call this Dynamic

Interface Environment Binding (DIEB). By this DIEB, an object behaves differently

according to the environment in which it resides.

97

When an object (or process) exports a dynamic object, it also exports the internal

environment of the dynamic object by sending a dynamic object message (Figure 5.4)

to the destination object (or process). This affects heap storage as follows; (1) the internal

environment of the dynamic object is deleted from the exporting object, (2) the internal

environment for the imported object is established in the importing object, (3) the heap

segment for the exported object is freed from the exporting object (copy-and-delete

semantics). Also, when an object meets a destructor, the area occu~ied by the object is

freed (by following the conventional scope rule).

Establishing the new environment consists of several steps. The instantiated (or

imported) object is included in the object-list. The pointer to its class in the class-list is

modified. In a distributed memory environment, the physical address of the dynamic object

in the importing object (or process) becomes different from the previous address in the

exporting object (or process). At the same time its object frame is allocated in the heap, and

the necessary pointers and values are updated (e.g., updating the value of pointer to the

owner of the imported dynamic object).

Figure 5.5<a> and 5.5 show snapshots of the run-time storage for distributed

and dynamic objects on parallel processors. In this example figure, we have three

processors, "Po", "Pi" and "Pj". Especially "Po" is a main processor, and "Pi" and "Pj" are

distributed processors which are executable concurrently. We assume that each processor

has its own local storage. The object "object-x" is instantiated from the class "class-x" and

its environment is established in the processor "Pi"· After "object-x" is imported by the

processor "Pj", the new environment for this imported object is established in the processor

"Pj" and the old environment for the exported object is freed from the processor "Pi". The

run-time storage, stacks and heaps for dynamic objects, are managed by the respective

processors in which those objects reside at that time. The stack and heap areas are assumed

to be at the opposite ends of a portion of memory.

r--;--

4

Class-List

3ec -X

HEAP on Pi

:

area for
object-x

:
:

environment for
active function

STACK on Pi

4 ... ,,

·,,,

HEAP on Po

area for
active function

STACKonPo

r
. ./·

Class-List

Class-x

HEAP on Pj

:

:

:
:

environment for
active function

STACK on Pj

<a> Run-Time Storage before Export/Import

Class-List Class-List

Class-x

1ec -X

HEAP on Pi HEAP on Pj

: :

freed area for
··• export new area for

--:--

exported object import
+-imported object-x

:

environment for
active function

STACK on Pi

...
HEAP on Po

area for
active function

STACK on Po

:

environment for
active function

STACK on Pj

 Run-Time Storage after Export/Import

Figure 5.5. Run-Time Storage with Dynamic Objects

98

99

5.5 Example

As a practical example to illustrate the run-time storage management scheme,

especially for the management of distributed and dynamic objects, we consider the

following scenario. Several airplane objects are concurrently controlled by several airport

objects. Only one airport object can control a plane object at a time. This situation occurs

often in several distributed systems. A skeletal implementation code of the scenario is

shown in Figure 5.6. This example code is developed using the "parallel_commands"

construct and the "export/import" constructs explained in the previous chapter. In this

example, the main process allocates two concurrent processes, "Oklahoma" and "Arizona".

These processes can be mapped to parallel processors and can be concurrently executed at

run-time. In these processes, the airport objects, "OK-City" and "Phoenix", are instantiated

from the airport class. We assume that airport "OK-City" sends a plane "American" to the

airport "Phoenix". In this example, the airport objects are static objects and the plane

objects are dynamic objects.

The objects distributed in different processors can have the same name. But those

objects are physically different and have their own data structures and methods. The

"importing-object-variable" (for example, "Flight" used in the "import" construct in Figure

5.6) can be used as an anonymous object instantiation for the given class (for example

"plane" in the "import" construct in Figure 5.6). The given class helps a generic

instantiation of its object. The initial status of the imported object "Flight" is essentially the

same as the exported object "American". The run-time interpreter takes care of this kind of

initialization details according to the state of the imported object.

100

/*Example Scenario: Airport "OK_ City" (on "Pi", "OKLAHOMA") sends a plane
"American" to "Phoenix" (on "Pj", "ARIZONA"). */

class plane { int enviro;

public:

II For line(i)
II refer to
II Figure 5.7<i>

void takeoff() { ... enviro = owner -7weather; ... }
void landing() { ... enviro = owner 4weather; ... }

};

class airport { int weather;

public:

} ;

main() {

{

}

control_takeoff(plane Flight) { Flight.takeoff();
export(Fiight, Airport_id); } II line(c)

II Airport_id = {Phoenix, ... }

control_landing(plane Flight) { Flight= lmport(plane); II line(c')

parallel_commands(No.of.Airports)

process(OKLAHOMA)
{

airport OK_City;
for(;;)
{ switch(real.time.input)

{

Flight.landing(); }
II Flight= {American, ... }

II line(a)

case(create): plane American; II line(b)

} ...

}
}

case(takeoff): OK_City.control_takeoff(American);
case(landing): OK_ City .control_landing(...) ;

process(AR I ZONA)
{ :

} ...

airport Phoenix;
for(;;)
{ switch(real.time.input)

{

II line(a')

case(create): plane ... ; II line(b')

}
}

case(takeoff): Phoenix.control_takeoff(...) ;
case(landing): Phoenix.control_landing(Airplane_id);

end_parallel_commands; II line(d)

Figure 5.6. Example of Dynamic Object Migration between Static Objects

101

Consistent with the characteristics of the target machine - distributed memory,

access to global variables and the usage of the pointer variable in the member functions of

dynamic objects are not allowed. Necessary information should be passed by value. When

no free area can be allocated to the object due to memory fragmentation, heap compaction is

done by moving all of the object frames to the lower-end of the heap area, and the related

object pointers should be updated. While some languages like C++ need explicit

deallocation of objects, other object-oriented systems, such as Smalltalk or Lisp-based

systems, use garbage collection to deallocate objects [Atkins and Nackman 88]. Actually

the effects of the "export/import" constructs play the role of implicit deallocation and

allocation of dynamic objects.

As an example, Figure 5.7 (a, b, c and d) provides snap-shots of the run-time

memory organization for the execution of the dynamic object migration example in Figure

5.6. (Figure 5.7<i> matches the line number "i" in Figure 5.6.) In this particular example,

we have three processors, "Po", "Pi" and "Pj". The main processor "Po" allocates two

parallel processors "Pi" and "Pj ". A process in the example program is mapped into a

processor in the figure. The airport object "OK-City" (on "Pi") sends a plane object

"American/Flight" to the airport object "Phoenix" (on "Pj"). This example shows the run­

time storage management for Parallel-C++ with emphasis on object level.

Class-List

airport ~
,_____plane

Object-List

I OK C'ty I I r-:-- - 1

HEAP on Pi

L+
object frame
for OK-City

:
:

:
:

environment for
active function

STACK on Pi

.... ,1
·, ..

Class-List

airport

plane

Object-List

r;-- I OKC' I - lty

+I American I I
HEAP on Pi

L+
object frame
for OK-City

4
object frame
for American

:

environment for
active function

STACK on Pi

HEAP on Po

area for
active function

STACK on Po

<a>

· HEAP on Po

area for
active function

STACK on Po

r-··•
.. /

Class-List

oemx -:-

HEAP on Pj

object frame + for Phoenix

:
:

:
:

environment for
active function

STACK on Pj

Class-List

oen1x -:-

HEAP on Pj

object frame
+ for Phoenix

:
:

:

environment for
active function

STACK on Pj

Figure 5. 7. Run-Time Storage with Distributed and Dynamic Objects

102

Class-List

airport ~
.___plane

Object-List

I OK C'ty I I ~ - 1

HEAP on Pi

~
object frame
for OK-City

freed area for
exported American

:
:

environment for
active function

STACK on Pi

Class-List

export .. ~

import .. ~
HEAP on Po

area for
active function

STACK on Po

<C>

airport ~
.____plane

Object-List

I OKC' I I ~ - Ity

HEAP on Pi

I+
object frame
for OK-City

:
:

:
:

environment for
active function

STACK on Pi

HEAP on Po

area for
active function

STACK on Po

<d>

Figure 5.7. (Continued)

103

Class-List

airport

plane

Object-List

I Ph I oemx --:-

I I Flight I+
HEAP on Pj

object frame
:• for Phoenix

new area for
!+-

imported Flight

:
:

environment for
active function

STACK on Pj

Class-List

airport

plane

Object-List

I Phon' I e 1x --:-

I I Flight I+
HEAP on Pj

object frame
I• for Phoenix

object frame 1+-for Flight

:

environment for
active function

STACK on Pj

~

Object OK-CITY

Class AIRPORT

Size ...

Tag STATIC

Dynamic Object AMERICAN

Imported-Object NONE

Data Member WEATHER= windy

Pointer to Member Functions

Access Level PRIVATE

Object AMERICAN

Class PLANE

Size ...

TagDANAMIC

Owner OK-CITY

Imported-Object NONE

Data Member ENVIRO

Pointer to Member Functions

Access Level PRIVATE

Object Frame
for OK-CITY

Object Frame
for PHOENIX

before after
export/import export/import

i
i

~
Object Frame i Object Frame
for AMERICANi for FLIGIIT

Object PHOENIX

Class AIRPORT

Size ...

Tag STATIC

Dynamic Object FLIGIIT

hnported-Object FLIGIIT

Data Member WEATHER = cloudy

Pointer to Member Functions

Access Level PRIVATE

Object FUGHT

Class PLANE

Size ...

TagDANAMIC

Owner PHOENIX

Imported-Object NONE

Data Member ENVIRO

Pointer to Member Functions

Access Level PRIVATE

Figure 5.8. Distributed Object Frames

104

1-

The planes, taking off and landing, may need weather information of the airports.

