

MINI-SOA/ ESB DESIGN GUIDELINES AND

SIMULATION FOR

WIRELESS SENSOR NETWORKS

 By

 JONGYEOP KIM

 Bachelor of Science in Computer Science

Korea National Open University

Seoul, Korea

1996

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

May, 2009

 ii

 MINI-SOA/ ESB DESIGN GUIDELINES AND

SIMULATION FOR

WIRELESS SENSOR NETWORKS

 Thesis Approved:

 Dr. Johnson P. Thomas

 Thesis Adviser

 Dr. Nohpil Park

Dr. Xiaolin Li

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

 ACKNOWLEDGMENTS

 First of all, it has been an honor and privilege to have Johnson P. Thomas, who has

provided me with the direction for the research, as my thesis advisor. His enthusiasm for

research greatly inspires me. I am deeply grateful for his support and suggestions.

 I gladly express my gratitude to Dr. Nohpil Park, graduate coordinator, Department of

Computer Science, for providing all the valuable support to carry out the work. I would

like to make a special thanks to Dr. Xiaolin Li for his valuable advice during the work.

 I extend my sincere thanks to the Korean Government and the Military Manpower

Administration for the overseas study support.

 Finally, I am also thankful to my wife, Kyeongsook, whom I truly love and respect. I

am thankful to my two boys, Seongsoo and Seonghyeon, who mean more than anything

to me.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ... 1

 1.1 Motivation and research objective .. 1

 1.2 Research Contribution ... 2

 1.3 Organization of the Thesis .. 2

II. REVIEW OF LITERATURE ... 3

 2.1 Wireless Sensor Networks .. 3

 2.1.1 Sensor Node Architecture .. 3

 2.1.2 Interconnection Issues of WSN’s ... 4

 2.1.3 Integration Issues.. 5

 2.1.4 Server-Client Approach.. 5

 2.1.5 Peer-to-Peer Approach ... 5

 2.1.6 SensorBase.org- Centralized repository to Slog 6

 2.1.7 World wide Sensor Web Framework Overview 7

 2.2 Service Oriented Architecture ... 8

 2.2.1 What are services ? ... 8

 2.2.2 SOA definition ... 8

 2.3 SOA standard .. 9

 2.3.1 XML ... 9

 2.3.2 SOAP ... 10

 2.3.3 WSDL... 11

 2.3.4 UDDI .. 12

 2.3.5 Problem in UDDI Structure.. 12

 2.4 Enterprise Service Bus .. 13

 2.4.1 Overview of ESB ... 13

 2.4.2 IBM Web Sphere’s ESB and SOA ... 14

 2.4.3 ESB capabilities ... 14

 2.4.4 WebSphere Enterprise Service Bus.. 15

 2.4.5 Structure of WebSphere Enterprise Bus... 16

 2.4.6 Broker .. 16

 2.5 OASiS .. 17

 v

 III. PROPOSED mini-ESB/SOA FOR WSN ... 19

 3.1 Relationship SOA and mini-SOA .. 20

 3.2 Design.. 21

 3.3 requirement of mini-SOA .. 23

 3.3.1 Transformability ... 23

 3.3.2 Interoperability .. 24

 3.3.3 Flexibility .. 25

 3.3.4 Security.. 25

 3.3.5 Quality of Service.. 25

 3.4 mini-SOA/ESB Architecture .. 26

 3.4.1 mini-SOA Orchestrator ... 26

 3.4.2 mini-SOA/ESB Service Engine .. 27

 3.4.3 Message Broker ... 27

 3.5 Sensor Web Domain .. 28

 3.6 sensor-UDDI structure ... 29

 3.7 Operation sequence of mini-SOA/ESB .. 32

 3.7.1 Service Publish Procedure ... 33

 3.7.2 New Service Creation.. 34

 3.7.3 Service Availability ... 36

 3.7.4 UDDI Consistency .. 38

IV. SIMULATION .. 39

 4.1 Object of the Simulation .. 39

 4.2 Development tools and programming languages ... 39

 4.3 Assumption.. 39

 4.4 Simulation of service availability and consistency 40

 4.4.1 Service Availability Processors .. 40

 4.4.2 UDDI Consistency processors ... 43

 4.5 Experimental Result .. 44

 4.5.1 Service Availability .. 44

 4.5.2 Service Availability Analysis ... 47

 4.5.3 UDDI Consistency ... 48

 4.5.4 Service Availability vs. UDDI Consistency ... 49

V. CONCLUSION AND FUTUREWORK .. 50

 5.1 Conclusions ... 50

 5.2 Future work ... 51

REFERENCES .. 52

APPENDIX ... 55

 vi

LIST OF TABLES

Table Page

 2.1 Advantages and disadvantages of Interconnection issue 4

 2.2 OASiS Programming Model .. 18

 3.1 Design Consideration Depending on Architecture .. 21

 3.2 Prototype platform.. 22

 4.1 Service and Alternative services Status ... 42

 4.2 Test Set Availability ASL(n =4) ... 44

 4.3 Test Set Availability ASL(n =2) ... 44

 4.4 Availability ASL(n =4) ... 47

 4.5 Availability ASL(n =2) .. 47

 4.6 UDDI Consistency Check .. 48

 4.7 Service Availability vs. UDDI Consistency ... 49

 vii

LIST OF FIGURES

Figure Page

 2.1 Mica2 Mote Architecture ... 3

 2.2 Service-Client Approach .. 5

 2.3 Peer-to-Peer Approach ... 6

 2.4 Sensor Network Data Sharing Overview ... 6

 2.5 Relationship between components ... 7

 2.4 Major Element of SOA(Service Requestor, Registry, Provider) 9

 2.5 Architecture of Enterprise Service Bus(ESB) .. 13

 2.6 ESB and SOA .. 14

 2.7 OASiS .. 17

 3.1 mini-SOA/ESB with Service Oriented Architecture ... 19

 3.2 Relationship SOA and mini-SOA ... 20

 3.3 Service Transformation .. 24

 3.4 Architecture of mini-SOA/ESB .. 26

 3.5 mini-SOA Orchestrator .. 27

 3.6 Site map of SWD web site ... 28

 3.7 UDDI Element.. 29

 3.8 Architecture of Service List of UDDI ... 30

 3.9 Alternative Service List ... 31

 3.10 Service Find, bind, request/respond Procedure .. 32

 3.11 Service publish A,B ... 33

 3.12 New Service Creation Procedure .. 34

 3.13 Alternative Service Select .. 34

 4.1 DFD of Service Availability and Consistency simulation 40

 4.2 Service Availability Graph(ASL n = 4) .. 45

 4.3 Service Availability Graph(ASL n = 2) ... 46

 4.4 Service Availability vs. UDDI Consistency .. 49

1

CHAPTER I

INTRODUCTION

1.1 Motivation and objective of research

Wireless Sensors Network(WSN) devices have been commercially used to gather information

from the physical environment to transmit to the external cyber world application domains for

the purpose of monitoring medical devices, process automation, transportation system

automation, structural health monitoring, and many more applications[1,2,3,4].

One of the major challenges in WSN is the difficulty of efficient interaction between different

WSN application domains because there is no open standard for supporting various types of

sensors that are produced by many senor manufacturers [1,5,6]. To solve this problem, a Service

Oriented Architecture (SOA) concept has been proposed to improve the interoperability between

WSNs which are composed of heterogeneous sensor devices[6]. The SOA’s three required

factors for service interaction are Service Registry, Service Requestor and Service Provider. The

Enterprise Service Bus is the core component of SOA. It supports message exchange between

service providers and service consumers, which are loosely coupled.

This ESB needs to support Security, Message transformation, Reliability, Transaction

management, Orchestration of Service, etc.[7]. There are many ESB products now widely

available on the market, such as IBM WebSphere ESB, JAVA based OPEN ESB, BEA

AquaLogic Service Bus, Mule, Cape Clear6, etc.

2

However, as those products focus on large enterprise services, it is difficult to apply WSN

integration because of limited hardware and software capabilities. Therefore, this thesis discusses

the important design issues of SOA/ESB, and proposes design guidelines for a mini-SOA

Enterprise Service Bus (ESB) for WSN as an open standard for the management and application

development of different WSN domains.

 1.2 Research Contributions

In this thesis, we propose a mini-SOA/ESB for wireless sensor networks as an open standard.

The contribution of this thesis are as follows:

• The major design requirements, such as Transformation, Interoperability, Flexibility,

Security, Quality-of-Service for a mini SOA/ESB.

• Mini-SOA/ESB Architecture to support WSNs.

• A sensor-UDDI structure to support Quality of Service.

• An simulation program is implemented with an Alternative Service List to increase service

availability and keep service Consistency between sensor-UDDIs.

 1.3 Organization of Thesis

Chapter 2 is a review of the literature This chapter will discuss:

 1. Interconnection Issues and Integration issues in the wireless sensor networks.

 2. Overview of Service Oriented architecture and Enterprise Service Bus

 3. Commercial product review (IBM web Sphere) and OASiS frame work.

Chapter 3 proposes a mini-SOA/ESB for wireless sensor networks applications

Chapter 4 presents simulations of availability and consistency of mini-SOA/ESB.

3

CHAPTER II

REVIEW OF LITERATURE

2.1 Wireless Sensor networks

Advances in micro-electromechanical systems(MEMS) have enabled the development of small,

inexpensive, low power, sophisticated sensors[8]. These sensors are connected with wireless

communication technologies and are widely used for environmental monitoring, indoor climate

control, habitat monitoring, transportation system automation, etc. Because of WSN’s diversity

and heterogeneity, previous research has focused on reducing energy consumption, wakeup

strategies, time-synchronization, data aggregation, etc[8].This chapter discusses the

characteristics of WSNs, and provides a brief review of interconnection issues and integration

issues.

2.1.1 Sensor Node Architecture

A sensor node is composed of four major units: the processing unit, sensing unit, transceiver unit

and power unit.

 Figure 2.1 Mica2 Mote architecture [9]

4

A sensing unit senses analog data and converts it to digital data. A transceiver unit’s role is to

communicate with other nodes. A power unit supplies power to the node. An actuator perform

location finding functions to a moving node.[9].

2.1.2 Interconnection Issues of WSNs

Research for sharing the sensor data over the Internet using Interconnecting WSNs

methodologies are outlined below:

Interconnection

Issues

 Methodologies Advantages Disadvantages

Direct

Interconnection

Using IP

protocol

Implement IP protocol

stack on Sensor Node

Internet host can

directly Send

Command to

particular nodes in

Sensor Network

Sensor node is

required enough

processing capability

Overlay

Indirectly

Interconnection

Sensor networks

protocol is deployed

over the TCP/IP

Easy to integrate into

a virtual sensor

Network

Protocol overhead to

TCP/IP network

Bridge for

indirect

interconnection

Different protocol in

both networks are

translated in

application layer

The communication

protocol used in the

sensor networks may

be chosen freely, and

internet users cannot

directly access any

special sensor node

Single point of failure

Gateway for

indirect

Interconnection

A different protocol in

both networks are

translated by the

application layer

The communication

protocol used in the

sensor network may

be chosen freely

Internet users cannot

directly access any

special sensor node

 Table 2.1 Advantages and disadvantages of Interconnection Issues[21].

5

 2.1.3 Integration

For integration issues, three approaches have been proposed, namely, the Server-client

Approach, Peer-to-peer Approach, and sensor network sharing.

2.1.4 Server-client Approach

This approach employs a central system which requires data owners to register their data sources

with a central server. These sensing resources are updated at intervals to let the server know the

availability When an application submits a query to search for a service, the central server

analyzes the query and finds the appropriate sensor networks, and then produces a response [12].

