ANALYSIS OF MULTI-LAYERED, ANISOTROPIC
SHELLS OF REVOLUTION SUBJECTED
TO AXISYMMETRIC THERMAL
GRADIENTS

By
TUNG DJU LIN,

Bachelor of Science
Taiwan Christian College
Taiwan
June, 1959

Master of Science
University of Tennessee
Knoxville, Tennessee
August, 1962

Submitted to the faculty of the Graduate
College of the Oklahoma State University
in partial fulfillment of the
regquirements for the degree of
DOCTOR OF PHILOSOPHY
May, 1968



OKLAHOMA
STATE UNIVERSITY
LIBRARY

uCl 25 1968

ANALYSIS OF MULTI-LAYERED, ANISOTROPIC
SHELLS OF REVOLUTION SUBJECTED
TO AXISYMMETRIC THERMAL
GRADIENTS

Thesis Approved:

gémaa /é”o
Thesis viser

h&djf"\—l
Deahh of the Graduate College

688464

11



ACKNOWLEDGEMENT

The auther wishes to take this opportunity to express
his gnatituﬁe and sincere appreciation to the following
individuals and organizations:

To Dr. Donald E., Boyd for his professional guidance

and personal encouragement made the preparation of

this dissertation possible;

To Dr. J. J. Tuma and the School of Civil Engineering

for awarding the graduate assistantship;

ATo the National Science Foundation for awarding the

research assistantship;

To Dr. Ahmed E. Salama, Dr., Thomas S. Dean and other

members of his former advisory committee for their

valuable counsel and encouragement;

To the faculty members¥of the Civil Engineering

Department” for their valuable instruction;

To professor Stuart R. Daniels;

To the late Mrs., R, P. Clark, Miss. Viola Clark, Miss.

Beulah Ottinger, Mr. & Mrs., lL.eon Morrow, Mr. & Mrs.

Bill Williams and many friends at New Port, Tennessee

for their encouragement and friendship:;

To his parents, the late Mr. & Mrs. Lin Ho;

To his brothers and sisters;

To his wife, Su-Ming,and Chlldren, Timothy and Viola

1ii



for making his years of graduate study less burden~
some through thelir love, understanding and sacrifices;
To his wife for her wonderful cooperation and careful
typing of this manuseript;

And finally, to his fellow graduate students who
provided much through their friendship and profession-

al association.

Tung Dju Lin
May, 1968
3tillwater, Oklshoma

iv



Chapter

TABLE. OF CONTENTS

I ° INTRODUCTION o § o L] ] o a ? L] & L3 o o L] ° L o o o

1.1
1.2

1.3
1.4

Statdment of the Problem.
Historical Background . .
Basgic Concepts: o o ¢ o &
Assumptions 6 o © o o o o

o ° & O
6t ° * »
® e & O
Ld © » [ 3
o ¢ & o
o © * L3

II, DERIVATION OF THE GOVERNING EQUATIONS . . o . .

AV AV AR oY)
nHFWwive

o
-]
o
L
°

ITI. BSOLUTION

3.1
3.2
3.2.8
3.2,b
3.3
3ok

3.5

Basic Elastic Constants . .

Equations of Equilibrium. . .

Kinemgtic Hquations . « ¢« « + &

Combination of Equations. .

The Governing Equation for the
Orthotropic, 0Odd~Number-of-Layers
Shell o -] o o o (- o o © o -3 ° - -] -]

o
e

o

. e & B
o e a o

- 8 ®» ©® o

OF THE GOVERNING EQUATION. « o = o « o

Solution of the Homogeneous Egquation.
Solution of the Particular Equation .
Particular Solution for the Circular,
Cylindrical Shell . . .« - o e
Particular Solution for the Conieal
SheJ.looooooooo‘oooooo
The General Solution for the Circular
Cylindrical Shell . . . o .
The General Solution for the Conical
Shelloooo'oowoooooooo
Numerical ExampleS. ¢ o o o o o o o o

IV, DISCUSSION AND CONCIUSION . ¢ « o o o s o o o @

BIBLIOGRAPHY . .

o L < o o Ll L o L e Ll Ll < ° ° ° < o L4

APPENDIX 1 THE ARBITRARY CONSTANT. . . . . ¢ o o o o &

APPENDIX 2 THE THERMAL GBADIENTS . & o o o « o o o« o o

APPENDIX 3 THE MATERIAL PROPERTIES OF RESIN=GLASS.. ...

APPENDIX 4 THE SIMPLIFICATION OF VALUE 8 « o o o o o« o

page

~3 N PO = -

2k

29

29
30

30
31
33
36

61
63
65
68
79
84



LIST OF FIGURES
Figure page
1. Geometry of A Shell Element . o o ¢ o o o o o o o 12
2, ©Shell of Rotation . . ., . o%s e o + s o o o e o « 15

3., Forces and Bending Moments Acting on An . . .
Element Of Shell @ ° o [ o < © © < o o o -3 o o o 16

L, Displacement of An Element of Shell in Plane of
Meridian. « o o o o o o s o o o a o » a « o o &« 18

5. Temperature Variations Along the Inner and
Quter Shell SUrfacesS. v« o « + o « o o + o « « o U6

6., Membrane Force, Ty, as A Function of s in A
Heated Conical Shell. . . ¢ o « o o o« o « =« o o U9

7. Merbrane Hoop Force, To, as A Function of s in
A Heated COniOal She 1.0 ° o © @ ° e e ° ° ° o ° 50

8., Bending Moment, M,, as A Punction of s in

- P

Heated Conical Shell. . . « « ¢ « o o o 51
9., Membrane Force, Ty» as A Funotion of s in A

Heated Multi-Layered Conical Shell. . o« « « - - 54
10. Membrane Hoop Force, To, as A Function of s in |

A Heated Multi-Layered Conlcal Shell. . . - « . 55

1i1. Bending Moments Ml, as A Function of s in A

Multi-Layered Conical Shell . . . .+ . o s 0 o 56
12, Bending Moment, Mo, as A Punction of s in A
Mul“ﬁiwmyered Coni Gal Shell o o @ ° o » o '3 -3 57

13, Transverse Shear PForce, N, as A Function of s
in A Heated Multi-layered Conical Shell . . . . 58

14, Layer Stresses in Direction 1, as A Function of
s in A Heated Multi-Layered Conical Shell . . . 59

15. Layer Stresses in Direction 2, as A Funstion
of s in A Heated Multi-Layered Conical Shell. . 60

16, Arbitrary Constant )\, as A Punction of Number

vi



Figure bage
of Layers in A Multi-Layered Conical Shell . . 66
17. Temperature Distribution Across the Thickness. » 69

180 Blement of Filament Structureo 6o ® © © o © © 6 o 82

vii



Ais Ay
! L3
A, A
810 8o
5
Kk
aij
By By
! ® %
B', B, B
X
By 4
Py b2
3
c
Cy 4
Digs Dygs D22
¥ 3
D, D
D,
E
K K
Eys By
Er,
Er
EXIB.

NOMENCLATURE

Undetermined coefficients;

Defined by equations (3.2.5.a) and
(30291003);

Undetermined coefficients;
Undetermined factor;
Elastic constants;
Undetermined coefficients;

Defined by equations (3.2 5 a),
(3.2.10.2) and (3.4.6);...

Constant coefficients;
Undetermined constants;

Defined by equation (3.2.10.a);
Extensional stiffness;

Defined by equation (2.4.8.a);

Defined by equations (3.2.10.a) and
(3e8.7);

Bending stiffness;

Modulus of elastlecity of steel;
Elastic moduli of k' layer of shell
in the meridional and circumferential
directions respectively;

Undetermined constants;

Modulus of elasticity of fiber glass;
Modulus of elasticity of resin;
Generalized transverse modulus of

elasticity;
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My, M2

110 Yoy

. Total strain at kth layer;

Undetermined constants;
Defined by equation (3.4.20);

Defined by equations (A.2.52%a) and
(A.2.53.a); :

Thickness of shell;

sgndice;

Indice;

Thermal conductivity;

Stiffness of interaction of tension
and bending;

Layer number;

Coefficient of intensity function
defined by equation (3.1.3);

Longitudinal length of shell;

Linear operator;

Bending moments in the meridional and
circumferential directions
respectively;

Bending moments, due to temperature,
in the meridional and circumferentisl
directions respectively;

Number of layers above the middle
surface of sghell;

Transverse shear force;

Number of layers below the middle
surface of shell;

Total number of layers of shell;
Defined by equation (2.4.9.a);

Coefficient of the longitudinal
temperature variation equation;

Badil of curvature in the meridional
and clirecumferential directions
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Ty Ty

Tygs Tog

respectively;

Distance from points of middle
surface to the axis of revolution;

Variable along the meridional
direction;

Besultant forces in the meridional
and circumferential directions
respectively;

Resultant forces in the meridional
and circumferential directions
respectively;

Témperature of the kth layer:
Temperature of the middle layer;
Digplacement in meridional direction;
Auxiliary function;

Defined by equation (3.4.25);
Meissener's function:

