
A NETWORKING INSTRUCTION AND

RESEARCH TOOL

By

GREGG G. WONDERLY I'
Bachelor of Science

in Arts and Sciences

Oklahoma State University

Stillwater, Oklahoma

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

Oklahoma State Univ. Library

A NETWORKING INSTRUCTION AND

RESEARCH TOOL

Thesis Approved:

d). £.

Dean of the Graduate College

11

1319J;;:O

PREFACE

A suite of networking instructional tools is under development. This project

is a joint effort between the author and the initiator, Mr. Mark Vasoll. The project

promises to provide a very powerful teaching tool. All of the researchers involved in

the project consulted each other concerning the fine points of the design and model.

This thesis will present a portion of the project's design and implementation, so

that future work can be directed to the uncompleted portions of the project.

The scope of the project is large. A complete TOP /IP implementation with

user level applications ultimately is planned. The amount of time spent both on

the design phase and on the partial implementation should make future work much

less time consumming.

I would like to thank Mr. Vasoll for providing motivation. Most importantly,

I would like to thank my family for their encouragement and my wife Tammy for

waiting this long.

Ill

TABLE OF CONTENTS

Chapter

I. INTRODUCTION
Problem Statement
Literature Review
Thesis Overview . .

II. AN INTRODUCTION TO TOP AND IP
The Internet Protocol
The Transmission Control Protocol

III. REVIEWING IMPLEMENTATIONS OF TOP /IP
Berkeley's 4.[23] Networking Code .
The User's Interface
Sample Operations

IV. THE PROJECT DESIGN AND STRUCTURE
A High Level View
Interaction with UNIX

V. MODULARITY OF THE IMPLEMENTATION ..

VI. COMPLETED WORK
Interprocess Communications
IP Configuration
IP Operation

Attach Requests
Detach Requests
Datagram Transmission
Incoming IP Datagrams

Ethernet Operation

VII. FUTURE WORK
The IP Module
The Ethernet Module

VIII. SUMMARY AND CONCLUSIONS
Summary .. .
Conclusions

REFERENCES

IV

Page

1
2
3
5

7
8
8

10
10
10
11

13
13
14

16

18
18
19
21
21
22
22
22
23

24
24
27

28
28
29

30

Chapter Page

APPENDICES . 34

APPENDIX A- GLOSSARY . 34

APPENDIX B - DIRECTORY STRUCTURE 35

APPENDIX C -FIGURES . 37

v

LIST OF FIGURES

Figure

1. OSI Protocol Hierarchy

2. Diagram of IPC

3. Message passing between applications

4. Sample configuration lines .

5. Sample alarm timer code .

vi

Page

38

39

40

41

41

ARPANET

DMA

DOD

EARP

ICMP

IP

IPC

OSI

RFC

TCP

TCP/IP

NOMENCLATURE

The Advanced Research Projects Agency Network.

Direct Memory Access.

The Department Of Defense.

The Ethernet Address Resolution Protocol.

The Internet Control Message Protocol.

The Internet Protocol.

InterProcess Communications.

Open Systems Interconnect.

Request For Comments.

The Transmission Control Protocol.

The Transmission Control Protocol and the Internet Protocol
suite.

UDP The User Datagram Protocol.

Vll

CHAPTER I

INTRODUCTION

Networking, using high speed transmission media, is providing more flexible

use of computers. The cost of high speed parallel computers currently makes it

almost more cost effective to buy many small computers, and then connect them

together via a high speed network, such as Ethernet. Ethernet is a high speed

broadcast network capable of speeds in the one million bit per second range. The

Ethernet design and specification was developed by a group of companies from the

computer industry. The XEROX corporation and Digitial Equipment Corporation

(DEC) are two of the several companies involved in the specification of Ethernet.

The Department of Defense (DoD) funded research at the University of Cali­

fornia, Berkeley. The research at Berkeley layed the groundwork for their TCP /IP

protocol suite. TCP is an acronym for Transmission Control Protocol; IP is an

acronym for Internet Protocol. These two protocols have become the backbone

of a large number of high speed network applications. IP provides a very pow­

erful packet routing mechanism. TCP provides a reliable data path by using IP

for routing these packets. A third protocol, ICMP, or Internet Control Message

ProtocoP, provides a control mechanism which can be used by network software to

communicate problems and events among the hosts on a network.

1 ICMP is an integral part of IP, so IP really means IP and ICMP.

1

2

The DoD now utilizes these protocols m its Advanced Research Projects

Agency Network (ARPANET). The ARPANET is comprised of DoD contractors

who use the network to exchange information about the work they are doing.

ARPANET operates over high speed leased lines for site to site communication.

Within a particular organization, Ethernet is typically used to interconnect hosts.

Current research of TCP /IP revolves around the 4.2 and 4.3 versions of Berkeley's

UNIX, or 4.xBSD. Licensing of this software is difficult for some regions2• A new,

unrestricted implementation of these protocols will make it possible for universities,

limited by Berkeley's licensing, to have a networking teaching tool for laboratory

use by students and faculty.

Problem Statement

Vendor implementations of TCP /IP are proprietary, which makes it difficult

for organizations or individuals to alter the behavior of the software. This limits the

number of individuals who can perform research using these protocols and deriva-

tives of them. This paper presents the introduction to a suite of programs. These

programs are part of a large, incomplete project involving several individuals.

