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PREFACE 

Multidrug resistance (MDR) pumps are responsible for the highly resistant phenotype of 

many pathogenic Gram-negative bacteria to antimicrobial agents. An inner membrane 

(IM) transporter, comprising a proton antiporter or an ATPase, functions with an outer 

membrane (OM) channel and a periplasmic membrane fusion protein (MFP) in the 

extrusion of a broad range of substrates that are structurally unrelated. The promiscuous 

nature of these pumps makes the design of novel therapeutic drugs extremely difficult. 

Drugs that were developed in the past decades are analogues of existing drugs, many of 

which are no longer effective against this defense. MDR poses serious threat to public 

health, reflected in increased morbidity and mortality. Clearly, new strategies are 

warranted in combating this threat. The MDR pumps serve as attractive drug targets. 

Efforts aimed at developing efflux inhibitors are currently underway. Understanding the 

mechanism of MDR pumps will significantly aid in the design of efflux inhibitors. My 

graduate work is focused on understanding the role of MFPs in the efflux process. In the 

introduction chapter, I presented a brief overview of the current findings on MDR 

transporters, with emphasis on the role of MFP in the tripartite complex. I also briefly 

discussed the physiological role of MDR pumps, which is a topic of much debate.  

My initial work was focused on studying the role of the MFP AcrA in the MDR 

pump AcrAB-TolC of Escherichia coli, which led to a surprise finding that the 

overexpression of AcrA induced cell filamentation in AcrEF deficient strain, where 

AcrEF is a close homologue of AcrAB. In Chapter One of my thesis, I described the 

characterization of the nature of the AcrA-induced filamentation. We showed that the 

loss of AcrEF function was responsible for the aberrant phenotype. The filamentous cells 
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did not exhibit any abnormal localization of overproduced AcrA, changes in membrane 

protein composition or aberrations in membrane structure but are defective in 

chromosome condensation and segregation. Our results revealed that AcrEF is expressed 

under standard laboratory conditions and plays an important role in maintaining the 

normal cell division. The Transmission Electron Microscopy (TEM) done in this project 

is made possible with the help of Gregory Strout from Samuel Noble Electron 

Microscopy Laboratory at the University of Oklahoma.  

In Chapter two, I presented our work on the role of MFP in the macrolide 

transporter MacAB-TolC from E. coli. This project is a collective work together with 

Elena Tikhonova and Vishakha Dastidar. We showed that the MFP MacA stimulates the 

activity of the ABC transporter MacB in a reconstituted system. C-terminal deletion of 

MacA abolished both the in vitro stimulation and in vivo macrolide function. Consistent 

with previous studies, we found that the C-terminus is required for the interaction of 

MacA with MacB. We also found that MacA exhibit strong binding to lipopolysaccharide 

(LPS)-like molecules. The characterization of the LPS-like molecules and the possible 

function of MacAB-TolC are discussed in this chapter. 

Membrane fusion proteins were previously thought to be unique to Gram-negative 

bacteria. However structural homologues of MFPs are also found in Gram-positive 

bacteria as essential component of ABC transporters. It is unclear whether MFPs function 

through similar mechanism in both Gram-negative and Gram-positive bacteria.  In 

Chapter three, I described the reconstitution of YknWXYZ, the MacAB homologue from 

Bacillus subtilis. YknX is a putative MFP and YknY and YknZ are putative ATP-binding 

protein and permease respectively. A fourth protein YknW, encoded in the same operon, 
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is a putative membrane protein with unknown function. In Chapter three, I described the 

expression and purification of YknW, YknX and the fusion protein YknYLZ. Our 

preliminary results showed that the MFP YknX stimulated the YknYLZ protein in lipid 

vesicles. The stimulation was specific as YknX was not able to stimulate the ATPase 

activity of MacB, suggesting the MFPs of both Gram-negative and Gram-positive 

bacteria function through similar mechanism. The results presented in this chapter are 

still preliminary and more work still needs to be done but I hope that the information 

provided here might be useful reference for future work on this subject. 

In Chapters one through three, a short introduction precedes the result and 

discussion section. Project specific material and methods are described at the end of each 

chapter, whereas standard laboratory methods are described in the appendices. Lists of 

strains, plasmids and primers are also included in the appendices. 
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I. INTRODUCTION 

 

I.1 Antibiotic Resistance in Gram-negative Bacteria 

Antibiotic resistance is a major problem in the treatment of bacterial infections. 

Treatment of Gram-negative bacterial infections tend to be more challenging as Gram-

negative bacteria are generally more resistant to antibiotics than are Gram-positive 

bacteria. Most currently available antibiotics that are used to treat Gram-positive bacterial 

infections are ineffective against Gram-negative bacteria (Lomovskaya et al., 2007). The 

highly resistant phenotype of Gram-negative bacteria was attributed to its unique two-

membrane cell envelope. The additional outer membrane layer serves as a permeability 

barrier to various solutes, including drugs. The narrow porin channels and the low 

fluidity of the lipopolysaccharide leaflet help slow down the diffusion of  hydrophilic and 

lipophilic solutes across the OM (Nikaido and Vaara, 1985; Plesiat and Nikaido, 1992). 

However, it was later recognized that the low permeability of the OM alone is not 

sufficient to provide significant resistance (Nikaido, 1998b) as molecules equilibrate 

rapidly across the membrane layers (Nikaido, 1989). Active efflux systems are 

increasingly recognized as major contributors to resistance in clinically resistant isolates 

(Levy, 1992). Among the most significant efflux systems are those of multidrug 

resistance efflux pumps (Poole, 2002), characterized by its ability to recognize and expel 

from the cells structurally unrelated antimicrobials. MDR pumps are normal constituents 

of bacterial cells (Zgurskaya, 2002), and are responsible for both intrinsic and acquired 

multidrug resistance in several Gram-negative bacteria. Exposure to antibiotics often 

leads to the overexpression of active MDR pumps or the production of otherwise silent 
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MDR transporters (Nikaido, 1998a). MDR poses serious threat to public health as seen in 

increased morbidity and mortality (Carmeli et al., 1999).  The promiscuous nature of 

MDR pumps makes the design of novel therapeutic drugs extremely difficult. The search 

for novel antimicrobial agents for the treatment of Gram-negative bacterial infection is 

seemingly exhausted. Efforts to find new drug targets are imperative in the fight against 

bacterial infection. MDR pumps are attractive targets in the design of therapeutics.  

 

I.2 Multidrug Resistance Efflux Pumps 

Currently identified MDR pumps fall into five classes: the ATP-Binding Cassette (ABC) 

superfamily, the Small Multidrug Resistance (SMR) family, the Major Facilitator 

superfamily (MFS), the Resistance-Nodulation-Division (RND) family and the Multidrug 

and Toxic Compound Extrusion (MATE) family. MDR pumps identified in Gram-

negative bacteria belong to SMR, MATE, MFS and RND family of transporters, all of 

which are driven by the transmembrane electrochemical gradient of protons or sodium 

ions (Putman et al., 2000). The major MDR pumps in Gram-negative bacteria belong to 

members of the RND family (Poole, 2001).  

 

I.3 RND Multidrug Efflux Pumps 

RND pumps function as tripartite complexes, together with a periplasmic membrane 

fusion protein (MFP) and an outer membrane (OM) channel. In the opportunistic human 

pathogen Pseudomonas aeruginosa, intrinsic resistance is conferred by MexAB-OprM, 

where the RND transporter MexB functions with the MFP MexA and the OM channel 

OprM in providing resistance against various antimicrobials including -lactams, 
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tetracyclines, chloramphenicol and fluoroquinolones (Li et al., 1995; Poole et al., 1993). 

Four other RND-type MDR pumps are known in P. aeruginosa, including MexCD-OprJ, 

MexEF-OprN, MexXY-OprM and MexJK-OprM (Poole, 2002). Even though MexAB-

OprM is the only constitutively expressed Mex efflux pump in P. aeruginosa and solely 

responsible for its intrinsic resistance, elevated expression of several Mex efflux pumps 

including MexCD-OprJ and MexEF-OprN were found in clinically resistant isolates 

(Piddock, 2006; Poole, 2002).  In Escherichia coli,  AcrAB-TolC contributes to the 

intrinsic resistance of E. coli to antimicrobial as well as dyes, detergents and bile salts 

(Ma et al., 1995). The E. coli genome encodes seven RND pumps, six of which are 

shown to confer drug resistance: AcrB, AcrD, AcrF, YhiV , CusA and YegO (Nishino 

and Yamaguchi, 2001). Only AcrAB-TolC, have been found in clinical isolates 

associated with significant levels of MDR (Piddock, 2006). AcrEF, a close homolog of 

AcrAB, was shown to restore multidrug resistance phenotype in AcrAB deficient strain 

when overproduced from plasmids (Nishino and Yamaguchi, 2001). Similar to AcrAB, 

TolC is also required for the function of AcrEF. However, chromosomal deletion of 

acrEF does not affect the intrinsic levels of multidrug resistance.  

All three genes encoding the components of RND efflux pumps are often 

organized in the same transcriptional unit, such as the MexAB-OprM complex from P. 

aeruginosa (Li et al., 1995) and MtrCDE from Neisseria gonorrhoeae (Hagman et al., 

1995). Some, however, such as the AcrAB genes from E. coli (Ma et al., 1993) and 

MexXY from P. aeruginosa (Aires et al., 1999) are not linked with a corresponding gene 

of the outer membrane (OM) component. In E. coli, the OM channel TolC is shared 

among several RND transporters such as AcrEF and AcrD as well as other transporter 
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systems, including the haemolysin and colicin V secretion apparatus (Gilson et al., 1990; 

Wandersman and Delepelaire, 1990) and a  recently described novel ABC-type macrolide 

efflux transporter MacB (Kobayashi et al., 2001b) . Similarly, the OM channel, OprM 

from P. aeruginosa is shared among MexAB, MexXY and MexJK efflux systems (Mine 

et al., 1999). All three components are essential for the function of these pumps. Deletion 

of any one of these components abolishes the function of the pumps. 

 

I.4 Tripartite Assembly in Efflux across Two Membranes  

The advantage of having a tripartite assembly is that the tripartite complex, such as that 

of RND pumps, spans the two-membrane cell envelope of Gram-negative bacteria and 

thus allows the direct efflux of drugs into the external medium bypassing the periplasm. 

The efflux of drugs directly into the medium can work synergistically with the low 

permeability of the OM to effectively lower the intracellular accumulation of drugs (Li et 

al., 1995), due to a slower influx of drugs across the OM barrier compared to drug efflux. 

Consistent with this, AcrAB-TolC from E. coli confer intrinsic resistance only to large, 

lipophilic agents that have difficulty penetrating the porin channels (Nikaido, 1996). The 

direct efflux of drugs directly into the external medium is clearly advantageous and can 

be found in other classes of drug transporters as well. EmrB, a member of the MFS 

effllux pumps also function as a tripartite complex with the OM channel TolC and the 

MFP EmrA in providing resistance against hydrophobic uncouplers and antibiotics in E. 

coli (Putman et al., 2000). MacB, a member of ABC superfamily functions with TolC 

and the MFP MacA in the extrusion of 14 and 15-membered macrolides in E. coli 

(Kobayashi et al., 2001b). 
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In addition to drug efflux, the tripartite assembly is also seen in transporter 

systems involved in the secretion of protein toxins in Gram-negative bacteria. These 

transport systems, which constitute the Type I secretion systems, secrete proteins directly 

from the cytoplasm to the extracellular medium without a periplasmic intermediate (Lory, 

1998). The export of protein toxins is mediated by an IM transporter belonging to the 

ABC superfamily, an OM channel and a MFP. The IM transporter derives its energy from 

the hydrolysis of ATP to drive the transport of protein across two membranes in a single 

energy coupled step. In E. coli, the export of haemolysin, HlyA is carried out by the type 

I system consisting of the ATPase HlyB, the MFP HlyD and the OM channel TolC 

(Wagner et al., 1983; Wandersman and Delepelaire, 1990). A similar system involve in 

the secretion of colicin V, comprises the ATPase CvaB, the MFP CvaA and the OM 

channel TolC (Gilson et al., 1987). 