Displacement in radial directiong

Defined by equation (A.2.54.a);

Coordinate axis of shell element
normal to shell surface:

Defined by equation (3.3.6.a);
Thermal coefficlents for kth layers;

Variability function, defined by
equation (3.1.2);

Temperature difference between the
kth layer and the middle layer;

Distance between layer and middle
surfaces

Defined in figure 2;
Component of shear deformations

Torsional deformation:
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Poisson's ratio of steel;
Poisson'®s ratio of fiber glass;
Poisson®s ratio of resing

Poisson’s ratio, defined by equation
(A03°3)3

Poisson®s ratio, defined by equation
(A¢30h)§ '

Tangentisal strains of middle surface
of shell in the meridional and
circumferential directions re-
spectively;

Defiined in figure 1;

Curvature changes of” the middle
surface of shell in the meridional
and circumferential directions re=
spectively;

Arbitrary constant;

Geometrical varlable;

Defined in figure 1;
Nondimensional height of an element;
Defined by equation (2.5.10):

Layer stresses in the meridional and
circumferential direction re-
spectively;

Defined by equation (2.1.5.a);

Defined by equation (2.4.6.a);

0(8), ¥(8), #(B), ¢ (B)Defined by equation (3.3.84a)s

'
) (s)

@2(8)

Percentage of fiberglass by volunme;
Defined by equation (2.4.9.b):
Defined by equation (2.4.10.a);:
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CHAPTER I
INTRODUCTION

1.1 Statement of the Problem

Shells are widely used as structural elements in
modern buildings, aircraft, ships, rockets, etc. A careful
study of shells used in engineering shows that they are
frequently laminated ffom,anisotropio materials. A very
important application is found in spacecraft and supersonic
missile construction in whieh aerodynamie heating around
the forward-portion,of-such craft often results 1ln large
temperature gradients over the surface and through the
shell thickness, Nonuniform temperatures induce stresses
within the structure and may have a pronounced effect on
its design. Thus, it 1s imporbtant to be able to predict
stresses arising from temperature effects,

Many scientists today in the technically advanced
countries engage in the research and development of the
fastest possible ballistic missiles to meet the need of
military defensive and offensive systenm’i: It is believed
that the present analysis willl contribute to the structural -
design of nose cones of missiles flying at Zero angle of
attack,

A common type of shell is one which possesses symmetry



with respect to an axis of revolution. An isothermal
theory for such shells has been developed previously and
applied to cohical shells subjected to certaln special
cases of surface loading (6), (7). This thesis extends the
theory of anisotroplec shells by including thermal effects
and applies the results to the analysis of the fiberglass
wound conical shell subjected to axisymmetric thermal

gradients.

1.2 Historicel Backeground

The development of the theory of laminated anisotropic
shells of revolution subjected to isothermal conditions
provides the background for the content 6f this thesis.
Historically, analytical studies of structural members of
multi-layered construction have been of interest to techni-
cal people in the fields of airecraft construction, rocket
construction and ship bullding. It is becoming in-
creagsingly important with the rapid development of modern
aerospace technology and the introduction of new, ef-
ficient, anisotroplc material to expand further the tech-
nology.

There have been exhaustive studies dealing wlth the
theory of homogeneous, lsotropic shells, but there héve
been few which investigated the general theory of an-

isotropic laminated shells, until Ambartsumyan (1) con-

pleted his book, Theory of Anisotropic shells in 1959,

His effort shed light on many fundamental problems in the



theory of anisotropic shells., Although this book is con-
agidered as a good reference in the theory of anisotropie
ghell analysis and its application, many important problems
are nobt covered, such as the theories of stability and
vibration, nonlinear theory and temperature problems of
anisobtropic laminated shells. It is the purpose of this
thesis to fill one of these gaps; that of axisymmetrie
thermal stresses in laminated, anisotropie shells of revo-
lution.

Temperature problems in the theory of isotropiec sheils
have been studied by some prominent investigators. In
1952 Huth (7) presented a paper analyzing thermal stresses
in econical shells, considering aerodynamic heating of a
missile nose cone. By using Meriam’s analysis of the ro=-
tating conieal shell (12) and a standard procedure de-
veloped by Meissner (11), Huth (7) obtained a fourth-order
ordinary differentisl equation. Thompson's function was
used in the solution of the homogeneous part and a poly-
nomial series expansion was applied to obtain the par-
tloular solution,

In 1962, S, B. Dong, K. 8. Pister and R. L. Taylor
presented a paper on the theory of laminated anisotropic
shells and plates (&), Following classical isotropic shell
preocedure, but incorporating specialized elasticity re~
lations for orthotropie laninations, governing equations
for small displacements were presented for shells of revo-

Jution. The specialization of equations t¢ the case of the



eylindrical shell was made using the well-known Donnell
approximations. Incorporating the Alry stress function and
the transverse dlsplacement, the system of equations were
reduced to two fourth-order differential equations.
Following a procedure suggested by Vliasov (19), the e=-
quations were simplified to a single equation in terms of
the transverse displacement. The general solution was cb-'
tained by a trial function method for the homogeneous so-
lution and by polynomial series for the partiecular soa TE
Jution,

In 1963 Radkowski presented a paper on stress analysis
of orthotropic thin multi-layered shells of revolution
(13). From strain-displacement relations, stress-strain
relations and equilibrium egquations, two, coupled, second-
order differential equations were obtained in terms of
two unknown variables; i, e. horizontal force and reference
surface meridicnal curvature change. A computer program
was written to solve the matrix difference equations. An
analytical method was employed for selving cylindrical
shell eguations.

In 1966, papers were presented by Dong (3) and Grin-
chenko (6) concerning the temperature problems in laminated
shells of revolution. Dong (3) used the finite element
method to carry out the solution of the problem. He es-
tablished the stiffness for each finite element and used
conventional structural techniques to enforce equilibrium

and continuity of displacements at all joints. Grinchenko



(6) used an analytical method to solve the problem of the
shell consisting of isotropic layers. He set up the
equations of equilibrium and compatibility of deformation
of the shell elements in association with conventional
relationships between forces, moments and deformations by
applying the Kirchoff-Love hypothesis and combined these
through the use of Meissner'®s functions. He obtalned two
second~order governing differential équations. By differw
entiation, he reduced the two simultaneous differential
equations to one third order hypergeometric equation and
used the sum of three partial solutions to represent the
sought solution of the governing differential equation.
Both Dong's and Grinchenko's works were limited to the
conical shell. This thesis, however, covers general shells

of revolution.

1.3 Basic Ceoncepts

The theory of shells is a part of the theory of
elagticity of elastic bodies. In the theory of elasticity,
the term shell is applied to bodies bounded by two curved
surfaces, the distance between the surfaces being small in
comparison with the other dimensions. The locus points
whieh lie at equal distances from these two surfaces define
the reference surface of the shell, The distance between
two curved surfaces of the shell determines its thickness
and will be designated by h. The investigation was made

with an infinitely small anisotropic element defined at



different points of the body by three orthogonal coordi-
nate lines, In the general case of a uniform curvilinearly
anisotropic body, the elastic body obeys the generaligzed

Hooke's Law.

1.4  Assumptions

1) The shell was considered to be thin. (The ratio
of its thickness to the radius of curvature of the refer-
ence surface being very small compared to unity).

2} The shell is of uniform thickness h consisting of
"an arbltrary nunber of homogeneous anisotropic layers, each
having uniform thickness, tko

3} It was assumed that at each point of each layer
there is only one plane of axial symmetry parallel to the
reference surface of the shells,

L} The curvilinear coordinates were selected to
coincide with the lines of principal curvature of the shell
surface.,

5) All layers of the shell obey the generalized
Hooke's Law ané function simultaneously without slipping.

6) After deformstion, a rectilinear element normal to
the undeformed coordinate surface of the shell remasins
rectilinearly normal to the deformed coordinate surface of
the shell with its length preserved. Thus, the normal
stresses on an aresa parallel to the reference surface of

the shell were'neglected in comparisen with other stresses.



CHAPTER IT
- DERIVATION OF THE GOVERNING EQUATIONS

The feollowing development proceeds along lines sinmilar
to those established by Ambartsumysn (1). For completeness
of this presentation some of his work will be briefly
redeveloped here. However, major emphasis will be placed
in this chapter on rederiving the governing eguations bto
include the effects of nonuniform, axisymmetric temperature

distributions.

2.1 Basic Elastic Constants

Consider a shell consisbting of a number of curviline-
arly anisotropic layers as shown in figure (1). The shell
is undergoing small deformations while obeying the gener~
alized Hooke'’s Lew. Using the tensor notation, the stress-

strain relation can be expressed as

¥ _ Jkpk _ ok Lk .
ef air = aijaj (2.1, 1)

where i, j are indices and k is layer designation; ek

i
?Tk are the strains due to the local

is

the total strain and a

temperature with a?

k
expansion and T is the loecal layer temperature. The

being coefficients of linear thermal

gconstants a?j are called the elastic constants and there

~3



is generally a total of 21 independent elastic constants.
In the case of three orthogonal planes of elastic symmetry,
the number of a?j reduces to 9. If, at a point in a body,
there are three mubtually perpendicular planes of elastie
symmetry the body is known as an orbthogonally anisotropic
or an orthotropic body.