Because the programs are nonproprietary, they allow students and faculty to

pursue research in the area of computer internetworking. The need for computer

internetworking is self-evident. By interconnecting computers, the information

and resources that are available on one computer and be shared with many others.

Networking research will make it possible for better protocols to be developed for

increased e:ffeciency in computer internetworking. Students and faculty can use

2 A 4.xBSD license binds the licensee to laws and regulations of California. Some states do not
allow their institutions to sign contracts of this nature, which creates problems for universities that
are governed by state law. This one fact is the original motivation for this project.

3

the results of this project to perform laboratory research as well as hold classroom

discussions on all aspects of computer internetworking.

Literature Review

In the DoD/ ARPANET community, research often leads to the development

of protocols or methodologies from which that community as a whole might benefit.

The TCP /IP protocol suite is a good example. Developers often propose to make

their work into a standard. It is beneficial for the developers to have the opinions

of others in the community regarding their proposals. A formal document, called

an RFC, or request for comment, is issued from the developer to allow others to

study their proposal. The acceptance of RFC's as a standard has produced over

a thousand different documents. RFC's exist that define known host names, IP

addresses of ARPANET hosts, the format of electronic mail messages, as well as

the hundreds of protocols in use by the DoD community today.

The RFC's numbered 791, [8] 792 [10] and 793 [11] describe the IP, ICMP and

TCP protocols respectively. These documents serve as a reference as well as the

standard for development of new implementations of these protocols, and are there­

fore required reading for those wishing to implement these protocols. Publically

available publications regarding specific implementations of these protocols are few

in number. Cerf and Kahn [3] specify a protocol that was at the forefront of de­

velopment of internetworking protocols. Cerf was Program Manager and Principal

Scientist at the Defense Advanced Research Projects Agency, DARPA from 1976

to 1982. He was responsible for the oversight of the research programs in packet

switching technology [16].

4

The OSI protocol model is a seven layer model as shown in figure 13 • Cerf

and Cain [2] discuss the DoD Internet Architecture Model (the ARPANET). Their

discussion revolves around the presentation of what the DoD feels that it needs in

an internetworking protocol suite. The OSI model is also discussed. It is shown how

the DoD model provides certain functionality that the OSI model cannot provide

due to the separation of certain functions into multiple layers where the DoD model

uses only one. The problem as stated is that there are many operations that

take place in internetworking, and these operation often differ drastically in data

format and transmission requirements. A remote terminal login facility verses a

file transfer facility is a good example. The remote terminal facility will require

quick timeouts and small data packets to provide resonable response times to users

requests. Whereas a file transfer facility will typically block data and take full

advantage of a networks transmittion speed. Cerf and Cain also present some areas

that they feel need attention in the DoD model as well as the OSI model. Examples

given are security, and large scale network effeciency.

Schwartz [14] discusses various aspects of computer internetworking, compares

TCP with the OSI4 Transport Protocol Class 4 specification. Schwartz discusses

many aspects of the two protocols specifications, and provides some excellent back-

ground on TCP. Schwartz's references contain many papers on TCP /IP and current

as well as previously studied problems. Postel [9] discusses the interconnection of

computer networks through the use of protocols from the third and forth levels of

the OSI model. TCP and IP are given as examples of protocols that provide the

necessary functionality for computer interconnection.

3 All figures are given in appendix C.
4The TCP /IP protocol suite corresponds to the level three and level four protocols in the OSI

hierarchy.

5

One of the problems discussed by Postel is that of providing protocol transla-

tion facilities to allow one network to send and receive data from another network

which uses different protocols at some levels. This discussion provides some opi-

ons regarding whether a standard such as the OSI or DoD architecture should be

universally adopted. If there was a single network architecture in use by all inter-

connected networks, then protocal translation schemes would not be necessary. On

the otherhand, some machines and networks require different protocols based on

the capability and reliability of the underlying transmittion media. More research

is needed in this area to discover a solution that satisfies the all the needs of the

networks and computers attached.

Comer [4] discusses the use of TCP /IP in a research operating system that he

has designed called XINU, an acronym standing for the phrase, XINU is not UNIX.

This work has some relation to this project. However the majority of operating

system issues discussed revolve around the process relations of XINU which are very

different from System V UNIX5 ; most notable are the interprocess communications

and process control mechanisms that XINU allows. Because most XINU implemen-

tations do not use hardware protection6 , the XINU implementation is more oriented

to standalone applications and not multiuser environments. However, some aspects

of effeciency and the communication models used are of general interest.

Thesis Overview

The above mentioned papers show a portion of the areas in internetworking

that are actively being researched. This project will make it possible for many

5 All XINU processes share one address space, whereas UNIX processes are protected from each
other.

6XINU is open in the sense that it ofFers no hardware protection. User processes are allowed to
manipulate the computer hardware in any way they want.

6

more individuals to participate in research in the area of computer internetworking.

This paper serves as a guide to the initial project design. The paper describes

many aspects of TCP /IP, and the project. Some aspects of another TCP /IP

implementation are discussed. The project design and structure is reviewed, and

finally, the work left to do and some ideas about that work are given.