The member functions, "takeoff" and "landing", of the plane objects use the pointer,

"owner", to get current weather information from the member data, "weather", of the

airport objects. The owner's address can be taken from the variable, "pointer to the

owner", in the object's frame which has been established in the memory where the

importing object resides. When the importing object establishes the imported object's

frame, the importing object sets its value of "this" - which is a pointer to the importing

object itself- to the "owner" pointer in the imported object's frame. The exported plane can

105

get local weather information from the various environments of the importing airports. The

computation in the environment provided by the exporting object can be different from the

computation in the environment provided by the importing object, while changing the

ownership. This is one of the typical examples for Dynamic Interface Environment

Binding. For example, in Figure 5.8, the plane "American" (in the exporting process "Pi")

takes off with the "windy" weather condition of the airport "OK-City", and the plane

"Flight" (which is actually the same object as "American" - only its symbolic name is

changed in the importing process "Pj" after export/import) is landing with the "cloudy"

weather condition of the airport "Phoenix". Figure 5.8 shows the object frames (magnified

from the object frames shown in Figure 5.7) of the distributed objects in several processors

while changing ownership by "export/import" operations~

5.6 A System View

We show a specific system view for this particular example. (Refer to Section 2.4

for a Parallel-C++ system view in general.) Conceptually we may view a Parallel-C++

system on the distributed processor as an environment consisting of a set of four layers -

class layer, object layer, virtual layer and physical layer. Each layer is mapped to the layer

below. Figure 5.9 illustrates the four layers using the example in the previous section. The

environment "Air_Traffic_Control_System" has several classes, such as "Airport" and

"Plane". The objects "OK_ City" and "Phoenix" are the instances of class "Airport", and the

objects "American" and "United" are the instances of class "Plane". We remind the reader

that the class layer and object layer have instantiation relation, the object layer and virtual

layer have virtual implementation relation, and the virtual layer and physical layer have

physical mapping relation. Figure 5.9<a> shows the system view before "export" and

"import" operations (Line-c and line-c' in Figure 5.6), and Figure 5.9 shows the

change in system view after such operations. Dotted line with arrow shows the ownership

(for example, "OK_City" owns "American" in Figure 5.9<a>).

C Air Traffic Control System :::::>
I

Ownership

<a> System View before Export/Import

C Air Traffic Control System ::::>
I

Ownership

 System View after Export/Import

Figure 5.9. System View

Class
Layer

Object
Layer

Virtual
Layer

Physical
Layer

Class
Layer

Object
Layer

Virtual
Layer

Physical
Layer

106

107

5.7 Discussion of Compiler Implementation

In the distributed memory, it is assumed that the storage for a dynamic object

should be allocated in the local memory of the processor in which the importing object

resides. The high cost for frequent communication between distributed objects can

deteriorate the benefit of the distributed dynamic object-oriented programming. Because of

the characteristics of distributed memory systems (without any shared memory), global

variables or pointer variables cannot be used, and pass-by-reference mode cannot be used

for the parameter passing, especially with the dynamic objects. Those restrictions are

cumbersome barriers for users to make sophisticated programs. The development of a

better scheme and a more sophisticate run-time system is needed to solve that problem.

Fine-grained parallelism does not seem to be a promising scheme for this kind of parallel

model. Better efficiency can be expected when medium/coarse-grained parallelism is

pursued. Without using objects in simple conventional parallel programming, optimization

cost (to do interdependency checking or restructuring, for example) is not negligible. The

cost for fine-grained parallelism, such as parallel programming in the statement level,

outweighs its benefits. Efficiency should be properly measured and carefully considered.

CHAPTER VI

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1 Epilogue

This dissertation presents the programming language design concepts, language

definition, semantics and implementation schemes for a distributed object-oriented parallel

programming language, Parallel-C++. The language incorporates novel concepts that

support object-oriented programming within a distributed computing environment. Parallel­

C++ is a high-level language that supports object-oriented parallel and distributed

programming.

We have also presented an implementation scheme for a Parallel-C++ translator.

The translation techniques described in this dissertation have been used in the

implementation of the prototype Parallel-C++ translator which is currently running on the

Intel iPSC/2.

Furthermore, based on the experience gained from implementing the translator, the

implementation scheme for a compiler has also been defined. Run-time storage

management is well illustrated and exemplified.

Parallel-C++ is an extension of the C++ language. Language constructs are added

to support explicit parallelism within the object-oriented programming paradigm. Parallel­

C++ preserves the properties of object-oriented programming, such as information hiding

and inheritance, while providing support for parallel and distributed computing. In Parallel­

C++ there are two kinds of objects: (1) static objects that reside at a certain process at a

certain time; and (2) dynamic objects that float from one static object (or process) to

another. This concept can support object migration. However, the concept of static objects

108

109

is relative to the concept of dynamic objects. Dynamic objects can be exported/imported

between static objects in a distributed system. Parallel-C++ also supports explicit

parallelism and implicit parallelism. Compared with the other notions, it provides a very

readable and simple code for object distribution and movement in application programs.

Cost of object movement in the distributed memory is high compared to that in a shared

memory system. The discussion of the object mobility in the distributed memory system

provides a new approach. Most systems for object mobility available in the literature have

addressed the issue of object mobility in the context of a single address space and a shared

memory. Programming using distributed and dynamic objects in Parallel-C++ provides a

new control flow and shows a different scope rule. Major new ideas and concepts of the

programming language design presented in this dissertation are:

(1) Distributed dynamic objects and static objects.

(2) Ownership which is a dynamic relationship between objects.

(3) Dynamic Interface Environment Binding (DlEB) which permits computation

of objects in different environments.

(4) A new approach to distributed object-oriented parallel programming.

(5) Implementation schemes for dynamic objects in a distributed computing

environment.

The parallelizing translator implementation described in this dissertation has been

targeted to an Intel iPSC/2 hypercube multiprocessing system. The implementation

schemes for a compiler and run-time interpreter are also provided. The major

implementation schemes suggested are:

(1) A translator dynamically parallelizing programs for explicit parallelism.

(2) Automatic processor allocation for distributed programs.

(3) Support for object movements on the physically distributed address space.

(4) Distributed memory allocation for each local processor.

110

(5) Implicit deallocation of the freed area for the exported objects and implicit

allocation of the environment for the imported objects.

(6) A compiler implementation scheme restructuring programs for

implicit/explicit parallelism in the distributed memory computing

environment.

6.2 Contribution and Further Research

The main contribution of distributed and dynamic objects is to provide new control

flow of programs. This is illustrated with other control flows provided by existing

programming languages (as shown in Section 2.6). Programming using dynamic objects

can also simulate other control flow schemes.

Dynamic objects also add enhancement to the scope rules (as shown in Section

2.6). Dynamic objects are semi-persistent, because their lifetimes are spanned over other

static objects importing such objects.

One of the main characteristics of programming language is expressiveness. Parallel

language constructs suggested in Parallel-C++ help programmers write simple and readable

parallel programs. A programmer may define concurrency explicitly in his program. The

parallelizing translator or compiler may detect and restructure the program in which

concurrency is implicitly or explicitly defined.

Another distinguishing characteristic of this work is that the current implementation

shows the implementation scheme of distributed objects based on a distributed memory

computing system, while most other work has been done using models based on shared

memory systems. The implementation of distributed objects and object migration in the

shared memory system is much simpler than that in the distributed memory system. It is

also possible to think of a hybrid model which has distributed memory with shared

resources such as printers and disks.

111

Besides the refinements to the work suggested in this dissertation, the valuable

issues for future work also include development of formaVmathematical models [Manes

and Arbib 86], and formal semantics [America et al. 86] [Hennessy 88,90] [Schmidt 86] of

distributed dynamic objects. The development of proof methods, specification methods

[Meyer 85], and debugging methods [McDowell and Helmbold 89] [Utter and Pancake 89]

for proving correctness of program using dynamic objects are other important problems to

be addressed.

BffiLIOGRAPHY

[Ackerman 82] Ackerman, William B. Data Flow Languages. IEEE Computer, (February
1982), 15-25.

[Ada 79] Preliminary ADA Reference Manual, and Rationale for the Design of the ADA
Programming Language, SIGPLAN Notices, 14(6), (Part A and Part B), (June
1979).

[Ada 83] Reference Manual for the Ada Programming Language. ANSI/MIL-STD-
1815A-1983, United States Department of Defense, (American National Standards
Institute, Inc.), (Feb. 17, 1983), [Reprinted in Horowitz, E. (Ed.) Programming
Languages: A Grand Tour (2nd Ed.), Computer Science Press (1985), 417-751].

[Agha 86] Agha, Gul. An Overview of Actor Languages. OOP Workshop, (June 9-13,
1986), SIGPLAN Notices (October 1986), 58-67.

[Agha 86b] Agha, Gul. Actors: A Model of Concurrent Computation in Distributed
Systems. The MIT Press, (1986).

[Agha 89] Agha, Gul. Foundation issues in concurrent computing. Proc. of ACM
SIGPLAN Workshop on Object-Based Concurrent Programming. SIGPLAN
Notices 24(4), (April1989), 60-65.

[Agerwala and Arvind 82] Agerwala, T. and Arvind. Data flow systems. Guest Editors'
Introduction. IEEE Computer, (Special Issues for Data Flow), (Feb. 1982), 10-13.

[Aho et al. 86] Aho, A. V., Sethi, R. and Ullman, J.D. Compilers -Principles,
Techniques, and Tools. Addison-Wesley Publishing Co. Reading, MA, (1986).