The geometric hypothesis of nondeformable normals
(after deformation a rectilinear element normal to a refer-
ence surface of a shell remains rectilinear, normal to the
deformed reference surface of the shell presgerves its

length) gives:

615 = 0

k k :

eu’ (3 623> = 0 (2o1o2)
k k

65 (: 613) = 0

where 1, 2, 3, are the three principazl coordinate lines
corresponding te the meridians, parallels and normals to
the surface, respectively. Furthermore, the unit elon-
gation of a fiber &% a distance y from the reference
surface undergoes the unit elongation of a fiber at the
reference surface plus the elongation of fiber due to the

survature change at the corresponding point: i, e,

k

€L =&t vy

. (2.1.3)
62 ::62 + Yké

x  k

€6 = €42 = N+ yT



where 51‘, 52 andxl, X 2 are tangential strains and
curvature changes of the reference surface of the shell.
For a shell of revolution, the component of shear defor-
mation (N) on the coordinate surface and the torsional
deformation (T) are zero for the case of axially symmetric

loading. Then, inverting equations (2.1.l1), incorporating

equations (2.1.2) and (2.1.3), and setting both og and e?z
to zero, one obtains
k 1[ x k k K k kk
L =T, [3'2251 = 8128t BYR T BaYX - 8T
k Kyl (2.1.4)
K aizasz] |
k k ¥ k
o =—3;-[a E = ak & + ak YX - ak YX - a o Tk
2 mp | 1172 1271 11 2 12 1 11 2
k¥ k Xk
+a alf 2.1,
x ] -
where
ELE &t ” (2 )
e T 211822 7 84p +le5.2

Equations (2.1.4) and (2.1.5) relate the stresses in eac@
layer to the reference surface strains and curvature
changes and local temperature of the layer. For a shell
consisting of orthobropic layers with its principal di-
rections of elasticity at each layer coinciding with the
directions of coordinate lines 1, 2 and 3, the desired

elastic constants of the kph~1ayer are (1)
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ak =k
11 EE
1
k 1
- 2.1.6
a22 ‘-E-:k—' ( 1 )
2
k k
ko Vp Y
2 -
1 Ek Ek
2 1
The stress resultants are defined as
(5k - A)
n' K
T, = o.ay (2.1.7)
1 o1 1
(8 q = 4)
AN
o (zk )
T2 = 0’2dY h (20108)
k=1
(6,4 =a)
{8 = &)
n' k
Mi = fﬁ' Ydy (20109)
=1 1
(6km1 - A)
M, = ) | o,vdY | (2,1.10)
k=1 “
(s = A)

where n' = n+m, total number of layers in the shell, 5k ls

the distance from inner surface of shell to the kth layer
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and A 1s the distance between inner surface and reference
surface of the shell (see figure 1). By introducing e~
quations (2.1.4) and (2.1.5) into equations (2.1.7) through
(2,1.10), one obtains

Ty = C4&1 + Cyp&p + Kllki + Klzaé - Tlt (2.1.11)
™ C - oag T 29 ° 2
Tp = Cogfp + G186 + KX + K% = Ty (2.1.12)
My o= DygXy ¥ Do + Ky + Kipfp - My (2:1.13)
M2 = Dzéxz + Dléxl + Klzel + K22£2 - Mét (2.1.14)
where
ne (ak I o)
T - P22™ T *12%27 (1¥y,
o= . \ Y
1t kzi ﬂk
(6, , -4)
(2.1.15)
S
iy (a, . 0. = a. 0., ) x
11%2 12%1
2t ;{, | Wk Y
(akml -A)
(gk = A)
n? r k k k
(a7 o = a k. .
M o= 221 12 2 (17)ydy
LR ] k
(6 = A) (2.1,16)
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(5k -A)
n' '(ak k k k
N, = al.an) k%
M = Z f 11 % 1271 (T )YdY
2t T , ka
5ku1 =)

2 2
(6k - 6}{“1) o ZA(GK = 61{:-»1) _J (zola»i?)

=
[RX
o
H
WMH
i
Hmw
[
| .

18 ¥ [,3 3 2 2
=-— B - - -
Dy 3;2; 13 L(ak 6k_1) (s, - & )

wherein
k
k85
B11 = =&
T
k
a
k —td
B = 20 ° oa
22 = (2e1.17.2)
ak
Bk = ekl
12 Ty
cij characterizes the influence of the elongation along

the coordinabe lines, Dij represents the bending stiffness
and torsional stiffnesses about the coordinate lines and
Kij represents the stiffness of interaction of tension and
bending.,

Yo alat
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For a shell consisting of an odd number of anisotropic
layers symmetrically arranged relative to the middle
surface of the shell, all interaction stiffnesses Kij be -
come zero. Equations (2.1.11) to (2.1.14) can therefore be

simplified to

T, =C, & + 01252 - Ty (2.1.,18)
Ty = Cppl, + Cip&y = Tpp (2.1.19)
My = DXy + Dy, = My (2.1.20)
My = DopXp + DypXy = My (2.1.21)

2.2 Bguations of Equilibrium

The conditions for equilibrium involve cdnsideration
of stresses acting on an infinitesimal element whether
these stresses are caused by temperature or other effects,.
Thus, the equations remain identical to those derived for
the isotropic shell of uniform temperature. Consider the
notation of figures 2 & 3. The equations of static equi-
l1ibrium, 1n the absence of surface forces, written for

orthogonal curvilinear coordinates are,

:iﬁﬁgél + T, 8in g + o—N = 0 (2.2.1)
~ds 2 ® TR T oee
T, T
alr) | L L2y _p (2.2.2)
ds R R '

1 2
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Figure 2. Shell of Rotation
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Figure 3.

Forces and Bending loments Acting
on An Element of Shell
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ff—ji--l\{h—)---i- M sin e'm N = 0 (2.2.3)
ds o - ese

where, in addition to terms defined previously,

s = the variable along the meridional direction

N = transverse shear forcse

r = the distance frombpointé to the axls of revolution

R1 = the radius of curvature of the meridian

BZ = the second principal radius of curvature of the surface

2.3 Kinematic Equations

One may relate middle surface strains and curvatures

‘to displacements at a point on the middle surface. Again,
these are unaffected by thermal effects and remain the same
as those from classical shell theory (1). They are, using

the notation and geometry from figure 4,

D

- 4qu W
(.C:i == 5 + Bl (20301)
E, = %(w cos ¢ = u sin ) (2.3.2)
X, == ¥ (2.3.3)
X, = WEL B (2.3.4)
r
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+d u+du
rw E?h‘ﬂy ds

L.

Figurel,

Displacement of An Element
of Shell in Plane of
Meridian
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where

L 0w _u
W= ds R1

u = displacement in meridional direction

5
i

: displacement in radial direction

The equation of compatibility is (1)
%
I“-(réf- = (62 o= é‘l)sin p -~ Wocos g =0 (2.3.5)

2.4 Combination of Equations

Following the procedure of Meissner (11), an auxiliary
function V = V(s) may be introduced to reduce the number
of equations involved in the solution. Let the stress

resultants be defined as follows:

T, = & (2.4.1)

T, = - ﬂ%m@ v (2.4.2)

N = 99-1%& v (2.4.3)
where V = V(s) is a function to be determined. The form

of these definitions is such as to satisfy inherently the
two force equilibrium equations. The moment equilibrium

equation becomes

~——=— + M, sin ¢ - V cos g = O (2o4.4)




20

Again, substituting the values of Tl’ T2 and N in terms of

Meissner's function into equations (2.1.11) and (2.1.12)

and solving for the strains<€1 andcfz, one obtains

Q’"fli[czzij"%‘ﬂ'v*c a¥ + (K ,Cp)
- Kpp0yp) 818 W - (K11€22 = Kp2 12)§§
Cigth - 022T1£] (2.4.5)
€z =.%.[c12‘§¥%iLv'+ 11 %% - (8,500
- K008 8 + (K 00 - K, C 2K
+ Cy Ty “.C12T1t] (2.4.6)

where

| 2 . i
- 011022 = 012 (2.4.6«»&)

Likewise, substitution of these functions into equations

(261.13),(2.1.14) and solving for Ml and M,, leads to

d¥ . (p , = D yelne y

11)E§

V'

o (b2 B0 av | FaaCe2 * %1202 5in0
‘ o) 1ds o) T

. C1liz - K42%0 T11%2 * %1200,
0 2t

e )Ty + (
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- M (2.4,.7)

1t
and
M o_ (o * AW . (Sing
2 = (Dyp + Dyplag + (Dyy = Dpp)=mg =W
K C,. -~K C.«y K, C.=K C
av si
b 22l T2tz dt, Tz T hizlerysiney
o (Z22liz * Kol BopCyy - K420,
O 1% Ioy 2t
M. | ( )
where
2 2
g _—11%2 = #K9K0045 + K150
i1 = o
K> C. - 2K K, C._ +K-.C
5,, - 22 11 2212°12 12722 (2.4.8.5)
a
v 2
g K1a%12Ce0 - (KyyKpp + K500, + KppKipCyy
12 a