CHAPTER II

AN INTRODUCTION TO TCP AND IP

The TCP and IP protocols work together to provide a reliable data transmis­

sion path. The application of these two protocols is not limited to a local area

networks (LAN), because of IP's routing mechanisms. Instead, the TCP /IP pro­

tocol suite can be used to connect LAN's together. Many LAN's can, in turn, be

connected via. gateways to form whatever topology is desired. The gateways either

can be hosts available for use by people, or they can be cheaper, dedicated machines.

Some IP gateways available now learn the topology of a. network by examining the

headers of datagrams as they pass through the gateway. The header tells where

the datagram originated. Using this piece of information, the gateway can create a

table that tells it which networks which hosts are on so that subsequent datagrams

to those hosts do not cause unnecessary traffic on other networks.

This strategy allows the gateway to go about its duties from the start without

having to be told which host is on what network interface. A gateway generally has

two or more physical networks connected to it. It can broadcast packets destined

for hosts about which it does not know, to all interfaces. If the host is somewhere

on one of the networks that the gateway is serving, the packet will reach it. The IP

protocol does not dictate this behavior, rather the gateway merely is receiving and

retransmitting IP datagrams 7• The fact that TCP /IP allows for duplicate packets

7 A datagram is a block of data or packet.

7

8

makes it possible for this to work. If a host is on two networks served by a common

gateway, it is possible for the host to receive two copies of a datagram. The protocol

specification allows for this, and the extra datagram is discarded.

The Internet Protocol

The IP protocol provides the basic routing of data through a network. It

does not provide sequencing, flow control (ICMP does allows some flow control to

be done), or data-reliability. This task is left to higher level protocols. Because

of this inherent unreliability, IP is used by higher level protocols which provide the

necessary services. IP makes use of lower level protocols to access the physical

network media.

Thus, through the use of a gateway, IP can cross from one network to another.

If there are limitations on the size of datagram a particular network media can

handle, IP's fragmentation capabilities make it possible for a packet to be broken

into pieces for later reassembly. Postel (8] discusses all aspects of IP in depth.

The Transmission Control Protocol

The TOP protocol is a highly reliable host-to-host transport in packet-switched

networks. It is a connection-oriented protocol designed for use in a layered hier­

archy of protocols. The protocol provides for reliable interprocess communications

between pairs of processes in host computers. Very few assumptions are made

about the reliability of the underlying protocols.

TOP makes use of a protocol comparable to the Internet Protocol described

m [8]. This type of datagram transport mechanism satisfies the need to break

9

large transactions into small pieces so that unreliable networks will require fewer

retransmissions. TCP assumes that the underlying protocol is IP. Postel [11]

discusses all aspects of TCP in depth.

CHAPTER III

REVIEWING IMPLEMENTATIONS OF TCP /IP

The beginnings of TCP /IP networking are nestled in DOD funded research.

A great deal of the implementation was done by California Universities. Students at

the University of California at Berkeley wrote the implementation that is considered

the standard today (for UNIX based systems).

Berkeley's 4.[23] Networking Code

Berkeley's networking code is part of the 4.[23]BSD version of the UNIX8

operating system. It is an integral part of the operating system and, as such, uses

CPU time. As a result, it impacts the users of the system. Since Berkeley's code is

in the operating system, it knows when a process exits from the system. This allows

the processes network resources to be freed, causing connections to other hosts to

be terminated with proper reasons, instead of terminating with an all encompassing

timeout message.

The User's Interface

The interface to Berkeley's TCP /IP makes use of UNIX file descriptors so that

once a connection is open, elementary reads and writes can be used to perform the

8 UNIX is a trademark of The American Telephone and Telegraph Corporation.

10

11

communications. The open file descriptor is used by the kernel to close a connection

when a process exits. A connection to the network is initiated by the system call,

socket(2)9 [18]. The socket call creates an endpoint of communications. It returns

a file descriptor that describes the type of socket that the user requested.

The services available are stream oriented and datagram oriented. An argu-

ment to the socket call selects which protocol is used for a particular type of service.

The type of services are limited to a single stream service provided by TCP and

a datagram service provided by the User Datagram Protocol. Additional services

may be added in the future. The User Datagram Protocol runs on top of IP as

TCP does, but does not provide an error free data path. It provides a port oriented

service as TCP does. The datagram service allows other protocols to make use of

the network without submitting to the overhead of the stream service.

Sample Operations

Once the socket is open, the user can perform many different functions using

the descriptor to configure the particular connection endpoint. The setsockopt(2)

and getsockopt(2) system calls allow the user process to manipulate the options

available at each protocol level including socket level options. There are many

other system calls which provide many different functions. Bind(2) is used to

assign a name to a socket in the domain of the service associated with the socket.

A listen(2) call allows an application to accept requests to make use of the service

the name represents. An accept(2) call does the actual accepting i.e. requests for

the service will be answered and the process making the accept call will be notified

9The number in parenthesis is the UNIX manual section where the particular name preceeding
ii is described.

12

of the request. The listen(2) call sets up kernel data structures to make a queue for

these [accept] requests while they are waiting to be serviced.

A simple send and receive mechanism also is available. The send(2) and

recv(2) calls may be used following a connect(2) call although neither is necessary.