 Figure 2.2 Server-Client Approach[12]

2.1.5 Peer-to-Peer Approach

Adopting P2P techniques, each WSN with a gateway acts as a peer. The main goal of P2P

overlay is to treat the underling heterogeneous WSNs as a single unified network, in which users

can send queries without considering the details of the network. [12]

6

 Figure 2.3 Peer-to-peer Approach[12]

2.1.6 SensorBase.org - Centralized repository to Slog

SensorBase.org was created for the purpose of sharing and managing a specific domain for

sensor network data on Internet. It also serves as a search engine that provides users the ability to

query for specific data sets based on geographic location, sensor type, range of time, and patterns

in the sensor signals.[23]

 Figure 2.4 Sensor Network Data Sharing Overview[23]

7

2.1.7 World wide Sensor Web Framework Overview

The world wide Sensor Web is distributed over the Internet, and contains separate components

which provide accessible services that are capable of networking sensing devices on a global

scale. These components are composed as follows: the Query Handler, Sensor Register, Sensor

Interface, Sensor Data Store, Functionality Register, and User Register[24].

 Figure 2.5 Relationship between components[24]

8

2.2 Service Oriented Architecture Overview

2.2.1 What are services ?

A Service includes every resource in a company or organization. It could be business logic, a

data base system, file structure , documents, files , application processes, transactions, and

anything that can be accessed via a network [14].

2.2.2 SOA definition

An SOA “provides methods for system development and integration where systems group

functionality around business process, and packages these as interoperable services[7].”

There are three major essential elements for SOA. These are the service requestor, service

provider and service registry.

• Service provider: The Service provider is responsible for publishing the service on the web

with specific details and protocols to guide the service requestor’s use.

• Service Registry: The Service registry assists the service requestors in searching the correct

services with UDDI data structure.

• Service requestor: The service requestor finds the right service from the service registry

that is published by the service provider. After the correct service is found, the requestor

and provider negotiate the format of the request, along with other protocol issues. Finally,

the requestor can access and invoke the service of the provider.

9

 Figure 2.6 Major elements of SOA(Requestor, Registry , Provider)

2.3 SOA standard

2.3.1 XML

XML was developed as a general-purpose specification by the W3C to support dynamic content

creation and overcome the limitations of HTML. Using XML we can define any content of an

element in a meaningful way[25]. The example below describes not only each element of the

attributes, but also the informational structure for the data.

<University>

 <UniversityName region = “US”>

 Oklahoma State University

 </UniversityName>

<Student>

 <StudentName> Joy Kim </StudentName>

 <StudentAddress>124 Brumley apt #200 Stillwater </StudentAddress>

 <StudentCollege> Oklahoma State University</StudentCollege>

 <StudentPhone> 403-334-1343 </StudentPhone>

 <Gpa> 3.7 </Gpa>

 </Student>

</University>

10

2.3.2 SOAP

Simple Object Access Protocol(SOAP) is a specification for common format message

structured by XML for communication over HTTP, between service provider , service

consumer, and service registry [14].

SOAP is composed of three major blocks: the envelope, the header and the body. The header is

noncompulsory, and can include one or more header blocks carrying the attribute of the message

or defining the qualities of service for the message. Headers are intended to carry contexts or any

application defined information related to the message, such as security tokens, transaction

identifiers, and message correlation mechanisms. The body is essential and contains one or more

body blocks, encompassing the message itself [25].

• SOAP Envelope: The SOAP envelop symbolizes the start and the end of the message, so

that the receiver knows when an entire message has been received. The SOAP envelope

solves the problem of knowing when you’re done receiving a message, and are ready to

process it. The SOAP envelope is therefore basically a packing mechanism.

• SOAP Header: The headers are the main mechanisms by which SOAP can be extended to

include additional features and functionality, such as security, transactions, and other

quality-of-service attributes associated with the message. The header is encoded as the first

immediate child element of the SOAP envelope.

• SOAP Body: The SOAP body contains the application-defined XML data being exchanged

11

in the SOAP message. The body must be contained within the envelope and must follow

any headers that might be defined for the message. The body is defined as a child element

of the envelope, and the semantics for the body are defined in the associated SOAP schema.

 2.3.3 WSDL

The Web Services Description Language (WSDL) is a standard way to describe a Web service.

It describes and publishes the protocol and format [25].

• Data Types: in the form of XML schemas of some other possible mechanism – to be used

in messages.

• Message: an abstract definition of the data, in the form of a message presented either as an

entire document, or as arguments to be mapped to a method invocation

• Operation: the abstract definition of the operation for a message, such as naming a method,

message queue, or business process, that will accept and process the message

• Port type: an abstract set of operations mapped to one or more end points, defining the

collection of operations for a binding, the collection of operations. Since these operations

are abstract, they can be mapped to multiple transports through various bindings.

• Binding: the concrete protocol and data formats for the operations and message defined for

a particular port type.

• Port: a combination of a binding and a network address providing the target address of the

service communication

• Service: a collection of related end points encompassing the service definitions in the file.

The services map the binding to the port and include any extensibility definitions.

12

2.3.4 UDDI

The UDDI registry accepts information describing a business, including the web services it

offers, and allows interested parties to perform online searches and downloads of the information.

UDDI information is often described as being divided into three main categories of business

information[25].

White page Business name and address, contact information ,

Web site name, and data Universal Numbering

Yellow page Type of business, location, products, geographical

location, industry type, business ID

Green page Technical information about business service

2.3.5 Problems in UDDI data Structure

The UDDI data structure provides so many options and extensions, that it’s almost impossible to

predict the level of consistency that will be achieved among entries for different businesses. In

other words, it may be very difficult to predict the type of detail available for a given entry. If

UDDI is ever to succeed, the data will have to be normalized and regularized a good deal more

than it is [25].

13

2.4 Enterprise Service BUS

2.4.1 Overview of ESB

The word “bus” is a reference to the physical bus that carries bits between devices in a computer.

In the Service Oriented Architecture, the Enterprise Service Bus(ESB) refers to the construct of

a software architecture that is implemented using middleware infrastructure, which supports

standard-based event driven message exchange engine between complex service architectures

[13].

ESB is the core component of SOA, it supports Transport protocol management, Message

transformation, Security, Reliability, Management, Transaction, Orchestration of service[7].

As shown below, there are four different kinds of Service Requestors and four service providers

developed on different platforms, ESB allows the exchange of a standard set of message between

Service requestors and Service providers.

 Figure 2.7 Architecture of enterprise Service Bus(ESB)

14

2.4.2 IBM WebSphere’s ESB and SOA

This is a concept diagram of ESB/SOA developed by IBM WebSphere research group.

They proposed an “ESB hub” architecture to support routing, transformation, mediations,

security etc[14].

 Figure 2.8 ESB and SOA [14]

2.4.3 ESB capabilities

IBM WebSphere ESB capabilities are as follows[14] :

• Communication: An ESB should provide event-oriented middleware over HTTP

infrastructure and service interaction over various protocols.

• Service Interaction: An ESB supports declaration of service operation and interaction and

message correction.

• Integration: An ESB supports heterogeneous environmental technologies such as EAI

technologies, JDBC, FTP, EDI, J2EE connector architecture, client API for various

15

languages and platforms.

• Management: An ESB enables the monitoring and control of services and interacts with

system management software.

• Quality of Service: An ESB provides different qualities of service for integrity of data.

• Security: An ESB should support security infrastructures, identification and

authentication, access control, confidentiality of data, security management and any other

security related aspects.

• Service Level: An ESB enables handling business service level agreements.

• Message processing: An ESB has the capability of integrating message, object, and data

models among the application components of an SOA.

• Modeling : An ESB should support the use of development tools and be capable of

identifying different models for inter and external services and processes.

• Infrastructure intelligence : An ESB supports autonomic pattern recognition.

• Management and autonomic : An ESB supports autonomic self-healing, self-configuring,

and dynamic routing.

2.4.4 WebSphere Enterprise Service BUS

 The WebSphere ESB infrastructure enables connecting applications that have standards-

based interfaces as described in the WSDL file. WebSphere Enterprise Service Bus adds the

following values to the application server :

• Provides built-in meditation(centralizes logic, routing, transformation, data handling) to

create integration logic for connectivity.

16

• Offers support for J2EE Connector Architecture.

2.4.5 Structure of WebSphere Enterprise bus

A service interaction in SOA defines both service consumers and service providers. The role

of WebSphere ESB is to intercept the request of service consumers and fulfill additional

tasks in mediations in order to support loose coupling.

Mediation tasks include :

• Centralizing the routing logic, which provide transparency of the services.

• Acting as a façade in other to provide different interfaces between service consumers and

providers.

• Interfaces are defined in a WSDL document.

 2.4.6 Broker

The broker is a set of application processes that host and run message flows. When a message

arrives at the broker from a business application, the broker processes the message before

passing it on to one or other business applications. Execution groups enable message flows

within the broker to be grouped together. Each broker contains a default execution group.

17

2.5 OASiS

OASiS is an Object-Centric, Ambient-aware, Service-oriented sensor net programming model

and middleware implementation for WSNs application, proposed by Vanderbilt University.

OASiS is a lightweight framework which avoids the use of XML-based messages found in Web

Servcie3 standards [25].

The OASiS programming model is composed of a Finite state machine, Node Manager, Object

manager, Dynamic Service Configurator, and WWW Gateway. The Gateway resides on a sensor

network base station and provides access to web services by translating node-base byte sequence

messages. There are three types of messages handled by the Node manager : service discovery

message, service binding messages, service access messages[25].

 Figure 2.9 OASiS Programming Model [25]

18

The OASiS is a very useful Architecture in developing WSN applications. The mini-SOA/ESB

and OASiS comparison is shown below.

Comparison OASiS Mini-SOA/ESB

Goal

- Provide SOA for Sensor networks

- Propose a programming model and

middleware implementation for

WSN.

- Provide the possibility of integrating

WSN applications as an open standard

frame work.

Proposed

Model

Logical Model Logical Model

Key Idea - Service graph concept is used for

connection between two services

- The WWW gateway resides on a

sensor network base station and

provides access to Web services.

- A gateway application is developed

on a base station

- The middleware services include

a Node Manager, Object manager,

and Dynamic Service Configurator.

- Enterprise Service Bus concept used

- A mini-SOA/ESB Service Engine

supports a common interface of sensor

network platforms.

- Sensor Web Domain used for sharing

information about sensor service

applications among Service providers

and consumers.

- The mini-ESB includes a message

broker, service transformer, consistency

monitor and service publisher.

Implementation - Scalability analysis using Prowler

- The feasibility and effectiveness of

OASiS was evaluated using a simple

tracking application.

 - Service availability with Alternative

Service List

- UDDI consistency

Table 2.2 OASiS[25] vs. mini-SOA/ESB

19

CHAPTER III

PROPOSED MINI-SOA/ESB FOR WSN

 A general approach to desegregate sensor nodes into the sensor Grid is to choose the Grid

Standard and APIs. The Open Grid Services Architecture (OGSA) is based on the major

technology of SOA standards like XML, SOAP, and WDSL. If Sensor data is accessible in the

OGSA framework, it is easy to share data and services developed by various service providers.

However, since sensor nodes have restricted computing power and processing capacity, it may

not be possible for sensor data to be encoded in XML format within SOAP envelops or

transported using internet protocol to applications. Grid services are also complex in order to be

implemented directly on most simple sensor nodes[10].

Therefore, we propose a new concept of SOA/ESB architecture for WSNs, called “mini-

SOA/ESB,” to address these design issues.

 Figure 3.1 Mini-SOA with Service Oriented Architecture

20

3.1 Relationship between SOA and mini-SOA

How are SOA and mini-SOA related? SOA focuses on the integration of the Enterprise service,

whereas mini-SOA focuses on the interoperability between different kinds of WSN applications.

Let us assume the fire department has a “fire monitoring system.” This system consists of two

different parts: mini-SOA and SOA.