 

I.5 Membrane Fusion Protein as a Physical Linker  

A common feature among all the tripartite systems is the membrane fusion protein 

(MFP). MFPs constitute a family of homologous proteins (Dinh et al., 1994). The 

transporters with which MFPs function are diverse in both structure and function. It is 

unclear what the precise role of MFPs is in the efflux of diverse substrates. One proposed 

role of MFP is to act as a link between the IM transporter and the OM component. 

Consistent with this, MFPs are found to form cross-linked complexes to either one or 

both components in vivo (Husain et al., 2004; Hwang et al., 1997; Thanabalu et al., 

1998; Touze et al., 2004; Zgurskaya and Nikaido, 2000a). MFPs are anchored to the 

cytoplasmic membrane through an N-terminal transmembrane segment or a lipid moiety, 
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whereas the rest of the protein extends into the periplasmic space. The MFP AcrA was 

shown to be a highly asymmetric protein capable of spanning the periplasm (Zgurskaya 

and Nikaido, 1999a). It was previously thought that MFPs interact with the OM 

component through its C-terminus.  However, more recent biochemical evidence showed 

that the C-terminus is involved in interaction with the IM transporter. Chimeric analysis 

with AcrA revealed a region in its C-terminus to be important for interaction with the 

multidrug efflux pump AcrB (Elkins and Nikaido, 2003). The C-terminal domain of 

AcrA was also shown to form an energetically favorable interaction with AcrB (Touze et 

al., 2004). Crystal structures of the MFPs MexA and AcrA (Akama et al., 2004; Higgins 

et al., 2004; Mikolosko et al., 2006) revealed that MexA and AcrA form elongated 

structures with lengths of 89 Å and 105 Å respectively. Both structures exhibit a central 

-helical hairpin, formed when the central  helices folds back to form a coiled-coil, 

consistent with previous structural prediction (Johnson and Church, 1999) (Fig. I.1). 

Adjacent to the -helical hairpin is a globular -domain, which is structurally similar to 

lipoyl and biotinyl domains. This domain is formed by the interlocking of the two lipoyl 

motifs that flank the central -helices. The coiled-coil domain, held together by the 

lipoyl/biotinyl domain, is a unique feature of MFPs. A third domain designated as the  + 

 or -barrel domain, composed of a seven-strand -barrel and one short -helix, is 

situated adjacent to the -domain. A fourth disordered domain contains the N- and C-

terminal regions. The crystal structure revealed that the N- and C-terminus are located 

close to one another, consistent with biochemical evidences that implicate the C-terminus 

in interaction with the IM transporter. The placement of both the N- and C-terminus near 

the IM means  that the -helical hairpin  extends into the periplasm. Based on the lengths     
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Figure I.1 Crystal structure of AcrA (residues 45-312) (Mikolosko et al., 2006). 
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of MexA and AcrA, the MFP can extend half the distance into the periplasmic space, 

which is about 130 Å to 250 Å in depth (Pimenta et al., 1996).  

Crystal structures of the OM channel TolC and the RND transporter AcrB are also 

known. TolC is organized as a homotrimer, forming a continuous, solvent accessible 

conduit that spans both the OM and the periplasmic space. TolC is embedded in the OM 

by a 40Å long -barrel whereas a 100 Å long -helical barrel projects into the 

periplasmic space (Koronakis et al., 2000). The -barrel is wide open and fully accessible 

to solvent, whereas the -helical barrel is sealed shut at the periplasmic end by sets of 

coiled-coils. Opening of the TolC channel requires the untwisting of inner coiled-coils. 

The coiled-coils of TolC are proposed to interact with coiled-coils of MFPs. Consistent 

with this, suppressor mutants of mutant TolC mapped within the -helical region (Gerken 

and Misra, 2004). In addition, interacting surfaces between TolC and AcrA using site 

specific cross-linking mapped to the N-terminal  helix of AcrA and the intramolecular 

groove formed by the lower inner and outer helices of TolC (Lobedanz et al., 2007).     

The crystal structure of AcrB also revealed a similar trimeric protein (Murakami 

et al., 2002). Three AcrB protomers assembled to form a jellyfish-like structure 

comprising a 50Å thick transmembrane domain and a 70Å thick periplasmic headpiece. 

The periplasmic head piece is formed by six large periplasmic loops, two from each AcrB 

protomer. The headpiece is divided into two stacked part. The upper part formed a 

funnel-like structure, the diameter of which matches that of the bottom of TolC. This part 

is proposed to be the TolC docking domain (Murakami et al., 2002). The total length of 

the periplasmic portion of AcrB and TolC is about 170Å, which is sufficient to cross the 

periplasmic space, suggesting that AcrB and TolC can come into contact with each other. 
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Site-directed in vivo disulfide cross-linking within this TolC docking domain and tip of 

TolC demonstrates that AcrB interacts with TolC in a head-to-tail fashion (Tamura et al., 

2005). Even though AcrB and TolC can interact with each other, the MFP plays an 

important role in stabilizing this interaction. AcrB was found to co-migrate with the OM 

through its association with TolC in the presence of AcrA but in the absence of AcrA, 

only traces of AcrB was found to co-migrate with the OM, establishing the importance of 

AcrA in stabilizing the interaction between AcrB and TolC (Tikhonova and Zgurskaya, 

2004). Stabilization of the tripartite complex through the interaction of MFP with both 

the IM and OM components is absolutely vital as the distance between the IM and OM is 

constantly changing as the volume of the periplasm fluctuates in response to 

environmental changes (Pimenta et al., 1996). MFP is well suited for this role with the 

flexibility afforded by its coiled-coil domain.  

 Docking model of the AcrAB-TolC proposed by (Fernandez-Recio et al., 2004) 

showed that AcrA interacts with TolC and AcrB by fitting into the grooves of TolC and 

AcrB through its coiled-coil and lipoyl domain respectively (Fig. I.2). In this model, three 

AcrA molecules are proposed to interact with TolC and AcrB trimers. To date, the 

stoichiometry of AcrA involved in the assembly remain controversial as other models 

involving six (Akama et al., 2004; Stegmeier et al., 2006) and nine (Higgins et al., 2004) 

molecules of AcrA had been proposed. 

 

I.6 Membrane Fusion Protein as Active Efflux Component 

The models based on structures of the OM channel TolC, the MFPs MexA and AcrA and 

the  RND transporter AcrB  showed how MFPs  interact with  the IM and OM component  
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Figure I.2 Docking model of AcrAB-TolC. View of AcrAB-TolC assembly along the 

(A) vertical threefold molecular axis and along the (B) threefold axis. AcrA is shown to 

fit in the inter-protomer grooves of TolC and AcrB (Fernandez-Recio et al., 2004).  
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and provide useful insight into the mechanism of transport in RND efflux pumps. 

However the models do not explain how MFPs function with other types of efflux 

system. Unlike RND transporters, which contain a huge periplasmic domain that 

potentially interacts with MFPs, other types of transporter such as MFS or ABC 

transporters do not have a huge periplasmic domain (Putman et al., 2000). It is unclear 

how MFPs coordinate the efflux of substrates in these systems. Adding to the mystery is 

that MFPs, which are previously thought to be unique to Gram-negative bacteria, are also 

found in Gram-positive bacteria (Harley et al., 2000). The Gram-positive MFP 

homologues are found to be essential components of ABC-type transporters in the 

secretion of endogenously produced bacteriocins. In Lactobacillus sake, the putative 

MFP SapE functions with the ABC transporter SapT in the production of sakacin A 

(Axelsson and Holck, 1995). SapE and SapT are homologues of HlyD and HlyB 

respectively. In Carnobacterium piscicola, CbnT and CbnD, putative ABC transporter 

and MFP respectively, are involved in carnobacteriocin production (Quadri et al., 1997). 

Gram-positive bacteria do not have a two-membrane cell envelope, suggesting that MFPs 

serve an additional role to that of a structural linker.  

The MFP AcrA was previously shown to stimulate the intermembrane transport 

of fluorescent phospholipid by AcrB (Zgurskaya and Nikaido, 1999b). This was the first 

study where an MFP is shown to stimulate the activity of it cognate transporter, but the 

stimulatory effect of AcrA was at that time attributed to the ability of AcrA to promote 

association of membrane vesicles. More recently, AcrA was shown to stimulate the 

transport activity of AcrD where no membrane association events occur (Aires and 
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Nikaido, 2005). These findings suggest that MFPs play an active functional role in 

addition to its role as a structural linker. 

 

 

I.7 Physiological Role of MDR Pumps 

Even though most MDR pumps expel clinically relevant antibiotics it is unclear whether 

this is the natural function of these pumps. Recent studies revealed that these MDR 

pumps may play important physiological roles and antibiotics just happen to resemble the 

pump’s natural substrates. The ability of AcrAB-TolC to pump out such a broad range of 

substrates may be due to the need of E. coli to survive in the presence of high 

concentrations of bile salts which is known to acquire diverse structures as a result of 

their metabolism by intestinal flora, including deconjugation and dehydroxylation 

(Nikaido and Zgurskaya, 2001). The E. coli genome encodes 37 drug transporters, out of 

which 20 have been shown to confer drug resistance (Nishino and Yamaguchi, 2001). Of 

these 20, 7 belong to the RND family. It is intriguing as to why bacteria need such a large 

number of seemingly redundant transporters. Interestingly, it was found that 

nonpathogenic bacteria also contain comparable numbers of chromosomally encoded 

multidrug efflux systems, suggesting that these systems are inherent properties of bacteria 

and may play important physiological roles in the extrusion of naturally occurring toxic 

substances (Saier et al., 1998). Several other lines of evidence also support the notion that 

the drug substrates of MDR pump is tied to the physiological role of the pump. AcrAB 

was shown to be regulated by the quorum sensing regulator SdiA, suggesting that AcrAB 

may normally function to export communication signal molecules (Rahmati et al., 2002). 

Intriguingly, one of the classes of quorum sensing signals produced in Pseudomonas is 
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quinolones, which is among the most potent, broad-spectrum antimicrobial agents used in 

the treatment of bacterial infections. In addition, AcrAB is also upregulated by global 

stress-induced regulators such as MarA and SoxS (Grkovic et al., 2002). It is likely that 

AcrAB also pumps out endogenous metabolites. The transcription of acrAB in response 

to stationary phase was shown to differ in different growth medium consistent with the 

possibility that some metabolite of E. coli serves as the signal in the regulation of acrAB 

(Ma et al., 1996). In another study, resistant E. coli strains resulting from mutations that 

block central biosynthetic pathway are often selected. The mutations were found to 

activate the AcrAB-TolC pump, suggesting that the pump is required to remove 

accumulating intermediates that would be otherwise toxic for the cells (Helling et al., 

2002). 
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Chapter 1 

Cell Division Defects in Escherichia coli Deficient in the Multidrug 

Efflux Transporter AcrEF-TolC 

 

1.1 Abstract 

 The AcrAB-TolC complex is responsible for the intrinsic levels of drug resistance in E. 

coli. Inactivation of components of the AcrAB-TolC complex leads to a drug 

hypersusceptibility phenotype. AcrEF, a close homologue of AcrAB, which also 

functions in complex with the outer membrane channel TolC, was shown to confer drug 

resistance when overexpressed in an AcrAB deficient strain. However, inactivation of 

these AcrEF did not lead to a drug hypersusceptibility phenotype, suggesting that either 

this pump is silent or expressed at levels insufficient to contribute to multidrug resistance 

phenotype. We found that the overexpression of the membrane fusion protein AcrA in 

AcrEF deficient strain leads to cell filamentation. Similar cell filamentation is observed 

when AcrA is overexpressed in a TolC deficient strain, suggesting that the AcrA induced 

filamentation is due to the loss of AcrEF function. Fluorescence microscopy revealed that 

the filamentous cells are defective in chromosome condensation and segregation. Using 

green fluorescent protein-AcrA fusion protein, we showed that the localization of AcrA is 

similar in both normal and filamentous cells and is concentrated at defined regions of the 

cell membrane, independent of AcrEF. In addition, the structure and composition of 

membranes are similar in both normal and filamentous cells. Our results suggest that the 

E. coli AcrEF transporter is expressed under standard laboratory conditions and plays an 

important role in the normal maintenance of cell division. 
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1.2 Introduction 

AcrEF is one of the seven resistance-nodulation-cell division (RND) transporters encoded 

in E. coli (Nishino and Yamaguchi, 2001). AcrE and AcrF are close homologues of AcrA 

and AcrB respectively. AcrA and AcrB function with the outer membrane (OM) channel 

TolC in providing E. coli with high levels of resistance to dyes, detergents and most 

lipophilic antibiotics (Sulavik et al., 2001). E. coli strains deficient in AcrAB are highly 

susceptible to drugs. AcrEF was shown to complement acrB mutation when expressed 

from plasmids (Kobayashi et al., 2001a; Nishino and Yamaguchi, 2001). Enhanced 

expression of acrEF caused by integration of IS element upstream of acrEF suppressed 

the solvent hypersensitivity of E. coli strain lacking acrB (Kobayashi et al., 2001a). 