Connect{2) connects an application to a socket created using the bind(2), listen(2)

and accept(2) calls. A variation of send(2) allows a user to select a specific address

to which to send. A variation of recv{2) allows the user to recv a message from

an arbitrary address. Finally, because the socket descriptor can be used as a file

descriptor, it is possible to use the read(2) and write(2) system calls. This provides

data stream functionality on a socket.

The Berkeley interface is complex, but has many good points (such as the

use of read{2) and write{2)). However, the actual networking code is part of the

operating system. This would require the computer to be rebooted when changes

are made. Since this implementation does not reside in the kernel, it is not necessary

to reboot the computer or otherwise disturb the users of the computer when changes

in the software are made.

This implementation can provide some of the same functionality, but some

things can not be implemented due to contraints of the IPC interface provided.

The biggest problem is determining that a connection should be terminated because

an application has abnormally terminated. A possible solution to this problem

is described in chapter 7. The library interface routines provide all the other

functionality for sending and receiving data from the daemon processes.

CHAPTER IV

THE PROJECT DESIGN AND STRUCTURE

The structure of this TCP /IP implementation represents modular and struc­

tured programming. Each step involved in moving data through the protocol

levels, involves a module that can be separated from all others. This allows dif­

ferent strategies to be investigated with less work involving the resolution of global

dependencies.

A ·High Level View

From a high level view, the program appears as several programs. Overall,

these programs work together using interprocess communication to provide the nec­

essary layers to implement the TCP/IP suite of protocols. Figure 2 in appendix C

shows the interactions of the modules with each other via the message queues. As

figure 2 illustrates, each module has one point where it awaits work (a message from

another process). It is intended that a module never should wait at any other point.

Circular waiting is eliminated, thus preventing deadlock.

For example, it is possible for the queues between the Ethernet module and

the IP module to fill. IP might be forced to wait, while attempting to write to the

Ethernet queue and the Ethernet module might be forced to wait while attempting

to write to the IP queue. This creates deadlock because the IP module's write

13

14

cannot succeed until the Ethernet module reads a message. Likewise, the Ethernet

module could not read a message until its write to the IP module completed, so it

is stuck as well. Disallowing writes to block eliminates this possibility.

The work load must be distributed amongst the modules in as equal of a

manner as possible. This minimizes the bottleneck effect that a particular module

has on the entire system. The package is a teaching tool, rather than a production

system, but it still should be as efficient as possible within requirement and design

constraints.

Interaction with UNIX

System V UNIX's interprocess communication, or IPC, provides some inter­

esting, although limited, features. One of the biggest drawbacks is the inability of

unrelated processes (those with dissimilar uids and gids10) to communicate with­

out allowing other processes to eavesdrop or insert data into the communication

stream. Because all IPC facilities work like files, i.e. use owner/group/world per­

mission protections, certain security related problems arise. One such problem is

that the integrity of the data stream within the IPC mechanism cannot be guaran­

teed. To overcome this problem, the program makes use of a integer password that

is verified during each transaction at both ends. When the password is not correct

some, currently unspecified, action must be taken.

Other problem areas concern the ability to send messages through a message

queue with msgsnd(2) as described in [19]. To preserve throughput, each mod­

ule must not ever wait other than when reading a message to request more work.

Therefore, a "don't wait to send" mechanism must be used to make sure that a

10uid and gid are abbreviations for user identifier and group indentife:r :respectively.

15

lack of buffer space does not cause a module to block on a msgsnd(2) operation.

This does not work correctly for the System V message passing facility when only

a single process is attached to a message queue. This particular problem must be

solved in each place where it can occur.

CHAPTER V

MODULARITY OF THE IMPLEMENTATION

Among the major design criteria for this project are modularity and porta­

bility. The concern is that the software be transportable to all systems supporting

System V IPC with very little effort. At most, it only should be necessary to

write an Ethernet module. By using a module based system, it will be possible to

divide portability problems into tasks which are related to replacing small modules,

rather than tasks of writing large programs. A model for communication between

the daemons11 and the higher level programs has been adopted. This model is

implemented in a way that will allow its adoption into future work.

While the message passing calls are not encapsulated into functions, their

calling conventions with their data arguments provide sufficent information to allow

the System V message passing to be replaced by routines that might use a different

procedure for message passing. An attempt has been made to minimize the number

of function call levels needed to expose the total functionality of the project.

The interaction with the daemon processes is divided into five different func­

tion calls:

1. Establish a communications path and allocate protocols.

2. Receive data from the daemon.

11A daemon is a background process used to perform some lengthy or indefinite activity.

16

17

3. Extract data from the daemon and place it into a structure.

4. Send data to the daemon.

5. Break the communications path and deallocate protocols.

These functional interfaces provide the necessary operations to make use of

the protocols. The names for the routines are unique so that program units us­

ing/serving multiple interfaces can do so without symbol name conflicts. For exam­

ple, the "Send data to the daemon" routine for the IP module is called "ip_send"

while the same module for the Ethernet module is called "eth_send".

The header include files for using these routines are uniquely named. For

the IP module, all files begin with the prefix "ip_", while the Ethernet module files

are prefixed with "eth_". All macros, defined constants, and structure types in

these files have similar prefixes on their names. This make them unique while

leaving items with similar purposes in different modules, with similar names (e.g.

IP _pRQTO_NUM and TCP _FROTO_NUM are the names of macros containing the

protocol numbers for these protocols).