These auxiliary functions are introduced primarily to
satisfy the force equilibrium equations. The compatibility
condition and moment equilibrium provide two simultaneous
equations for the two-unknown functions V and W, With this
in mind, the values of’“&1 and 62 from equations (2.4.5),
(2.4,6) may be substituted into the compatibility equation
(2.3.5)s The ccmpatibility equation is then expressed in

terms'of“auxiliary fanctions as
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2 X
é_%.m sing AV (012 1 22 sin29 ) v
ds r ds 011 Rle 011 rZ

Py By - Pi sine aw a 1
=T z+v ¢ r ds | (C R
411 ds 11 8 11 B2
Kzzcil - K2%2 4 - F3 s1n®y ) W o
¥ c BE, ~Cpr .2 o
11 172 11
* ia(@) ' (2.4.9)
where
Fpo= %1% = 2%
= c = C eToJe
P = K000 - K (2.4.9.a)
Py = Ky5C10 = K12
and
aT ¢ 4T cC + C
B(s) = - —26 , 12 1t 4 11 12 sine p
1 ds C,q ds Ci1 r 2t
Chn + C
22 12 sine
- 011 Ir Tit (20409013)

The moment equilibrium equation (2.4.4) may also be ex-

pressed in terms of the auxiliary function as

P - o - - o ~
Q_Z;W_w sin 6 4W . (Dlz D12 i, Doz = D22 gin® 0y w
as? r ds

D4y — Djq B4Rz Dyq - Djy 2
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. Pr__afv . et P gine av
Dy = Dy ) g2 " Ay - D3] v ds

K. C_ =K C
Y SR N S Tt 2712
Dy =D, B, 7 alby, -1y,

X 1
172

P 2
- 3 8ln 8y (s) (2.4.10)
HDyg =Py =

where

d,(s) iy K11C22 ~ Ky2Cyp dTyy _ P35+ K400 - K12012T

K,.C.,-K:C 4T K C -K C 4+ P
11712 1211 _ 2t , 2211 12 12 1T2t
(D, = Diq) ds ﬂ(-D11 - Dll)
aM
- i 1t | 1 1

¥ 4 M
D11 = Dll ds D11 o Dli r 1t

o

- 1 Iy (2.4.10.a)

< * - L
Dil + Dll_r 2t

Equations (2.4.9) and (2.4.10) comprise a complete system

of differential equations in terms of the two required

fuanctions V and W, by means of which one may determine all

the design force of the problem.
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2,5 The Governing Equation for the Orthotropiec,
Odd-Number-of Layeres Shell

The elastie constants for shells of revolution con~
gisting of an odd number of orthotropic layers symmetri-
cally arranged relative to the middle surface of the shell
have been obtained in section 1. The material of the shell
at each point has only one plane of elastic symmetry paral-
lel to the middle surface of the shell., If the coordinate
surface of the shell coincides with the middle surface, one
has the advantage of all interactional stiffness Kij being

zero, By virtue of this, one obtains

(]
1 2% %3 11 - T22 T D12 =0

The moment resultants M1 and M2 becone

o aw sin -
My = =Dy G5+ D, 300w - M, (2.5.1)
- .n .d _ |
M, = Dlzdz + Dzzgi%ﬁ_w My (2.,5.2)

Then, equations (2.4.9) and (2.4.10) reduce %o

d%v  sing av . (012 1 C22 sin?yg ) v
2 g L) A ——
ds r ds Cii RIRZ Cll I'?"
o 1.
=55 W +D(s) (2.5.3)
€11 Bp d&
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2 D
a“w sing dW 12 1 2 in" @
z - - SR tp=t nz W
ds 11 7172 11 r
= w——l—-—-—i—-v +é (S) (2.5024’)
Dyq By

Wheréqﬁl(so remains as defined in equation (2.4.9.b) but

@%(s) becomes ;

anM
g i =sing —1t
Ez(sb = = D11~——;-(M2t = Myp) + 755

As discussed in Appendix 1 and reference (1), the values of

——ag-and—ﬁzz— may reasonably be assumed to equal some
11 11

constant‘xoi.e.

22 _ 22 _
1" P

The system may then be written in a compact form as

_ c
(V) +—22 Ly _

W+ (8) (2.5.5)
Ciq BqHp 011 Bz 9,
L(W) 12 1 L 1y +3 (s) 6)
TW) =<2 _1 w_ . 1 1y .3 (s (2.5.6)
D,y B4Ry Dyy By " T2

where

Multiplying equation {(2.5.5) by an undetermined factor, I,
and combining with equation (2.5.6) leads to |
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D , c
I - G2 sk v 2 [um + 24
11 1 G T2 €1 B
1,V
+ e ] =3 ,(s) + 58 (s) (2.5.7)
11 Bp
To determine the value of a, let
D, .
#—Z'R:l_'i' cﬂ a = mikz (2"5’8)
11 1 11
o |
12 1 1 (12
—_f L 4 = ik (2.5.9)
€19 By a&Dg3 |

By means of this substitution it is possible to find the

complex function § in terms of V and W
g = W + av . (2.5010)

which satisfies equation (2.5.7). Addition of equations
(2,5.8) and (2,5.9) results in

C

c
11(D12 T = 0 (2.5.11)

+
11 11 By Dyq0

The solution toc this quadratic equation is

-C

i

2
11 D1z, 1z)+ 1V/11‘ 12 2)23; 4Cyy
2R, Dyy T Cyy aZ Dy *

From Appendix 4 it is seen that
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Cc D c
11 11

The value of —i—

3 is: practically always very small. There-
1

fore, the terms involving_gL.can be discarded and

1
a = - i\ﬁggj: will identically satisfy equation (2.5.7).
11 T )

Inserting the value of a in equation (2.5.7) one obtains

2
_d;__g.a sing c':wm}\s:ln‘2 8w+ 1[G Qf) ﬁw—
ds r ds r2 11°11 2

Iy
11 as r ds r Diq B
2 P11
Bee@ause
c
G =W -1 nﬁ@_" (2.5.13)

equation (2.5,12) can be written as
a%s _ sing do _ >Lsinzé s Ly L2 8
dSZ T ag TZ CllDii R2

Or, in linear operator form,
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- /C
o /O o 11
L(o) + 1 m T{E = d)Z(S) - 1 D11'Q' @1(5) (2.5.14)

This is the governing differential equation for a shell of
revolution consisting of an odd number of orthotropic
layers: subjected to axisymmetric thermal gradients. As
expected, the form of this equation is identical to that
derived by Ambartsumyan (1) for the isothermal shell except
for an additional term, reflecting thermal effects, on the
right- side. The solution of equation (2.5.14) consists of
the sum of the homogeneous and particular solutions and
only the particular solution can be affected by this new
term, Therefore, the homogeneous solution obtained by
Ambartsumyan through asymptotic integration is perfectly

applicable to the present problem.



CHAPTER III

SOLUTION OF THE GOVERNING EQUATION

3.1 Solution of the Homogeneous Equation

As' explained in section 2.5, the homogeneous solution
obtained by Ambartsumyan (1) is applicable to this problem.
It is (1)

o = (Elcosﬁ - Flsins)e"s+ (Ezcosﬂ + Fzsinﬁ)eB

; =B _
+ i [(E1 sing + 1’*‘1 cosB)e (E2 sinB

- oncsB)eB ] | (3.1.1)

where Elg E F1 and F2 are unknown constants, and g8 can

29
be expressed as

&k ds
8 = Vﬁijjqﬁig (3.1.2)

(2]
in which ©

= Q.
k = (3.1.3)
\/011D11

From equations (3.1.2) and (3.1.3), it is seen that B
changes with respect to The shape, thickness and elastic

properties of shell,

29
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3.2 Solution of Particular Equation

A particular solution of equation (2.5.14) would
apply to the general shell of revolution. Such a particu-
lar solution was not obtained 1ln this study, however, par-
ticular solutions were obtained for two important shell
shapes; the c¢ircular cylindrical shell and the conical
.shell with special material properties. These solutions

will be discussed in the followling sections.

3.2.a P {63 Solution for the Clircular, Cylindricsl

Shell

The» governing equation for the general shell of revo-
lution becomes: the governing equation for a circular
cylindrical shell, if the geometric variable 6 is set to

zero. The governing equation then becomes

2

d o .1 o ¢ [ H®
2 -
dx ©11P11 F 7| P1g
C C.
12 uw
+ i ‘-ﬁll(ﬂ* ""_C—_H )] (XmL) (302-1)
11 11

‘The derivation of right hand side of above equation can be
found in Appendix 2,
Let

By = (a1 + azi)x + (b1 + bzi) (3.2.2)

Its derivative with respect to x is
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dc '

also the second derivative is

“p
dxz

= 0 (3.2.4)

Substituting the assumed polynomial and its derivatives
into equation(3.2.1) and equating the corresponding terms,
one obtains a particular solution for circular cylindrical

shell in the form

b“'p = (A' + Bgi)(XwL) (3»205)
where
- o C11

(3.2050&)

ZC

o= 11 ..