When a fire happens, a fire department needs information such as the best route, ambulance

information, location of the fire and the spread of fire, in order to dispatch firefighters and

ambulances.

 Figure 3.2 Relationship SOA and mini-SOA

In this case, how do we get information from the “fire monitoring system?” The processing

steps are as follows:

21

 The SOA’s Service requestor (a) finds the right service from the SOA’s Enterprise UDDI (b).

After the correct service is found, the SOA’s service provider (c) checks information from

SOA’s Service requestor (a). If SOA’s service provider (c) does not have enough information,

the service provider (c) sends a requests for information to the mini-SOA’s Service requestor.

The mini-SOA’s Service requestor (d) finds the right service from the mini-SOA’s Sensor UDDI

(e). After the correct service is found, the mini-SOA’s Service provider (f) provides information

detailing the location of the fire (3) and spread of fire (4). The mini-SOA’s Service requestor (d)

receives information from the mini-SOA’s Service provider (f), and transfers information to the

SOA’s service provider (c).

 The SOA’s service provider (c) combines information pertaining to the location of the fire (3),

spread of fire(4), Best route (1) and Ambulance information (2), then transfers the message to the

SOA’s Service requestor (a). Finally, SOA’s Service requestor (a) gets all the information that

he requested.

3.2 Design

In order design the mini-SOA/ESB architecture for WSNs, we need to consider a number of

features. As shown in Table 3.2, design issues for integration have been

proposed[10][15][12][16].

Based on these integration concepts, the mini-SOA/ESB design guidelines are categorized by

Transformability, Interoperability, Flexibility, Security and Quality of Service and Management.

22

Table 3.1 Design Considerations, depending on Architecture

Another consideration for the design requirements of mini-SOA is the possibility of supporting

various kinds of sensor application platforms, such as OS-based architecture, VM-based

architecture, Middleware architecture and Stand-alone protocols [9]. See table 3.2.

Proposed

Architecture

Design Consideration Reference

Proxy Software

Architecture

-Data Management

-Information Services

-WSN Connectivity

-Power Management

-Security

-Availability

-Quantity of Service

-Grid Interface, WSN Scheduler, WSN

Management

[10]

IP-enabled -IP over sensor network Technologies

-Ad hoc Networking

-Gateway discovery

-Service Discovery

-Mobility Management

-Security

[15]

Server-Client

Approach &

Peer-to-peer

Approach

-Heterogeneity

-Scalability

-Publishing and discovering sensor resources

-Query aggregation

-Interconnection

-Integration

-Data Collection and data storage

-API for high-level application

[12]

Tiny Web

Services

-Interoperability

-Improves the programmability

-Easy to integrate with enterprise system via

Internet

-Providing Multiple gateways for converting

between each sensor manufacturer and the

application

[16]

23

Prototype platform Proposal Code

OS-based architecture TinyOS

BerthaOS

EYE OS

MOS

OS-1

OS-2

OS-3

OS-4

VM-based architecture Sensorware

MagnetOS

Mate’

VM-1

VM-2

VM-3

Middleware architecture MiLAN

Cluster-based

Middleware in

Qos-aware Middleware in

SINA

TinyDB

Cougar

LIME

MARE

RSCM

MA-1

MA-2

MA-3

MA-4

MA-5

MA-6

MA-7

MA-8

MA-9

MA-A

Stand-alone protocols GSD

Task migration in

SA-1

SA-2

 Others O-1

 Table 3.2 Prototype platform

3.3 Requirements for mini-SOA/ESB

3.3.1 Transformability

Transformability is the ability to message transformation, which combines messages between

service provider and service consumer.

Assume a service provider publishes services Service1, Service2, where each service consists of

Room1 and Room2 ‘s Temperature and Node power. After publication, these services can be

used by the service consumer.

24

 Figure 3.3 Service Transformation

In order to use these services, the service consumer needs to create a new service. As shown in

Figure 3.3, Service7 and Service8 are created. Service8 is generated from Service2, with the

same compositional format Temprature(Room3, Room4) and NodePower(Room3,Room4), but

with a different name.

Service7 is made of Service2’s NodePower(Room3) and Service1’s Temperature(Room1) with

a different format. In this case, the mini-SOA/ESB provides the mechanism to format mapping

functions between the Service provider and the Service Consumer.

3.3.2 Interoperability

In order to share sensing resources on the Web, an appropriate interconnection approach must be

introduced, which is spatially deployed in different locations[21]. Interoperability is a key factor

in supporting communication interfaces of different sensor platforms, like OS-based, VM-based

and Middleware-based architectures.

25

 3.3.3 Flexibility

Flexibility is the ability to interface between WSN applications and Enterprise level application

services. A mini-SOA/ESB should keep SOA’s major open standards, for example, XML,

SOAP , WDSL, BEPL(Business Process Execution Language), and UDDI. In order to interact

with enterprise level applications that are not tied to a specific vender, Mini-SOA/ESB should

automatically generate a XML format message to support the SOAP protocol, which is a highly-

distributed architecture.

3.3.4 Security

Wireless sensor networks are prone to security problems, such as the compromising and

tampering of sensor nodes, eavesdropping of sensor data and communication, and denial of

attacks[10]. To make a secure mini-SOA/ESB model, it is to necessary to ensure the protection

of sensor networks from attackers.

 3.3.5 Quality of Service

 Sensor nodes have restricted battery power and processing capability. If some services are not

available, the mini-SOA/ESB needs to have a failure of recovery plan or an Alternative Service

Selection.

26

 3.4 mini-SOA/ESB Architecture

Figure 3.4 is the proposed architecture of a new concept for integrating mini-SOA/ESB with

WSNs. Mini-SOA/ESB is composed of a Mini-SOA/ESB Server Engine, Mini-SOA/ESB, Mini-

SOA Orchestrator and Sensor UDDI. Mini-ESB has a Message broker, service transformer,

consistency monitor and service publisher.

 Figure 3.4 Architecture of mini-SOA/ESB

 3.4.1 Mini-SOA Orchestrator

The mini-SOA Orchestrator provides a user-convenient GUI, which interacts with the Service

transformer, message broker and sensor UDDI. A good GUI design not only relates to the system

architecture, but is also one of the most important factors for increasing the productivity of

application development and management. The mini-SOA Orchestrator requirements are as

follows :

27

• Visual display function of published service information.

• Easy to create sensor application processes.

• Provides an active service monitoring function.

 Figure 3.5 mini-SOA Orchestrator

3.4.2 Mini-SOA/ESB Service Engine

The Mini-SOA/ESB Service Engine is the heart of the new mini-SOA/ESB architecture. This

service engine supports common interfaces of various kinds of sensor network platforms, for

instance, middleware based (Milan, Sina, Tiny DB), OS based(Tiny OS,Bertha OS) and VM

based platforms.

3.4.3 Message Broker

The message broker controls all of the interacting messages between the Message broker,

Service transformer, Consistency monitor and Service publisher. When a message transfers from

the service requestor, the broker passes the message to the Service transformer and service

consistency monitor.

28

3.5 Sensor Web Domain

Sensor Web Domain (SWD) is the web site for sharing information about sensor service

applications among Service providers and Service consumers, for example Google or Yahoo

search engines. This site presents every published fact that the service has on file, for example

published service List, contact information, service creation time, service reliability rating and

alternative service list. This is the proposed site map of the web site.

The name of SWD’s URL(Uniform Resource Locator) will be “ www.sensorUDDI.org”.

 As shown in Figure 3.6, this site is specially designed for sharing sensor data in the form of

sensor applications centric on the Web, and the user can also access this site via the Mini-SOA

Orchestrator.

 □ User Login + user authentication

 □ Sensor-UDDI + register UDDI

 + search published service

 + publish service

□ Service Level Management

 + Service level category

 +Service Authentication

□ mini-SOA/ESB management

 + software download

□ Contact Information

□ How to get Authentication

 Figure 3.6 Site map of SWD web site

29

 3.6 Sensor-UDDI structure

 The general UDDI data structure has so many selections and extensions that it is almost

impossible to maintain a level of consistency[7]. Therefore, we propose a new model of UDDI

that is aimed for WSNs.

Any sensor application should publish to the sensor UDDI in the mini-Sensor-UDDI.org domain

and service publish domain itself. There are three sensor-UDDI domains: at the Service provider,

Service consumer and sensor-UDDI.org domains.

Column �ame Description

BusinessKey AREA-XXXX-XXXX

AuthenticationStep Approved, processing,denied

 ServiceName A1

 Service List {a1,a2,a3,a4,a5},

Alternative Service List {a1:a2, a2:a3, a4:a5}

Service Level 0,1

ServiceCreationDateTime YYYY-MM-DD 13:00

EffectiveServiceDateTime YYYY-MM-DD 24:00

LastConsistencyCheck YYYY-MM-DD 13:00

 Figure 3.7 UDDI elements

• BusinessKey: Business key is the unique key in a Service.

• AuthenticationStep: When publishing a service, AuthenticationStep is processing(0),

If a Service is approved, it will be changed to approved(1), if denied, to denied(2).

• ServcieName: Name of the service.

• ServiceList: Published by a Service name, lists the set of processor names.

30

• Set of Processor names, which is published by a service Name.

• Alternative Service List(ASL): The set of lists can be replaceable. An ASL can be created

at the time of service and published as an optional requirement.

• Service Level: Sever Level 0 - These are the basic services published on one platform.

Service Level 1 – this is a combination of Level 0 Services composed of services from

different platforms.

• ServiceCreationtime: Service publishing time.

• EffectiveServiceDateTime: Service expiration time.

The new type of data structure for the mini-SOA , called “sensorUDDI”, is composed of a

Service name, Service list and Alternative service List. This sensorUDDI is specially designed

for increasing QoS, defined in terms of service availability and consistency.

Service Name A B N

Service List a1 a2 a3 … an b1 b2 b3 … bn a1 b3 … an

Alternative

ServiceList

a1

a2

a3

an

a1

a2

a3

an

a1

a2

a3

an

… a1

a2

a3

an

 b1

b2

b3

bn

b1

b2

b3

bn

b1

b2

b3

bn

… b1

b2

b3

bn

 a1

a2

a3

an

 b1

b2

b3

bn

… a1

a2

a3

an

 Figure 3.8 Architecture of Service list of UDDI

The alternative service list(ASL) is created with its Service Name at the time of service

publication. The list of ASL is sorted by availability of service.

31

Let’s assume, if we have a service list as follows :

a1:{a2, a3, a4}

a2:{a1, a5, a6, a7}

b1:{b2, b3, b6, b7, b9, b10}

b2:{b7, b8, b9, b1, b2, b12}

c1:{c10, c11, c09, c08, c07, c02}

They can be described as:

 Service Alternative Service List

 Figure 3.9 Alternative Service List (ASL)

a1 a2 a3 a4 ^

a2 a1 a5 a6 a7 ^

a1 b2 b3 b6 b7 b9 b10 ^

b2 b7 b8 b9 b1 b2 b12 ^

c1 c10 c11 c09 c08 c07 c02 ^

32

3.7 Operation sequence of mini-SOA/ESB

The operation of the Mini-SOA/ESB follows the general SOA steps of service find, service bind,

service and request/respond. The difference lies in the management and reference of UDDI

information. The mini-SOA/ESB contains three different sensor-UDDIs, at sensorUDDI.org,

service provider and service consumer. These three sensor-UDDIs maintain the same structure

as shown in Figure 3.10, but hold different service lists with different contents.

 Figure 3.10 Service find, bind, request/respond procedure

A Service provider needs to publish a service at its local site and Sensor Web Domain(SWD,

Figure 3.6). When a service requestor requests a service, the service finder finds the correct

service from the service requestors site, not from the SWD. This is because the SWD contains

the complete information related to sensor applications, whereas each service requestor site has

copied or duplicate information from the SWD.