Similar to AcrAB, TolC is also required for the function of AcrEF. AcrF, which shares 

84% similarity and 77% identity with AcrB was shown to complement a acrB mutant 

(Elkins and Nikaido, 2003; Kobayashi et al., 2001a) in solvent resistance, indicating that 

AcrA and AcrF form a functional complex. However, chromosomal deletion of acrEF 

does not affect the intrinsic levels of multidrug resistance. Inactivation of acrEF also did 

not reduce the solvent resistance of E. coli strains, suggesting that AcrEF is either not 

expressed or does not contribute to resistance. The role of AcrEF pump seems to be 

redundant in the presence of AcrAB. However, structural genes of acrEF are found to be 

conserved in E. coli (Kobayashi et al., 2001a). The acrEF operon is thus suggested to 

serve as means of survival under conditions where the acrAB genes become inactive 

(Kobayashi et al., 2001a).  

Alternatively, AcrEF may play a physiological role that has not been tested as 

acrEF null mutants are only tested for drug susceptibility phenotype. The gene products 
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of acrEF, previous known as envCD was shown to suppress the cell division defects of 

PM61 E. coli strain, which carries a mutation in the envC gene (Klein et al., 1991). The 

defective gene product responsible for the cell division defect of PM61 was later 

identified as a murein hydrolase (Bernhardt and de Boer, 2004; Hara et al., 2002). It is 

unclear how AcrEF suppress the cell division defects of PM61. It remains controversial 

whether AcrEF is expressed under standard laboratory conditions, since no appreciable 

differences in membrane protein composition can be detected between the mutant strain 

PM61 and its parent strain P678 (Klein et al., 1991).  

In this study, we found that the overexpression of AcrA leads to cell filamentation 

in AcrEF deficient strains and that the AcrA induced filamentation is due to the loss of 

AcrF function. The filamentous cells exhibit defects in chromosome segregation, but 

showed no aberration in membrane morphology or protein composition. Our results argue 

that AcrEF is expressed under normal growth conditions and plays an important role in 

cell physiology. 

 

1.3 Results 

1.3.1 Increased expression of AcrA leads to filamentation of E. coli cells deficient in 

AcrEF. During our studies with AcrAB transporter, we noticed that the transformation 

efficiency of the E. coli strain AG100AX (Appendix A), deficient of both AcrAB and its 

close homolog AcrEF, with multicopy plasmid pUC151A expressing AcrA and AcrB 

under the native PacrAB promoter, was low compared to transformation of the same strain 

with pUC18 vector. AG100AX/pUC151A also exhibits a slower growth rate compared to 

AG100AX /pUC18 with growth rates of 0.47 0.04 h
-
1 and 0.72  0.07 h

-
1 respectively 
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(Fig. 1.1A). When observed under phase contrast microscopy, we found that 

AG100AX/pUC151A exhibits a filamentous phenotype (Fig. 1.2). To further investigate 

the nature of the filamentation, plasmid pUC151A was also transformed into wild type 

(WT) E. coli (AG100) or E. coli lacking either AcrAB (AG100A) or AcrEF (W4680E). 

The same filamentous phenotype is observed in E. coli lacking AcrEF but not AcrAB, 

showing that the toxic effect of the overexpression of AcrAB in AG100AX is due to the 

loss of acrEF. Consistent with the filamentous phenotype, the colony forming unit (CFU) 

of AG100AX/pUC-AcrA was lower by two to three orders of magnitude than those of 

AG100AX/pUC18 (Fig. 1.1B). 

To investigate the effect of overproduction of AcrA or AcrB on the morphology 

of E. coli, multicopy plasmids pUC-AcrA and pBP carrying acrA and acrB genes were 

transformed into AG100 (WT), AG100A ( acrAB) and AG100AX ( acrAB acrEF). 

The transformants were examined by phase contrast microscopy (Fig. 1.2). 

Overexpression of AcrA was found to be necessary to induce cell filamentation. 

Overexpression of AcrB on the other hand did not affect cell morphology, suggesting that 

the filamentation of the acrEF strain is due to the overproduction of AcrA. 

To verify that the filamentous phenotype is induced by the overexpression of 

AcrA, the amounts of AcrA in isolated inner membrane fractions were determined by 

immunoblotting with polyclonal anti-AcrA antibodies (Zgurskaya and Nikaido, 1999a). 

The level of AcrA expressed from plasmid pUC-AcrA is several folds higher than the 

chromosomal level of AcrA in all the strains tested (Fig. 1.3). The chromosomal 

expression of AcrA in the AcrEF deficient strain W4680E did not lead to cell 

filamentation, demonstrating that cell filamentation depends on the amount of AcrA. The 
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Figure 1.2 Growth curves and CFUs of normal and filamentous cells. (A) Growth curves 

of AG100AX (left panel) and ECM2112 (right panel) strains carrying either pUC18 (♦) 

or pUC-AcrA (■). (B) CFUs of AG100AX (left panel) and ECM2112 (right panel) 

strains carrying either pUC18 (♦) or pUC-AcrA (■). 
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Figure 1.2 Phase contrast microscopy of E. coli strains carrying pUC18 vector or 

pUC18-based plasmids expressing AcrA (pUC-AcrA), AcrB (pBP) or both proteins 

(pUC151A). Cells were grown at 37
0
C to exponential phase in LB medium containing 

100 g/mL and examined with phase contrast microscopy as described in Materials and 

Methods. 
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Figure 1.3 Expression of AcrA in normal and filamentous cells. The levels of AcrA 

expression from pUC-AcrA and pUC151A in normal and filamentous strains were 

determined by immunoblotting with polyclonal anti-AcrA antibodies (Zgurskaya and 

Nikaido, 1999a). Inner membrane fractions from E. coli strains (Appedix A) were 

isolated and analyzed as described in Materials and Methods. 
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expression of AcrA from plasmid pUC151A on the other hand, varies depending on the 

genetic background of E. coli. The amount of AcrA produced in W4680E and ECM2112 

is less compared to AG100A and AG100AX. Nevertheless, the level of AcrA expression 

in these cells is still higher than the chromosomal AcrA level. Thus, the cell filamentation 

observed is due to the overexpression of AcrA in E. coli deficient in AcrEF. 

 

1.3.2 AcrA-induced expression of filamentation is due to the loss of AcrF function. In 

order to determine whether the AcrA-induced filamentation is due to the loss of AcrEF 

activity and not due to aberration of acrEF region in the E. coli chromosome, we 

examined the cell morphology of ECM2112 ( acrAB tolC) transformed with plasmids 

producing AcrA (pUC-AcrA), AcrA and AcrB (pUC151A) or AcrB (pBP). ECM2112 is 

deficient of the OM channel TolC, which is an essential component of the AcrEF 

transporter (Kobayashi et al., 2001a). We found that similar to the AcrEF null mutants 

the overexpression of AcrA in the absence of TolC also leads to cell filamentation (Fig. 

1.2). However the effect was more severe as the growth rate of the filamentous 

ECM2112/pUC-AcrA cells was only 0.20 0.022 h
-1 

compared to 0.60 0.009 h
-1

 for the 

normal ECM2112/pUC18 cells (Fig. 1.1A). Consistent with this observation, the CFU for 

these two strains differed by 3 to 5 orders of magnitude (Fig. 1.1B). Our result suggested 

that the function of AcrEF is required to maintain normal cell morphology under 

conditions of increased production of AcrA. 

 To examine whether the activity of AcrEF is indeed required for maintenance of 

normal cell morphology, we cloned acrF or acrEF into a compatible plasmid, 

pACYC184. The functionality of AcrF expressed from these plasmids was tested for its 
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drug resistance phenotype. AcrEF expressed from pACYC-AcrEF was able to restore the 

drug-susceptible phenotype of AG100AX, with higher resistance to erythromycin, 

puromycin, ethidium bromide and nalidixic acid compared to AG100AX/pUC18 (Table 

1.1). Consistent with previous studies that showed that AcrA, AcrF and TolC formed a 

functional complex (Kobayashi et al., 2001a), co-expression of AcrF (pACYC-AcrF) 

with AcrA (pUC-AcrA) in AG100AX conferred drug resistance, albeit only partially 

(Table 1.1).  

To estimate the level of expression of AcrF, total membranes of AG100AX 

harboring pACYC-AcrEF or pACYC-AcrF were isolated and AcrF was detected using 

anti-AcrB antibody since AcrF is highly homologous to AcrB (Fig. 1.4A). AcrF is 

expressed from both plasmids. However, the amount of AcrF produced from pACYC-

AcrF is substantially lower. The low level of expression of AcrF from pACYC-AcrF may 

contribute to the partial drug resistance in AG100AX carrying pUC-AcrA. Therefore, we 

conclude that the AcrF transporter expressed from these constructs are functional. 

The plasmids, pACYC-AcrF or pACYC-AcrEF were then introduced into 

filamentous AG100AX/pUC-AcrA and AG100AX/pUC151A cells respectively. 

Unexpectedly, AcrEF expressed from pACYC-AcrEF did not restore normal cell 

morphology to filamentous AG100AX/pUC-AcrA or AG100AX/pUC151A (Fig. 1.4B). 

We observed that AG100AX/pUC18 cells carrying pACYC-AcrEF were slightly 

elongated, suggesting that the overexpression of AcrEF is toxic to the cells. Previous 

endeavor to overexpress AcrE, which at that time was known as EnvC, from a high copy 

number plasmid was unsuccessful (Klein et al., 1991). It is likely that the overproduction 

of AcrE, a close homolog of AcrA contributes to the toxicity to the cells. Since AcrF can  
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Figure 1.4 Complementation studies of filamentous cells with functional AcrF. (A) 

Immunoblotting analysis of total membranes isolated from AG100AX carrying pUC18, 

pUC151A, pACYC-AcrEF or pACYC-AcrF. AcrB/AcrF was detected using polyclonal 

anti-AcrB antibody (Zgurskaya and Nikaido, 1999b). Ten times less total membranes 

from AG100AX/pUC151A (2 µg) were loaded onto the gel to avoid overloading. (B) 

Phase-contrast microscopy of AG100AX/pACYC-AcrEF and AG100AX/pACYC-AcrF 

carrying as a second plasmid: pUC18, pUC-AcrA, pUC151A, or pBP. 

A 

B 
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function with AcrA, we can thus examine whether the functional AcrF is sufficient to 

restore normal cell morphology. Indeed, we found that AcrF alone expressed from 

pACYC-AcrF restored the cell morphology of AG100AX/pUC151A (Fig. 1.4B), 

indicating that a functional AcrF is required to maintain normal cell morphology under 

conditions of increased AcrA production. However, expression of AcrF failed to restore 

the normal cell morphology to filamentous AG100AX /pUC-AcrA (Fig. 1.4B). It is 

unclear how AcrB contributes to the complementation of function by AcrF. One 

possibility is that AcrB form functional complexes with a fraction of AcrA and by this 

means reduce the toxicity of AcrA overproduction. Taken together, these results suggest 

that a functional AcrF is required to maintain the normal morphology of E. coli under 

conditions of increased production of AcrA. 