In summary, all modules follow a consistant naming strategy and calling mech­

anism. This greatly improves the readability of the code. This modularity will

allow future adaptation and additions to not conflict with previously written code

(providing the simple guidelines outlined above are followed).

CHAPTER VI

COMPLETED WORK

The work completed for this project is design related. A coherent design

minimizes programming and coding. This chapter is an explanation of the overall

design and operation of the project.

Interprocess Communications

All modules pass information to other modules using Interprocess Communi­

cations (IPC). In the current implementation, IPC is performed using the UNIX

System V message passing facilities. The general protocol of this message passing

involves an initial transaction between the daemon and the application (which may

be another daemon, as IP is to Ethernet). Initially, the application tells the daemon

that it wishes to receive data from a specific protocol in the domain of the daemon.

As an example, IP tells the Ethernet daemon that it wishes to receive IP datagrams

from the Ethernet. Figure 3 in appendix C describes this transaction.

It is possible for an application to service multiple protocols by informing the

daemon that it wishes to do so. If a particular protocol is not available, because

another application has already reserved it, the daemon conveys this back to the

application. After the application sends the initial request for protocol reservation,

18

19

the daemon responds with a message telling what protocols were accepted and

rejected. The application must then select the "correct" action based on this

response.

For the protocols that are reserved successfully, the application may send

data to the daemon to be processed. Data received from the network interfaces

must be read from the daemon by the application. Currently, no asynchronous

activity is supported. Instead, the message passing operations are done using the

IPC_NOWAIT function. If there is no data available, or the daemon's message

queue can't hold any more messages, then the application will not block which

could possibly cause deadlock. A method of supporting asynchronous processing

with blocking is given at the end of this paper.

When the application is finished with the protocol it has reserved, it must

release the protocol by sending a detach request to the daemon. This message

results in a response message from the daemon. The contents of the message tell

whether or not that application has any more protocols reserved. Also, if there were

problems releasing a protocol, that information also is conveyed in the response.

Any problem releasing a protocol is related directly to some application send­

ing a delete request for a protocol with an invalid password. After this happens,

that protocol is undeletable, due to security considerations. Once an ill-behaved ap­

plication starts tampering with trying to take over a protocol, it should be blocked

from doing this permanently. Using the above strategy assures this. It also provides

information to the legitimate application by telling it there are problems.

IP Configuration

The IP daemon must have information about the network interfaces to which

it has access. This information is compiled into the daemon in the form of an

20

information table. This table contains function pointers to routines that attach,

send, receive, and detach from a network interface. The routines that perform these

functions have specific naming conventions. The configuration file that describes the

network interfaces is processed by a program which converts the textual information

into a structure initialization.

The daemon can use the network interface description to determine how rout­

ing should be done based on the IP networks accessible through a particular network

interface. Figure 4 in appendix C shows some sample lines of configuration infor­

mation.

The first line describes a specific host entity. It says that the IP address,

128.192.37.1, always will be serviced by the "eth" module. The second line describes

a set of internet class C addresses12 which are on the class C network whose number

is 128.192.45. These addresses also are serviced by the "eth" module. The third

line describes a set of class B addresses on a class B network. The hosts on this

network will all be serviced by the "imp" module. The last line describes what to

do with addresses that do not match any of the other addresses, the module "gate"

handles these addresses.

The program author uses discretion to determine the exact action of each

module. The module might contain code to look up IP-to-Ethernet address map­

pings in a file, or the module might use the Ethernet Address Resolution Protocol

(EARP) to query the hosts on the network to discover a specific IP-to-Ethernet

mapping. Support for other network interfaces can be added easily.

Each of the modules contain at least 3 functions. The required three func­

tions are named x_startup, x_shutdown and x.xfer, where the initial "x" character

is replaced by the module name given in the configuration line. For example, the

12The internet address classes are defined in [12]

21

"eth" module would have routines named eth_startup, eth_shutdown and eth...xfer.

The configuration program which generates a structure definition for the IP mod­

ule to use, depends on this relationship to know how to generate the structure

initialization.

The IP daemon also must know its local host address which should be con­

vienent to change. A separate file provides this information. The IP daemon only

need be stopped and restarted to update its knowledge of the information in this

file. The IPCONFIG macro defines the name of this file.

IP Operation

The IP daemon reserves the IP protocol for its use, then waits for messages in

its message queue. The type of the message determines how it is processed. Below

is an overview of the processing of each type of message the daemon recognizes.

Attach Requests

An attach request requires the daemon to verify the availability of the re­

quested protocol(s). This involves a simple search of the data structures. When

a protocol is available, its value is replaced by a invalid (the value is actually -1)

protocol value in the array of requests signifying that it has been accepted. The

response message sent back to the requestor has the resulting array in it. The

requestor can use this information to determine which protocols were not available

when there is an attach failure.

For each available protocol, the pertainent information about the requestor is

placed into a protocol table entry allocated to the protocol. When all protocols

have been processed, the response message is formatted and sent to the message

22

queue whose identifier is passed in the request message. Future references to the

allocated protocol require that the password (random integer) that was passed by

the requestor to be specified correctly.

Detach Requests

A detach request is processed much in the same way as an attach request.

The only difference is, if a detach request is made using the wrong password, then

the protocol that was requested to be detached from will be marked undetachable.