33

Why do we need three different UDDIs at these three places? The main reason for keeping

sensor-UDDI information separate is to assure the Quality of Service. If the SWD site breaks

down accidently, then every service provider and consumer has to wait until its recovery. As

long as the information is kept at each node’s own sensor-UDDI, the service can run without

interruption if the SWD site fails. As a result of this approach, QoS in the min-SOA/ESB

infrastructure will be greatly improved.

3.7.1 Service Publication procedure

The service publisher is responsible for publishing services in a specific format, including

service level, business key, discovery URL, service Creation date, effective service time, service

info and alternate service list.

 Figure 3.11 Service Publish A,B

When publishing a service, the mini-SOA Orchestrator acts as a user interface. By manipulating

the interface, the user develops a service without learning specific details, such as Tiny Os,

Sensorware, MilAN, TinyDB, etc. The Mini-SOA/ESB Service Engine provides an Application

Programming Interface to interact with any kind of platforms made by different manufacturers.

34

The first step in publishing a service is selecting the working platform. The min-SOA

Orchestrator screen displays the platforms lists. For instance, if you are working on crossbow

motes, you should select TinyOS tab (OS-1). After that, the user defines a main service name

and alternative service, and presses the publish button. The service publisher makes a process at

a service provider’s site, and writes to the sensor-UDDI and sensor web site’s UDDI. When a

service is published successfully, the screen displays the messages “Service Successfully

Created.”

3.7.2 New Service Creation

Once services are published at the sensor.org, the Service consumer who registered at

Sensor.org can use the services. Using a Mini-SOA Orchestrator, we can create a new service

out of a composite of different services. The Graphical User Interface provides detailed

information on the published services.

 Figure 3.12 New Service Creation procedure

35

Assume Service “A” is published with its Service processors { a1, a2, a3 }, Service “B” with {b1,

b2, b3}, and Service “C” with {c1, c2, c3}. The New creation steps are as follows:

Step 1: for the published Service,

 Searches required services from the SWD.

Step2 : Mini-SOA Orchestrator displays information,

 Makes new service name and chooses services based on displayed information

 // Example , Service name “N” and its Services c3, b1, a2

Step3 : chooses code of framework to create

 // Table 3.2 Prototype platform

Step4: Clicks publish button.

 // New service processors are created, named “N”, with its own processors.

Step5: updates sensor-UDDI information

 // Service provider/consumer site and SWD.

36

3.7.3 Service Availability

Service availability is the ability to maintain services without errors or suspension of services

over a period of time.

There are two cases of Availability,

Case 1. Without Alternative Services:

If we publish the service name “N” and its Services { a1, a2, …, an }, then the Service

Availability is described as

A(t) =

Case 2. With Alternative Services:

In this case, the calculation of Service availability is different from Case1. This is because as

long as we have ASL, even though a Service is down, this service can be replaced by another

service among the ASLs. Then this service is regarded as running.

A(t) =

Up = Up time of all published services

Down = Down time of published services

A(t) =

Up = Up time of all published services

Alt = Down time – Alternative Service time

37

To increase availability of the service, apply alternative service select algorithms:

 Service List ASL

 Step 1 A1 A2 A3 A4 A1 ^

 Step 2 A1 A2 A3 A4 A1 ^

 Step 3 A2 A2 A3 A4 A1 ^

 Step 3 A3 A3 A4 A1 A2 ^

 Figure 3.13 Alternative Service Selection

Step 1: Service is suspended due to errors,

 Service A1 put at the end of the ASL order.

Step 2: Removes Service A1 from the Service List

Step 3: Searches an available service from the ASL.

Step 4: If a service is found from ASL

 The service is moved from ASL to the Service List

 The selected service is removed from ASL

 The services are shifted left one by one, in the ASL

 Step 5:if not found, then go to Step 3.

38

3.7.4 UDDI Consistency

Service consistency is the ability to maintain consistent sensor-UDDI information between the

service provider’s sensor-UDDI and the sensor-UDDI at SWD. For example, a service was

published, but due to problems at the local web site, such as a node’s new power battery, or

because published services are not working, the local sensor-UDDI’s information is changed by

the service publisher. This information should be updated to the sensor-UDDI at SWD.

To maintain accurate sensor-UDDI information, a Consistency Check monitor checks at regular

time intervals. If mismatched services are detected, corrections are made.

C(t) =

t = measurement time

 = number of count of match case

= number of count of mismatch

39

CHAPTER IV

SIMULATION

4.1 Objective of the simulation

The aim of the simulation is to validate the proposed approach to Quality-of-Service in mini-

SOA/ESB. To increase the QoS, this simulation measures two aspects, Service availability and

UDDI consistency. To determine the Service availability, we used the ASL list as a test set of

services, and tried to affect the number of available ASLs. For the UDDI consistency, we

compared two sensor-UDDIs between the Sensor Web Domain and service provider domain.

 4.2 Development tools and programming languages

All the experiments are conducted on a AMD Truion[tm] 64 * 2 CPU with 1.61Ghz of RAM

and Microsoft Windows XP professional Version-2002 Service Pack3. We implemented our

algorithms in Eclipse SDK 3.4.1.

 4.3 Assumption

The mini-SOA/ESB architecture is composed of various components, such as the service

orchestrator, Engine, enterprise service bus, etc. It is beyond the scope of a master is thesis to

implement all of the components of mini-SOA/ESB. Therefore, we implemented a service

consistency check procedure, which is a small part of the mini-SOA/ESB related to Quality-of-

Service.

40

4.4 Simulation of service availability and consistency

The test environment is composed of four processors. For the Service availability test, we used a

Failure Control processor, Failure Recovery processor, and Sensor Monitor processor. For the

UDDI consistency, a Consistency checker is used to compare sensor-UDDI between SWD and

Service provider/Consumer.

 Figure 4.1 DFD of Service Availability and Consistency simulation

4.4.1 Service Availability processors

(1) Failure Control processor : As shown Figure 4.1, Services are published at the SWD and

Service provider/Consumer domains with their ASLs. For instance, Service “a1” is published

with its ASL {a4,a5,a2}. If service “a1” fails, then the Failure Control processor selects a

service from ASL and replaces the failed service.

Algorithm 4.1 : Failure Control

41

Step 0: Puts all published services in the readyQueue

 // ReadyQueue � sensor UDDI

Step1 : While (Time Periode)

 1.Generates magic0umber to pick one service from the readyQueue

 2. puts readyQueue’s Service to the suspendQueue

 // suspendQueue = readyQueue(magic0umber)

 3. puts readyQueue’s Servce to the tail of the ASL

 4. finds an available Service among ASL

 4.1 if an available service is found from the ASL, then

 4.1.1 Moves a Service to Service List

 4.1.2 Removes selected service from the ASL

 //The services are shifted left one by one, in the ASL

 4.2 if available service is not found from ASL,

 Perform 4.

(2) Failure recovery processor: This processor is responsible for recovering a Service which

was detected to be failed by the Failure Control processor.

Algorithm 4.2 : Failure recovery

Step 0: for all services in the suspendQueue

 // ReadyQueue � sensor UDDI

Step1 : While (Time Period)

 1. Generates magic0umber to pick one service from the suspendQueue

 2. puts suspendQueue’s Service to the readyQueue

(3) Sensor Monitor processor: The Sensor-Monitor processor’s role is to check the status of

Services and Alternative services at regular time intervals. Table 4.1 shows a partial result

42

generated by the sensor monitor processor. In this table, service “A_A2” is suspended at the

time interval 40, but this service is replaced by one of the Alternative services from ASL.

 Service Name Time (Second) Service Status ASL Status

Servie: A_A2
Servie: A_A2

Servie: A_A2
Servie: A_A2

Interval: 24
Interval: 28

Interval: 32
Interval: 36

Status : 0
Status : 1

Status : 1
Status : 1

ASL Status : 1
ASL Status : 1

ASL Status : 1
ASL Status : 1

Servie: A_A2 Interval: 40 Status : 0 ASL Status : 1

Servie: A_A2

Servie: A_A2
Servie: A_A3
Servie: A_A3

Servie: A_A3

Interval: 44

Interval: 48
Interval: 4
Interval: 8

Interval: 12

Status : 0

Status : 0
Status : 1
Status : 1

Status : 1

ASL Status : 1

ASL Status : 1
ASL Status : 1
ASL Status : 1

ASL Status : 1

 Table 4.1 Service and Alternative services status

Algorithm 4.3 : Sensor Monitor

Step 0: Puts all published services in the aMonitorV (monitor vector)

Step1 : While (Time Periode, timeInterval)

 1. if aMovitorV is in readyQueue

 Sets aServcie status = 1

 else

 Sets aServcie status = 0

 1.1 checks if its alternative Service is available

 Sets aAltStatus status = 1

 else

 Sets aAltStatus status = 0

 2. writes to the logfile with (service0ame, Timeinterval,

 servicestatus, AltServiceStatus)

43

4.4.2 UDDI consistency processor

(4) Consistency Checker: To ensure UDDI Consistency, the consistency checker checks

inconsistencies between the service provider’s sensor-UDDI and SWD. If any inconsistency is

found, update information is sent from the sensor-UDDI to the SWDs.

Algorithm 4.4 : Failure Control

Step 0: for the service provider’s sensor-UDDI

Step1 : While (Time Periode, , timeInterval)

 1. compares (aService.ServiceProvider <> aService.SWD)

 aMisMatch++; // Increases mismatch counter

 1.1 compares alternativeService.ServiceProvider <> alternativeService.SWD

 altMisMatch ++;

 2. writes to the logfile with (service0ame, aMisMatch,

 timeInterval, altMisMatch)

44

4.5 Experimental Results

4.5.1 Service Availability

Test Case 1 : ASL (n = 4)

Test conditions are as follows : number of ASL = 4 , Test time period =200 seconds. Each

processor’s time interval is as follows :

Failure Control (4 seconds), Recovery Control (5 seconds), Sensor Monitor(4 seconds)

 Table 4.2 Test set ASL (n = 4)

Test Case 2 : ASL (n = 2)

 Test conditions are follows: number of ASL = 4, Test time period=200 seconds. Each

processor’s time interval is as follows :

Failure Control (4 seconds), Recovery Control (5 seconds), Sensor Monitor(4 seconds)

 Table 4.3 Test set ASL (n = 2)

service

Name

 Service A

Service List A_A1

A_A2

A_A3

A_A4 A_A5

ASL A_A2

A_A3

A_A4

A_A5

A_A3

A_A4

A_A1

A_A5

A_A4

A_A5

A_A1

A_A2

A_A5

A_A3

A_A4

A_A1

A_A1

A_A2

A_A3

A_A2

service

Name

 Service A

Service List A_A1

A_A2

 A_A3

A_A4 A_A5

ASL A_A2

A_A3

A_A3

A_A4

 A_A4

 A_A5

A_A5

A_A3

A_A1

A_A2

45

Test Result Case 1 : ASL (n = 4)

 Figure 4.2 Availability graph (n = 4)

46

Test Result Case 1 : ASL (n = 2)

 Figure 4.3 Availability graph (n = 2)

47

4.5.2 Availability Analysis

 Case1 : ACL (number of ASL : 4)

 Table 4.4 Availability (n = 4, unit of time : Second)

 Case2 : ACL (number of ASL : 2)

 Table 4.5 Availability (n = 2)

From the simulation result shown in Table 4.4 and Table 4.5, in case of ASL(n =2), the average

Service availability is 45.4%. In case of ASL(n=4), the average availability is 68.6%. The

percentage of availability is increased by 23.2 %, as the number of ASLs doubles from 2 to 4. In

other words, a larger number of ASL increase a service. Therefore, number of ASLs is

determines the Quality of Service.

service Name Service A

Service List A_A1 A_A2 A_A3 A_A4 A_A5

Up time 17 24 50 29 17

DownTime 33 26 0 21 33

Alternative Service 20 12 0 7 20

Availability (%) 56% 63% 100% 67% 57%

service Name Service A

Service List A_A1 A_A2 A_A3 A_A4 A_A5

Up time 13 24 26 20 21

DownTime 37 26 24 30 29

Alternative Service 0 7 6 2 4

Availability (%) 26% 56% 59% 41% 45%

48

4.5.3 UDDI Consistency

To ensure UDDI Consistency, the consistency check monitor has to find inconsistencies and

make corrections. In this test, we examine how many mismatches have occurred based on the

same test set that was used at the service availability test.