 

1.3.3 AcrEF is expressed under normal physiological conditions. To verify that AcrEF 

is expressed in E. coli strains, RT-PCR was performed. Total RNAs isolated from 

exponentially growing cells at OD600 of 0.8-1.0 or the stationary phase cells were used as 

template in RT-PCR. AcrEF transcripts were found in both exponential and stationary 

phase of all strains studied except in AcrEF deficient mutant (AG100AX) (Fig. 1.5). 

However, small quantities of a longer mutated AcrEF transcript can be detected in the 

stationary phase. Our results showed that the acrEF operon is expressed under normal 

physiological conditions.  

 

1.3.4 AcrA localizes in a confined manner in the cytoplasmic membrane of normal 

and  filamentous  cells.   To  investigate   how   the  overexpression  of  AcrA  in  AcrEF  
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Figure 1.5 RT-PCR analysis of acrEF mRNA in E. coli with different genetic 

backgrounds. Total RNA (2 µg) purified from E – exponential or S – stationary phase-

grown cells were used as templates in each RT-PCR. 
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deficient strains contributes to cell filamentation, we compared the intracellular 

localization of AcrA in normal AG100/pUC18 or filamentous AG100AX/pUC-AcrA 

cells. AcrA was immunolabeled with anti-AcrA antibody followed by labeling with 

fluorescein (FITC)-conjugated goat anti-rabbit antibody. AcrA was found in the cell 

membrane to be clustered at the poles and intermediate positions of growing cells (Fig. 

1.6). This result suggested that the lateral diffusion of AcrA in the inner membrane is 

restricted. However, the clustering of AcrA is similar in both normal and filamentous 

cells. 

To examine the localization of AcrA in live cells, as an alternative approach we 

examined the fluorescence pattern of green fluorescent protein (GFP) in normal and 

filamentous cells expressing GFP-AcrA fusion protein. GFP was fused to the N-terminal 

of a recombinant AcrA containing the transmembrane domain of CvaA protein, a close 

homolog of AcrA (Gilson et al., 1990). The N-terminal signal peptide of AcrA, which 

contains the consensus (Leu21-Thr22-Gly23-Cys24) lipid modification sequence (Ma et al., 

1993), was replaced with the transmembrane domain of CvaA protein. The recombinant 

CvaA-AcrA was constructed on pUC151A plasmid carrying acrAB genes. This plasmid, 

when transformed into the drug-susceptible strain AG100AX, restored drug resistance to 

the same level as native proteins with all the drugs tested (Table 1.1) despite a lower 

protein expression (Fig. 1.7A).  This construct was used for the fusion of GFP. GFP was 

fused to the N-terminal of the CvaA-AcrA recombinant protein. The amounts of the 

70kDa GFP-CvaA-AcrA expressed from pUC-GFP-AcrA were roughly equal to levels of 

the chromosomally produced wild-type AcrA and about 20- to 30-fold lower than those 

of wild-type AcrA produced from pUC151A (Fig. 1.7A). The GFP-CvaA-AcrA (70kDa) 
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Figure 1.6 Fluorescence microscopy of normal and filamentous cells immunolabeled 

with anti-AcrA antibody. AG100(WT) carrying pUC18 (left panel) and AG100AX strain 

( acrAB acrEF) carrying pUC-AcrA (right panel) were immunolabeled with anti-AcrA 

antibody. Images are inverted. Labeled areas appear black.  

  

 

 

 

                

AG100/pUC18 AG100AX/pUC-AcrA 
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Figure 1.7 Localization of GFP-CvaA-AcrA fusion protein. (A) Immunobloting analysis 

of total membranes isolated (Appendix F) from cells expressing AcrA, CvaA-AcrA and 

GFP-CvaA-AcrA fusion proteins using anti-AcrA antibody. Ten times less of total 

membranes from AG100AX/pUC151A (2 µg) were loaded onto the gel to avoid 

overloading. (B) Inverted images of the GFP-CvaA-AcrA fusion protein expressed from 

pUC-GFP-AcrA in the wild-type AG100 strain and the AcrEF null mutant W4680E. 

 

 

A 
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construct appears to be unstable as degradation products can be seen on western blot 

analysis with anti-AcrA antibody (Fig. 1.7A). However, when expressed in AG100AX 

strain, it is able to restore drug resistance to the level comparable to that of the native 

protein (Table 1.1), indicating that the construct is functional.  

Because the amount of GFP-CvaA-AcrA is substantially lower than the amount of 

wild-type AcrA produced from pUC151A, ECM2112 ( tolC) or W4680E ( acrEF), 

which contains a chromosomal copy of AcrA was only mildly filamentous when 

transformed with pUC-GFP-AcrA (Fig. 1.7B). The morphology of AG100AX/pUC-GFP-

AcrA, which does not contain a chromosomal copy of AcrA, was normal. We observed 

that the distribution of GFP fluorescence signal follows a similar clustering pattern in 

both normal and filamentous cells. Therefore, we conclude that the cell division defects 

of acrEF mutants are not caused by mislocalization of overproduced AcrA. 

 

1.3.5 Increased expression of AcrA does not cause membrane aberrations. Since the 

overproduction of membrane proteins could lead to morphological and compositional 

changes of the cytoplasmic and/or outer membrane (Lefman et al., 2004), we investigated 

whether high levels of AcrA causes aberrations in the cell membrane that could not be 

tolerated in these filamentous strains. We examined both normal AG100AX/pUC18 and 

filamentous strain AG100AX/pUC-AcrA using transmission electron microscopy (TEM). 

An evenly distributed cytoplasm packed with ribosomes and nucleoid can be seen in both 

cell preparations (Fig. 1.8). Distinct layers corresponding to the inner membrane, 

peptidoglycan and outer membrane can be seen in the surrounding cell envelope. Even 

though  constriction  of  the  cell  envelope  thickness  can  be seen  in  some of the cross-  
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Figure 1.8 Transmission electron microscopy of negatively stained normal AG100AX/ 

pUC18 (A and B) and filamentous AG100AX/pUC151A cells (C and D). The inner 

membrane (IM), peptidoglycan (PG) layer, and outer membrane (OM) are indicated by 

arrows. 
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sections of filamentous cells, other regions showed no difference in structure to that of 

normal cells. Since conventional specimen preparation, involving chemical fixation, 

dehydration, embedding and heavy-metal staining often produces artifacts (Dubochet et 

al., 1983) the constriction we observed could be a result of sample preparation and 

processing. Overall, the membrane morphology was very similar in both normal and 

filamentous cells. Therefore, we conclude that the overproduction of AcrA does not 

significantly perturb the structure of the E. coli cell envelope. 

 However, we found that complete or partial septum is absent filamentous cells 

(Fig. 1.8C). In contrast, septum formation, even in the very early stages of cell division 

was clearly detected in normal cells (Fig. 1.8A). The lack of septa in the filamentous 

AcrEF mutant with increased expression of AcrA suggested that filamentation could be 

due to defects in septum assembly. 

 

1.3.6 AcrEF deficient mutants exhibit normal levels of penicillin binding proteins 

(PBPs). Since the filamentous cells are defective in septum formation, it is possible that 

components involved in septum formation are compromised, and the problem is 

aggravated under conditions of overproduction of AcrA. Penicillin binding proteins 

(PBPs), specifically PBP3, also known as FtsI, is important for the formation of 

peptidoglycan at the cell division site (Spratt, 1977). Thermosensitive PBP3 mutants 

were shown to produce filaments at nonpermissive temperature (Pogliano et al., 1997). 

To test whether the defect in septum formation is the result of the absence of PBPs, we 

examined the  PBP composition in all E. coli strains studied. Since PBPs are membrane- 

bound  and  targets of  -lactams, we  used  Bocillin FL (Zhao et al., 1999),  a fluorescent 
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Figure 1.9 Membrane protein compositions of normal and filamentous cells. (A) Bocillin 

FL labeling of total membranes isolated from various E. coli strains (1 – AG100; 2 – 

AG100A; 3 – AG100AX; 4 – W4680E). (B) Sucrose density fractionation of total 

membranes isolated from normal and filamentous cells. Areas of the inner membrane 

fractions with differential levels of proteins are marked with a star. 

B 

A 
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penicillin to label PBPs in membrane fractions prepared from four different strains: 

AG100 (WT), AG100A ( acrAB), AG100AX ( acrA acrEF) and W4680E ( acrEF). 

The Bocillin Binding Assay showed that there is no difference in the PBP composition in 

all four strains studied (Fig. 1.9A). Our result shows that the loss of AcrEF does not 

affect PBPs of E. coli.  

 

1.3.7 Increased expression of AcrA does not cause aberrations in membrane protein 

composition. To determine whether the overexpression of AcrA affects membrane 

protein  composition,  we  compared  total  membranes  isolated from normal AG100AX/ 

pUC18 and filamentous AG100AX/pUC-AcrA strains by sucrose density                

gradient. Consistent with previous studies (Ishidate et al., 1986), the inner membrane and 

outer membranes from both cell types migrated to expected positions on the sucrose 

gradient, 1.16 to 1.18g/mL and 1.22 to 1.26 g/mL for the inner and outer membrane 

respectively (data not shown). The overall protein compositions in the inner and outer 

membranes look similar for both the normal and filamentous cells (Fig. 1.9B). The only 

differences that we observed are two major bands in the intermediate density fractions 

and a few minor bands in the inner membrane fractions. The major band migrated in the 

intermediate density fractions of the cell envelopes isolated from normal cells is 

identified by the N-terminal sequencing as flagellin encoded by fliC genes. The amount 

of flagellin is lower in the filamentous cells than normal cells. Correspondingly, the 

minor bands in the inner membrane fractions are lower in filamentous strains. Therefore, 

we concluded that the differences could be due to the differential expression of flagellum 

genes  or  posttranslational  effects on  flagellum in  normal and filamentous cells and not  
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AG100AX/pUC18 

  
 

 

AG100AX/pUC-AcrA 

 

    
 

Figure 1.10 Fluorescence microscopy of DAPI and Sypro Orange-stained normal and 

filamentous cells. (A) AG100AX/pUC18 (B) AG100AX/pUC-AcrA. The Sypro Orange-

stained membranes are shown in blue and the DAPI-stained nucleoids are shown in red. 

The artificial colors are generated by Adobe Photoshop Software. White and green 

arrows marked areas of filaments lacking or containing a septum respectively. 
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Figure 1.11 RT-PCR analysis of sulA mRNA in normal and filamentous cells. Total 

RNA (2 µg) purified from exponential (E) – and stationary (S) – phase cells were used as 

templates in each RT-PCR as described in materials and methods. 
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the effect of overexpression of AcrA in AcrEF null strain. 

 

1.3.8 Increased levels of AcrA in acrEF null cells interfere with chromosome 

segregation. Septum formation is defective in filamentous cells. Cell division arrest and 

cell filamentation are often induced by DNA damage or defects in chromosome 

segregation (Errington et al., 2003). To examine whether chromosomes are properly 

segregated in normal and filamentous cells, exponentially growing cells were fixed, 

stained with DAPI and Sypro orange, and observed by fluorescence microscope. DAPI 

and Sypro orange stained the chromosome and cell membrane respectively. The nucleoid 

staining pattern revealed that nucleoids are asymmetrically positioned in the filament and 

large aggregates of nucleoids or decondensed nucleoids are found to occupy an extensive 

part of the filament (Fig. 1.10). Septum formation, while irregular throughout the 

filamentous cells is not defective. Our results suggest that the acrEF mutants with 

increased expression of AcrA are defective in chromosome segregation and 

condensation. 

 Inhibition of cell division can occur as a result of DNA damage. SulA, a 

component of the SOS response is induced in response to DNA damage and is thought to 

inhibit division through direct interaction with FtsZ (Bi and Lutkenhaus, 1993; Huang et 

al., 1996). To test whether SulA is induced in our filamentous strain we analyzed the 

amounts of SulA transcript from normal and filamentous cells by RT-PCR. We found 

that the amount of SulA transcript is similar in both normal and filamentous cells (Fig. 