[Allen and Kennedy 82] Allen, John R. and Kennedy, Ken. A program to convert Fortran
to parallel form. Rice MASC TR82-6, Department of Mathematical Sciences, Rice
University, Houston, TX 77001, (March 1, 1982).

[Allen and Kennedy 85] Allen, J. R. and Kennedy, D. A parallel programming
Environment. IEEE Software, (July 1985), 21-29.

[Allen and Kennedy 87] Allen, Randy and Kennedy, Ken. Automatic translation of
FORTRAN programs to vector form. ACM ToPLaS, 9(4), 491-542, (October
1987).

[Almasi and Gottlieb 89] Almasi, G. S. and Gottlieb, A. Highly Parallel Computing. The
Benjamin/Cummings Publishing Co. Inc., Redwood City, CA 94065, (1989).

[America et al. 86] America, P., de Bakker, J., Kok, J. N. and Rutten, J. Operational
semantics of a parallel object-oriented language. ACM PoPL Proc., (1986), 194-
208.

112

[Andersen 89] Andersen, B. Hypercube experiments with Joyce. SIGPLAN Notices,
24(8), (August 1989), 13-22.

113

[Ardo and Philipson 84] Ardo, Anders and Philipson, Lars. Implementation of a Pascal
based parallel language for a multiprocessor computer. Software-Practice and
Experience, 14(7), (July 1984), 643-657.

[Artsy and Finkel89] Artsy, Y. and Finkel, R. Designing a process migration facility:
The Charlotte experience. IEEE Computer, 22(9), (Sept. 1989), 47-56.

[Atkins and Nackman 88] Atkins, M. C. and Nackman, L. R. The active deallocation of
objects in object-oriented systems. Software-Practice and Experience, 18(11),
(November 1988), 1073-1089.

[AT&T 85] UNIX System V AT&T C++ Translator Release Notes. #307 -17 5, AT&T,
(1985).

[AT&T 86] AT&T C++ Translator Release 1.2 Addendum to the Release Notes. #307-
005, AT&T,(1986).

[AT&T 89] UNIX System V AT&T C++ Language System, Release 2.0. Selected
Readings. Select Code 307-144. AT&T, (1989).

[AT&T 89b] UNIX System V AT&T C++ Language System, Release 2.0. Product
Reference Manual. Select Code 307-146. AT&T, (1989).

[August et al. 89] August, M.C., Brost, G.M., Hsiung, C.C. and Schiffleger, A.J. Cray
X-MP: The birth of a supercomputer. Computer 22(1), (Jan. 1989), 45-52.

[Bakker et al. 87] Bakker, J. W., Nijman, A. J. and Treleaven, P. C. (Eds.) Proceedings
of the conference on Parallel Architectures and Languages Europe(PARLE).
Eindhoven, The Netherlands, June 1987, Vol.1 and 2, Lecture Notes in Computer
Science, No.258 and 259, Springer-Verlag, Germany, (1987).

[Bal and Tanenbaum 88] Bal, H.E. and Tanenbaum, A.S. Distributed programming with
shared data. IEEE Computer Society 1988 International Conference on Computer
Languages, Miami Beach, Florida, (Oct. 9-13, 1988), 82-91.

[Bal et al. 89] Bal, H.E., Steiner, J.G. and Tanenbaum, A.S. Programming languages
for distributed computing systems. ACM Computing Surveys, 21(3), (September
1989), 261-322.

[Baneijee 86] Baneijee, Utpal. A direct parallelization of call statements- A review.
CSRD Rpt. No.576, Univ. of Illinois at Urbana-Champaign, (April1986).

[Baskett and Hennessy 86] Baskett, F. and Hennessy, J. L. Small shared-memory
multiprocessors. Science, V.231, (Feb. 28, 1986), 963-967.

[Beck 90] Beck, Bob. Shared-memory parallel programming in C++. IEEE Software,
7(4), (July 1990), 38-48.

[Bennett 87] Bennett, J. K. The design and implementation of Distributed Small talk.
OOPSLA '87 Proceedings, SIGPLAN Notices 22(12), (Dec. 1987), 318-330.

114

[Bennett 90] Bennett, J. K. Experience with Distributed Smalltalk. Software-Practice and
Experience, 20(2), (Feb. 1990), 157-180.

[Bershad et al. 88] Bershad, B. N., Lazowska, E. D. and Levy, H. M. PRESTO: a
system for object-oriented parallel programming. Software-Practice and
Experience, 18(8), (August 1988), 713-732.

[Birkhoff 82] Birkhoff, G. Some applications of universal algebra. Csakany, G., Fried,
E. and Schmidt, E. T. (Eds.) Colloquium on Universal Algebra, Esztergom,
Hungary, (June 27-July 1, 1977), North-Holland (1982), 107-128.

[Bjornerstedt and Britts 88] Bjomerstedt, A. and Britts, S. A VANCE: An Object
Management System. OOPSLA '88 Proceedings, 206-221, (1988).

[Black et al. 86] Black, A., Hutchinson, N., Jul, E. and Levy, H. Object structure in the
Emerald system. OOPSLA '86 Proc. SIGPLAN Notices 21(11), (Nov. 1986), 78-
86.

[Brinch-Hansen 73] Brinch-Hansen, Per. Concurrent programming concepts, ACM
Computing Survey 5(4), (Dec. 1973), 223-245.

[Brinch-Hansen 74] Brinch-Hansen, Per. A programming methodology for operating
system design. Proc. of the Information Processing (IFIP '74), North-Holland
Pub. (1974), 394-397.

[Brinch-Hansen 75] Brinch-Hansen, Per. The programming language Concurrent Pascal.
IEEE Trans. on Software Eng. SE-1(2), (June 1975), 199-207.

[Brinch-Hansen 75b] Brinch-Hansen, Per. The purpose of Concurrent Pascal. Proc. of
the International Conference on Reliable Software, SIGPLAN Notices 10(6), 305-
309, (June 1975).

[Brinch-Hansen 87] Brinch-Hansen, P. Joyce- a programming language for distributed
systems. Software-Practice and Experience 17(1), 29-50, (Jan. 1987).

[Brinch-Hansen 87b] Brinch-Hansen, P. A Joyce implementation. Software-Practice and
Experience, 17(4), 267-276, (April1987).

[Bronnenberg et al. 86] Bronnenberg, W.J.H.J., Janssens, M.D., Odijk, E.A.M. and van
Twist, R.A.H. The architecture of DOOM, Proc. of Future Parallel Computers, An
Advanced Course, Pisa, Italy, (June 9-20, 1986), Lecture Notes in Computer
Science, No.272, Springer-Verlag, (1987), 227-269.

[Brown M89] Brown, M. L. A hypercube image processing language. C3P-753,754,
California Institute of Technology, (April26, 1989).

[Carriero and Gelernter 89] Carriero, N. and Gelemter, D. How to write parallel
programs: a guide to the perplexed. ACM Computing Surveys 21(3), (Sept.
1989), 323- 357.

[Chandy and Misra 88] Chandy, K. Mani and Misra, Jayadev. Parallel Program Design:
A Foundation. Addison-Wesley, (1988).

[Chase et al. 89] Chase, J.S., Amador, F.G., Lazowska, E.D., Levy, H.M. and
Littlefield, R.J. The Amber System: Parallel programming on a network of
multiprocessors. Proc. of the 12th ACM Symposium on Operating Systems
Principles, ACM/SIGOPS Operating Systems Review 23(5), (1989), 147-158.

[Cheng 89] Cheng, Hui. Vector pipelining, chaining, and speed on the IBM 3090 and
Cray X-MP. IEEE Computer, 22(9), (Sept. 1989), 31-46.

115

[Clapp and Mudge 89] Clapp, Russell M. and Mudge, Trevor. Ada on a hypercube. Ada
Letters, 9(2), (March/April1989), 118-128.

[Clark and Gregory 86] Clark, Keith and Gregory, Steve. PARLOG: Parallel
programming in Logic. ACM Trans. on Programming Languages and Systems,
8(1), (January 1986), 1-49.

[Clark 87] Clark, Keith. PARLOG: The language and its applications. Proc. of
PARLE(1987), V.2, Lecture Notes in Computer Science,#259,Springer-Verlag,
30-53.

[CLOS 88] Common Lisp Object System Specification. X3J13 Document 88-002R, (by
Bobrow, D.O., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G. and
Moon, D.A.), SIGPLAN Notices, V.23, Special Issue, (Sept. 1988).

[Cmelik et al. 89] Cmelik, R. F., Gehani, N.H. and Roome, W. D. Experience with
multiple processor versions of Concurrent C. IEEE Trans. on Software
Engineering,l5(3), (March 1989), 335-344.

[Codish and Shapiro 87] Codish, M. and Shapiro, E. Compiling OR-parallelism into
AND-parallelism. New Generation Computing, V.5, (1987), 45-61.

[Conery and Kibler 85] Conery, J. S. and Kibler, D. F. AND parallelism and
nondeterminism in logic programs. New Generation Computing, V.3, (1985), 43-
70.

[Corradi and Leonardi 87] Corradi, Antonio and Leonardi, Letizia. How to embed
· concurrency within an object environment: Parallel Objects. Proc. of the

International Conference on Parallel Processing and Applications. (Italy, Sept.
1987), 79-84, (Ed. by E. Chiricozzi and A. D'amico, North-Holland. 1988).

[Corradi and Leonardi 87b] Corradi, A. and Leonardi, L. An environment based on
Parallel Objects: PO. Proc. of the IEEE Phoenix Conference on Computers and
Communications, (1987), 253-257.

[Corradi and Leonardi 88] Corradi, A. and Leonardi, L. The specification of concurrency:
an object-based approach. Proc. of the 7th International Phoenix Conference on
Computers and Communications, (1988), 246-250.