 Table 4.6 UDDI Consistency check

From the simulation result shown in Table 4.4 and Table 4.5, ASL (n = 4) Consistency = (480 /

(200+480)) * 100 = 70.5% , ASL(n=2) , Consistency = (345/ (345+45)) * 100 = 88.4 %

In this experiment, UDDI consistency is decreased by increasing number of ASLs.

Service

 Name

ASL = 4 Mismatch

Count

match Service

 Name

ASL = 2 Mismatch

Count

match

A_A1 A_A2 10 30 A_A1 A_A2 6 34

A_A3 10 30 A_A3 5 35

A_A4 10 30

A_A5 10 30

A_A2 A_A3 14 16 A_A2 A_A3 0 40

A_A4 14 16 A_A4 0 40

A_A1 14 16

A_A5 14 16

A_A3 A_A4 5 35 A_A3 A_A4 8 32

A_A5 5 35 A_A5 6 34

A_A1 5 35

A_A2 5 35

A_A4 A_A5 7 23 A_A4 A_A5 8 22

A_A3 3 27 A_A3 1 39

A_A4 7 23

A_A1 7 23

A_A5 A_A1 15 15 A_A5 A_A1 6 34

A_A2 15 15 A_A2 5 35

A_A3 15 15

A_A2 15 15

Sum 200 480 45 345

49

4.5.4 Service Availability vs. UDDI Consistency

To increase the service availability, the number of ASLs should be increased. Whereas, to

increase UDDI consistency, the number of ASLs should be decreased.

 Table 4.7 Service Availability vs. UDDI Consistency

As shown in Figure 4.4 below, the vertical axis stands for the rate of Service availability and

UDDI consistency, wheras the horizontal axis stands for number of ASLs. The graph of service

availability increased significantly whereas- the graph of UDDI consistency declined. From the

simulation, we have found how ASL affect availability and consistency. It can be seen when n=4

the consistency and availability match. If availability is more important, then n > 4 is preferable

whereas if consistency if more important then n = 2 is better.

Figure 4.4 Service Availability vs. UDDI Consistency

Number of ASL n= 2 n = 4

Service Availability 45.4% 68.6%

UDDI Consistency 88.4% 70.5%

50

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The characteristics of heterogeneous sensor devices and various kinds of platforms make them

difficult to integrate among WSN applications. To solve this problem, two kinds of different

approaches are possible. One is that all manufactures produce powerful sensors, followed by

specific open standard Architecture, such as the same type of sensor node, and the same

Operating system.

However, this approach needs to consider the cost of powerful sensor nodes. The other approach

is to create new types of standard platforms to support all kinds of platforms that are OS-based,

VM-based, Middleware-based Architecture. We have proposed the mini-SOA/ESB architecture

as an open standard that aims to provide the integration of wireless sensor network applications

developed on various different platforms, and we have identified the major requirements of a

mini-SOA/ESB, such as Transformability, Flexibility, Security and Quality of Service.

 To support QoS, we proposed a modified concept of UDDI structure and its operational

algorithms. Furthermore, we simulated a service availability using ASL service select

algorithms and consistency monitoring. From the experiment, increasing the number of ASLs

51

affects service availability and UDDI consistency. The proposed mini-SOA/ESB will provide the

possibility of integrating wireless sensor network applications as an open standard frame work.

 5.2 Future work

We believe that proposed mini-SOA/ESB Architecture will be a basic building block of WSN

integration. To make this architecture as an acceptable framework, the requirements are as

follows:

First, we need to propose a more specific design consideration of Transformability,

Interoperability, Flexibility, Security, and QoS. Second, simulations and operations of mini-

SOA/ESB will be implemented on the WSN platforms that are currently used. Finally, to

integrate with common SOAs, we will perform feasibility tests for integration..

52

REFRENCES

[1] F.L Lewis, “Wireless Sensor Networks”,

http://arri.uta.edu/acs/networks/WirelessSensorNetChap04.pdf [last accessed - Jan 10, 2009]

[2] Subhas C. Mukhopadhyay, Anuroop Gaddam and Gourab S. Gupta., “Wireless Sensors for

Home Monitoring – A Review”, Recent Patents on Electrical Engineering, 2008,Vol.1,No.1

http://www.bentham.org/eeng/samples/eeng%201-1/Mukhopadhyay.pdf

[3] Laurent Gomez, Annett Laube, Alessandro Sorniotti,. “Design Guidelines for Integration of

Wireless Sensor Networks with Enterprise Systems”, Proceedings of the 1st international

conference on Moblie Wireless Middleware, Operating Systems, and Applications, 2008, Vol.

278, Article No. 12

http://portal.acm.org/citation.cfm?id=1361507

[4] Borzooo, Bonakdarpour., “Challenges in transformation of existing real-time embedded

systems to cyber-physical systems”, Special issue on the Real Time Systems Symposium (RTSS)

forum on deeply embedded real-time computing, 2008, Vol.5, Article No. 11

 http://portal.acm.org/citation.cfm?id=1366294

[5] Woochul Kang, SangH.Son, “The Design of an Open Data Service Architecture for Cyber-

physical Systems”, Special issue on the Real Time Systems Symposium (RTSS) forum on deeply

embedded real-time computing, Vol 5, issue 1, No.3, 2008

http://portal.acm.org/citation.cfm?id=1366283.1366286&coll=portal&dl=ACM

[6] Jaco M. Prinsloo, Christian L. Schulz, Derrick G. Kourie, W.H. Morkel Theunissen,Tinus

Strauss, Roelf Van Den Heever, Sybrand Grobbelaar.,”A Service Oriented Architecture for

Wireless Sensor and Actor Network applications, Proceedings of the 2006 annual research

conference of the South African institute of computer scientists and information technologists on

IT research in developing countries, 2006 Vol.204, pp. 145-154.

http://portal.acm.org/citation.cfm?id=1216278

[7] Setrag Khoshafian, Alan Trefler., Service Oriented Enterprise, Auerbach Publications, 2007,

pp 37~41

[8] Yingshu Li, My T.Thai, Weili Wu.,Wireless Sensor Networks and Applications,

Springer,2007

[9] Mauri Kuorilehto, Marko Hannikainen, Timo D, Hamalainen.,”A Servey of application

distribution in wireless Sensor networks”, EURASIP Journal on Wireless Communications and

Networking, Volume 5, issue 5, pp. 774-788, 2005

http://portal.acm.org/citation.cfm?id=1115486.1115500

53

[10] Hock Beng Lim, Yong Meng Teo, Protik Mukherjee, Vinh The Lam, Weng Fai Wong,

Simon See.,”Sensor Grid: Ingernation of Wireless Sensor Networks and Grid”, Proceedings of

the IEEE Conference on Local Computer Networks (LCN’05), 2005

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01550845

[11] Wouter Horr´e, Sam Michiels,Nelson Matthys, Wouter Joosen, Pierre Verbaeten., “On the

Integration of Sensor Networks and General Purpose IT Infrastructure Proceedings of second

international workshop on Middleware for Sensor Networks MidSens’07, November 30, 2007

http://www.cs.kuleuven.be/~wouterh/talks/midsens2007.pdf [last accessed - Jan 10,2009]

[12] Lei Shu, Manfred Hauswirth, Long Cheng, Jian Ma, Vinny Reynolds, Lin Zhang.,”Sharing

Worldwide Sensor Network”, Proceedings International Symposium on Applications and the

Internet (SAINT 2008), pp. 189-192, 2008.

http://www.google.com/search?hl=ko&q=Sharing+Worldwide+Sensor+Network&lr= [Last

accessed – Jan 2,2009]

[13] Enterprise Service Bus – wikipedia http://en.wikipedia.org/wiki/Enterprise_service_bus

[Accessed - Dec 20,2008]

[14] Rufus Credle, Jonathan Adams, Kim Clark, Yun Peng Ge, Hatcher Jeter, Joao Lopes, Samir

Nasser, Kailash Peri.,”Patterns:SOA Design Using WebSphere Message Broker and WebSphere

ESB”, IBM Red Books, July 2007 [SG24-7369-00]

[15] Karl Mayer and Wolfgang Fritssche,”IP-enabled Wireless Sensor Networks and their

integration into the Internet “,Proceedings of the first international conference on Integrated

internet ad hoc and sensor networks Vol. 138, Article No.5, 2006

http://portal.acm.org/citation.cfm?id=1142687

[16] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao,”Tiny Web

Services: Design and implementation of Interoperable and Evolable Sensor Networks”,

Proceedings 6th ACM Conference on Embedded Networked Sensor Systems SenSys’08, pp.

253-266, 2008,

[17] Self-Describing Sensor Networks Using a Surrogate Architecture ,

http://www.icta.ufl.edu/projects/publications/Sensor-platform-paper2.pdf [Last accessed -Jan

10,2009]

[18] Fire alarm system, http://www.fire-monitoring.com/faqs.htm#14 [Last accessed – Feb

5,2009]

[19] NetBeans IDE 6.1 Informaion , http://www.netbeans.org/community/releases/61/ [Last

accessed Feb 10,2009]

[20] Implenting SOA with the java EE 5 SDK ,

http://java.sun.com/developer/technicalArticles/WebServices/soa3/ [Last accessed Feb 11, 2009]

54

[21] Sharing worldwide Sensor Network,

http://lei.shu.deri.googlepages.com/swdmnss2008CameraReady.pdf [Last accessed Feb 15,

2009]

[22] OASIS(Organization for the Advancement of Structured Information Standards),

http://www.oasis-open.org/ [Last accessed Mar 31,2009]

[23] SensorBase.org- A Centralized Repository To Slog Sensor Network DATA,

http://research.cens.ucla.edu/people/estrin/resources/conferences/2006jun-Chang-Estrin-Yau-

Centralized.pdf [Last accessed April 10,2009]

[24] Worldwide Sensor Web Framework Overview,

http://www.cms.livjm.ac.uk/pgnet2008/Proceeedings/Papers/2008063.pdf [Last accessed April

10, 2009]

[25] Koutsoukos, X., M. Kushwaha, I. Amundson, S. Neema, andSztipanovits, “OASiS: A

Service-Oriented Architecture for Ambient-Aware Sensor Networks”, Vanderbilt University,

2007.

 http://www.isis.vanderbilt.edu/sites/default/files/LNCS2007.pdf

55

APPENDIX

Simulation Code List

1. mini_SOA_ESB.java

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.*;

public class mini_SOA_ESB {

private function function = new function();

private int sizeOfCol = 5;

private int sizeOfRow = 5;

private int businessKey = 0;

private int serviceLevel = 0;

public int timeInterval = 0;

private String[][] ServiceList = new String[sizeOfCol][sizeOfRow];

/* UDDI defination at Sensor Web Domain and Service Provider */

public static Vector<sensorUDDI>A_sensorUDDI =new Vector<sensorUDDI>();

public static Vector<sensorUDDI>W_sensorUDDI =new Vector<sensorUDDI>();

/* All of the published services put into the readyQue */

public static Vector<readyQueue>readyQueueList =new Vector<readyQueue>();