1.11). We conclude that the AcrA induced cell filamentation is not related to the 

activation of SOS response. 
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1.4 Discussion 

In this study, we found that the overexpression of the membrane fusion protein AcrA 

produces filamentous phenotype in strains deficient of AcrEF. Previous studies with 

AcrEF were focused on its role as a multidrug resistance pump. Overproduction of AcrEF 

was shown to confer drug resistance in AcrAB deficient strain (Nishino and Yamaguchi, 

2001). However, chromosomal deletion of AcrEF did not affect the intrinsic drug 

resistance. It remains unclear whether AcrEF is expressed in E. coli under normal growth 

condition or whether it plays any physiological role. The fact that AcrEF deficient E. coli 

and not wild type E. coli that exhibit morphological defect when AcrA is overexpressed, 

is an indication of the importance of this ―MDR pump‖ to the normal physiological 

function of the cell. We showed that the aberrant phenotype under condition of 

overproduction of AcrA is due to the loss of AcrEF function as the same phenotype can 

be induced in a tolC deficient strain and TolC is a required component of a functional 

AcrEF pump. Consistent with this, a functional AcrF was able to restore cell morphology 

of filamentous AG100AX/pUC151A. Using RT-PCR, we detected acrEF transcript in 

both exponential and stationary phase of cells, carrying the acrEF operon (Fig. 1.5). The 

filamentous cells exhibit defects in chromosome segregation and condensation (Fig. 

1.10). Our results revealed that AcrEF is expressed under normal growth condition and 

its transport activity plays an important role in normal maintenance of cell division. How 

does AcrA contribute to the defect in cell division and how does AcrEF alleviate this 

toxic effect?  

 Previous studies supported the role of AcrEF in cell division. The overexpression 

of AcrEF suppressed cell division defect in an envC mutant (Klein et al., 1991). EnvC 
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was identified as a murein hydrolase responsible for septal murein cleavage to allow 

outer membrane constriction and daughter cell separation (Bernhardt and de Boer, 2004). 

E. coli encodes a wide array of periplasmic and OM-bound murein hydrolases with 

potential access to the murein sacculus (Bernhardt and de Boer, 2004). Perhaps these 

hydrolases are not as effective as EnvC, which would explain why envC mutants are 

defective in cell division despite the various hydrolases available to do the job. The cell 

division defect of envC mutants is alleviated by the overproduction of AcrEF, an efflux 

component. AcrEF may play an important role in cleaning the periplasm from products of 

membrane and murein cycling, which would otherwise interfere with the functions of 

other proteins involved in cell division.  

 The detrimental effect of the overproduction of AcrA in AcrEF deficient mutants 

is due to the loss of AcrEF function. AcrA overproduced from plasmids pUC151A and 

pUC-AcrA did not lead to filamentation in wild type or AcrAB deficient cell (Fig. 1.2), 

indicating that the overproduction of AcrA alone does not interfere with membrane 

functions (Fig. 1.8 and 1.9). In addition, the overall membrane morphology and 

composition is similar in both normal and filamentous cells. The localization of AcrA 

verified by both immunolabeling and fluorescent GFP-CvaA-AcrA fusion (Fig. 1.6 and 

1.7B) revealed that the localization of overproduced AcrA is similar. The overproduction 

of AcrA homologues, such as AcrE and MacA, also leads to filamentation of AcrEF 

deficient cells (data not shown). Our data suggested that the effect of AcrA 

overproduction is nonspecific and secondary to the loss of AcrEF function. It is likely 

that the overproduction of AcrA adds to an already overcrowded periplasmic space due 

the accumulation of toxic recycling products.  
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 The E. coli genome encodes a vast number of drug efflux pumps (Nishino and 

Yamaguchi, 2001). Interestingly, it was found that nonpathogenic bacteria also contain 

comparable numbers of chromosomally encoded multidrug efflux systems, suggesting 

that these systems are inherent properties of bacteria and may play important 

physiological roles in the extrusion of naturally occurring toxic substances (Saier et al., 

1998). The natural substrates for these pumps remain a subject of interest and warrant 

further investigation.  

 

1.5 Materials and Methods 

Media and growth conditions, standard protein assays and total membrane fractionation 

are described in appendices D, E and F respectively. 

1.5.1 Plasmid construction. The pUC-AcrA plasmid was obtained by treatment of 

pUC151A with
 
DraIII and NsiI restriction enzymes followed by incubations

 
with T4 

DNA polymerase and T4 DNA ligase. In pUC-AcrA, the C-terminal
 
716 amino acid 

residues of AcrB are deleted. Judging from complementation
 

studies of the drug 

susceptible phenotype of AG100AX the truncated
 
AcrB is nonfunctional (data not 

shown). To construct pUC-Cva-AcrA,
 

a 163-bp PCR fragment encoding the 

transmembrane domain of CvaA
 
was amplified from plasmid pHK11 (Gilson et al., 

1990) using the forward primer fNCvaAXhoI
 
and the reverse primer rNCvaAMscI.

 
The 

PCR fragment was digested with XhoI and MscI restriction
 
enzymes and inserted into 

plasmid pUC151A treated with the same
 
restriction enzymes. This fragment replaced the 

coding sequence
 
for the first 28 amino acids of AcrA.

 
To construct pUC-GFP-AcrA, the 



 41 

gfp gene was amplified from the
 

pQB1T7 plasmid using primers fGFPXhoI and 

rGFPXhoI, with flanking XhoI restriction
 
sites. The 747-bp PCR fragment was digested 

with XhoI and inserted
 
into pUC-Cva-AcrA, treated with XhoI and calf intestinal alkaline

 

phosphatase. To construct pACYC-AcrEF, the acrEF operon was
 
amplified by PCR from 

E. coli K-12 chromosomal DNA template using the primers fAcrEFAvaI and 

rAcrEFHindIII. The PCR fragment was treated with the AvaI and HindIII restriction
 

enzymes and ligated into pACYC184 treated with the same enzymes.
 
The 781-bp 

fragment of acrE was deleted from pACYC-AcrEF by
 
digestion with AleI and ApaLI 

restriction enzymes followed by
 
treatment with T4 DNA polymerase and T4 DNA ligase. 

The resulting
 
plasmid, pACYC-AcrF, expressed AcrF, presumably under the native

 

acrEF promoter.
 
 

1.5.2 Phase contrast microscopy. We mixed 300 µl of cell culture, collected when cell 

culture reached an optical
 
density at 600 nm (OD600) of 0.6 to 0.8, with 15 µl of 25

 
µg/ml 

poly-L-lysine. The mixture was spread on coverslips
 
and incubated for 5 min. Excess 

liquid was removed and the coverslips
 
were rinsed six times in phosphate-buffered saline 

(PBS) solution
 
(pH 7.3); 5 µl of PBS were spotted onto a slide and the

 
coverslips were 

placed on the top. Slides were photographed
 
with a Black and White Spot camera 

(Insight) mounted on an Olympus
 
BX50 microscope through an UPlanFI x100/1.3 oil-

immersion objective.
 
 

1.5.3 Fluorescence microscopy. To visualize chromosomes and membranes, cells were 

fixed by
 
mixing 400 µl of cell culture with 6.6 ml of ice-chilled

 
PBS/ethanol (75%). Cells 

were collected by centrifugation, washed
 
once with PBS, and resuspended in 300 µl of 
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PBS. Slides
 
were prepared as described for the phase contrast microscopy.

 
For the last 

step 5 µl of PBS supplemented with 1x Sypro
 
Orange stain (a nonspecific hydrophilic 

fluorescent protein
 
dye that does not stain nucleic acids) and 100 nM 4',6'-diamidino-2-

phenylindole
 
(DAPI) (Molecular Probes) were used.  

To determine the intracellular localization of green fluorescent
 
protein (GFP)-

CvaA-AcrA fusion protein,
 
live exponential-phase bacteria expressing GFP-CvaA-AcrA 

fusion protein were spotted onto glass
 
slides and photographed as described above.

  

 

1.5.4 Immunolabeling of intracellular AcrA. Cells were fixed and immunolabeled as 

described in (den Blaauwen et al., 2001). Formaldehyde and glutaraldehyde were added 

to cell culture (10mL) to a final concentration of 2.8% and 0.04% respectively and 

incubated at room temperature (RT) for 15min. Cells were then harvested and washed 

three times in phosphate buffered saline (PBS). After the PBS washes, cells were 

resuspended in PBS supplemented with 100mg/mL lysozyme and 5mM EDTA and 

incubated at RT for 45min. Lysozyme in the presence of EDTA partially permeabilized 

cells to allow antibodies to reach its binding site. After the lysozyme-EDTA treatment, 

cells were washed three times with PBS followed by incubation in PBS supplemented 

with 0.5g dry milk (blocking buffer) for 30min at 37
0
C. After blocking of nonspecific 

binding sties, cells were then incubated with anti-AcrA antibody prepared in blocking 

solution for 1hr at 37
0
C. Cells were washed three times with 0.02% Tween-20 prepared 

in PBS followed by incubation with fluorescein (FITC)-conjugated goat anti-rabbit 

antibody for 1hr at 37
0
C. Cells were washed three times with Tween-20 buffer and 

visualized with fluorescence microscopy. 
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1.5.5 Transmission electron microscopy. Cells were collected directly from LB plates 

supplemented with
 
100 µg/ml of ampicillin. Fixation was done as described

 
in (Burdett 

and Murray, 1974). Briefly, cells were fixed with mixture of glutaraldehyde and acrolein 

and enrobed in agar. Fixed cells enrobed in agar were sliced into small cubes and 

postfixed with 1% OsO4
 
in 0.05 M sodium cacodylate buffer for 1 h at room temperature.

 

After OsO4 fixation, cells were washed three times with Milli-Q
 
H2O. Dehydration was 

done at room temperature in 15-min sequential
 
steps of 30%, 50%, 70%, 80%, and 95% 

ethanol followed by three
 
15-min wash in 100% ethanol. The dehydrated cells were 

embedded
 
in Embed-812 resin and sectioned to a thickness of 50 to 70

 
nm. The sectioned 

blocks were stained 10 min with saturated
 
uranyl acetate and 5 min with Sato's lead 

(Hanaichi et al., 1986) and observed
 
using JEOL 2000-FX electron microscope in the 

Samuel Roberts
 
Noble Electron Microscopy Laboratory at the University of Oklahoma.

 
 

1.5.6 Sucrose density gradient fractionation All sucrose solutions used in this 

procedure were preapared in 5mM EDTA. Membrane pellet was isolated as described in 

Appendix F and resuspended in solution
 
of 20% sucrose. All subsequent steps for 

membrane
 
preparation were done as described before (Ishidate et al., 1986; Tikhonova 

and Zgurskaya, 2004). Briefly, 1.6 mL of membrane vesicles in 20% sucrose was layered 

on a two-step sucrose gradient containing 3.2 mL of 60% Sucrose and 7.5 mL of 25% 

sucrose. After centrifugation in Beckman SW40 rotor at 40,000 rpm for 3.5 h, two bands 

collected at the 25%-60% sucrose interface was removed by puncturing the side of the 

tube with a needle attached to a syringe. Approximately 0.8 mL of the resulting 

suspension was mixed with equal volumes of [10mM Tris, 5mM EDTA] and layered on 

top of a 30-60% sucrose gradient. Membranes
 
separated in the sucrose gradient were 
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collected in 0.1 to 0.2
 
ml fractions from the bottom of the centrifuge tube. Fractions

 
were 

mixed with sodium dodecyl sulfate (SDS) sample buffer,
 
boiled for 10 min, analyzed by 

10% sodium dodecyl sulfate-polyacrylamide
 
gel electrophoresis (PAGE) and visualized 

by silver nitrate
 
staining.

 
 

1.5.7 Bocillin FL binding assay. The bocillin binding assay was performed as described 

(Zhao et al., 1999) with
 
the following modifications. Cells were first grown in 5 ml

 
LB 

medium supplemented with appropriate antibiotics overnight.
 