This solves an important security problem that is associated with an ill-behaved

user/program trying to intercept all network traffic using a specific protocol. If the

user discovers the password that is used, unauthorized traffic may be generated, but

traffic cannot be received. This is a result of the fact that a user cannot change the

daemon's knowledge of which queue is to receive datagrams for a specific protocol.

Datagram Transmission

An outbound IP datagram is processed by verifying that the protocol in the

datagram is currently "active"; then by verifying the password. If either of

these operations fail, the datagram is ignored13• Once this dual verification has

succeeded, a search is initiated for the proper network interface to use based on the

configuration structure information. With the proper interface located, the _xfer

procedure for that interface is called to process the datagram.

Incoming IP Datagrams

The first step in processing an incoming IP datagram is verifying that the

destination of the datagram is really this host. If it is not, then the datagram is

18IP does not guarantee that the datagram will arrive in tact.

23

sent back to the output side of the daemon for processing there. This happens when

a packet is source routed (the exact route through the network can be specified by

datagram options) through a particular machine. If the protocol is in use on the

host, then it is passed through the appropriate message queue to the application.

Ethernet Operation

The Ethernet module is distinguished from the other modules since two dif­

ferent processes must be performed simultaneously. Packets must be read from the

Ethernet device, and outbound traffic must be read from the message queue. This

requires two separate processes. These two processes must also share the protocol

table information. This allows the process reading from the Ethernet device, ethrdr,

to send packets directly to the application. The process that is reading the message

queue, ethwtr, and directing traffic out of the host, also users this table. Ethwtr

fills in the table with new entries as requests are made; it also deletes entries when

necessary.

The overall operation of the Ethernet module is very similiar to the operation

of the IP module. The ethwtr process recognizes only the three basic message types

in its message queue; i.e., attach, detach and data. The ethrdr process never reads

a message from the Ethernet message queue. Ethrdr only reads packets from the

Ethernet device and sends them to the proper process.

Almost all of the design and implementation has been completed. The mech­

anisms that are in place have been tested and proven to work. The correctness of

things such as datagram checksums has not been verified due to some ambiguities

in the definition in RFC 791[8].

CHAPTER VII

FUTURE WORK

The design of the programs essentially is complete. A few items still are

outstanding. Coding remains to be done to complete the implementation of IP.

A small amount of refinement is required on the Ethernet interface. Final TCP

implementation has not started. There is still some software engineering work to

be done. Outstanding items are surveyed below.

The IP Module

The IP module lacks complete support for ICMP. Code stubs specify where

there should be ICMP support. These stubs should be replaced with a complete im­

plementation of ICMP which communicates with the IP and TCP library routines.

Many actions associated with ICMP messages must be performed outside of the

daemon. The ICMP SOURCE QUENCH message could be handled by inserting

delays between the sending of data from the library routines through the message

queue to the daemon. One possible strategy would be to allow the data initially to

be transmitted as fast as possible, until a SOURCE QUENCH is received. Next,

an alarm driven timer would manipulate a semaphore. The process would wait on

this semaphore before transmitting a packet. That way, the process would not be

able to send the pack until the timer expired. The code fragment of figure 5 in

24

25

appendix C demonstrates the concept. This strategy assures that the time delay is

done as an absolute delay instead of a delay just prior to sending the data to the

daemon. Several additional items can be added:

• The ability to manipulate the IP options should be enhanced to allow a single

ip_set_options() procedure to be used to establish the default options to be

included in each datagram. This minimizes the amount of data manipulation

required. In the future, a different strategy for ip_send() might be employed.

The new strategy would place the options into a datagram template in static

storage so only the header information and the data would need to be added

to complete the datagram.

• The daemon must supply the library routines with the local host address in

the response to an IP _ATTACH operation. This allows the library routines

to compute the checksum for each datagram. Currently, an ill-defined value

is placed into the IP header during assembly.

• The daemon must perform the header checksum verification on an incoming

datagram prior to forwarding it to any higher level module. This assures that

a particular application is not given a datagram it does not own. Currently,

the datagram is forwarded blindly to the application indicated by the protocol

field or it is dropped if the protocol is unknown.

• To aid in the asynchronous processing of messages both in and out of an

application, some type of signal passing mechanism needs to be implemented.

A semaphore can be used to notify the application that data is waiting. Other

techniques may work as well.

26

• When implementing ICMP, it is necessary to pass ICMP messages from the

daemon to the application. Currently, the library routines use the "receive

the first available message" facility of the msgrcv() routine to receive message

from the daemon. If the messages are numbered differently, then the library

routine could always try to receive an ICMP message first to assign a priority

to the reception of those messages.

• There are many places where timers should be used to cause timeout of the

reception of datagrams in TCP segment assembly. The IP fragmentation

routines, which have not been written, also require this. A set of routines

which allows a single process to set many timers to interrupt processing at

some time in the future has been written. The process need only supply a

delay time in seconds, a routine address to be called when the timer expires,

and a single data value. These routines should ease the task of maintaining

these timers greatly. These routines have been tested and should work as

written. Full documentation is available within these routines14•

• The daemon should make use of a timer actived routine to establish that a

particular message queue is gone, and therefore the associated protocols are

no longer in use. The same routine should also be called when a connect

request is received. This routine can use the msgctl(2) system service to

determine that the queue has been deleted. Msgctl(2) will return and error

code when a queue identifier corresponding to a deleted queue is passed to it,

thus making it obvious that the queue is gone.