 /* Logging file for the Availibility and Consistency */

public static PrintWriter availibility_out;

public static PrintWriter consistency_out;

 /* To make logging file for Availibility.txt */

public void createFileAvailbility() {

 try {

 availibility_out = new PrintWriter(new BufferedWriter (new FileWriter("Availibility.txt")));

 } catch (FileNotFoundException e) {

 System.exit(1);

 } catch (IOException e) {

 }

}

 /* To make logging UDDI consistency Consistency.txt */

public void createFileConsistency() {

 try {

 consistency_out = new PrintWriter(new BufferedWriter

 (new FileWriter("Consistency.txt")));

 } catch (FileNotFoundException e) {

 System.exit(1);

 } catch (IOException e) {

 }

}

/* To keep pending processors in the Queue */

56

public static Vector<suspendQueue>suspendQueueList=new Vector<suspendQueue>();

public static Vector <aMonitor> aMonitorV = new Vector<aMonitor>();

public void setAserviceList (String[] nodeinfo, int col, int row) {

 for(int i = 0; i < row ;i++) {

 ServiceList[col][i] = nodeinfo[i];

 }

}

 /* Servcies and their Alternative service Setting */

public void setArrayA() {

 int col=0, row = 3; //Number of services

 col = 0;

 String[] AserviceList = {"A_A1","A_A2","A_A3","A_A4","A_A5"};

 setAserviceList(AserviceList,col, row);

 col = 1;

 String[] AserviceList1 = {"A_A2","A_A3","A_A4","A_A1","A_A5" };

 setAserviceList(AserviceList1,col, row);

 col = 2;

 String[] AserviceList2 = {"A_A3","A_A4","A_A5","A_A1","A_A2"};

 setAserviceList(AserviceList2,col, row);

 col = 3;

 String[] AserviceList3 = {"A_A4","A_A5","A_A3","A_A4","A_A1"};

 setAserviceList(AserviceList3,col, row);

 col = 4;

 String[] AserviceList4 = {"A_A5","A_A1","A_A2","A_A3","A_A2" };

 setAserviceList(AserviceList4,col, row);

 function.Verify_Aservice(ServiceList,sizeOfCol,sizeOfRow);

} // end of Set Array

public void setUDDIA() {

 createFileAvailbility(); //Creat a Logfile for Availbility //

 createFileConsistency(); //Creat a Logfile for Consistency //

 String serviceNameA = "FireMonitorA";

 //Save a service Name //

 sensorUDDI mService = new sensorUDDI();

 sensorUDDI wService = new sensorUDDI();

 //readyQueue readyQueue1 = new readyQueue();

 businessKey = 0;

 //for save Service //

 mService.setUDDI(businessKey,serviceNameA);

 wService.setUDDI(businessKey,"FireMonitorB");

 A_sensorUDDI.add(mService);

 W_sensorUDDI.add(wService);

 sensorUDDI getMainService = A_sensorUDDI.get(0);

 sensorUDDI getMainServiceW = W_sensorUDDI.get(0);

 Vector<aService> getAservice = getMainService.getaServiceVector();

 Vector<aService> getAserviceW = getMainServiceW.getaServiceVector();

 for (int i = 0; i < sizeOfCol ;i++) {

 aService aService1 = new aService();

 aService1.setAservice(1,ServiceList[i][0],0);

 getAservice.add(aService1);

57

 aService aService2 = new aService();

 aService2.setAservice(1,ServiceList[i][0],0);

 getAserviceW.add(aService2);

 aService gotAservice = getAservice.get(i);

 Vector<aAltService> getAltService = gotAservice.getaAltServiceVector();

 aService gotAserviceW = getAserviceW.get(i);

 Vector<aAltService>getAltServiceW = gotAserviceW.getaAltServiceVector();

 /* Monitor Vector : Setting for monitoring a Services that published

 * with aMonitorID, aMonitorName, serviceName */

 aMonitor aMonitor1 = new aMonitor();

 aMonitor1.setAmonitor(i, ServiceList[i][0],serviceNameA);

 aMonitorV.add(aMonitor1);

 // Ready Queue Setting //

 readyQueue readyQueue1 = new readyQueue();

 serviceLevel = 0;

 readyQueue1.setReadyQueue(serviceLevel,

 businessKey, i,ServiceList[i][0]);

 readyQueueList.add(readyQueue1);

 for(int j = 1; j < sizeOfRow ; j++) {

 aAltService aAltService1 = new aAltService();

 aAltService1.setaAltService2(3,ServiceList[i][j],0);

 getAltService.add(aAltService1);

 aAltService aAltService2 = new aAltService();

 aAltService2.setaAltService2(3,ServiceList[i][j],0);

 getAltServiceW.add(aAltService2);

 }

 }

} //

public void verify_ServiceA () {

 // get first item from vector V_sensorUDDI //

 for(int k = 0; k < A_sensorUDDI.size();k++) {

 sensorUDDI getMainService = A_sensorUDDI.get(k);

 System.out.println ("\n\n service Name " +

 getMainService.getServiceName());

 // Type conversion for the get values Ve//

 Vector<aService> getAservice = getMainService.getaServiceVector();

 for(int i = 0; i < getAservice.size(); i++) {

 aService gotAservice = getAservice.get(i);

 Vector<aAltService> getAltServie = gotAservice.getaAltServiceVector();

 System.out.print("Service Name" + gotAservice.getAserviceName());

 for(int j = 0; j < getAltServie.size(); j++) {

 aAltService gotAltservice = getAltServie.get(j);

 //gotAltservice.getAserviceName();

 System.out.print(" -- " + gotAltservice.getAltserviceName());

 }

 System.out.println(" ");

 } //for

 } //for

}//verify_ServiceA ()

58

public void verify_ServiceW () {

// get first item from vector V_sensorUDDI //

 for(int k = 0; k < W_sensorUDDI.size();k++) {

 sensorUDDI getMainService = W_sensorUDDI.get(k);

 System.out.println ("\n W service " + getMainService.getServiceName());

 // Type conversion for the get values Ve//

 Vector<aService> getAservice = getMainService.getaServiceVector();

 for(int i = 0; i < getAservice.size(); i++) {

 aService gotAservice = getAservice.get(i);

 //gotAservice.getAserviceName();

 //System.out.println(" ");

 System.out.print ("\n aService " + gotAservice.getAserviceName());

 Vector<aAltService>getAltServie=gotAservice.getaAltServiceVector();

 for(int j = 0; j < getAltServie.size(); j++) {

 aAltService gotAltservice = getAltServie.get(j);

 //gotAltservice.getAserviceName();

 System.out.print(" -- " + gotAltservice.getAltserviceName());

 }//for

 }//for

 } //for

}//verify_ServiceW ()

public void init_Array () {

 for (int i = 0; i < sizeOfCol; i ++)

 for (int j = 0; j < sizeOfRow ; j ++)

 ServiceList[i][j] = " ";

}

public void verify_ReadyQ() {

 System.out.println("\n");

 for(int k = 0; k < readyQueueList.size();k++) {

 readyQueue getReadyQvalue = readyQueueList.get(k);

 System.out.println(" ReadyQ " + getReadyQvalue.getServiceName());

 }

}

public void verify_SuspendQ() {

 System.out.println("mini_SOA_ESB: 326 SUSPEND QUEUE \n");

 for(int k = 0; k < suspendQueueList.size();k++) {

 suspendQueue getReadyQvalue = suspendQueueList.get(k);

 System.out.println(" Suspend Q " + getReadyQvalue.getServiceName());

 }

}

public static void main(String[] args) {

 mini_SOA_ESB ESB = new mini_SOA_ESB();

 failureRecovery failure = new failureRecovery();

 consistencyCheck consistencyCheck1 = new consistencyCheck ();

 /* Initialize data */

 ESB.init_Array();

 ESB.setArrayA();

 ESB.setUDDIA();

 ESB.verify_ServiceA();

 ESB.verify_ServiceW();

 ESB.verify_ReadyQ();

 failure.failureRecovery1();

 consistencyCheck1.consistencyCheck1();

 ESB.verify_SuspendQ();

}//main(String[] args)

59

}//End of Program

2. suspendQueue.java

public class suspendQueue {

 private int businessKey = 0;

 private int serviceID = 0;

 private String serviceName = " ";

 public void setSuspendQueue (int businessKey,int serviceID,String ServiceName){

 this.businessKey = businessKey;

 this.serviceID = serviceID;

 this.serviceName = ServiceName;

 }

 public int getBusienssKey() {

 return businessKey;

 }

 public int getServiceID(){

 return serviceID;

 }

 public String getServiceName() {

 return serviceName;

 }

}//SuspendQueue

3. sensorUDDI.java
import java.util.*;

public class sensorUDDI{

private int businessKey =0 ;//AREA-XXXX-XXXX

 private int authenticationStep = 0;// 0, 1, 2

 private String discoveryURL = "WWW.Sensor.org";

 private String serviceName = " ";

 private String serviceCreationTime = " " ;

 private String effectiveServcieDateTime = " ";

 private String lastConstistencyCheck = " ";

 //-- Operation --//

 public void setUDDI(int businessKey, String serviceName) {

 this.businessKey = businessKey;

 this.serviceName = serviceName;

 }

 public int getBusinessKey() {

 return businessKey;

 }

 public String getServiceName () {

 return serviceName;

 }

 public Vector<aService> aServiceVector = new Vector<aService>();

 public Vector<aService> getaServiceVector() {

 return aServiceVector;

 }

}

60

4. readyQueue.java

public class readyQueue {

 private int businessKey =0;

 private int serviceID = 0;

 private int serviceLevel = 0;

 private String serviceName = " ";

 public void setReadyQueue (int businessKey,int serviceLevel,

 int serviceID,String ServiceName){

 this.serviceLevel = serviceLevel;

 this.businessKey = businessKey;

 this.serviceID = serviceID;

 this.serviceName = ServiceName;

 }

 public int getServiceLevel () {

 return serviceLevel;

 }

 public int getBusinessKey () {

 return businessKey;

 }

 public int getServiceID(){

 return serviceID;

 }

 public String getServiceName() {

 return serviceName;

 }

}//class readyQueue

5. finction.java

import java.io.*;

import java.util.Date;

import java.util.Timer;

import java.util.TimerTask;

import java.util.Vector;

import java.io.BufferedWriter;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

public class function {

 //For reporting availibility and consistency //

 public void verify_Monitor () {

 for (int k = 0; k < mini_SOA_ESB.aMonitorV.size();k++) {

 aMonitor getMonitor = mini_SOA_ESB.aMonitorV.get(k);

 Vector<aAltMonitor> aAltMonitorVector =

 getMonitor.getAltMonitorVector();

 for (int i = 0; i < aAltMonitorVector.size(); i++) {

 aAltMonitor gotAltMonitor = aAltMonitorVector.get(i);

 //Logging to the file "

 mini_SOA_ESB.availibility_out.println

 (" Servie: " + getMonitor.getMonitorName() +

 " Interval: " + gotAltMonitor.getTimeInterval()+

 " Status : " + gotAltMonitor.serviceStatus() +

 " ASL Status : " + gotAltMonitor. altServiceStatus());

 }

 }

 }

 // Verify service for ServiceA //

61

 public void verify_ServiceA () {

 // get first item from vector V_sensorUDDI //

 for (int k = 0; k < mini_SOA_ESB.A_sensorUDDI.size();k++) {

 sensorUDDI getMainService = mini_SOA_ESB.A_sensorUDDI.get(k);

 System.out.println ("\n service A " +

 getMainService.getServiceName());

 // Type conversion for the get values Ve//

 Vector<aService> getAservice = getMainService.getaServiceVector();

 for (int i = 0; i < getAservice.size(); i++) {

 aService gotAservice = getAservice.get(i);

 //gotAservice.getAserviceName();