B = r i H
Dllfl

3.2.b Particular Solution for the Conical Shell

The governing equation for the general shell of revo-
lution (2.5.4) becomes the governing equation for a conical
shell, if the geometric variable ¢ is a certain constant a.
Ag: shown in Appendix 1, A rapidly approaches as the number
of layers increases to infinity if the material properties

alternate. Equation (2.5.14) can be written in this case

25 = - o

2 4o do - Q Xc H
Kl - T A 1\/:._,___2[__
ax dx cliDll vtanc& Dll

as
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C c '
11 # 12 %% 3 2
(B - <2H )] (x7 = Lx) (3.2.6)
QD y €11 _

+ 1

The derivation of the right hand side of the above equation
can be found in Appendix 2.
Let

2 "8 Y ‘
op = (a1 + azi)x + (b1 + bzi)x + (c1 + czi) (3e2.7)

Its derivative with respect to x is
as
S 5
X = Z(a1 +8,1)x + (b1 + b,1) (3.2.8)

Also the second derivative is

2
2% = 2(a, + apt) (3.2.9)

a#
Substitubing the assumed polynomial and its derivatives
into equation (3.2.6) and equating the corresponding terms
provides enough conditions to solve for the unknown con-=

stantge. The obbtained particular soclution then can be

written
5 = (&% + B*1)x% + (¢* + D*i)x (3.2.10)
b
where
» Ciifana Ci2 _ux
A" = B «—=—<H"")
o C
11
C
¥* °
B - - ‘QﬁgztanaH (3.2.10.2)

C 3C tanza
c¥ BEY - u_ﬁlg,H**)L + 11(1 i
11

i
O



33

3tarla C .JC . D c
p* = /541 Ltena B + LLL 110 (5" L L2 g
oD, afa 11

3.3 _The General Solution for the Circular Cylindrical
Shell

In section 3.1 the homogeneous solutlon was obtained
for the general shell of revolution, If the geometric
variable ¢ is zero, equat&on (3.1.1) yield the homogeneous

solution for the: cireular cylindrical shell

- (Eicnss - Flsing)eaﬁ + (Ezcosa + F"zsins)eB

“h
+ 1 [(Elsins + Flcoss)e's- (Eésins
. B
~ F,cosg)e ] (3.3.1)
where
B=Jor B (3¢3.2)

The general solution of equation (3.2.1) is the sume
mation of equations (3.3.1) and (3.2.5). On the basis of"

equation (2.5.13) the general solution is

€11 -8
W= i fs . V = (E1@OSB - Flsins)e + (Ezcoss

+ Fésins)es + A’s + 1 [}Elsine + FiCOSB)eaa

- (Ezsins - F cosa)eB + B's] (3.3.3)

2
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Separating the  imaginary and real parts, one obtains

o (T o w -8 B
W = (Elcoss Fisinﬁ)e + (Ezcoss + Fzsins)e
+ A's (30362"‘)
.0 -8 _ (@
V = 2o (E,sing + F cosgle (E2§in5
kK ®y |
- F;aoss)ea - ij‘ B's (3e345)
2 €11
Let-
2
_ E
: Bl =0, = o7 8 (30306)
where

=2
0‘6" = \[';—L (3.306;3)
: 2r

By introducing the new constants

A = E

1 1

_ : a

A, = (Ezeos a, + F,sin a)e
B = =F
i 1

_ a

B, = (E,sin a, = F,cos gJe

The equabtions (3.3.4) and (3.3.5) can be written in the

following forms;

W= A,0(8) + B PB) + A0(8) + Byp(B) + A's  (3.3.7)

- Q
V= Ezcu [“Alﬂ‘” + Bo(B) - A,¥(8,)
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|- foe

where
ol @) = e Poos g
Ap) = e Psing
gla) = ol +X(g)
d(g) = olp) - (8} | ‘ (3.3.8.a)

The sought functions W and V are thereof obtained, and

their derivatives are

e |1
L S LUCEEXICIEF LR

+ BZ“P(B]_)] + A’ (30309)
av =3 |1 | _a¢ - B
<5 = D11 k‘lzf[ﬁ"fl’(s) B #lB) + A (B )
pria .
+ BZ¢<31)J ~\Je B (3.3.10)

-

With these obtained functions and thelr derivatives, the

design stress resulbtants are determined

Sil’lOo v
= = G - 30 3011
T —_ 0 ( )

B |
T, =D, JE?"[“ Afb(ﬁ) - Biﬁ(ﬁ) + Azw(ﬁl)

D
v 3,95 | - ,T-i_tll_LB (3.3.12)
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M, = Dli\/___[A g(8) - B¢ (B) - A 8(8))

-+ Byw(s,) ] - D, Alsi- Ny, (3.3.13)
M, 12\/__[A¢(B)»Bw(s)=A¢(B)

+Byp(p ) | - My (3.3.14)

. l mz
N 3_?-1; D11 [m Albo(ﬁ) + Ble(s) - Azbo(Bl)

[, B
+ B““zze(a )] - (AL —S (3.3.15)
1 Ci1 F |

On thembasis¥of“ﬁheﬂproperty of long circular cylindrical
shell (1), Bl shall be discarded in calculating the quanti-
ties att edge where s = 0 . Also B shall be discarded at-
the other end where s = L. With this in mind, the con-
stants>A1, B, A B can be determined from the boundary

1° T2 T2
conditions.,.

3.4 The General Solution for the Conical Shell

Again, in section 3.1 the homogeneous solution was
obtalined for the: general shell of " revolution. Equation
(3.1.1) is the homogeneous solution for the conical shell

if the geometric variable ¢ is constant g.

Eh = (Eloosﬁ - F”sinB)e’B+ (ﬁzcosB + F sinB)eB

1 2

e =B _ 3
i [(Elsins + FlcosB)e (E231n5
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- onosB)eB]A - (3.4.1)

where, in the case of the conical sheil

o

8= k ‘ ds
JZtana JT-8 (3.4.2)
S,

On basis of equation (2.5.13), the general solution is

Wo [y (E F single~ B + (E.c

+ Fésinﬂ)es + A*(Lus)2 + C¥(Les) + 1 [(Elsins

+ Flcose)e”a ~(Ezsins - F-f‘zcoss)eB + B*(L—as)2
" _
+ D (st{} - (3.4.3)

Following the: same procedure of section 3.3.a, the functions

W, V and their derivatives are obtained as
W = Ale(ﬂ) + Brf(ﬁ) + Aze(ﬂi) + Bzf(ﬂi)
+ A¥(L-5)% + c*(L-s) C(3.4.4)

0
v =-§§E——'[@Arf(ﬁ) + 319(5) - Aéf(ﬁl)

11
+ Bze(ﬁi) ] - B**(Lms)z +.D**(Lm89 (3.4.5)
where
B** - -tang ¥ | (3.4.6)
p** - L tana ¥ +Btarim .q.ilf’r(Ht 212 H¥*) (3.4.7)

11



38

aw _ % |/ 1 [%¢W)-Bﬂ4m~£5MB)

ds \/Z(L—s)tana

+ B,g(8 )] - 28" (L-g) - C" (3.4.8)
av 3 :
ds ~ D11k\/2(L~s)tana[:“A1¢(B) - Big(ﬁ) + Aéw(si)

+ Bzg(el)} - 28"*(L-g) + D*¥ (3.4.9)

Substituting equations (3.4.4) through (3.4.9) into
equations (2.4.1) through (2.4.3) and (2.5.1) through
(2.5.2), the design quantities then are

k?Dy4 |
T o= [Arf(ﬁ) - B o(B) + AZY(Bl)

- B,0(8,) } +# B (Les) + D" (3.4.10)

=73 1
v, = B0y, \[oeTema] AW(R) - B + Ag(s)

+ Bzﬁ(Bi):I - 2B**(L-s) + D" (3.4.11)

coto =2
N, = 2% g [«Alj’(s) + Byo(8) + B,o(,)

- Azf(sl) ] - @otaB**(st) - cotaD** (3.4.12)

/ 1
11 \/Z(Lus)tana A d(B) - B, (8) - Azﬁ(sl)

1

Mi = D

1

+ B2¢(Bl) } +'ii§‘LA19(3) + ByP(g) + Aze(ﬁl)

+ Bzf(al)i] + Dy LZA#(lws) + C%]
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2
Mz“‘°D12¢é(Lm§)tan [;1¢(3) = Bywle) + Ayy(s,)
D22
+ Bg(p,) | +i5|A0(8) + BF(B) + Ajels,)

+ Bé?(al) ] + D12 [ZA*(L~S) + Cr]

+ D22 [A*(Lns) + G*] - M (3ab.1l)