[Corradi and Leonardi 89] Corradi, A. and Leonardi, L. PO: An object model to express
parallelism. Proc. of the ACM SIGPLAN Workshop on Object-Based Concurrent
Programming. SIGPLAN Notices, 24(4), (April 1989), 152-155.

[Corradi and Leonardi 90] Corradi, A. and Leonardi, L. A concurrent prototype in
Smalltalk-80. COMPEURO '90, Tel-Aviv, Israel, (1990).

116

[Corsini et al. 89] Corsini, P., Frosini, G. and Speranza, G. The parallel interpretation of
logic programs in distributed architectures. The Computer Journal, 32(1), (1989),
29-35.

[Cox 83] Cox, Brad J. The object-oriented pre-compiler: Programming Smalltalk 80
methods inC language. SIGPLAN Notices, 18(1), 15-22, January 1983.

[Cox 86] Cox, Brad J. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, Reading,.MA. 1986.

[Cox and Schmucker 87] Cox, B. J. and Schmucker, K. J. Producer: A tool for
translating Smalltalk:-80 to Objective-C. OOPSLA '87 Proc. SIGPLAN Notices
22(12), (Dec. 1987), 423-429.

[Cox and Gehani 87] Cox, I. J. and Gehani, N.H. Concurrent C and Robotics. IEEE
Inti. Conf. on Robotics and Automation, (1987),1463-1468.

[Cox 88] Cox, I. J. C++ language support for guaranteed initialization, safe termination
and error recovery in robotics. IEEE Inti. Conf. on Robotics and Automation,
(1988), 641-643.

[Cox et al. 88] Cox, Ingemar J., Kapilow, D.A., Kropfl, W.J. and Shopiro, J.E. Real­
time software for robotics. AT&T Technical Journal, 67(2), (March/April1988),
61-70.

[Cybenko 89] Cybenko, G. Dynamic load balancing for distributed memory
multiprocessors. Journal of Parallel and Distributed Computing. 7, 279-301,
(1989).

[Dally 88] Dally, W. J. Fine-grain message-passing concurrent computers. Proc. of the
3rd Conference on Hypercube Concurrent Computers and Applications, Vol.l, 2-
12, Pasadena, CA, (Jan. 19-20, 1988).

[Date 90] Date, C. J. An Introduction to Database Systems. (V.1, 5th Ed.), Addison­
Wesley Pub., (1990).

[DeBenedictis 88] Debenedictis, E. P. Multiprocessor architectures are converging.
Proc. of the 3rd Conference on Hypercube Concurrent Computers and
Applications, Vol.l, Pasadena, CA, (Jan. 19-20, 1988), 13-20.

[Deutsch 89] Deutsch, L. P. The past, present, and future of Smalltalk. ECOOP '89
Proceedings, Cambridge Univ. Press, (1989), 73-87.

[Dijkstra 68] Dijkstra, E. W. Cooperating sequential processes. F Genuys(Ed.),
Programming Languages, Academic Press, London, pp.43-112, 1968.

[Dijkstra 75] Dijkstra, E. W. Guarded commands, nondeterminacy and formal derivation
ofprograms. Comm. of the ACM, 18(8), (August 1975), 453-457.

[Dinning 89] Dinning, Anne. A survey of synchronization methods for parallel
computers. IEEE Computer, 22(7), (July 1989), 66-77.

[Ditlefs et al. 88] Detlefs, D.L., Herlihy, M.P. and Wing, J. M. Inheritance of
synchronization and recovery properties in Avalon/C++. IEEE Computer,
(December 1988), 57-69.

[DoD 77] Department of Defence Requirements for high order computer programming
languages, Revised "IRONMAN", (July 1977), SIGPLAN Notices 12(12),
(Dec.1977), 39-54.

117

[Dongarra 87] Dongarra, J. J. (Editor). Experimental Parallel Computing Architectures.
North-Holland, (Publisher) Elsevier Science Publishers B. V., P.O.Box 1991,
1000 BZ, Amsterdam, The Netherlands, (Distributor) Elsevier Science Publishing
Company, Inc., 52 Vanderbilt Avenue, New York, N.Y. (1987).

[Douglis and Ousterhout 87] Douglis, F. and Ousterhout, J. Process migration in the
Sprite operating system. Proc. of the 7th International Conference on Distributed
Computing Systems, (1987), 18-25.

[Duncan 90] Duncan, R. A survey of parallel computer architectures. IEEE Computer,
23(2), (Feb. 1990), 5-16.

[Emrath 85] Emrath, Perry. Xylem: An operating system for the Cedar multiprocessor.
IEEE Software, (July 1985), 30-37.

[Emrath et al. 88] Emrath, P., Padua, D. and Yew P.-C. Cedar architecture and its
software. CSRD Rpt. No.796. Univ. of Illinois, Urbana, (June 1988).

[Fidge 88] Fidge, C. J. A Lisp implementation of the model for 'Communicating
Sequential Processes'. Software-Practice and Experience, 18(10), (Oct. 1988),
923-943.

[Fisher 76] Fisher, D. A. A common programming language for the Department of
Defense -- Background and technical requirements. Paper P-1191, Institute for
Defense Analyses, Science and Technology Division, 400 Army-Navy Drive,
Arlington, Virginia 22202, (June 1976).

[Fox 87] Fox, Geoffrey C. Domain decomposition in distributed and shared memory
environments. Tech. Rpt. C3P-392, California Institute of Tech. (June 8, 1987).

[Fox 87b] Fox, G. C. The hypercube as a supercomputer. Proc. of the 2nd International
Conference on Supercomputing (ICS '87), Vol.l, (1987), 186-194.

[Fox et al. 88] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J. and Walker, D.
Solving Problems on Concurrent Processors. Vol.1, Prentice-Hall, (1988).

[Fox 88] Fox, Geoffrey. (Ed.) Proceedings of the 3rd Conference on Hypercube
Concurrent Computers and Applications, Vol.1, Architecture, Software, Computer
Systems and General Issues. Pasadena, California, (January 19-20, 1988).

[Fox 89] Fox, Geoffrey C. 1989 - The first year of the parallel supercomputer. Tech Rpt.
C3P-769, California Institute of Technology, (June 6,1989).

[Franta 78] Franta, W. R. SIMULA language summary. ACM SIGPLAN History of
Programming Languages Conference, SIGPLAN Notices 13(8), (Aug. 1978),
243-244.

118

[Gabriel 86] Gabriel, R. P. Massively parallel computers: The Connection Machine and
NON-VON. Science, V.231, (Feb. 28, 1986), 975-978.

[Gaudiot and Lee 87] Gaudiot, J. L. and Lee, L. T. Multiprocessor systems programming
in a high-level data-flow language. Proc. of PARLE(1987), V.1, Lecture Notes in
Comp. Sci., #258, Springer-Verlag, 134-151.

[Gaudiot and Lee 89] Gaudiot, J. L. and Lee, L. T. Occamflow: A methodology for
programming multiprocessor systems. Journal of Parallel and Distributed
Computing 7, (1989), 96-124.

[Gavish and Sheng 90] Gavish, B. and Sheng, O.R.L. Dynamic file migration in
distributed computer systems. CACM 33(2), (Feb. 1990), 177-189.

[Gehani and Roome 86] Gehani, Narain H. and Roome, William D. Concurrent C.
Software-Practice and Experience, 16(9), pp.821-884, September 1986.

[Gehani and Roome 88] Gehani, N.H. and Roome, W. D. Rendezvous facilities:
Concurrent C and the Ada Language. IEEE Trans. on Software Engineering,
14(11), November 1988.

[Gehani and Roome 88b] Gehani, N.H. and Roome, W. D. Concurrent C++: Concurrent
programming with class(es). Software-Practice and Experience, 18(12),
(December 1988), 1157-1177.

[Gehani and Roome 90] Gehani, N.H. and Roome, W. D. Concurrent C: a language for
programming multiprocessor systems. Byte (December 1990), 327-334.

[Gehringer et al. 88] Gehringer, E.F., Abullarade, J. and Gulyn, M.H. A survey of
commercial parallel processors. Computer Architecture News 16(4), (Sept. 1988),
75-107.

[Gelernter 85] Gelemter, David. Generative communication in Linda. ACM Trans. on
Programming Languages and Systems, 7(1), (Jan. 1985), 80-112.

[Goguen et al. 87] Goguen, J., Kirchner, C., Meseguer, J. and Winkler, T. OBJ as a
language for concurrent programming. Proc. of the 2nd International Conference
on Supercomputing (ICS '87), Vol.l, (1987), 196-198.

[Goldberg and Robson 83] Goldberg, Adele and Robson, Dave. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley Pub. Co., Reading, MA,
(1983).

[Goldberg and Robson 89] Goldberg, Adele and Robson, Dave. Smalltalk-80: The
Language. Addison-Wesley Pub. Co., Reading, MA, (1989).

[Goldberg and Hudak 88] Goldberg, B. and Hudak, Paul. Implementing functional
programs on a hypercube multiprocessor. Proc. of the 3rd Conference on
Hypercube Concurrent Computers and Applications, Vol.1, Pasadena, CA, (Jan.
19-20, 1988), 489-504.

119

[Gottlieb et al. 83] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P.,
Rudolph, L. and Snir, M. The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer. IEEE Trans. on Computers, C-32(2), (Feb. 1983),
175-189.

[Gratzer 79] Gratzer, George. Universal Algebra. Springer-Verlag, New York, (1979).

[Gries 71] Gries, David. Compiler Construction for Digital Computers. John Wiley &
Sons, (1971).