 //System.out.println(" ");

 mini_SOA_ESB.consistency_out.print("\n Service A " +

 gotAservice.getAserviceName());

 System.out.print ("("+ gotAservice.getAserviceMishmatch()+")");

 Vector<aAltService> getAltServie = gotAservice.getaAltServiceVector();

 for (int j = 0; j < getAltServie.size(); j++) {

 aAltService gotAltservice = getAltServie.get(j);

 //gotAltservice.getAserviceName();

 mini_SOA_ESB.consistency_out.print(" ** " +

 gotAltservice.getAltserviceName());

 mini_SOA_ESB.consistency_out.print("("+

 gotAltservice.getAltserviceMismatch ()+")");

 }

 }

 mini_SOA_ESB.consistency_out.println(" ");

 }

 }

 public void verify_ServiceW () {

 // get first item from vector V_sensorUDDI //

 for (int k = 0; k < mini_SOA_ESB.W_sensorUDDI.size();k++) {

 sensorUDDI getMainService = mini_SOA_ESB.W_sensorUDDI.get(k);

 System.out.println ("W service " + getMainService.getServiceName());

 // Type conversion for the get values Ve//

 Vector<aService> getAservice = getMainService.getaServiceVector();

 for (int i = 0; i < getAservice.size(); i++) {

 aService gotAservice = getAservice.get(i);

 //gotAservice.getAserviceName();

 //System.out.println(" ");

 System.out.print ("\n ====== " + gotAservice.getAserviceName());

 Vector<aAltService> getAltServie =

 gotAservice.getaAltServiceVector();

 for (int j = 0; j < getAltServie.size(); j++) {

 aAltService gotAltservice = getAltServie.get(j);

 //gotAltservice.getAserviceName();

 System.out.print(" -- " +

 gotAltservice.getAltserviceName());

 }

 }

 }

 }

 public String getDateTime() {

 DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss");

 Date date = new Date();

 return dateFormat.format(date);

 }//getDataTime

 //This method is to check published service //

 public int confirmAltService(String aService) {

62

 int readyQ = 0;

 // Get first element of the Vector A_sensorUDDI //

 sensorUDDI getMainService = mini_SOA_ESB.A_sensorUDDI.get(0);

 Vector<aService> getAservice = getMainService.getaServiceVector();

 aService gotAservice = getAservice.get(0);

 readyQ = readyQchcek(gotAservice.getAserviceName());

 return readyQ;

 }//getDataTime

 // Checking for Reday Queue //

 public int readyQchcek(String aService) {

 int i = 0;

 int qsize = mini_SOA_ESB.readyQueueList.size();

 for (int q = 0; q < qsize ;q++) {

 readyQueue getReadyQvalue = mini_SOA_ESB.readyQueueList.get(q);

 if (getReadyQvalue.getServiceName() == aService)

 i = 1;

 }

 return i;

 }

 //Checking for the suspend Queue //

 public int suspendQueueCheck(String aService) {

 int j = 0;

 int qsize = mini_SOA_ESB.suspendQueueList.size();

 for (int q = 0; q < qsize ;q++) {

 suspendQueue getSuspendQvalue =

 mini_SOA_ESB.suspendQueueList.get(q);

 if (getSuspendQvalue.getServiceName() == aService)

 j = 1;

 }

 return j;

 }

 public void Verify_Aservice(String[][] Array, int sizeOfCol, int sizeOfRow){

 for (int i = 0; i < sizeOfCol; i ++) {

 System.out.println("\n");

 for (int j = 0; j < sizeOfRow ; j ++) {

 System.out.print(" "+ Array[i][j]);

 }

 }

 }// Veryfy_Aservice

 public class timeDelay {

 Timer timer;

 public timeDelay(int seconds) {

 timer = new Timer();

 timer.schedule(new RemindTask(), seconds * 1000);

 }

 class RemindTask extends TimerTask {

 public void run() {

 System.out.println("Time's up!");

 timer.cancel(); //Terminate the timer thread

 }

 }

 }

} // End of function

63

6. failureRecovery.java

import java.util.Random;

import java.util.Vector;

public class failureRecovery extends mini_SOA_ESB {

 private sensorUDDI getMainService = new sensorUDDI();

 private function functionx = new function();

 public void failureRecovery1() {

 new FailureControl (200 ,4).start(); // 3 second

 new RecoveryContorl(200 ,5).start(); //

 new SensorMonitor (200 ,4).start();

 // new RecoveryContorl (20 , 5).start();

 }

 /*--*/

 public class FailureControl extends Thread {

 private int delayTime; // delay time second

 private int executionTime;

 private int numberOfLoops;

 private int businessKey =0;

 private int serviceID = 0;

 private String serviceName = " ";

 public FailureControl(int executionTime, int delayTime) {

 this.delayTime = delayTime;

 this.executionTime = executionTime;

 numberOfLoops = this.executionTime / this.delayTime;

 }

 public void run() {

 try {

 for(int i = 0 ; i < numberOfLoops; i ++) {

 //sensorUDDI newUDDI = new sensorUDDI();

 sleep(delayTime * 1000); // wait until next time

 functionx.getDateTime(); // Time display on the monitor

 RandomFailureGenerte(); // Random number generate

 System.out.println("0-FailureControl :" + functionx.getDateTime()+"\n");

}

} catch (InterruptedException e) {

 return; // end this thread;

 }

}

//---Random failure generate ----//

 public synchronized void RandomFailureGenerte() {

 // count element of the Ready Queue //

 Random magicNumber = new Random();

 int randomInt=0;

 int businessKey = 0;

 int Qsize = readyQueueList.size();

 System.out.println(" Size of the array queue" + Qsize);

 if (Qsize > 0)

 {

 //Random number generate depending on the array //

64

 for (int idx = 0; idx < 1; ++idx){ // Number of magic number

 randomInt = magicNumber.nextInt(Qsize);

 System.out.println("Generated : " + randomInt);

 }

//readyQueue value to Suspend value

 readyQueue getReadyQvalue = readyQueueList.get(randomInt);

 //1- get businessKey , serviceID , serviceName from ReadyQ to move SuspendQ//

 businessKey = getReadyQvalue.getBusinessKey();

 serviceID = getReadyQvalue.getServiceID();

 serviceName = getReadyQvalue.getServiceName();

 System.out.println("ReadyQ's Element : " + serviceName);

 suspendQueue suspendClass = new suspendQueue();

 suspendClass.setSuspendQueue(businessKey,

 serviceID ,

 serviceName);

 //2- add suspendQ and delete from ready Q//

 suspendQueueList.add(suspendClass);

 readyQueueList.remove(randomInt);

 if (businessKey == 0)

 getMainService = A_sensorUDDI.get(0);

 else getMainService = A_sensorUDDI.get(0);

 //Get Value from Vector //

 System.out.println ("A Main service " + getMainService.getServiceName());

 Vector<aService> getAservice = getMainService.getaServiceVector();

 // a services move to the end of the alternative Services //

 for (int k = 0; k < getAservice.size(); k++) {

 aService gotAservice = getAservice.get(k);

 Vector<aAltService> getAltService = gotAservice.getaAltServiceVector();

 //3- Compare Ready Q value and Service Name //

 if (gotAservice.getAserviceName().equals(serviceName)) {

 //4- Move aService to the end of the ASL list with it's values//

 aAltService aAltService1 = new aAltService();

 aAltService1.setaAltService2(gotAservice.getAserviceID(),

 gotAservice.getAserviceName(),

 gotAservice.getAserviceMishmatch());

 getAltService.add(aAltService1);

 functionx.verify_ServiceA();

 int setService =0; //If one service is selected no more loop required //

 //5- Choose one service among the A Service and move to the A Service //

 for(int j = 0; j < getAltService.size() ;j ++) {

 aAltService gotAltService = getAltService.get(j);

 for (int i = 0; i < readyQueueList.size();i++) {

 getReadyQvalue = readyQueueList.get(i);

 // 6- Check ASL List and pick one of available service //

65

 if (gotAltService.getAltserviceName() ==

 getReadyQvalue.getServiceName()) {

 // 7- Checking service selected //

 if (setService == 0) {

 // 8- Remove from the ASL //

 getAltService.remove(j);

 // 9- backup the value to keep ASL //

 Vector<aAltService> getAltTemp =

 gotAservice.getaAltServiceVector();

 aService aServiceAdd = new aService();

 //10 - Set A services among ASL List at location K //

 aServiceAdd.setAservice

 (serviceID,gotAltService.getAltserviceName(),

 gotAltService.getAltserviceMismatch ());

 getAservice.set(k,aServiceAdd);

 aService gotAserviceF = getAservice.get(k);

 Vector<aAltService> getAltServiceF =

 gotAserviceF.getaAltServiceVector();

 //11- Depending on change services //

 for (int t=0;t < getAltTemp.size(); t++){

 aAltService gotAltTemp= getAltTemp.get(t);

 aAltService aAltService2 = new aAltService();

 aAltService2.setaAltService2

 (gotAltTemp.getAltserviceID(),

 gotAltTemp.getAltserviceName(),

 gotAltTemp.getAltserviceMismatch ());

 getAltServiceF.add(aAltService2);

 }

 setService = 1;

 /* AFTER CHANGING */

 System.out.println("\n===after changing\n");

 functionx.verify_ServiceA();

 }

 } //for

 } //Unitil find new services

 }//for

 }

 }//for

} //if

 }//random failure generate

 } //FailureControl

 /*--*/

 public class RecoveryContorl extends Thread {

 private int businessKey =0;

 private int serviceID = 0;

 private String serviceName = " ";

 private function function = new function();

 private int delayTime; // delay time second

 private int executionTime;

66

 private int numberOfLoops;

 public RecoveryContorl(int executionTime, int delayTime) {

 this.delayTime = delayTime;

 this.executionTime = executionTime;

 numberOfLoops = this.executionTime / this.delayTime;

 }

 public void run() {

 try {

 for (int i = 0 ; i < numberOfLoops; i ++) {

 sleep(delayTime*1000); // wait until next time

 function.getDateTime();

 RandomFailureRecovery(); // Random number generate

 System.out.println("2-Recovery control :" + function.getDateTime()+"\n");

 }

} catch (InterruptedException e) {

return; // end this thread;

 }

}

//--- Failure Recovery Part ---/

public synchronized void RandomFailureRecovery() {

 Random magicNumber = new Random();

 int randomInt=0;

 int Qsize = suspendQueueList.size();

 System.out.println(" Size of the Suspend queue" + Qsize);

 if (Qsize > 0)

 for (int idx = 0; idx < 1; ++idx){ // Number of magic number

 randomInt = magicNumber.nextInt(Qsize);

 System.out.println("Generated : " + randomInt);

 suspendQueue

 getSuspendQvalue = suspendQueueList.get(randomInt);

 //get businessKey , serviceID , serviceName from ReadyQ//

 businessKey = getSuspendQvalue.getBusienssKey();

 serviceID = getSuspendQvalue.getServiceID();

 serviceName = getSuspendQvalue.getServiceName();

 System.out.println("Suspend Q's Element : " + serviceName);

 //copy SuspendQ's --> ReadyQ's value //

 readyQueue readyClass = new readyQueue();

 readyClass.setReadyQueue(businessKey,

 0, //Service Level

 serviceID ,

 serviceName);

 // add suspendQ and delete from ready Q//

 readyQueueList.add(readyClass);

 suspendQueueList.remove(randomInt);

 }

 }

 } // RecoveryContorl

/*--*/

public class SensorMonitor extends Thread {

 private function function = new function();

 private int delayTime; // delay time second

 private int executionTime;

 private int numberOfLoops;

 private int serviceStatus = 0;

 private int altServiceStatus = 0;

 private String aService = " ";