2t

where Al, AZ, Bl’ and Bé are four unknown constants which
shall be determined by boundary conditlions. For a shell
containing a conical vertex, to assure the continulty of

slope at the vertex point, it is necessary td assune

A, = B, = 0 (see equation (3.4.4) )

A closed conical shell with a clamped base was used to
illustrate the application of this theory. The unknown

constants were determined on basls of the clamped edge

condition which require

@ @ —% 0
RZN‘ + (/2R3 le‘: 0 (3.4.15)

at  the edge where s = 0s (B = 0)
From equations (3.4.12) and (3.4.13) it was found thatt

° - oy *H
Ne-—1 % p B -_L s _._1 p (3.4.16)

Ltana 1171 tano tana
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M = _Du¥ A -B | + P12 A, +D [éA*L c*]
1 = Toltans |® ~ B L 2t Py *
% * .
+ Dlz[A L+C ]_- M. | (3.4.17)
Roz = Lbtana (3014‘018)

Inserting equations (3.4.16) « (3.4.18) into equation
(3.4.15), A, was: found to be

a¥ ,
A =G % (3.4.19)
where
* =2 2tana .
G = Dllk + —I k D12 b R

(3.4.20)
¢** _ n(s® + ™) - \[Ltem % [A*L (2D, + D

%* ‘ - &
+ C (D11 + Diz) 1+ 2 J2Ltang k Mlt

The: normal displacement'w of the conlcal shell was derived

12)

(1) as
S
C..T. = €, ,T.
Wom Ll 2 = 12 1(1.s) singcosy + [ é;.+<[ (Wsing
g 2 s
c,,T, = C,,.T,
221 = 12 2 coso, ) ds]sina (3.4.21)

Again, the boundary condition for the edge s = 0 3§ g = O
is w = 0 »
On basis of equation (3.4.4), (3ek.10), .(3.4.11) at

s=03;8=0 e; is obtained



b1

w3
; -k Dll ‘. 3 *-u-)
o, = - c.il(_-————(~A1 -By) =28 L+D v

Jéﬁtana

2 .
ED“

39 %9
(-B,) + B L +D )} Leosa (3.4 22)

- Cﬁiz( aQ

Also, the boundary condition for s = L 3 Bl = 0 is

W=.O

Similarly, equations {3.4.%4 ), (3.4.10), (3.4.11) at

s = L, give
. " : ¥¥* cosa L 4.2
0=-e, + (022 - 612)D 08T (3 3)

Solving equations (3.4.22) and (3.4.23) simultaneously,

one obtains

*
v

Bl = V-n--u- | (34 024)

where

_ =3
C,,k°D

* ‘ . * ¥ #4 11 11

V = (2(211 + @12)B L+ (022 -C )D =

——A
11 JeLtana 1

o . .2 (3. 425)
S 11%K°Dy4 . Cy ok Dyy |

[2Ltano. L

1 and El bhe the  obtained constants A1 and B10 Then,

the design quantities can be expressed as

Let A

=2

kD - - e L %%
T, = Laif [Aljxﬁ)= Bie(ﬁ)] + B (L-s) + D (34 :26)
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R z = ]
T2 = k Dyq «Z(st)tana [} A1¢(B) - Blg(ﬁ)

L3
- ZB**(Lms) + D* (3.4.27)

M =p,.k [
17 7117V (2(Les) tana

B - B o |

Do [ = -  a *
+fE%§T[A19(B) + BfP(B)j] + Dyy [ZA (L-g) + C ]

D [ *(L c*jl M
+ D, A" (L-sg) + -

1t (3.4.28)

=2

M, = D k
2 12\/2(st)‘¢&1&0¢

-~ - D -
- 22
[Bste - Byca | 222 [Al o 8)

+ Bff(ﬁ) +D,, [2A*(L~s)+c*] + Dy, [A*(Las)

*
+C ] - M, (3.4.29)
_ cota 2 .3 3
N = ﬁlg“ik Dy [_ Ar?(B) + Ble(B)]
- cotg [é**(Lms) +D ] (3.4430)

Inserting equation (2.1.5) in equations (2.1.10) and

(2.1.11) the layer stresses were found to be

Kk

. E, [ ké - 1%()
T e + + Y +

% (1-v,v,) | €, * V6 AR

k k k k
had (a’l+v2a2)(T ) (304031)
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k
K E, [ K k
T V) &, g+ G v X)
k k k k
- (onz +\)1a1)(T )] (3.4.32)

Alternately, these can be expressed in terms of Meissner's
functions. If equations (2.3.3), (2.3.4), (2.4.5) and

(2.4.6) are substituted in the above equation:

-~

' k
k \
v -C C -C c
k. E (-CoptVoCi2) . 010 &y
1 T {ievv ) L (L-s)a a ds
12
k_ k
. (w012+\b011) T s (022“Vb012) T
Q. 2t n 1t

ko k k
+ wﬁ%ﬁg ,,,%L) - (% +V2°‘1;)(£T + Tm)J (3.4.33)

& X
¥ N -
L5 (C127V%55) _— (C11=¥Cs2) au
AN (I~s) O Q ds

1Y2 .
N k
. (011“‘}5%2) v, CatViCee)
o} 2t 7 0 1t

W k k k kK _
+ yitog: - VI%) = lay+V o ) (AT + Tm)J (34,34

In Appendix 2, it was proved that

k, k k k
x @ )
) n El(d1+y2ﬂ2)t
Tit - Ezl 1= V.V Tm
=1 i2

k




kK &  kk
n' E (a +‘V a )t

T
= -V m
k_l 1 »&v%
Thus,
X . ;9
(‘“Clz +\£2 Cvli) . N (002 = VZciz) T
o 2t o 1t
k k k
a - _ m
k=1 1=V,
k k k k
C,n = C ' E (a
, ‘L2z IZVz 12] é%: I LA
y m
=1 1 - \&»%
Bagsed on equation (2.1.17)
(-C e, ) (Cpp = Ve, )
“C12 *Votu! 2712’ o
0. 2t 0 it

k
(=C.. + V.G .) Xk

_ 12 2711
= R (c 5% +012a1)T

k k
- Ve J(Co e, + Cya))T

+ (Cy 2%12 1 12%7 %

1 c Kk Lk x k
=15 |~C12%22 2 + Cy4CopVply = Cyoly + C14C45%4Vo

1{ Kk x 2 kk
c o c Vo re ¢ o - Rk
* C11822% = ©148Y0% 6,0, 012\); 2] "

2 1
= L o
= 5(C11Cpp = Cypl(ay + V%) T

Equation (3.4.33) can be reduced to

bl



s

B («C e ) (~C Ko )
- 1 “Caz * Vobyo Vo4 12 *Vohi1! av
‘1 - V,) (L- )0 o LE
1va
k .
W 4aw. k k k k o
+ ’Y(Vzm - &S) - (0'.1 +\}2m2)AT jl (3.4.35)

Likewlse, equation (3.4,34) also reduces to

BX ¢ e ) ¢, -voC,)
S 2 @z = Vi%2) . (C11 - Vi%p) av
2 (1 "’Vl‘)z) (L - s) X0} ds
W aw k  kk ook —_
+ y(L s vj__(_i_&?) - (G,z + v].al) AT ] (3-4»}6)

3.5 QNumerieazl Examples

As amr illustrgtion of the application of this theory
to typical problems, a typleal numerical solution of the
sonical shell will be discussed.

"To establish partiazlly the wvallidiby of the solution,
the equations were first-specialized to the case of the
isotropie shell and results compared with those of an
existing solution for this special problem by Huth (7).

Example 1. The isotropic conleal shell.

The elasticity properties were for an isotropic ma-
terial and all data and thermal gradients were taken from
reference (7). The thermal variations are shown in figure

(5) and theV, E and a are:

Y =

&=



Figure>5.  Temperature Variations Along The
Inner and Outer Shell Surface
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b7

E =30 x 10° 1b/1n?

6

a= 7 x 10° in/in/deg F

The*elastiaity properties become

i PN 2 2
Cyqy = Cpp = 2 x 100 1b/in”  Dyy = Dy, = 650 1b/in
.1 6 .. 2 _ 2
¢, = > x 10° 1b/1in Dyp = 159 1b/in

Q= 4,25 x 1012 lbz/in

k' = 57,2 1/in

M = e E o 1

1t 1 -V  3(32)?
2

. (500 +-Ign'sz)

5 /
P = —=—deg F,
Tuy 4e€ F/in

From Appendix 2 one obtains

L3 3%
H = H = 1,22 1b/in’ E = 0.0064 1b/in®
3% ¥*
Also from the definitions of A and C following equation
(3.2,10), it was: found that

*

A 0.376 x 10”7 1/1n3

i

¢* - —0.b51 x 1077

i

1/in2

and were used to determine Mq, MZ which are contributed by

the particular solutions

D [za*(L - s) + c*.] + D [A*(L o) "]
11 | 12
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and

D, [ A*(L -8+ "] 4 D, [A*(L - 8) + c*]

These are very small compared to that contributed by M1t°

The values of T Tz, and N contributed by the.particular

19
solution are

P : 3 .
B (L ==s8)+D = H s tang
and
34 E-X ] o
«2B (L = 8) + D = (=L + 28) H tang
Because
2
3 tan™q € #* C ¥ -
——L5" _ 225" = 0.98 x 107° 1/1n

11

is very small, it -can be neglecbted.
A computer program was written to solve: the formulated
equations: (3.4.26) to (3.4.28). The results are plotted
as figures 6, 7 and 8. '

Bxample 2. The orthotropic conical shell

A conical shell consisting of nine orthotropic layers
with the same shell dimensions and thermal variations as
those of example 1 waes also investigated.