Overnight cultures were 

inoculated into 200 ml of fresh medium
 
and allowed to grow until an OD600 of 1.0, and 

harvested at
 
5,000 x g for 20 min. Cell were washed once with 20 mM potassium

 

phosphate buffer (PBS) (pH 7.5) containing 140 mM NaCl and resuspended
 
in 2 ml of 

the same buffer supplemented with 1 mM EDTA. Lysozyme
 
was added to the mixture to 

a final concentration 100 µg/ml,
 
cell were incubated on ice for 15 to 30 min and sonicated 

3
 
times for 20 seconds on ice. Unbroken cells and cell debris

 
were removed by 

centrifugation at 5,000 x g for 20 min. The
 
supernatant was collected by centrifugation in 

Beckman TLA-55
 
rotor at 40,000 rpm for 40 min. The resulting pellet was washed

 
once 

and resuspended in 0.5 ml of the 20 mM PBS (pH 7.5) containing 140 mM NaCl. 15 L 

of membrane preparations (~300 g of protein) was mixed with 5 L of 200 M Bocillin 

FL (Invitrogen) and incubated at 35
0
C for 30 min.

 
Equal volume of SDS-sample buffer 

was added and mixture was boiled for 3 min. 10 L of samples were resolved on 10% 

SDS-PAGE. The gel was rinsed with water after electrophoresis and directly scanned 

with Storm PhosphoImager.  
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1.5.8 Reverse transcription-PCR. Reverse transcription (RT)-PCR was performed by 

using QIAGEN
 
OneStep RT-PCR, which allows reverse transcription and PCR to

 
be 

carried out sequentially in the same reaction tube. Total
 

RNA was isolated from 

exponentially growing cells at OD600 of
 
0.8 to 1.0 and stationary phase cells using 

QIAGEN RNeasy kit.
 
Purified total RNA (2 µg) was used as a template in RT-PCR.

 
For 

AcrEF, forward primer fAcrEF and
 
reverse primer rAcrEF were used to

 
yield a product of 

4,280 bp. For SulA, forward primer fSulA
 
and reverse primer rSulA were

 
used to yield a 

product of 482 bp. 
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Chapter 2 

The C-terminal domain of MacA is Important for Its Interaction with 

the Escherichia coli Macrolide Transporter MacB 

 

2.1 Abstract 

Many transport systems in Gram-negative bacteria function with a periplasmic membrane 

fusion protein (MFP) and an outer membrane (OM) channel. Membrane fusion proteins 

are thought to facilitate the efflux of diverse substrates, such as proteins and small 

molecules across two membranes by providing the physical link between the inner and 

outer membrane components. This study is focused on the function of MacA, the 

periplasmic component of the macrolide transporter MacAB-TolC in Escherichia coli. 

MacB is an ABC-type transporter and functions with the periplasmic MFP MacA and the 

OM channel TolC in the efflux of macrolides. Upon reconstitution of MacB into 

proteoliposomes, MacB exhibit a MacA-dependent ATPase activity. MacA is the first 

member of the MFP family of proteins that was found to stimulate the ATPase activity of 

its cognate ABC transporter. In this study, we investigated the role of the C-terminal 

domain of MacA in its function with MacB. We found that the deletion of the C-terminal 

domain of MacA abolishes the activity of MacB in vivo and in vitro. The C-terminal 

deletion mutant failed to co-purify with 6His-tagged MacB, suggesting that the C-

terminal domain is important for its functional interaction with MacB. MacA devoid of 

its N-terminal membrane anchor co-purified with MacB. Our results revealed that the 

periplasmic domain is sufficient for the interaction of MacA with MacB, most likely 
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through its C-terminal domain. We also found in our studies that LPS is consistently co-

purified with MacA, suggesting that LPS could be a natural substrate of MacAB-TolC. 

 

2.2 Introduction 

Gram-negative bacteria contain two membrane layers: a cytoplasmic membrane and an 

outer membrane. The transport of molecules across the cell envelope of Gram-negative 

bacteria requires specialize transport systems that delivers molecules across this two-

membrane barrier (Zgurskaya and Nikaido, 2000b). Tripartite transport systems 

consisting of an inner membrane (IM) transporter, an outer membrane (OM) channel and 

a periplasmic membrane fusion proteins (MFPs) associate to form a continuous conduit 

that spans the two-membrane envelope of Gram-negative bacteria, thus allowing the 

direct efflux of substrates into the external medium bypassing the periplasmic space. In 

Escherichia coli, the proton antiporter AcrB, belonging to the resistance-nodulation-cell 

division (RND) superfamily functions with the MFP AcrA and the OM channel TolC in 

providing intrinsic resistance to wide range of antimicrobials, detergents and bile salts 

(Nikaido, 1994; Sulavik et al., 2001). Similarly, the ATPase HlyD, functions with the 

MFP HlyB and OM channel TolC in the type I secretion of -haemolysin (Thanabalu et 

al., 1998). The MFPs are proposed to interact with both IM transporter and OM channel 

components of the transport systems. MFPs are found to form cross-linked complexes to 

the IM and OM components in vivo (Husain et al., 2004; Hwang et al., 1997; Thanabalu 

et al., 1998; Touze et al., 2004; Zgurskaya and Nikaido, 2000a). The interaction between 

MFPs and the transport components are also supported by co-purification and ITC studies 
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(Tikhonova and Zgurskaya, 2004; Touze et al., 2004).  However, it is unclear how MFPs 

coordinate the efflux of substrates across two membranes.  

In this study we examine the role of the MFP MacA in a reconstituted system. 

MacA is an essential component of the macrolide pump MacB in E. coli. MacB is the 

first ABC-type drug efflux transporter to be characterized in a Gram-negative bacterium 

(Kobayashi et al., 2001b). It was shown that the overexpression of MacAB led to an 

increase of resistance to 14- and 15- membered macrolides in AcrAB deficient cells, 

which are otherwise susceptible to these drugs. The OM channel TolC is required for the 

function of MacAB. Deletion of TolC abolished the MacAB-mediated macrolide 

resistance. A typical ABC transporter consists of four domains: two hydrophobic 

transmembrane domains (TMDs) and two nucleotide binding domains (NBD) (Higgins, 

1992).  MacB represents a half type ABC transporter where an NBD and TMD are fused 

in a single polypeptide and thus predicted to function as a dimer. While a typical TMD of 

ABC transporter contains six transmembrane segments, MacB contains only four 

transmembrane segments. Another atypical feature of MacB is that the NBD is located at 

the N-terminus (Kobayashi et al., 2003). We took advantage of the capability of MacAB-

TolC in hydrolyzing ATP to study how the three components assemble into a functional 

complex and how each of the components contributes to the efflux of substrates across 

two membranes. In this study, we successfully purified and reconstituted MacA and 

MacB into proteoliposomes and characterized the ATPase activity of MacB in the 

presence or absence of its cognate MFP. We found that MacA stimulates the ATPase 

activity of MacB and demonstrated the importance of the C-terminal domain of MacA in 

forming a functional interaction with MacB.  
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2.3 Results 

2.3.1 Purification of MacA and MacB. Plasmids pBA
His

 and pBB
His

 were
 
constructed 

by Elena Tikhonova expressing MacA-6His and MacB-6His respectively. For 

purification of MacA and MacB, these plasmids were transformed into ET103 

(BW25113 OmpT) E. coli strain. Both MacA and MacB are inserted into the inner 

membrane of E. coli. Therefore, membrane fractions were collected and solubilized with 

Triton X-100 (TX). Proteins were recovered from the TX-soluble fraction using Cu
2+

-

chelate chromatography. Purified proteins were resolved on standard SDS-PAGE. A 

major band corresponding to MacA (48kDa) was detected on the gel (Fig. 2.1A). Two 

major bands were observed with purified MacB with MWs of 70kDa and 140kDa (Fig. 

2.1B). Both bands reacted with INDIA anti-His probe (Pierce), suggesting that the two 

bands correspond to monomeric and dimeric forms of MacB. MacB dimers were stable 

and remained even after boiling in the presence of reducing agents suggesting that the 

MacB dimers were stabilized by non-disulphide covalent bonds. N-terminal sequencing 

confirmed that the 140kDa band contains MacB (Tikhonova et al., 2007). 

 

2.3.2 MacA exhibit strong binding to LPS. Lipopolysaccharide (LPS)-like molecules 

were found in purified MacA preparation and can be clearly detected on tricine-sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (TSDS-PAGE) (Fig. 2.2A). The 

presence of this ―LPS‖ is specific for MacA as no LPS-like molecules were found in our 

MacB or TolC preparation (Fig. 2.2A). The MacA preparation was tested for presence of 

2-keto-3-deoxyoctonate (KDO), which is a normal constituent of LPS. Purified MacA 

was  precipitated  with TCA and resuspended in 1% SDS, which is compatible with KDO 
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                    A   

                           
                        B 

                           
 

 

Figure 2.1 Quantitative SDS-PAGE of purified MacA and MacB.  BSA in the amounts 

of 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 g and purified MacA (A) or MacB (B) were boiled for 

10 min in sample buffer, resolved on SDS-PAGE and stained with CBB.  
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  A                                                      B 

                             
 

 

 

 

Figure 2.2 TSDS-PAGE of purified MacA, MacB and TolC. (A) 1 g of E. coli LPS  or 

purified proteins MacA, MacB and TolC were resolved on TSDS-PAGE and visualized 

with Bio Rad silver stain. (B) MacA precipitated with TCA and resolubilized in 1% SDS 

was analyzed for presence of LPS on TSDS-PAGE. (lane 1 – untreated MacA, lane 2- 

TCA treated MacA, lane 3 – TCA treated MacB) 
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assay. LPS remained bound to MacA after TCA precipitation (Fig. 2.2B). KDO was 

detected in MacA samples at 4 moles of KDO per mole of MacA (Fig. 2.3, Table 2.1). In 

contrast, MacB tested negative for KDO. KDO is a normal constituent of LPS. Therefore, 

we conclude that the LPS-like band detected in purified MacA preparation is likely to be 

LPS. 

In order to remove LPS from MacA we passed the purified MacA through HiTrap 

Octyl-Sepharose column. MacA was eluted from the column in both high and low salt 

concentrations (Fig. 2.4A). Fractions from both high and low salt concentrations were 

pooled, concentrated with dialysis against 20% PEG (2.5.2 Materials and methods) and 

tested for presence of LPS using TSDS-PAGE. LPS was detected in both fractions (Fig. 

2.4B). However, the mobility of the LPS on the gel appeared diffused unlike the sharp 

band we see in purified MacA preparation before running the hydrophobic column (Fig. 

2.4B, lane 1). The LPS appear to form strong association with MacA. However, we 

cannot exclude the possibility that the binding condition used was not optimal for 

separation of LPS from MacA. 

An alternative method was used to remove LPS from MacA using Detoxi-Gel™ 

Endotoxin Removing Gel (Pierce), which utilizes immobilized polymyxin B to bind LPS 

(see Materials and methods). E. coli LPS (Sigma) or MacA were passed through column 

containing the endotoxin removing gel (Pierce). LPS remained bound to the column and 

were eluted only in 1% sodium deoxycholate (SDO) (Fig. 2.5A). The LPS found in 

purified MacA eluted with MacA in column washes (Fig. 2.5B and 2.5C), indicating that 

LPS bound tightly to MacA. 
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             Figure 2.3 KDO standard curve. KDO – 2-keto-3-deoxyoctonate.  