[Grogono 89] Grogono, P. Design criteria for a simple object-oriented language. OOP-
89-5, Dept. of Computer Science, Concordia University, Montreal, Quebec, H3G
1M8, Canada, (1989).

[Grogono and Bennett 89] Grogono, P. and Bennett, A. A theory for object-oriented
languages. (Extended Abstract), OOP-89-1, Dept. of Computer Science,
Concordia University, Montreal, Quebec, H3G 1M8, Canada, (1989).

[Guarna 87] Guarna, Vincent A. Jr. VPC - a proposal for a vector parallel C
programming language. CSRD Rpt. No.666, Univ. of Illinois at Urbana­
Champaign, June 16, 1987.

[Guarna 88] Guarna, Vincent A. Jr. A technique for analyzing pointer and structure
references in parallel restructuring compilers. ·CSRD Rpt. No.721, Univ. of
Illinois at Urbana-Champaign, (January 1988).

[Guzzi 87] Guzzi, Mark D. Cedar Fortran Programmer's Manual *Draft*, CSRD
Document No.601, Univ. of Illinois at Urbana-Champaign, April13, 1987.

[Halstead 85] Halstead, Robert H. Jr. Multilisp: A language for concurrent symbolic
computation. ACM Trans. on Programming and Systems, 7(4), (October 1985),
501-538.

[Haynes et al. 82] Haynes, L.S., Lau, R.L., Siewiorek, D.P. and Mizell, D.W. A survey
of highly parallel computing. IEEE Computer, (January 1982), 9-24.

[Hennessy 88] Hennessy, Matthew. Algebraic Theory of Processes. The MIT Press,
(1988).

[Hennessy 90] Hennessy, Matthew. The Semantics of Programming Languages: An
Elementary Introduction using Structured Operational Semantics, John Wiley and
Sons, Pubs., (1990).

[Hoare 73] Hoare, C.A.R. Hints on programming language design. STAN-CS-73-403,
Computer Science Department, Stanford University, (Oct. 1973).

[Hoare 74] Hoare, C.A.R. Monitors: An operating system structuring concept. Comm.
of the ACM, 17(10), (Oct. 1974), 549-557.

[Hoare 78] Hoare, C.A.R. Communicating sequential processes, Comm. of the ACM,
21(8), (Aug.1978), 666-677.

[Hoare 85] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall
International, UK, (1985).

[Hudak and Smith 86] Hudak, P. and Smith, L. Para-functional programming: A
paradigm for programming multiprocessor systems. ACM PoPL '86 Proc.,
(1986), 243-254.

120

[Hur and Chon 87] Hur, Jin H. and Chon, Kilnam. Overview of a parallel object oriented
language CLIX. CS-TR-87-25, Computer Science Department, Korea Advanced
Institute of Science and Technology, Seoul, Republic of Korea, (1987), and to
appear in Proc. of European Conf. on Object-Oriented Programming, Paris, (June
1987). .

[Intel88] Intel Corporation. iPSC/2 User's Guide and C Programmer's Reference
Manual. (March 1988).

[Jazayeri 89] Jazayeri, Mehdi. Objects for distributed systems. Proc. of the ACM
SIGPLAN Workshop on Object-Based Concurrent Programming, SIGPLAN
Notices 24(4), (April1989), 117-119.

[Jo et al. 89] Jo, Chang-Hyun, Fisher, Donald D. and George, K. M. Abstraction and
Specification of Local Area Networks. Proceedings of the Eighth Annual
International Phoenix Conference on Computers and Communications, (March 22-
24, 1989), Scottsdale, Arizona, IEEE Computer Society Press, (1989), 337-342.

[Jo and George 89] Jo, Chang-Hyun and George, K. M. Distributed object-oriented
programming with dynamic objects. OSU-CS-TR-89-14, Department of
Computer Science, Oklahoma State University (1989).

[Jo and George 91] Jo, Chang-Hyun and George, K. M. Language concepts using
dynamic and distributed objects. Proceedings of the ACM 1991 Computer Science
U!~rertce (ACM/CSC '91), (March 5-7, 1991) San Antonio, Texas, ACM Press
(1991), 211-220.

[Jo et aL 91] Jo, Chang-Hyun, George, K. M. and Teague, K. A. Parallelizing translator
for an object-oriented parallel programming language. Proceedings of the Tenth
Annual International Phoenix .c.mu:~~on Computers and Communications
(IPCCC '91), (March 27-30, 1991), Scottsdale, Arizona, IEEE Computer Society
Press, (1991), 265-271.

[Johnson 78] Johnson, Stephen C. Yacc: Yet Another Compiler-Compiler. Computing
Sci. Tech. Rpt. No.32, Bell Laboratories, Murray Hill, New Jersey 07974, (1975
and July 31, 1978).

[Jul et al. 88] Jul, E., Levy, H., Hutchinson, N. and Black, A. Fine-grained mobility in
the Emerald system. ACM Transactions on Computer Systems, 6(1), (Feb. 1988),
109-133.

[Kafura 88] Kafura, Dennis. Concurrent object-oriented real-time systems research. TR
88-47, Dept. of Comp. Sci., Virginia Tech, Blacksburg, VA 24061, 1988.

[Kafura and Lee 89] Kafura, D. G. and Lee, Hae Keung. Inheritance in Actor based
concurrent object-oriented languages. ECOOP '89 Proceedings, Cambridge Univ.
Press, (1989), 132-145.

[Kamin 88] Kamin, Samuel. Inheritance in SMALLTALK-80: A Denotational Definition.
Proc. of PoPL,(1988), 80-87.

[Kamin 90] Kamin, Samuel N. Programming Languages: An Interpreter-Based
Approach. Addison-Wesley, (1990).

121

[Karp and Babb 88] Karp, Alan H. and Babb, Robert G. II. A comparison of 12 parallel
Fortran dialects. IEEE Software, .(September 1988), 52-67.

[Keene 89] Keene, Sonya E. Object-Oriented Programming in COMMOM LISP: A
Programmer's Guide to CWS. Addison-Wesley Pub.Co. (1989).

[Kempf et al. 87] Kempf, J., Harris, W., D'Souza, R. and Snyder, A. Experience with
CommonLoops. OOPSLA '87 Proc., SIGPLAN Notices 22(12), (Dec. 1987),
214-226.

[Kernighan and Ritchie 78,88] Kernighan, Brian W. and Ritchie, Dennis M. The C
Programming Language. Prentice-Hall, Englewood Cliffs, NJ 07632, (1978, 2nd
Ed. 1988).

[Kim et al. 87] Kim, Won, Banerjee, J. and Chou, Hong-Tai., Garza, J.F. and Woelk:,
D. Composite object support in an object-oriented database system. OOPSLA '87
Proc. SIGPLAN Notices 22(12), (Dec. 1987), 118-125.

[Kim and Browne 88] Kim, S.J. and Browne, J.C. A general approach to mapping of
parallel computations upon multiprocessor architectures. Proc. of the 1988
International Conference on Parallel Processing, Vo1.3, The Penn St. Univ. Press,
(Aug.15-19, 1988), 1-8.

[Koschmann and Evens 88] Koschmann, T. and Evens, M. W. Bridging the gap between
object-oriented and logic programming. IEEE Software, (July 1988), 36-42.

[Koszarek 88] Koszarek, J. L. Hardware support for distributed objects in a hypercube.
Proc. of the 3rd Conference on Hypercube Concurrent Computers and
Applications, Vo1.1, Pasadena, CA, (Jan. 19-20, 1988), 26-32.

[Kuck et al. 86] Kuck, D.J., Davidson, E.S., Lawrie, D.H. and Sameh A.H. Parallel
supercomputing today and the Cedar approach. Science, 231, (Feb. 1986), 967-
974.

[Kung 80] Kung, H. T. The structure of parallel algorithms. Advances in Computers,
Vol.19, (1980), 65-112.

[Kung 82] Kung, H. T. Why systolic architectures? IEEE Computer, (Jan. 1982),37-46.

[Lamport 74] Lamport, Leslie. The parallel execution ofDO loops. Comm. of the ACM
17(2), (Feb. 1974), 83-93.

[Lamport 74b] Lamport, Leslie. A new solution ofDijkstra's concurrent programming
problem. Comm. of the ACM, 17(8), (August 1974), 453-455.

[Lamport and Schneider 84] Lamport, L. and Schneider, F.B. The "Hoare Logic" of
CSP, and all that. ACM Trans. on Prog. Lang. and Sys., 6(2), (April 1984), 281-
296.

[LeBlanc et al. 88] LeBlanc, T.J., Scott, M.L. and Brown, C.M. Large-scale parallel
programming: Experience with the BBN Butterfly Parallel Processor.
ACM/SIGPLAN PPEALS, (July 19-21, 1988), SIGPLAN Notices, 23(9),
(September 1988), 161-172.

122

[Lee et al. 85] Lee, Gyungho, Kruskal, C. P. and Kuck, D. J. An empirical study of
automatic restructuring of nonnumerical programs for parallel processors. IEEE
Trans. on Computers, C-34(10), (Oct. 1985), 927-933.

[Lee 88] Lee, Gyungho. Automatic restructuring of conditional cyclic loops. Proc. of the
1988 International Conference on Parallel Processing, (August 15-19), Vo1.2, The
Penn State Univ. Press, University Park, Pennsylvania, (1988), 42-45.

[Leier 90] Leier, Wm. Linda meets Unix. IEEE Computer, 23(2), 43-54, (Feb. 1990).

[Lesk and Schmidt 75] Lesk, M. E. and Schmidt, E. Lex- A lexical analyzer generator,
Computing Sci. Tech. Rpt. No.39, Bell Laboratories, Murray Hill, New Jersey
07974, (July 21, 1975 and October 1975).