From Appendices 1-4

\)1 = 0,083
V, = 0.253
C,y = 0.305 x 106 1b/in?

0.375 x 10° 1b/in?

1t
27
N

i
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Figure 6. lembrane Force, Ty, as A Function of
s in A Heated Conical Shell
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Figure 8. Bending Moment, My, as A Function of
s in A Heated Conical Shell



¢ = 0.275 x 10° 1b/in®

0.111 x 10° 1b/in®

(W)
]

‘2
Dy, = 12.15 1b/in

2
D22 = 80 1b in
-2
¥ = 49.2 1/in
K, =1
K, = 5
B = 6.87 x 10° 1b/in®
6 2
E, = 2.31 x 10 1b/in
X
0, = 6.67 x 10~ 1in/in/deg F
a, = 6,08 x 106 in/in deg F
o= 8.21 x 1010 1p2/1n"

Following the: procedure stated in Example 1, one obtains
* ‘ 3
H = 0,167 1b/in
* %
H & = 0,146 1b/in>

0.00093 1b/in?

=]
]

A" = 0.486 x 10~7 1/in3

52
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* -
¢’ = -0.582 x 10™° 1/in?
A computer program was written to solve the formulated
equations (3.4.26) = (3.4.30). The results were plotted as
in figures 9- 15.
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CHAPTER IV
DISCUSSION AND CONCLUSION

In the analysis of this problem, several significant
assunptions have been made. For example, it was assumed

the ratios of elastic constants ; C toe C to D

22 11° P2z 11
were considered to be equal to an arbitrary constant A in
order to reduce the system of differential eguations to a
single governing equation, Purthermore, this arbitrary
constant ) was taken to be unity in order to make the par-
ticular sclution possible. In addibtion %o these as-
sumpticns, the first approximation of asymptotic inte-
gration was taken in the solution to the homogenecus part i
those equabtlions which are obtasined when the coefficients of
l/k2 and i/k venish. By elementary reasoning, it was shown
in Reference 1 that the first approximatiocn has an error
of” the order of h/R in comparision with unity. Therefore,
it leads one to conclude that the results obtained by this
analytical method are only epproximate, but adequate for
most engineering purposes.

It is seen from the design quantities: that the homo-
geneous solution is in the form of a damping function which
converges so rapidly that the edge effect zone is very

small compared to the corresponding dimension of the shell,
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From the plotted figures, one sees the abrupt changes in
the design quantities occurring somewhere between 5 in. and
10 in. from the rigidly clamped end. As pointed out by
Huth (7), in an sctual missile configuration, rigid clamping
certainly will not be achieved, so the considered case
represents a limiting situation.

In the analysis of Example 2 fiberglacs was used as
the construction material. Of course, the numerical values
for typical elasgtice properties are low compared to those
of steel which was considered in Example 1. Corre-
spondingly, the design quantities become proportionally
less,

It should be noted also that there are deviations
existing in the comparisons of the summation of the layer
forces against the corresponding tangentisl resultant
forces., The deviations amount to 9.6 % for the meridional
direction and 5.6 % for the circumferentisl direction.

Both are less then 10 % and are considered toc be good for
engineering purposes., The accumulated error is belived to

be the result of the approximationg discussed previously.
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APPENDIX 1
THE ARBITRARY CONSTANT

Por @omr"enienee9 the layer thickness is considered to
be unity in the following calculations. The definitions of
Gij,(zg Dij and Eg show that they are functions of the
layer thickness tk, (tk)z9 (t y3 and-;%-respectively,
Therefore, these elastic constants sh:ll be modified by the
layer thickness before applying to the problems, The
ratios-g-~amd-—“f-have been plotted against the total
number of layerslln the shell as shown in PFigure 16. It is
seen that the curve behaves in an oscﬁllating'damped
fashion and converges relatively rapidly to unity. Alter-
nately, the ratiocs can be shown mathematically to appréa@h
unity in the 1imis by using equations (2.1.17), (2.2.17.a)
and (2.1.6): 1., e, for the case of alternating layers of

equal thicknessss,

nﬁ
B 5 s
T 2pt0y = 8y )
= 1 (A.1.1)
11 <
Byy {8y = 8y.q)
K:Z’J
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2.2
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Arbitrasry Constant ), as A Function of
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Figure 16,
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8
‘ < E2 tk
C <
Cli n? Ek
R R
k=1 L= \)1\)2
(Ez 4 F1+ Ez -+ Ei + ooqoon,sterm)_l__i——
nte U E +E 48 ' t
i, * + + + D 0 0 0 o ————————————
1 2 . 5 n term)l - V1Vz
i (A,1.2)



APPENDIX 2

THE THERMAL GRADIENTS

In this section is discussed the calculation of the
temperature distribution through the thickness of the
shell. With the assistance of some insulating material on
the inner surface of the shell, the temperature along the
inner surface can be held uniform. To determine the
temperature at each point of each layer, a steady-state
heat conduction condition was assumed to exist through the
shell thickness. Taking a ninelayered shell, for example,

the heab-balance eguations are

K (T - T, ) =K(T, - Tl) (A.2.1)
K (T, -~ T, ) = Kl(TB - T,) (4.2.2)
K1(T3 - T, ) = K(T - TB) (4.2.3)
Kp(Ty = T3 ) = K (T, - T)) (A.2.4)
Ki(T5 - T, ) = K (T, - T5) (A.2.5)
K (T, = T, ) = Kl(T7 = T,) (A.2,6)
K (T, = Tg ) = Ky(Tg = T7) (A.2,7)
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KZ(T8 = T7 ) = Kl(TOut - T8) (A0208)

where Kl’ K2

The solutions to these eight simutanecus equations are

are the alternating thermal conductivies.

1 _
Tl zm[KiTin -+ K?.TZ] (A0209)
1
T, = € o [KzTin + (K +K2)T3] (A.2,10)
P -— 1 Tk K+ 2K T] A.2,
3 2K~+2K[1in+(1 K0Ty (A.2,11)
1 2
T,o-— 1 [xT 2K 7| 02412
b =R [ ST * Lt 2K,) 5J (A.2.12)
1 2
1 _
T == KT + (2K + 3K )T A.2,.1
5 3K, +3K, L1l in (1 32)6] ( 3)
1 2
T - 1 B K‘+KT:| A.2.1h
R ral POW (3K, + 3K )2 ( )
" ~ -
T = K T K o+ 4 TJ 2.
0 = HE 5 0K I + (3 . + Kz) 8 (A.2.15)
1 2 -
i o N
T == -] [ )
8 = 4K + 5K _KZTin * (UKl * uKz)ToutJ '(A 2.16)
1 2
where Tin and Tout are given temperatures on inner surface
:and outer-surfgce respectively., TB’ T7, T6°°-o-'I‘1 are’

found in reverse order and are obbained as

. ~ . o
T - W [(Lml + BE)T, 4 KZTout] (A2



Ts

i

il

it

1]

1
LK, + 5K [‘3K1 AT

* (Ki * KZ)Tout:l

BE + 5K, [v‘?Ki Iy

+ (K + KT ]
i 2 out

(2
bk + 5K [} Ky + )Ty
1 2
+ (2K + 2K )T ]
1 2 out

T | (2K 2
T [( , )T
1 2

in

+ (21{1 + BKZ)TOQE]

‘ K . [ ler %* .
5K l:( i * %ﬂin

Lx

* (BKl * BKZ)Tout]

WK+ 5K, (&g + KQ)Ty

+ ,(BKi + 4K2)Tout]

c,‘_,
"IW

== TK.T 4K
4K1+ 5K2[ 27in ¥ ( Kl * uKz)Tout]
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(A.2,18)

(A.2.19)

(A,2.20)

(A.2.21)

(A.2.22)

(A.2.23)

(A.2.24)
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~ Because heat flows linearly from face to face of each .

layer, the half of the summation of

face of the layer gives the average

corresponding layer as:

T

1

§

|

§

8

8

I

- 1 8K,
in Z(LI—Kl + 5K2) [( 1

+,K2Tout]

1 .
= = (7K
1
Z(bKi + 5K2) [ 1

+ (K1 + 2K2)Tout]

1

= (6K
2 2 [ 1
(hKl + 5K2)
+ (2K1 + 3K2)Tout]
1
= (5K
3 2(4K1 + 5K2) [ 1
+ (3K, + th)Tout]
1 " (4K
b~ 2(&Ki + 5K) [ 1