 

 

 
                   MacA ( g)            OD548            g of KDO         KDO: MacA 

 
                  12.5 g                0.1082               0.335                   4.25: 1 

 
                      25.0 g                0.2285               0.708                   4.50: 1 
 

  

 

Table 2.1 KDO content of MacA proteins. Molar ratio of KDO to MacA was calculated 

with molecular weight (MW) of KDO at 255.22 g/mol and theoretical MW of MacA at 

40.6 kDa. 
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Figure 2.4 SDS-PAGE and TSDS-PAGE of purified MacA. (A) Purification profile of 

MacA from octyl sepharose column. Samples were resolved on SDS-PAGE and stained 

with silver stain. (B) TSDS-PAGE of 1 - purified MacA; 2 - MacA pooled from high salt 

fractions I; 3 - MacA pooled from low salt fractions II. 
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                  B 

 
                  C 

 
 

 

Figure 2.5 Removal of LPS by affinity chromatography. (A) Fractions of E. coli LPS 

eluted from column containing Detoxi-Gel™ Endotoxin Removing Gel were analyzed on 

TSDS-PAGE. (B) and (C) Silver stained SDS-PAGE and TSDS-PAGE of fractions of 

MacA eluted from endotoxin removing column respectively.   
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2.3.3 MacA stimulates the ATPase activity MacB. To investigate whether a functional 

relationship exist between MacA and MacB, we reconstituted MacA and MacB 

separately or together into proteoliposomes and tested the ATPase activity of MacB. 

When present alone in proteoliposome, MacB exhibit a specific activity of 11 2 nmol 

ATP min
-1

 mg
-1

 (Fig. 2.6). When both MacA and MacB were reconstituted together into 

proteoliposomes, the ATPase activity of MacB was much more efficient with specific 

activity of 291 9 nmol ATP min
-1

 mg
-1

, 25-fold higher than when MacB was 

reconstituted alone. Elena Tikhonova showed that the LPS-like molecules purified from 

MacA preparation did not stimulate ATPAse activity of MacB (data not shown). The 

macrolide oleandomycin and the OM channel TolC also did not stimulate the ATPase 

activity of MacB (Tikhonova et al., 2007), suggesting that MacA is solely responsible for 

the stimulation of the ATP hydrolysis by MacB. 

 

2.3.4 The C-terminal domain of MacA is required for its function in vitro an in vivo. 

Chimeric analysis of AcrA, the MFP component of the multidrug efflux pump AcrAB-

TolC of E. coli, revealed that the C-terminal domain is important for its interaction with 

the AcrB multidrug efflux pump (Elkins and Nikaido, 2003). Studies with isothermal 

titration calorimetry (ITC) showed that the C-terminal of AcrA formed energetically 

favorable interaction with AcrB (Touze et al., 2004). To test whether the C-terminal of 

MacA is also important for forming a functional interaction with MacB in vitro, C-

terminal mutants of MacA lacking 12, 19, 47, 67, 80 and 90 C-terminal amino acid 

residues expressed  from  pET21d(+)  plasmid  were constructed by Elena Tikhonova. All 

constructed  deletion  mutants  were  readily expressed in E. coli. Expression studies were  
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Figure 2.6 MacA stimulation of MacB ATPase activity. (A) Proteoliposomes containing 

1—MacB; 2 – MacA and MacB were resolved on SDS-PAGE and stained with CBB. (B) 

ATPase activity of MacB in the presence or absence of MacA in proteoliposomes. 
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Figure 2.7 Purification of MacA 90. (A) Total membranes of ET103/pETA 90 were 

solubilized in 5% TX. The TX soluble fraction was loaded onto Cu
2+

charged-NTA 

column and bound protein were eluted with imidazole gradient of 50mM and 500mM. 

(B) S – TX soluble fraction and P – TX insoluble fraction of ET103/pETA 90; TX 

insoluble fraction was solubilized in 0.6% DDM and soluble fraction was loaded onto 

Cu
2+

charged-NTA column and bound protein were eluted with imidazole gradient of 

5mM, 40mM and 500mM. 

B 

A 
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done by Vishakha Dastidar (data not shown). We found that with the exception of 

MacA 90 mutant, all other deletion mutants were insoluble in non-ionic detergents and 

presumably formed inclusion bodies (data not shown). MacA 90 was only partially 

soluble in Triton X-100 (TX) as the deletion mutant was detected in the TX insoluble 

fraction (Fig. 2.7B). MacA 90 was purified from the TX soluble fraction (Fig. 2.7A) 

albeit at low concentration. We were able to recover and purify MacA 90 from the 

insoluble fraction using alkyl- -D-maltoside (DDM) (Fig. 2.7B). However, DDM was 

shown to irreversibly inactivate the ATPase activity of MacB (Tikhonova et al., 2007).  

MacA 90 was also purified using CTAB, which gives a higher yield of protein. MacA 

was also purified with the same detergent for the ATPase hydrolysis assay. The 

purifications were done by Elena Tikhonova. MacA 90 purified with CTAB did not 

stimulate the ATPase activity of MacB (Fig. 2.8). MacA purified using CTAB stimulates 

the activity of MacB but exhibit a specific activity of 35.5 nmol ATP min
-1

 mg
-
1, 8-fold 

lower than the stimulation effect of MacA purified using TX (Fig. 2.6 and 2.8), indicating 

the inhibitory effect of CTAB on ATPase assay. Nevertheless, the stimulation was still 6-

fold higher than MacA 90, indicating that the C-terminus is required for the stimulation 

of MacB ATP hydrolysis. Similarly, MacA 90 purified from TX soluble fraction did not 

stimulate the activity of MacB (Tikhonova et al., 2007).  

The C-terminus of MacA was also shown to be important for its macrolide 

transport function. MacA 90 deletion mutant when expressed together with MacB from 

the plasmid pUA 90B failed to confer resistance to macrolides (Tikhonova et al., 2007). 

Our results showed that the C-terminal of MacA is important for both the stimulation of 

MacB ATPase activity in vitro as well as for the function of this protein in vivo.  
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Figure 2.8 MacA 90 stimulation of MacB ATPase activity. MacB was reconstituted in 

proteoliposomes alone or together with MacA or MacA 90B purified using CTAB. (A) 

Proteoliposomes containing 1—MacB; 2 – MacA and MacB; or 3 – MacA 90 and MacB 

were resolved on SDS-PAGE and stained with CBB. (B) ATPase activity of MacB in the 

presence of MacA or MacA 90.  
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Figure 2.9 Expression of MacA 90. Equal amounts of whole cell extracts of ET103 

carrying corresponding plasmids were resolved on 12% SDS-PAGE and proteins are 

identified by immunoblotting. MacA antibody (top); MacB antibody (bottom). 
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Figure 2.10 C-terminial of MacA is required for interaction with MacB. Proteins (0.5 g) 

purified from ET103 strain carrying either pBAB
His

, pBA 90B
His

 or pUA NB
His

 were 

separated on 12% SDS-PAGE and stained with silver stain (top panel). The same samples 

were also analyzed by immunoblotting with anti-MacA antibodies. 
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2.3.5 The C-terminal domain of MacA interacts with MacB. To examine whether the 

loss of function is due to the loss of interaction with MacB, we examined the 

copurification of MacA and MacA deletion mutants with MacB-6His. MacA 90 deletion 

mutant was introduced into pBAB
His

 plasmid, obtained from Elena Tikhonova, which 

contains MacA and six-histidine tagged MacB in a single operon.  Both pAB
His 

and 

pBA 90B
His

 were introduced into ET103 strain. Immunoblotting analysis with anti-MacA 

and anti-MacB antibodies revealed that both MacA 90 and MacB are produced from the 

pBA 90B
His

 construct albeit at levels several folds lower than MacA and MacB produced 

from pAB
His 

(Fig. 2.9). Nevertheless, MacB-6His was successfully purified from this 

construct (Fig. 2.10, top panel). Immunoblotting analysis of MacB preparation with anti-

MacA antibodies reveal that MacA was reproducibly co-purified with MacB whereas 

only traces of MacA 90 were detected (Fig. 2.10, bottom panel), suggesting that this 

mutant is defective in its interaction with MacB. MacA devoid of its membrane anchor, 

MacA N was also consistently purified with MacB-6His (Fig. 2.10). Purification studies 

were done with Vishakha Dastidar. Our results suggested that the periplasmic domain is 

sufficient for the interaction of MacA with MacB, most likely through its C-terminal 

domain. 

 

2.4 Discussion 

Membrane fusion proteins constitute a novel family of bacterial transport accessory 

proteins (Dinh et al., 1994). MFP functions with an inner membrane transporter and an 

outer membrane channel in the efflux of substrates across the two-membrane cell 

envelope of Gram-negative bacteria. MFPs are proposed to serve a structural role by 
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acting as a bridge between the IM transporter and OM channel. In this study, we show for 

the first time that in addition to serving as linkers, MFPs can play an active functional 

role. Upon reconstitution into proteoliposomes, MacA stimulates the ATP hydrolysis of 

MacB. The stimulation by MacA is independent of substrates or the outer membrane 

TolC. MacA is the first member of the MFP family of proteins that was found to 

stimulate the ATPase activity of its cognate ABC transporter. 

  Previous studies have implicated the C-terminus domain of MFPs in 

forming a functional interaction with the IM transporter (Elkins and Nikaido, 2003; 

Touze et al., 2004). Solved crystal structures of two MFPs, MexA and AcrA (Akama et 

al., 2004; Higgins et al., 2004; Mikolosko et al., 2006) also supported the role of the C-

terminal in interaction with the IM transporter. Structures of both proteins exhibit a 

central -helical hairpin, formed when the two central -helices of the MFPs fold back to 

form the coiled-coil as predicted (Johnson and Church, 1999) (Fig. I. 1). The hairpin is 

held together by the interlocking of two lipoyl motifs that flanked the -helices. The 

formation of this -helical hairpin brings the N- and C-terminal into close proximity. 

Because MFPs are anchored to the IM through the N-terminal via either a transmembrane 

segment or lipid moiety, this must place the C-terminal near the IM, allowing it to 

interact with the IM transporter. Consistent with this, the MacA mutant lacking the C-

terminal domain MacA 90 lost its ability to confer resistance to macrolides in vivo and 

to stimulate the ATPase activity of MacB in vitro. We showed that MacA 90 fails to 

bind MacB (Fig. 2.10), suggesting that the C-terminal of MFP is essential for forming a 

functional interaction with its cognate transporter. The crystal structure of AcrB revealed 

that three AcrB protomers assembled to form a jellyfish-like structure comprising a 50Å 
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thick transmembrane domain and a 70Å thick periplasmic headpiece (Murakami et al., 

2002). The periplasmic headpiece is formed by six large periplasmic loops, two from 

each AcrB protomer. Regions within the headpiece are thought to form the binding sites 

for the MFP AcrA. Reminiscent to AcrB, MacB also contains a large periplasmic loop 

that connects its TM1 and TM2 (Kobayashi et al., 2003), which could interact with the 

MFP MacA.  

The interaction between MFP with components of the efflux complex underlies 

the mechanism of transport across both membranes. Questions remain as to how these 

components co-ordinate the efflux process. While the N- and C-terminal of MFPs are 

situated near the IM, the -helical hairpin extends half the distance into the periplasmic 

space. The interaction between the -helical hairpin and the aperture helices of TolC is 

proposed to be involved in the opening of TolC (Andersen et al., 2002; Koronakis et al., 

2000). Indeed, interacting surface of the MFP AcrA, involved in interaction with TolC, 

were mapped within the -helical coiled-coil (Lobedanz et al., 2007). Perhaps the 

opening of TolC requires energy afforded by the IM transporter, in the case of MacB, 

through the hydrolysis of ATP. MFP may serve to transduce the energy from the IM 

component to the opening of the OM channel.  

We found in our studies that LPS-like molecules form strong association with 

MacA. The ―LPS‖ was tested positive for presence of KDO, a normal constituent of LPS. 

The use of Detoxi-Gel™ Endotoxin Removing Gel (Pierce), which utilizes immobilized 

polymyxin B to bind LPS/ endotoxins fail to separate MacA from ―LPS‖. Polymyxin B 

exhibit strong binding to Lipid A moiety of LPS (Issekutz, 1983; Morrison and Jacobs, 

1976). Several reasons could explain why LPS fail to bind to the endotoxin gel. First, 
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MacA could have a stronger affinity for LPS than polymyxin B. Second, MacA bound to 

the LPS protected it from binding to polymyxin B. It is interesting that LPS, an outer 

membrane component was found in tight association with and inner membrane protein. 