14The timer routines are in the file ftet/src/gen/timer.c.

27

The Ethernet Module

The future work on the Ethernet module includes minor work items, outlined

below:

• The ethwtr process should verify the password on messages it receives through

its message queue, then act appropriately on bad passwords. A recovery

strategy similiar to the IP module's recovery strategy should be developed.

• The version of the ethwtr module for the Concurrent family of computers

currently adds the local Ethernet address to the packet before sending it to

the Ethernet. This can be avoided by using the mode of the driver which

automatically does this. The src/h/eth...struct.h15 file should have some con-

ditional compilation added to it to remove the Ethernet source address from

the structure definition when the Concurrent version is compiled.

Most of the design already completed can be applied to future work. The

original design came from considering the other protocols and applications. With

the Ethernet module nearly complete, and more than half of the IP module's code

completed, the basics are out of the way. The amount of design work and the

amount of code that this project incompasses has limited the author to completing

only a portion of the project. The work remaining primarily is completing the

implementation.

15This is a relative path to the file, from the "net" users directory. This directory structure is
described in appendix B.

CHAPTER VIII

SUMMARY AND CONCLUSIONS

Summary

The ultimate completion of this project should result in an extremely useful

research tool which allows more indepth study and exploration of wide area com­

puter networks. The TOP /IP suite of protocols should continue to be used for

many years to come because of the large investment including both software and

hardware currently supporting the~e protocols.

The software involved in this project, demonstrates the complexity of both

the protocols and their implementation. This particular implementation is bulky

and slow, but represents an extremely portable package that can be used on many

machines in existence today; however, these protocol stills are highly complex and

expensive in terms of machine resources.

It is the author's opinion that these protocols are too complicated to be im­

plemented in the operating system of a timesharing environment. In fact, it may'

be very beneficial to the performance of both a network and timesharing hosts on

that network to place the protocol suite on an auxilary processor attached to the

host's bus. A DMA communication path to this auxilary processor could allow the

simple tasks necessary to create ports at the TOP level.

28

29

Conclusions

Computer networking provides the ability to access the large amounts of in­

formation accumulated on mass storage devices. Smaller computer systems may be

possible, if an interface to larger machines is provided remotely and at very high

speeds16• The workstation concept is fueled greatly by the possibility of eliminating

the need for hundreds of megabytes of disk storage next to the workstation. By

remotely locating the diskspace, work space is conserved. If multiple workstations

can share a single disk then costs of operating are reduced.

Remote, interactive communication of digital information also is possible using

the TCP /IP protocol suite. Many protocols, including the File Transfer Protocol

(FTP), the Simple Mail Transfer Protocol (SMTP) and the terminal emulation pro­

tocol (TELNET) allow most activities associated with computing to be performed

remotely from other hosts, at speeds comparable to those experienced while a user

is logged onto that host directly. These existing protocols and their implementation

will allow future researchers to discover a better solution.

16Speeds approaching those of disk transfers are possible over Ethernet.

REFERENCES

[1] Black, Uyless, Data Communications and Distributed Networks, Prentice­

Hall, Inc., 1987.

[2] Cerf, Vinton. G., and Cain, Edward, The DoD Internet Architecture Model,

Computer Communications: Architectures, Protocols, and Standards, IEEE

Computer Society Press, 1985, Catalog no. EH0226-1.

[3] V. G. Cerf, and Robert E. Kahn, A Protocol for Packet Network Intercom­

munication, IEEE Transactions on Communication, COM-22, May 1974, pp.

673-2648.

[4] Comer, Douglas P., Operating System Design, Internetworking with XINU,

Prentice-Hall, Inc., 1987.

[5] Green, Paul E. Jr., ed., Computer Network Architectures and Protocols,

Plenum Press, New York, 1982.

[6] Groenback, I., The TCP and ISO Transport Service - A Brief Description

and Comparison, NATO Technical Memorandum STC TM-726, SHAPE

Technical Center, The Hague, Netherlands, Feb. 1984.

[7] Internet Protocol, Military Standard, MIL-STD-1777, U.S. Department of

Defense, May 20, 1983.

30

31

[8] Postel, J. B., Internet Protocol, RFC 791, USC Information Sciences Institute,

Marina del Ray, California.

[9] Postel, J. B., "Internet Protocol Approaches", IEEE Transactions on Com­

munications, vol. COM-28, no 4, April 1980, 604-611.

[10] Postel, J. B., Internet Control Message Protocol, RFC 792, USC Information

Sciences Institute, Marina del Ray, California.

[11] Postel, J. B., Transmission Control Protocol, RFC 793, USC Information Sci­

ences Institute, Marina del Ray, California.

(12] Reynolds, J ., Postel, J. B., Assigned Numbers, RFC 960, USC Information

Sciences Institute, Marina del Ray, California.

(13] Schwartz, Mischa, Computer-Communications Network Design and Analysis,

Prentice-Hall, Englewood Cliffs, N.J., 1977.

[14] Schwartz, Mischa, Telecommunications Networks, Protocols, Modeling and

Analysis, Addison-Wesley Publishing Company.