[Lesser 74] Lesser, Victor R. The design of an emulator for a parallel machine language.
Proc. of ACM SIGPLAN-SIGMICRO Interface Meeting, (May 30-June 1, 1973),
SIGPLAN Notices 9(8), (August 1974).

[Li 86] Li, Kuo-Cheng. A note on the Vector C language. SIGPLAN Notices, 21(1),
(January 1986), 49-57.

[Li and Yew 88] Li, Zhiyuan and Yew, Pen-Chung. Program parallelization with
interprocedural analysis. CSRD Rpt. No.775, Univ. of Illinois at Urbana­
Champaign, (June 1988).

[Li and Yew 88b] Li, Zhiyuan and Yew, Pen-Chung. Efficient interprocedural analysis
for program parallelization and restructuring. CSRD Rpt. No.804 Univ. of lllinois
at Urbana-Champaign, (July 1988).

[Li and Yew 88c] Li, Zhiyuan and Yew, Pen-Chung. Interprocedural analysis for parallel
computing. Proc. of the 1988 International Conference on Parallel Processing,
Vo1.2, (August 15-19, 1988), The Penn State Univ. Press, University Park,
Pennsylvania, (1988), 221-228.

[Lieberherr and Holland 89] Lieberherr, K. J. and Holland, I. M. Assuring good style for
object-oriented programs. IEEE Software, (Sept. 1989), 38-48.

[Lin and Kumar 88] Lin, Y: J. and Kumar, V. An execution model for exploiting AND­
parallelism in logic programs. New Generation Computing, V.6, (1988), 393-425.

[Liskov and Zilles 75] Liskov, B. and Zilles, S. N. Specification techniques for data
abstractions. IEEE Trans. on Software Engineering, SE-1(1), (March 1975), 7-19.

[Liskov et al. 77] Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. Abstraction
mechanisms in CLU. CACM, 20(8), (Aug. 1977), 564-576, [Reprinted in
Horowitz, E. (Ed.) Programming Languages: A Grand Tour (2nd Ed.), Computer
Science Press (1985), 226-238].

123

[Liskov and Snyder 79] Liskov, B. and Snyder, A. Exception handling in CLU. IEEE
Trans. on Software Eng. (Nov. 1979), [Reprinted in Horowitz, E. (Ed.)
Programming Languages: A Grand Tour (2nd Ed.), Computer Science Press
(1985), 239-251].

[Liskov 81] Liskov, Barbara. On linguistic support for distributed programs. Proc. of the
Symposium on Reliability in Distributed Software and Database Systems,
Pittsburgh, PA, (July 21-22, 1981), 53-60.

[Liskov and Scheifler 83] Liskov, B. and Scheifler, R. Guardians and Actions: Linguistic
support for robust, distributed programs. ACM ToPLaS, 5(3), (July 1983), 381-
404.

[Liskov and Guttag 86] Liskov, B. and Guttag, J. Abstraction and Specification in
Program Development. The MIT Press, McGraw-Hill Book Co. (1986).

[Liskov et al. 86] Liskov, B., Herlihy, M. and Gilbert, L. Limitations of synchronous
communication with static process structure in languages for distributed computing.
ACM PoPL '86 Proc., (1986), 150-159.

[Liskov 87] Liskov, Barbara. Data abstraction and hierarchy. OOPSLA '87 Addendum to
the Proc., Orlando, FL, (October 4-8, 1987), Special Issue of SIGPLAN Notices,
23(5), (May 1988), 17-34.

[Liskov et al. 87] Liskov, B., Curtis, D., Johnson, P. and Scheifler, R. Implementation
of Argus. Proc. of the 11th ACM Symposium on Operating Systems Principles.
ACM/SIGOPS 21 (5), (1987), 111-122.

[Liskov 88] Liskov, B. Distributed programming in Argus. CACM, 31(3), (March
1988), 300-312.

[Liskov and Shrira 88] Liskov, Barbara and Shrira, Liuba. Promises: Linguistic support
for efficient asynchronous procedure calls in distributed systems. Proc. of the
SIGPLAN '88 Conference on Programming Language Design and Implementation,
Atlanta, Georgia, (June 22-24, 1988), SIGPLAN Notices 23(7), (July 1988), 260-
267.

[Lucco 87] Lucco, S. E. Parallel programming in a virtual object space. OOPSLA '87,
SIGPLAN Notices 22(12), (Dec. 1987), 26-34.

[Luckham et al. 84] Luckham, D. C., Von Henke, F. W., Larsen, H. J. and Stevenson,
D. R. Adam: An Ada-based language for multiprocessing. Software-Practice and
Experience, 14(7), (July 1984), 605-642.

[Maier et al. 86] Maier, D., Stein, J., Otis, A., and Purdy, A. Development of an object­
oriented DBMS. OOPSLA '86 Proc., SIGPLAN Notices, 21(11), (Nov. 1986),
472-482.

[Manes and Arbib 86] Manes, Ernest G. and Arbib, Michael A. Algebraic Approaches to
Program Semantics. Springer-Verlag, (1986).

[McDowell and Helmbold 89] McDowell, C.E. and Helmbold, D.P. Debugging
Concurrent Programs. ACM Computing Surveys, 21(4), (Dec. 1989), 593-622.

124

[Meyer 85] Meyer, B. On formalism in specifications. IEEE Software, (January 1985),
6-26.

[Meyer 88] Meyer, Bertrand. Object-Oriented Software Construction. Prentice Hall
International (UK), (1988).

[Meyer 88b] Meyer, Bertrand. Eiffel: A language and environment for software
engineering. The Journal of Systems and Software (Elsevier Science Pub. Co.,
Inc.), Vol.8, (1988), 199-246.

[Meyer 89] Meyer, B. From structured programming to object-oriented design: The road
to Eiffel. Structured Programming, 10(1), Springer-Verlag, (1989), 19-39.

[Midkiff and Padua 87] Midkiff, S. P. and Padua, D. A. Compiler algorithms for
synchronization, IEEE Trans. on Computers, C-36(12), (December 1987), 1485-
1495.

[Milner 80] Milner, R. A Calculus of Communicating Systems, LNCS 92, Springer­
Verlag, (1980).

[Moon 86] Moon, David A. Object-Oriented Programming with Flavors. OOPSLA '86
Proceedings. (September 1986).

[Myers et al. 90] Myers, B. A., Giuse, D. A., Dannenberg, R. B., Zanden, B. V.,
Kosbie, D. S., Pervin, E., Mickish, A., and Marchal, P. Gamet: comprehensive
support for graphical, highly interactive user interfaces. IEEE Computer 23(11),
(November 1990), 71-85.

[Nguyen 85] Nguyen, Van Long. A Theory of Processes. (Ph.D. Thesis), TR 85-691,
Dept. of Computer Science, Cornell University, (June 1985).

[Nygaard and Dahl 78] Nygaard, K. and Dahl, 0. The development of the SIMULA
. languages. ACM SIGPLAN Notices, 13(8), (Aug. 1978), 245-272.

[Nygaard 86] Nygaard, K. Basic concepts in object-oriented programming. OOP
Workshop, SIGPLAN Notices 21(10), (Oct. 1986), 128-132.

[O'Brien et al. 87] O'Brien, P.D., Halbert, D.C. and Kilian, M.F. The Trellis
programming environment. OOPSLA '87, SIGPLAN Notices, 22(12), (Dec.
1987), 91-102.

[Odijk 87] Odijk, E. A. M. The DOOM system and its applications: A survey of Esprit
415 subproject A, Philips Research Laboratories. Proc. of PARLE(1987), V .1,
Lecture Notes in Comp. Sci., #258, Springer-Verlag, 461-479.

[Olderog and Hoare 86] Olderog, E.-R. and Hoare, C.A.R. Specification-oriented
semantics for communicating processes. Acta Informatica 23, Springer-Verlag,
(1986), 9-66.

[Olsson 86] Olsson, R. A. Issues in distributed programming languages: The evolution of
SR. Ph.D. Dissertation, The Univ. of Arizona, (1986).

[Olson 85] Olson, Robert A. Parallel processing in a message-based operating system.
IEEE Software, (July 1985), 39-49.

125

[Olthoff 86] Olthoff, W. G. Augmentation of object-oriented programming be concepts of
abstract data type theory: The ModPascal Experience. OOPSLA '86 Proc.,
SIGPLAN Notices, 21(11), (Nov. 1986}, 429-443.

[Padmanabhan 90] Padmanabhan, K~ Cube structures for multiprocessors. CACM
33(1), (Jan. 1990), 43-52.

[Padua 79] Padua, D. A. Multiprocessors: Discussions of some theoretical and practical
problems. Ph.D. Thesis, Rep. UIUCDCS-R-79-990, Dept. of Comp. Sci., Univ.
of lllinois at Urbana-Champaign, (1979).

[Padua et al. 80] Padua, D.A., Kuck, D.J. and Lawrie, D.H. High-speed multiprocessors
and compilation techniques. IEEE Trans. on Computers, C-29(9), (Sept.1980},
763-776.

[Padua and Wolfe 86] Padua, David A. and Wolfe, Michael J. Advanced compiler
optimizations for supercomputers. Comm. of the ACM, 29(12), (December 1986),
1184-1201.

[Pallas 89] Pallas, Joseph Ira. Multiprocessor Smalltalk: Implementation, Performance,
and Analysis. Ph.D. Thesis, Dept. of Computer Science, Stanford University,
(STAN -CS-90-1315), (December 1989).

[PCF 88] The Parallel Computing Forum. PCF Fortran: Language Definition. Version 1.
Parallel Computing Forum, Kuck & Associates, 1906 Fox Drive, Champaign, IL
61820, (August 16, 1988).