+ (LPK1 * SKZ)Tout]

= i
5 2(@1{1 + 51{2) BBKl

* (5K1 + 6K2)Tout]

+

4

4+

temperatures at each

temperature for each

9K Ty,

8KZ)Tin

7K2)Tinv

6KZ)Tin

SKZ)Tin

MKZ)Tin

(A.2,25)

(A.2,26)

(A.2.27)

(A.2.28)

(A.2.29)

(As2.30)
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- 1 [ K. )T

+ (6K1 + 7K2)Tout:| (A:2.31)

1

Tg - n = 20, 7 5K, |:(K1 + 2K,)T,

‘+ (7K1 + 8K2)Tout:l (A.2.32)

1 :
T = K,T
out - 8 2(4K1 + 5K,) [_2 in

+ (8K + 9K,)T ] (4.2.33)

Prom these expressions, by subtracting the temperature of

the middle layer from that of each layer, one obtains

ATK = TK - T , (A.2.34)
K K :

T =AT + T (Ae2.35)

where

K th

T = Temperature of the K layer

Tm = Tempersture of the middle layer
K th

AT" = Temperature difference between the K layer and

the middle layer

For instance, the temperature difference between the first

) can be written as

T d B idd
layer (Tiuin) an ne middle layer (T5m4



7h

R . ]
Tlmin T5~h B 2(4K1 + 5K2) (8K1 * 9K2) * Kz out.

i} 1
2(E + 5K2)l:(4K1 + KT,

+ (&Kl + 5K2)Toué]

= e 5K7[(4K + KT,

- (Lucl + L»Kz)cvout]

Ky + Kp) (T T ) (A52.36)
= z(uK1 + 5K) in T Tout 2.3

In general, the temperature difference for any layer,[&fK,
in the: presence of any arbitrary number of layers, n®, may

be expressed as

ni+1
AT - [K v )] (K% I 5 (Tout ~ T, ) (Ae2.37)
%—Zfl)Kl + (Eﬁf;JKé]

where n' = total number of layers

K kth

i

layer

Then, the resulant force due to temperature are, using

equations (2.1.15)

ifi (6k - A)

(o - A)
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) n! B (a+ 20&2)[ [k-(T) (K +K5)

- = — T T
n'-1 nt'+1, out “in
=1V, 12[(—7—)1:14 - )Kz]

)

-+ Tm t (A02038)
§ =
n' (kk A)
T = e} avy
2t %=1 2%
(6 =-A)
k=1

k, ¥ kk n'+1:l
ot Bplageie)) | [-@HE ] ) -
= L - n'-1 SR t 1
k=1 1-V,9, 2[( F K, + (B3 )Kz] out in

+ T 8 (A.2.39)

m

It 1s seen that:k is the variable in the series, if ex-

]
pansion is made only regariding to term [k - 01;4)]

8 .
n®+i, n'-1 n'-3, n'-5
g [ n( )] = m( 2 ) oe (_—2—2 had (—E'i 49 w0 $FP WK oo

2

+ (252) + (B523) 4+ (@)= 0 (4,2.0)

Therefore,
k, k k k.. .k
n' E (o +\ o)t
T - 1( 1 VZ 2 (AoZoLf'l)
T
1t k=1 1 -3V ’
12
K, X Ky ok :
2t T £y VA
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As n' approaches infinity the values for T1t and T2t are
- =T 02
T1t TZt Tt (Ae2.43)
Also, from Appendix 1, 1t is seen that
C22 = Cq4
ThuS‘§1(50 is reduced to
Q. aT
N oo m;axa —t :
il(S) - , 11) ds (AOZoL!’Ll")
The moments due to temperature are
o (]ik -A)
My, = = yay
(61{“1 “"A)
k k k,, k2 Coon +1
] Z 25 (992 | [ie = @50 " 0x)
= = 'm
k=1 1=V, 2'[&‘2—3“”( + & 2+1)K2]
‘ n'+1 .
- Tin)) + [km( 5 )] Ty (A32.45)
and
n' Kk
M, = ml:;i o, Yay
(61{”1 - A)
¥ k k k k 2
At Ep(prVia ) () j[ - (= *1)] (K, +K,)
T T J ' out
k=1 1“’\}1\)2 ';2[(1'1 2@1 )K1+(n +1)K2]
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sy (@] (4.2.46)

n'+1 n'+1,72 .
In these seriesv[kwﬁ—g—ﬂ] and [kaG—E—ﬁ] are the variable
terms. Likewise, as n' approaches infinity the values for

Mlt and MZt are

Ml,c =M, = M (A.2047)

Thus, Qz(s) is reduced to

dan.

S N v v
@2(3) = "5, T (A.2.48)

If" the longitudinal temperature variation is given by

2
T = o .Ll’
oy = Pt B | (A.2.49)
T, =1 (A.2.50)
then
dM [
i t H
S SR 28 (A.2.51)
D11 dg 2D11
or
am °
s N S (A.2.52)
11 98 D11
where
X =L - g
0 [}: (n°+1)J2(K K )Ek( 3 \)k k)( k)2
n - - + o, +\,0 t o
g = p) | 2 1 271 1 22 (As2.52.8)

=1 J@ehrcr @3 | (1-v)V,)



Also @1(3) can be written

c
3 (s) = (& --513-3**)(x»- L)
1 11

where:

C B (a4 )t
** 4, BN +V, e

k=1 1 = \)1\)2

therefore,

. c _‘ .
N B E I SR

C C,»
. i1 3* 12 %
+ 1 (H «=—H )(x-L)
| \ﬁanll ., :

78

(A.2.53)

(A.2053 0d.)

(A.2.54)



APPENDIX 3
THE MATERIAL PROPERTIES OF RESIN-GLASS

For an orthotropic material the elastic constants are
functions of resin-glass proportion, the filament orien-
tation with respect to the load direction, and the material
properties 1n the principal directions. To determine the
equivalent eiastic*constants and Poisson's ratio, the known
solution was applied and only the formulated expressions

shall be introduced

il.e.
B, = fE. + (1 - £)E, (A.3.1)
o |

E, = J‘m ;;‘ A+ Er[ - \/zﬂz] (4.3.2)
= fVp + (1= PN, (a.3.3)
E

V1, = B \}LT (Ad3.4)

where
E} = modulus: of elasticity of fiver glass
E. = modulus of elasticity of resin

79
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percentage of fiberglass by volune

“o
i

xm = generalized transverse modulus elasticity
A = non-dimensional height-of an element:
Vf = Polsson's ratio of" fiber glass
V, = Poisson’s ratio of resin

The data of elastic constants and Poisson's ratio used in

Example 2 are;

Ep = 10 x 10°  1p/in?
E_ = .5x 10° 1b/in?
Ve = .2

Ve = 36

P = .67

Using equations (A.3.1, 2, 3, 4) one obtains

E. = 6.87 x 10%  1b/1n?
E; = 2.313 x 10° 1p/in®
Vir = +253
Vor, = 0.083

Determination of” thermal coefficients for the combined

material, taking filament strueture for analysls, it is to
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determine the equivalent thermal coefficients in the fiber
direction and transverse direction. Examing an element as
shown in figure 18.

The thermal coefficient in the ('T) direction simply is

A =)Paf + (1 ”Jp)mr
The thermal coefficient in (L) direction is obtained by

solving the compatibility equation

ot _ or _ |
Ge ", < Ot E_C o (A23.5)

and the equilibrium equation
foo = (1 =P)o (4.3.6)
From equation (1)

of or _ (A.3.7)
+ =0, - &
E, E, f r

from equation (2)

= (L1 =2
O'f ( f )Gr (A9308)
substituting equation (A.3.8) in equation (A.3.7), one
obtains
Cp = O
£
O‘l —_ T (A03.9)
5 + 5L
r 7 f

inserting 0. Value in equation (A.3.5)



EXPANDING IN L DIRECTION

EXPANDING IN
T DIRECTION

Figure 18.

Element of Filament Structure
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. E
1= 1
th + (TE_?GI*
R A ,
L Er
1»+45?f-——
Ef
if" one uses

B 6

e 10 x 10

E = 0.,5%x% 106

lb/in2

lb/in2
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(A4.3.10)



APPENDIX 4
THE SIMPLIFICATION OF VALUE a

The value a was obtained through the solution of the

quadratie equation (2.5.11) as

G
11 ( 12 12)

tT, o

D .
i\/[ 1 Dl?‘ 12)1 (A4.1)
20R, Dy

By virtue of equations (2.1.17), the following terms were

©g
|

found

+y n® 1 =y.y
11=Z 12
o 1tE(1-V)

Eﬁza\)

D 2

11

,fl?.=_,\;2

11

Then, it is easily seen that

¢,, D o] n® v, (1-V.V,)
a1 12 _;__ -1 2
ZR-Q-(D +C = Z 12

711 " } k=1 FEE(1-V)

8l
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1
where‘ﬁ— and the summation of serles is very small.
1

fc
Equation (A.4.1) is, therefore, simplified to a = ~i 351%;¢
11
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