[15] Sunshine, Carl. A. and Dalal, Yogen K., "Connection Management in Trans­

port Protocols", Computer Networks, voh 2, 1978, 454-473.

[16] Stallings, William, Computer Communications: Architectures, Protocols, and

Standards, IEEE Computer Society Press, 1985, Catalog no. EH0226-1.

(17] Transmission Control Protocol, Military Standard, MIL-STD-1778, U.S. De­

partment of Defense, May 20, 1983.

[18] ULTRIX programmers manual, binder 2A, AT&T, Digital Equipment Cor­

poration, Regents University of California, Sun Microsystems.

32

[19] XELOS programmer reference manual, AT&T, Concurrent Computer Corpo­

ration.

APPENDICES

33

Datagram

Data Reliability

Ethernet

Flow Control

Gateway

Header

Protocol

Sequencing

APPENDIX A

GLOSSARY

A packaged piece of data, use in the Internet Protocol,
which contains extra information that will aid IP in routing
and verification.

Data is reliable if the transmission path it traverses allows
it to always arrive in tact, as well as sequenced.

A high speed network also known as the IEEE 802.3 net­
work.

A mechanism that limits the data tranmission rate so that
the receiving host does not become overloaded with the
processing of incoming datagrams.

A network host that provides the ability for traffic on one
network to cross over to another.

The initial portion of a datagram which contains the infor­
mation necessary to transport that datagram to its desti­
nation.

A precise methodology which dictates the order in which
a prescribed set of operations are carried out.

Maintaining the cronological ordering of the transmission
of datagrams such that they are received in the same order
as they were transmitted.

34

APPENDIX B

DIRECTORY STRUCTURE

35

./Doc

./bin

. /lib

. /etc

. /src

. /src/Ethernet

. /src/Ethernet/Concurrent

. /src/Ethernet/3bnet

./src/Ethernet/lib

. /src/Ip

./src/Ip/conf

./src/Ip/test

. /src/Ip/daemon

./src/Ip/lib

. /src/Ip/Icmp

. /src/Config

./src/h

. /src/gen

. /src/Arp

36

Contains previous reports and other associ­
ated documents.

Executables and shellscripts associated with
project.

Object file archives for library routines .

Assorted stuff, such as hosts file .

Root of source tree .

Root of Ethernet daemons' source .

Source for PE3230 version .

Source for AT&T 3BNET version .

Ethernet library routines for accessing the
daemon.

Root of IP daemon's source .

IP daemons compile time configuration di­
rectory. Contains configuration files that
describe the physical network services that
are available, e.g. Ethernet.

IP test program to send datagrams to arbi­
trary addresses.

IP daemon (ipd) source code .

Library routines for commuicating with IP
daemon .

Current implementation of ICMP for ipd.

Site configuration programs .

Header include files for entire project .

General library routines .

Partial implementation of the Ethernet Ad­
dess Resolution Protocol (EARP).

APPENDIX C

FIGURES

37

38

Level Function
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Link
1 Physical

Figure 1. OSI Protocol Hierarchy

39

appl app2 app3 arpd

I 4 I I
'-----

tcpd

I
ipd -

ethrdr I I ethwtr

Figure 2. Diagram of IPC

40

(App2 establishes queue, Appl is already running)

T
appl app2

+ I CON I I
(App2 sends connect request to Appl)

I I REPLY I +
appl app2

+ I
(Appl responds to connect request)

I I DATA I +
appl app2

+ I DATA I _I

(App2 and Appl exchange data)

I ;
appl app2

+ I DISC I I
(App2 disconnects from Appl)

Figure 3. Message passing between applications

host,address=128.192.37.1,type=c,name=a.cs.okstate.edu,module=eth
network,address=128.192.45.0,type=c,name=ucc,module=eth
network,address=68.25.0.0,type=b,name=arpanet,module=imp
gateway,name=gateway,module=gate

Figure 4. Sample configuration lines

global int delay_time = 0;

read_ queue()
{

}

message_type_read = get_message_from_daemon (msg);
if (message_type_read == SOURCE_QUENCH)

delay_time += 2;

write_queue()
{

}

if (have_set_timer) {
sem_wait (delay);
have_set_timer = 0;

}

write_queue ();

if (delay_time > 0) {

}

set_timer (delay_time, signal_semaph);
delay_time--;
++have_set_timer;

signal_semaph ()
{

sem_signal (delay);
}

Figure 5. Sample alarm timer code

41

VITA

Gregg G. Wonderly

Candidate for the Degree of

Master of Science

Thesis: A NETWORKING INSTRUCTION AND RESEARCH TOOL

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in ElReno, Oklahoma, July 29, 1963, the son of Robert
D. and Patrica A. Wonderly.

Education: Graduated from Putnam City West Senior High School, Oklahoma
City, Oklahoma, in May, 1981; received Bachelor of Science Degree in
Computing and Information Sciences from Oklahoma State University
in December, 1985; completed requirements for the Master of Science
degree at Oklahoma State University in December, 1988.

Professional Experience: VAX/VMS systems administrator, Department of
Mathematics, Oklahoma State University, August, 1986, to July, 1988.
Computer center diagnostician, Oklahoma State University, January
1986, August, 1986. Laserdisc researcher, TMS Inc., Stillwater, Ok­
lahoma, June, 1985, August, 1985.