[Perrott 79] Perrott, R. H. A language for array and vector processors. ACM Trans. on
Programming Languages and Systems, 1(2), (October 1979), 177-195.

[Perrott 87] Perrott, R. H. Supercomputer Languages: a case study. Proc. of the 2nd
International Conference on Supercomputing (ICS '87), Vol.3, (1987), 20-26.

[Peterson 87] Peterson, Gerald E. Tutorial: Object-Oriented Computing. Vol.l:
Concepts, Vo1.2: Implementations, IEEE (1987).

[Polychronopoulos and Banerjee 87] Polychronopoulos, C. D. and Banerjee, Utpal.
Processor allocation for horizontal and vertical parallelism and related speedup
bounds. IEEE Trans. on Computers, C-36(4), (April1987), 410-420.

[Polychronopoulos 87] Polychronopoulos, Constantine. Automatic restructuring of
Fortran programs for parallel execution. CSRD Rpt. No.665, Univ. of Illinois at
Urbana-Champaign, (May 1987).

[Polychronopoulos 88] Polychronopoulos, Constantine D. Parallel Programming and
Compilers. Kluwer Academic Publishers, Norwell, MA 02061, (1988).

[Polychronopoulos 88b] Polychronopoulos, Constantine. Toward auto-scheduling
compilers. CSRD Rpt. No.789, Univ. of Illinois at Urbana-Champaign, (May
1988).

[Polychronopoulos 88c] Polychronopoulos, Constantine D. Compiler Optimizations for
enhancing parallelism and their impact on architecture design. CSRD Rpt.No.781,
Univ. of Illinois at Urbana-Champaign, (August 1988).

126

[Polychronopoulos 89] Polychronopoulos, Constantine D. Compile-time reduction of
interprocessor communication for parallel computers. CSRD Rpt. No.642, Univ.
oflllinois at Urbana-Champaign, (January 1989).

[Powell and Miller 83] Powell, M. L. and Miller, B. P. Process migration in
DEMOS/MP. Proc. of the 9th ACM Symposium on Operating Systems Principles,
(Oct. 1983), 110-119.

[Quinn et al. 88] Quinn, M. J., Hatcher, P. J. and Jourdenais, K. C. Compiling C*
programs for a hypercube multicomputer. ACM/SIGPLAN PPEALS, (July 19-
21, 1988), SIGPLAN Notices 23(9), (September 1988), 57-65.

[Raj and Levy 89] Raj, R. K. and Levy, H. M. A compositional model for software
reuse. ECOOP '89 Proceedings, Cambridge Univ. Press, (1989), 3-24.

[Rank:a et al. 88] Ranka, S., Won, Youngju and Sahni, S. Programming a hypercube.
multicomputer. IEEE Software, pp.69-77, September 1988.

[Rose and Steele 87] Rose, J. R. and Steele, G. L. Jr. C*: An extended C language for
data parallel programming. Proceedings of the International Conference on
Supercomputing (ICS '87), Vol.2, (1987), 2-16.

[Rosing et al. 88] Rosing, M., Schnabel, R.B. and Weaver, R. Dino: Summary and
examples. Proc. of the 3rd Conference on Hypercube Concurrent Computers and
Applications, Vol.1, 472-481, Pasadena, CA, Jan. 19-20, 1988.

[Sabot 88] Sabot, Gary. The Paralation Model. Architecture-Independent Parallel
Programming. The MIT Press. (1988).

[Sarkar 90] Sarkar, Vivek. Instruction reordering for fork-join parallelism. Proc. of the
ACM SIGPLAN '90 Conference on Programming Language Design and
Implementation. (New York, June 1990), SIGPLAN Notices, 25(6), (June 1990),
322-336.

[Schmidt 86] Schmidt, David A. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, Inc. 7 Wells Ave., Newton, Massachusetts
02159, (1986).

[Schutz 79] Schutz, H. A. On the design of a language for programming real-time
concurrent processes. IEEE Trans. on Soft. Eng., SE-5(3), 248-255, (May 1979).

[Seitz et al. 88] Seitz, C.L., Athas, W:C. and Flaig, C.M. The architecture and
programming of the Ametek Series 2010 multicomputer. Proc. of the 3rd
Conference on Hypercube Concurrent Computers and Applications, Vol.l,
Pasadena, CA, (Jan. 19-20, 1988), 33-36.

[Shapiro and Takeuchi 83] Shapiro, Ehud and Takeuchi, Akikazu. Object-oriented
programming in Concurrent Prolog. New Generation Computing (Ohmsha, Ltd.
and Springer-Verlag), Vol.1, (1983), 25-48.

[Shapiro 87] Shapiro, Ehud. (Ed.) Concurrent Prolog. Vol. 1 & 2. MIT Press (1987).

[Shapiro 89] Shapiro, Ehud. The family of concurrent logic programming languages.
ACM Computing Surveys 21(3), (Sept. 1989), 413-510.

127

[Shapiro et al. 89] Shapiro, M., Gourhant, Y., Habert, S., Mosseri, L., Ruffin, M. and
Valot, C. SOS: An Object-Oriented Operating System- Assessment and
Perspectives. Computing Systems, 2(4), (Fall1989), 287-337.

[Shapiro et al. 89b] Shapiro, Marc., Gautron, P. and Mosseri, L. Persistence and
migration for C++ objects. ECOOP '89 Proceedings, Cambridge University Press,
(1989), 191-204.

[Shibayama 89] Shibayama, E. How to invent distributed implementation schemes of an
object-based concurrent language: A transformational approach. OOPSLA '88
Proc., Sept. 25-30, 1988, San Diego, CA, SIGPLAN Notices 23(11), (Nov.
1988), 297-305.

[SIGPLAN 89] Proc. of the ACM SIGPLAN Workshop on Object-Based Concurrent
Programming. San Diego, (Sept. 26-27, 1988), (Edited by G. Agha, P. Wegner
and A. Yonezawa.), SIGPLAN Notices, 24(4), (April 1989).

[Smith and Zdonik 87] Smith, K.E. and Zdonik, S.B. Intermedia: A case study of the
differences between relational and object-'oriented database systems. OOPSLA '87
Proc. SIGPLAN Notices 22(12), (Dec. 1987), 452-465.

[Snyder 86] Snyder, A. Encapsulation and inheritance in object-oriented programming
languages. OOPSLA '86 Proc., 38-45, SIGPLAN Notices 21(11), (Nov. 1986).

[Stefik and Bobrow 86] Stefik, M. and Bobrow, D. G. Object-oriented programming:
Themes and variations. The AI Magazine, (Winter 1986), 40-62.

[Stroustrup 82] Stroustrup, Bjarne. An experiment with the interchangeability of
processes and monitors. Software-Practice and Experience, V .12, (1982), 1011-
1025.

[Stroustrup 83] Stroustrup, Bjarne. Adding classes to the C language: An exercise in
language evolution. Software-Practice and Experience, V.13, (1983), 139-161.

[Stroustrup 84] Stroustrup, B. Data abstraction in C. AT&T Bell Lab. Tech.Joumal,
63(8), (0ct.1984), 1701-1732.

[Stroustrup 85] Stroustrup, B. A set of C++ classes for co-routine style programming.
in UNIX System V AT&T C++ Translator Release Notes. #307-175, Part 3,
AT&T, (1985).

[Stroustrup 86] Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley,
Reading, MA. (1986).

[Stroustrup 86b] Stroustrup, Bjarne. An Overview of C++. Object-Oriented
Programming Workshop, (June 9-13, 1986), SIGPLAN Notices, 21(10), (October
1986), 7-18.

[Stroustrup 87] Stroustrup, Bjarne. The evolution of C++: 1985 to 1987. Proceedings of
the USENIX C++ Workshop, Santa Fe, NM, (Nov. 9-10, 1987), 1-21. (Revised
and expanded in [Stroustrup 89])

[Stroustrup 87b] Stroustrup, Bjarne. What is Object-Oriented Programming? IEEE
Software, (May 1988), 10-20, and appeared in Proc. First European Conf. on
Object-Oriented Programming, Springer-Verlag, NewYork, (1987), 51-70, and
also in Proceedings of the USENIX C++ Workshop, Santa Fe, NM, (Nov.9-
10,1987), 159-180.

[Stroustrup 87c] Stroustrup, Bjarne. Possible Directions for C++. Proceedings of the
USENIX C++ Workshop, Santa Fe, NM, (Nov. 9-10, 1987), 399-416.

[Stroustrup 88] Stroustrup, Bjarne. Design Issues in C++. Discussion Session,
Workshop on Object-Oriented Programming. ECOOP 1987, Paris. SIGPLAN
Notices, 23(1), (January 1988).

128

[Stroustrup 88b] Stroustrup, Bjarne. Type-safe linkage for C++. (The Journal of the
USENIX Association) Computing Systems, 1(4), Univ. of California Press, (Fall
1988), 371-403.

[Stroustrup 89] Stroustrup, Bjarne. Evolution of C++ (The evolution of C++: 1985 to
1982). UNIX System V, AT&T C++ Language System(Release 2.0), Selected
Readings (Select Code 307-144), (Ch.2), (1989), and also appeared in USENIX
Computing Systems 2(3), (Summer 1989), 191-250.

[Stroustrup 89b] Stroustrup, Bjarne. Multiple Inheritance for C++. UNIX System V,
AT&T C++ Language System (Release 2.0), Selected Readings (Select Code 307-
144), (Ch.5), (1989). Published also in USENIX Computing Systems, 2(4), (Fall
1989), 367-395. Published also in the proc. of the EUUG Spring Conference,
(May 1987).