67

 public SensorMonitor(int executionTime, int delayTime) {

 this.delayTime = delayTime;

 this.executionTime = executionTime;

 numberOfLoops = this.executionTime / this.delayTime;

 }

 public void run() {

 try {

 for (int i = 0 ; i < numberOfLoops; i ++) {

 sleep(delayTime*1000); // Delay time interval for the processor

 function.getDateTime();

 System.out.println("3-SensorMonitor :" + function.getDateTime()+"\n");

 System.out.println("Suspend Queue \n");

 timeInterval = timeInterval + delayTime;

 // For the all services in the aMonitor Vector //

 /*if service is not in the ReadyQ it means there is failure

 *This case need to find alternative service from ASL

 *If A Service Replaced by another servcie then that service

 not failure in this case Setting by altServiceStatus = 1 ;/

 for (int m = 0; m < aMonitorV.size(); m++) {

 /*1- Get a vector from aMonitor Vector */

 aMonitor getMonitorValue = aMonitorV.get(m);

 serviceStatus = 0; //Read Q size Setting

 for (int q = 0; q <readyQueueList.size() ;q++) {

 readyQueue getReadyQvalue = readyQueueList.get(q);

 if (getReadyQvalue.getServiceName() ==

 getMonitorValue.getMonitorName())

 {

 serviceStatus = 1; //Service is match

 }

 }//End For

 altServiceStatus = 0;

 //To confirm a Service is running or not //

 altServiceStatus = function.confirmAltService

 (getMonitorValue.getServiceName());

 Vector<aAltMonitor> getAltMonitor = getMonitorValue.getAltMonitorVector();

 aAltMonitor aAltMonitor2 = new aAltMonitor();

 aAltMonitor2.setAltMonitor(timeInterval ,serviceStatus,altServiceStatus);

 getAltMonitor.add(aAltMonitor2);

 functionx.verify_Monitor(); //Verify Monitor

 } //Checking aMonitor

 }

} catch (InterruptedException e) {

 return; // end this thread;

 }

 }

 } //Sensor Monitor

} //End of class

68

7. sensorUDDI.java

import java.util.Vector;

public class consistencyCheck extends mini_SOA_ESB {

 public void consistencyCheck1() {

 new ConsistencyContorl (200, 5).start(); //

 }

 // compare between UDDI structure //

 public class ConsistencyContorl extends Thread {

 private function function = new function();

 private int delayTime; // delay time second

 private int executionTime;

 private int numberOfLoops;

 private int MismatchCount =0;

 public ConsistencyContorl(int executionTime, int delayTime) {

 this.delayTime = delayTime;

 this.executionTime = executionTime;

 numberOfLoops = this.executionTime / this.delayTime;

 }

 public void run() {

 try {

 for(int i = 0 ; i < numberOfLoops; i ++) {

 sleep(delayTime*1000); // wait until next time

 function.getDateTime();

 /* Compare A_sensorUDDI <> W_sensorUDDI */

 compareSensorUDDI_A_W();

 System.out.println("UDDI consistency Check " +

 function.getDateTime()+"\n");

 }

 } catch (InterruptedException e) {

 return; // end this thread;

 }

 } //run

 public void compareSensorUDDI_A_W() {

 // First, compare whole things //

 System.out.println ("=== First time compare VALUE OF W");

 function.verify_ServiceA();

 function.verify_ServiceW();

 //1-get a value from the Vector A_sensorUDDI(0);

 sensorUDDI getMainService_A = mini_SOA_ESB.A_sensorUDDI.get(0);

 sensorUDDI getMainService_W = mini_SOA_ESB.W_sensorUDDI.get(0);

 //2-get A Service from the a Service Vector //

 Vector<aService>getAservice_A=getMainService_A.getaServiceVector();

 Vector<aService>getAservice_W=getMainService_W.getaServiceVector();

 int sizeOfUDDI_A = getAservice_A.size(); //get size of UDDI_A.

 int sizeOfUDDI_W = getAservice_W.size(); //get size of UDDI_W.

 //3-get A service //

 for (int i = 0; i < sizeOfUDDI_A ;i++) {

 aService gotAservice_A = getAservice_A.get(i);

 aService gotAservice_W = getAservice_W.get(i);

69

 // gotAservice_A = gotAservice_W; // copy all of the UDDI value.

 // found Mismatch case found increase the Mishmatch Mismatch checking

 // to the A service

 // 4- If mismatch values then add 1 to mismatch count and rewrite //

 // 5- Chceking ASL List and rewrite the ASL //

 Vector<aAltService> getAltServie_A = gotAservice_A.getaAltServiceVector();

 Vector<aAltService> getAltServie_W = gotAservice_W.getaAltServiceVector();

 Vector<aAltService> getAltTemp =

 gotAservice_A.getaAltServiceVector();

 if (gotAservice_A.getAserviceName() !=

 gotAservice_W.getAserviceName()) {

 aService aServiceAdd = new aService(); // New object

 aServiceAdd.setAservice

 (gotAservice_A.getAserviceID(),

 gotAservice_A.getAserviceName(),

 gotAservice_A.getAserviceMishmatch()+1);

 getAservice_A.set(i,aServiceAdd);

 aService gotAserviceF = getAservice_A.get(i); //Get A Service//

 Vector<aAltService> getAltServiceF =

 gotAserviceF.getaAltServiceVector();

 //6 - Recovery of ASL //

 for (int t=0;t < getAltTemp.size(); t++){

 aAltService gotAltTemp= getAltServie_A.get(t);

 aAltService gotAltW = getAltServie_W.get(t);

 if (gotAltTemp.getAltserviceName()

 != gotAltW.getAltserviceName())

 MismatchCount=(gotAltTemp.getAltserviceMismatch()+1);

 else MismatchCount=(gotAltTemp.getAltserviceMismatch());

 aAltService aAltService2 = new aAltService();

 aAltService2.setaAltService2(gotAltTemp.getAltserviceID(),

 gotAltTemp.getAltserviceName(),

 MismatchCount);

 getAltServiceF.add(aAltService2);

 function.verify_ServiceA();

 function.verify_ServiceW();

 }

 }

 }//for 3-get A Service

 }//Compare UDDI compareSensorUDDI_A_W();

 //----Compare UDDI CompareSernsorUDDI_B_W(); ----//

 } //Thread

}//Mini-SOA/ESB

8. Service.java
import java.util.Vector;

public class aService {

 public Vector<aAltService> aAltServiceVector = new Vector<aAltService>();

 public Vector<aAltService> getaAltServiceVector() {

70

 return aAltServiceVector;

 }

 private int aServiceID = 0;

 private String aServiceName = " ";

 private int aServiceMismatch = 0;

 public int getAserviceID() {

 return aServiceID;

 }

 public String getAserviceName() {

 return aServiceName;

 }

 public int getAserviceMishmatch() {

 return aServiceMismatch;

 }

 public void setAservice(int aServiceID, String aServiceName,

 int aServiceMismatch) {

 this.aServiceID = aServiceID;

 this.aServiceName = aServiceName;

 this.aServiceMismatch = aServiceMismatch;

 }

 } //a Sservice

9. aMonitor.java
import java.util.Vector;

// This calss for the logging values that

public class aMonitor {

 public Vector<aAltMonitor> aAltMonitorVector = new Vector<aAltMonitor>();

 public Vector<aAltMonitor> getAltMonitorVector() {

 return aAltMonitorVector;

 }

 private String serviceName = " ";

 private int aMonitorID = 0;

 private String aMonitorName = " ";

 public int getMonitorID() {

 return aMonitorID;

 }

 public String getMonitorName() {

 return aMonitorName;

 }

 public String getServiceName() {

 return serviceName;

 }

 // altServiceTime is total time of alterNative Service //

 public void setAmonitor(int aMonitorID, String aMonitorName,

 String serviceName) {

 this.aMonitorID = aMonitorID;

 this.aMonitorName = aMonitorName;

 this.serviceName = serviceName;

71

 }

 } //a Sservice

10. aMonitor.java

import java.util.Vector;

public class aAltService {

 private int aAltServiceID = 0;

 private String aAltServiceName = " ";

 private int aServiceMismatch = 0;

 public void setaAltService2(int aServiceID, String aServiceName,

 int aServiceMismatch) {

 this.aAltServiceID = aServiceID;

 this.aAltServiceName = aServiceName;

 this.aServiceMismatch = aServiceMismatch;

 }

 public String getAltserviceName() {

 return this.aAltServiceName ;

 }

 public int getAltserviceID() {

 return aAltServiceID;

 }

 public int getAltserviceMismatch () {

 return aServiceMismatch;

 }

} // aAltService

11. aAltMonitor.java
 public class aAltMonitor {

 private int timeInterVal = 0; //Time interval

 private int serviceStatus = 0; //

 private int altServcieStatus = 0;

 public void setAltMonitor(int timeInterVal,

 int serviceStatus,

 int altServiceStatus){

 this.timeInterVal = timeInterVal;

 this.serviceStatus = serviceStatus;

 this.altServcieStatus = altServiceStatus;

 }

 public int getTimeInterval() {

 return this.timeInterVal ;

 }

 public int serviceStatus() {

 return serviceStatus;

 }

 public int altServiceStatus() {

 return altServcieStatus;

 }

} //End of Class aAltMonitor

VITA

JONGYEOP KIM

Candidate for the Degree of

Master of Science

Thesis: MINI-SOA/ ESB DESIGN GUIDELINES AND SIMULATION FOR

 WIRELESS SENSOR NETWORK

Major Field: Computer Science

Biographical:

Personal Data: Born in Taean, South Korea, On August 3, 1965.

Education:

Received Bachelor of Science degree in Computer Science from Korea National Open

University, Seoul, Korea, Feb 1996. Received Master of Science degree in Computer

Science from Oklahoma State University, May 2009.

 Experience: Operated and maintained the information systems on a regular basis to be

 available to users of the information systems. Administered database on the military

 register record and the reserve army. Managed server systems and network systems to

 efficiently operate the information systems of conscription administration, Developed

 and deployed programs and application tools used for the information systems of

 conscription administration.

Professional : 1988 – Present , Officer, Information Management Division, Military

 Manpower Administration, Korea. As an public officer, I managed various projects

 and participated in enhancing the information systems.

 Major projects: A project for rebuilding the home page in 2006, A project for

 rebuilding the information systems of conscription administration in 2002, A project for

 migration of the military register record. (2000-2001, 1996-1997), A project for

 amending a program used for managing the reserve army against Y2K issue in 1999, A

 project for introducing a new information system of conscription administration in 1999.

 ADVISER’S APPROVAL: Johnson P. Thomas

Name: JONGYEOP KIM Date of Degree: May, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MINI-SOA/ ESB DESIGN GUIDELINE AND SIMULATION FOR

WIRELESS SENSOR NETWORKS

Pages in Study: 71 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

One of the major challenges in wireless sensor networks (WSNs) is the difficulty of

efficient integration with other WSN application domains. This is because there is no

open standard framework to support heterogeneous types of sensors that are produced by

many sensor manufacturers.

In order to integrate different domain services, Service Oriented Architecture (SOA)

/Enterprise Service Bus (ESB) has been widely used as an open standard for providing

location transparency and segregation. In this thesis, we propose mini-SOA/ESB

Architecture for the integration of wireless sensor networks. However, previous work on

SOA/ESB has focused on large scale Enterprise service level integration, and is not

adaptable to the WSN domains because of limited hardware and software capabilities.

Sharing sensor data requires an open standard prototype to support various kinds of

sensor applications composed of heterogeneous sensor nodes. This standard prototype

can be applied to any application, such as OS-based architecture, VM-based architecture,

Middleware architecture, and Stand-alone protocols.

To address the issue, this thesis presents design considerations and a new model, which

we call mini-SOA/ESB for WSNs, as an open standard. We believe that the proposed

Architecture will be a basic building block for the integration of WSNs.