[Stroustrup 89c] Stroustrup, Bjarne. Parameterized types for C++. USENIX Computing
Systems, 2(1), (Winter 1989), 55-85.

[Sullivan 86] Sullivan, B. M. YACC Reference Manual. TR-86-12, The Wang Institute
of Graduate Studies, (1986).

[Talia 90] Talia, D. Survey and comparison of PARLOG and Concurrent Prolog.
SIGPLAN Notices, 25(1), (Jan. 1990), 33-42.

[Tebra 87] Tebra, Hans. Optimistic And-Parallelism in Prolog. Proc. of PARLE(1987),
V.2, Lecture Notes in Computer Science, #259, Springer-Verlag, 4~-431.

[Test et al. 87] Test, J.A., Myszewski, M. and Swift, R.C. The Alliant FX/series: A
language driven architecture for parallel processing of dusty deck Fortran. Proc. of
PARLE(1987), V.1, Lecture Notes in Computer Science, #258, Springer-Verlag,
345-356.

[Treleaven et al. 86] Treleaven, P.C., Refenes, A.N., Lees, K.J. and McCabe, S.C.
Computer architectures for artificial intelligence. Treleaven, P. and Vanneschi
(Eds.) Proceedings of the Future Parallel Computers, An Advanced Course, Pisa,
Italy, (June 9-20, 1986), Lecture Notes in Computer Science, No.272, Springer­
Verlag, Germany, (1987), 416-492.

[Tripathi and Berge 89] Tripathi, Anand and Berge, Eric. An implementation of the
objected-oriented concurrent programming language SINA. Software-Practice and
Experience, 19(3), (March 1989), 235-256.

129

[Tsujino et al. 84] Tsujino, Y., Ando, M., Araki, T. and Tokura, N. Concurrent C: A
programming language for distributed multiprocessor systems. Software-Practice
and Experience, 14(11), (November 1984), 1061-1078.

[Tsukakoshi et al. 87] Tsukakoshi, M., Katayama, H., Abe, K. and Yamamoto, K. The
supercomputer SX system: Fortran 77 /SX and support tools. Proc. of the 2nd
International Conference on Supercomputing (ICS '87), Vol.1, (1987), 72-79.

[Ullman 88] Ullman, J.D. Principles of Database and Knowledge-base Systems. (v.1),
Computer Science Press, (1988).

[Ungar and Smith 87] Ungar, David and Smith, Randall B. Self: The power of simplicity.
OOPSLA '87, SIGPLAN Notices 22(12), (Dec. 1987), 227-242.

[Utter and Pancake 89] Utter, S. and Pancake, C. M. A bibliography of parallel
debuggers. SIGPLAN Notices 24(11), (Nov. 1989), 29-42.

[Veen 86] Veen, Arthur H. Dataflow machine architecture. ACM Computing Surveys,
18(4), (December 1986), 365-396.

[Wasserman 90] Wasserman, A.I., Pircher, P.A. and Muller, R.J. The object-oriented
structured design notation for software design representation. IEEE Computer
23(3), (March 1990), 50-63. · · ·

[Watanabe and Yonezawa 88] Watanabe, T. and Yonezawa, A. Reflection in an object­
oriented concurrent language. OOPSLA '88 Proc., Sept. 25-30, 1988, San Diego,
CA, SIGPLAN Notices, 23(11), (November 1988), 306-315.

[Wegner 86] Wegner, Peter. Introduction to the special issue of the SIGPLAN Notices on
the Object-Oriented Programming Workshop. OOP Workshop, ffiM Yorktown
Heights, (June 9-13, 1986), SIGPLAN Notices 21(10), (Oct. 1986), 1-6.

[Wegner 86b] Wegner, P. Classification in object-oriented systems. OOP Workshop 86,
SIGPLAN Notices 21(10), (Oct. 1986), 173-182.

[Wegner 87] Wegner, P. Dimensions of object-based language design. OOPSLA '87
Proc., SIGPLAN Notices, 22(12), (Dec. 1987), 168-182.

[Wegner 89] Wegner, P. Granularity of modules in object-based concurrent systems.
Proc. of ACM SIGPLAN Workshop on Object-Based Concurrent Programming.
SIGPLAN Notices 24(4), (April1989), 46-49.

[Wegner 90] Wegner, P. Concepts and paradigms of object-oriented programming. ACM
SIGPLAN OOPS Messenger, 1(1), (August 1990), 7-87.

[Weihl88] Weihl, W. E. Commutativity-based concurrency control for abstract data
types. IEEE Trans. on Computers, 37(12), (Dec. 1988), 1488-1505.

[Weihl 89] Weihl, William E. Local atomicity properties: Modular concurrency control for
abstract data types. ACM ToPLaS, 11(2), (April1989), 249-282.

[Wirth 74] Wirth, Niklaus. On the design of programming languages. Information
Processing 74 (IFIP 74), North-Holland Publishing Co., (1974), 386-393.

130

[Wirth 75] Wirth, N. An assessment of the programming language Pascal. lEEE Trans.
on Software Engineering, (June 1975), 192-198, [Reprinted in Horowitz, E. (Ed.)
Programming Languages: A Grand Tour (2nd Ed.), Computer Science Press
(1985), 137-142].

[Wirth 76] Wirth, Niklaus. Programming languages: what to demand and how to access
them, Professor Cleverbyte's visit to heaven. Institut fur informatik,
Eidgenossische Technische Hochschule Zurich, #17, (March 197 6).

[Wirth 77] Wirth, N. Modula: a language for modular multiprogramming. Software­
Practice and Experience, Vol.7, (1977), 3-35.

[Wirth 77b] Wirth, N. The use of Modula. Software- Practice and experience, V. 7,
(1977), 37-65.

[Wirth 77c] Wirth, N. Design and implementation ofModula. Software-Practice and
Experience, V.7, (1977), 67-84.

[Wirth 88] Wirth, N. From Modula to Oberon. Software- Practice and Experience, 18(7),
(July 1988), 661-670.

[Wirth 88b] Wirth, N. The programming language Oberon. Software-Practice and
Experience, 18(7), (July 1988), 671-690.

[Wirth 89] Wirth, N. Designing a system from scratch. Structured Programming, 10(1),
Springer-Verlag, New York, (1989), 10-18.

[Wirth 90] Wirth, Niklaus. Talks in East Central Oklahoma State University, Ada,
Oklahoma: "Perspectives on Computer Science Education", and "Language
Constructs to Support Program Extensibility", (May 7-8, 1990).

[Wolf 89] Wolf, Wayne. A practical comparison of two object-oriented languages. IEEE
Software, (Sept. 1989), 61-68.

[Workshop 88] Report on a Workshop: Critical Research Directions in Programming
Languages. Sponsored by the Office of Naval Research, (Oct. 13-14, 1988),
SIGPLAN Notices, 24(11), (Nov. 1989), 10-25.

[Yang et al. 89] Yang, C.-Q., Chen, C.-Y. and Stinson, J. E. A distributed environment
for executing C++ programs. Proceedings of the 1st Annual IEEE Symposium on
Parallel and Distributed Processing, Dallas Texas, (May 22-23, 1989), 188-195.

[Yew 88] Yew, Pen-Chung. Architecture of the Cedar parallel supercomputer. Parallel
Systems and Computation, G. Paul and G. S. Almasi (Eds.), Elsevier Science
Publishers B.V.(North-Holland), (1988), 137-148.

[Yin et al. 90] Yin, M-L., Bic, L. and Ungerer T. Parallel C++ programming on the Intel
iPSC/2 Hypercube. Proc. of the 4th Annual Parallel Processing Symposium.,
Fullerton, CA, (April4-6, 1990), 380-394.

[Yokoto and Tokoro 87] Yokoto, Y. and Tokoro, M. Experience and evolution of
ConcurrentSmalltalk. OOPSLA '87 Proc. SIGPLAN Notices, 22(12), (Dec.
1987), 406-415.

131

[Yonezawa and Tokoro 87] Yonezawa, A. and Tokoro, M. Object-Oriented Concurrent
Programming. The MIT Press, Cambridge, MA, (1987).

[Zayas 87] Zayas, E.R. Attacking the process migration bottleneck. Proc. of the 11th
ACM Symposium on Operating Systems Principles. ACM/SIGOPS 21(5), (1987),
13-24.

[Zimmerman and Crichton 89] Zimmerman, B.A. and Crichton,G.A. An object-oriented
environment for the Caltech/JPL Mark III Hypercube. C3P-767, California
Institute of Technology, Pasadena, CA 91109, (April 26, 1989).

'."" ,"'· _"')

z
VITA

Chang-Hyun Jo

Candidate for the Degree of

Doctor of Philosophy

Thesis: TilE DESIGN AND IMPLEMENTATION OF AN OBJECT-ORIENTED
PARALLELPROGRA~GLANGUAGE

Major Field: Computer Science

Biographical:

Personal Data: Born in Pusan, Korea, April25, 1958, the son of Soon-Kyu and
Boon-Sun Jo.

Education: Graduated from Myong Ji Senior High School, Seoul, Korea, in
February, 1976; received Bachelor of Economics in Statistics from
Sung Kyun Kwan University, Seoul, Korea, in February, 1984; received
Master of Science degree from Oklahoma State University in July, 1988;
completed requirements for the Doctor of Philosophy degree at Oklahoma
State University in May, 1991.

Professional Experience: Software Engineer, Electronic Research Lab., Hyo Sung
Corp., Seoul, Korea, December, 1983, to April, 1985; Teaching Assistant,
Department of Computer Science, Oklahoma State University, August,
1987, to May, 1991.

-,,'._\ '- ~~