Perhaps, MacAB-TolC is involved in cell wall biosynthesis by transporting LPS to the 

outer membrane. LPS could be the natural substrate of the pump. The physiological 

functions of drug efflux pumps remain a subject of interest. It is thought that these pumps 

extrude drugs that happen to resemble the natural substrates of the pump. Therefore, drug 

efflux is only secondary to the physiological roles of these pumps. However, the 

detrimental impact of drug efflux in the treatment of bacterial infections is evident and 

continues to pose serious threat to human health. Understanding the functions of these 

pumps will help us gain more insight to how these pumps work and therefore find better 

ways treat these bacterial infections. 

 

2.5 Materials and Methods 

 

Media and growth conditions, standard protein assays and total membrane fractionation 

are described in appendices D, E and F respectively. 

 

2.5.1 Plasmid construction. Plasmid pBA 90B
His

 was constructed by PCR using 

pBAB
His

 as a template. pBAB
His

 was amplified using the forward primer fMacBXbaI and 

the reverse primer rMacAdel90XbaI, both containing the XbaI restriction site. The 

amplified PCR product was restricted with Xba I restriction enzyme and religated using 

T4 DNA ligase. 



 67 

2.5.2 Purification of His-tagged proteins using Cu
2+

 chelate chromatography. For 

purification of MacB-His, total membranes of ET103/pBB
His

 cells (Tikhonova et al., 

2007) were collected and resuspended in 5% Triton X-100: Membranes were first 

resuspended with binding buffer [20mM Tris-HCl (pH 7.0), 200mM NaCl, 1mM PMSF, 

2mM MgCl2, 0.05mM -mercaptoethanol and 5mM imidazole]. An equal volume of 10% 

Triton X-100 (TX) in binding buffer was added to the membrane suspension and allowed 

to mix overnight by stirring at 4
0
C. Triton insoluble fraction was removed by 

ultracentrifugation at 70,000 x g for 30min. Solubilized membrane proteins were loaded 

onto Cu
2+

charged NTA column equilibrated with binding buffer containing 0.2% TX 

(equilibration buffer). The column was washed with an imidazole gradient of 5mM, 

20mM, 40mM, 100mM and 250mM in equilibration buffer. Majority of MacB elutes in 

the 100mM imidazole fraction. This fraction was dialyzed with storage buffer containing 

20mM HEPES-KOH (pH 7.7), 2mM DTT, 200mM NaCl, 1mM PMSF, and 0.2% TX to 

remove imidazole. MacB was concentrated by dialysis against 20% polyethylene glycol 

(PEG) in 20mM HEPES-KOH (pH 7.7), 2mM DTT, 200mM NaCl, and 1mM PMSF and 

kept in storage buffer containing 50% glycerol.  

MacA and MacA 90 expressed from ET103/pBA
His

 and ET103/pETA 90 respectively 

were purified in the same way with the following modifications. MacA was purified from 

membranes solubilized in 5% TX. Binding buffer contains 20mM HEPES-KOH (pH7.7), 

500mM NaCl, 1mM PMSF and 5mM imidazole. Cu
2+

-NTA column was equilibrated 

with the same buffer supplemented with 0.2% TX. The column was washed with 

imidazole gradient of 5mM, 20mM, 50mM, 100mM and 500mM. MacA 90 was purified 

from membranes solubilized either in 5% TX or 0.6% alkyl- -D-maltoside (DDM). 
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Binding buffer contains 20mM Tris-HCl (pH8.0), 500mM NaCl, 1mM PMSF and 5mM 

imidazole. Cu
2+

-NTA column was equilibrated with the binding buffer supplemented 

with 0.2% TX. The column was washed with an imidazole gradient of 5mM, 40mM, 

50mM and 500mM. Majority of MacA and MacA 90 elute in the 500mM imidazole 

fraction. The fraction was dialyzed in with storage buffer containing 20mM HEPES-

KOH (pH 7.7), 200mM NaCl, 1mM PMSF, and 0.2% TX to remove imidazole. Purified 

MacA and MacA 90 was concentrated by dialysis against 20% PEG in 20mM HEPES-

KOH (pH 7.7), 200mM NaCl, and 1mM PMSF and kept in storage buffer containing 

50% glycerol.  

 

2.5.3 ATP hydrolysis assay. The rate of ATP hydrolysis by MacAB in proteoliposomes 

was assayed in 10 L of reaction mixture. Proteoliposomes containing 0.2 g of ATPase 

were mixed in buffer containing 20mM HEPES-KOH (pH7.0), 5mM DTT, 50mM KCl, 

2mM MgCl2, and 1mM Mg-ATP. The 
32

P -phosphate labeled ATP (3000 Ci mmol
-1

, 

Amersham) was mixed with unlabelled Mg-ATP prior to addition into the reaction mix. 

The molar ratio of MFP: ATPase was adjusted to 3: 1. The reaction was initiated by 

incubating the reaction mixture in 37 
0
C waterbath. Aliquots of 1 L were removed at 

different time points and added to 10 L of stop buffer containing 50 mM Tris-HCl (pH 

8.0), 20 mM EDTA, 0.5 % SDS, 200 mM NaCl and 0.5 mg mL
-1

 proteinase K. The 

hydrolysis of 
32

-ATP was analyzed using thin-layer chromatography. 1 L of samples 

were loaded onto PEI-F cellulose (10cm x 20cm). The mobile phase contained 10% 

formic acid and 0.5mM LiCl. Hydrolyzed Pi was quantified using Storm PhosphoImager 

and ImageQuant software (Molecular Dynamics). 
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2.5.4 Octyl-Sepharose column. Purified MacA was prepared in buffer A containing 

20mM HEPES (pH 7.7), 2M (NH4)2SO4, 1mM PMSF, 0.1% DDM and 5% glycerol and 

passed through HiTrap Octyl-Sepharose column (Amersham Biosciences). The column 

was washed with buffer A followed by a decreasing (NH4)SO4 gradient. Fractions eluted 

from the column were resolved on 12% SDS-PAGE and TSDS-PAGE.  

 

2.5.5 Removal of LPS by affinity chromatography. Purified MacA (400 g) or 

750( g) lipopolysaccharide (LPS) (Sigma) was prepared in buffer containing 20mM 

HEPES-KOH (pH 7.7), 200mM NaCl, 1mM PMSF and 0.2% TX (equilibration buffer) 

and loaded onto column containing Detoxi-Gel™ Endotoxin Removing Gel (Pierce), 

equilibrated with the equilibration buffer, and allowed to incubate for 2hrs. Unbound 

protein was washed from the column with the same buffer. Bound LPS was eluted from 

the column with 1% sodium deoxycholate (SDO). 

 

2.5.6 Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (TSDS-

PAGE). TSDS-polyacrylamide gel was prepared as described in (Lesse et al., 1990). 

Separating gels were prepared by adding 16.6mL of stock solution A (49.5% acrylamide 

and bisacrylamide, 6% bis), 16.6mL gel buffer (3.0M Tris-HCl (pH 8.45), 0.3% SDS), 

10.4mL 50% glycerol, 11.5mL water, 100 L 10% ammonium persulfate solution (APS) 

and 10 L TEMED. Stacking gels were prepared by adding 1mL stock solution B (49.5% 

acrylamide and bisacrylamide, 3% bis), 3.1mL gel buffer, 150 L 10% APS and 15 L 

TEMED. Anode buffer [0.2M Tris-HCl (pH 8.9)] and cathode buffer [0.1M Tris-HCl 

(pH8.25), 0.1M tricine, 0.1% SDS] were used for gel electrophoresis. The electrophoresis 
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was carried out at 100 V for approximately 6-8 h or 1 h after the bromophenol blue dye 

front had left the gel. Gels were stained with Bio Rad oxidative silver stain (catalog #: 

161-0443). 

 

2.5.7 Trichloroacetic acid (TCA) precipitation. Purified MacA, MacB or BSA were 

incubated in [10% TCA, 20mM HEPES-KOH (pH 7.7)] for 1hr on ice. Precipitated 

proteins were pelleted at 13,200 rpm for 5-10 min on a Eppendorf microcentrifuge. The 

pellets were resuspended in 1mL cold acetone (-20
0
C) and vortexed. After acetone wash, 

proteins were pelleted at 13,200 rpm for 5-10 min on a Eppendorf microcentrifuge and 

dried for 10min in vacuum drier. Pellets were resuspended in 1% SDS (compatible with 

KDO assay) and boiled for 10min. Samples were resolved on TSDS-PAGE and 

visualized with Bio Rad oxidative silver stain.  

 

2.5.8 KDO assay. 2-keto-3-deoxyoctonate (KDO) was determined by thiobarbituric acid 

as described in http://www.cmdr.ubc.ca/bobh/methods/KDOASSAY.html based on the 

method of (Weissbach and Hurwitz, 1959). KDO was first extracted from protein 

samples as follows: 25 L of protein sample was added to 25 L of 0.5N H2SO4 and 

vortexed. The mixture was heated for 8min at 100
0
C and cooled to room temperature 

(RT). (This step is omitted for pure KDO). 25 L of 2.28% H5IO6 was added to the 

mixture, vortexed and permitted to stand for 10min at RT. 100 L of [4% NaAsO2 in 

0.5N HCl] was added to the mixture. After vortexing, 400 L of 0.6% thiobarbituric acid 

(made fresh before use) was added to the mixture and vortexed. The mixture was boiled 

for 10min at 100
0
C and allowed to cool to RT. When the mixture had cooled, 750 L of 
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butanol was added to the mixture. The mixture was mixed by vortexing followed by low 

speed centrifugation on tabletop centrifuge for 5min at 2000rpm. The upper butanol layer 

was collected and optical density was measured at 548nm. To generate a standard curve, 

different amounts of pure KDO (Sigma) at 1 g, 2 g, 4 g and 6 g were subjected to the 

same treatment. Heating after addition of 0.5N H2SO4 is omitted for KDO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

Chapter 3 

Reconstitution of YknWXYZ, an MFP-dependent ABC Transporter 

System in Bacillus subtilis 

 

3.1 Abstract 

MFP homologues functioning as essential accessory proteins of ABC type transporters 

were also identified in Gram-positive bacteria, which do not have a two-membrane cell 

envelope. These findings suggest that MFP may play more than just a structural role in 

the efflux process. Recent studies with the macrolide extrusion pump MacAB-TolC from 

Escherichia coli showed that the MFP MacA stimulates the ATPase activity of MacB 

(Tikhonova et al., 2007), an ABC type transporter, thus pointing to the role of MFP as an 

active efflux component. To examine whether MFPs from Gram-positive bacteria also 

play an active role in the efflux process, we examined the functional properties of 

reconstituted MacAB homologue, YknXYZ from the Gram-positive bacteria Bacillus 

subtilis. The yknWXYZ operon encoding YknX, YknY, YknZ and an unknown protein 

YknW is implicated in providing self-resistance to endogenously produced peptide toxin, 

SdpC (Butcher and Helmann, 2006). YknX, YknY and YknZ are the putative MFP, 

ATPase and permease respectively. We cloned and expressed the Bacillus proteins: 

YknW, YknX and the fusion protein YknY-YknZ (YknYLZ) in E. coli. We showed that 

YknX stimulates the ATPase activity of YknYLZ in lipid vesicles. YknX cannot 

substitute MacA in stimulating the ATPase activity of MacB, suggesting that the YknX 

stimulation of YknYLZ is specific. Our results suggest that the MFPs of both Gram-
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negative and Gram-positive bacteria play an active functional role by stimulating the 

activity of a corresponding transporter.  

 

3.2 Introduction 

Membrane Fusion Proteins (MFP), constitute a homologous family of extracytoplasmic 

proteins that allow the transport of molecules across both the inner membrane (IM) and 

outer membrane (OM) of Gram-negative bacteria (Dinh et al., 1994). MFPs are essential 

components of various transport systems including those from the Major Facilitator 

Superfamily (MFS), ATP-binding Cassette Superfamily (ABC) and the Resistant-

Nodulation-Cell Division (RND) family. These transporters form a tripartite complex that 

spans the two-membrane cell envelope of Gram-negative bacteria, thus facilitating the 

extrusion of substrates directly into the medium, bypassing the periplasm. MFPs are 

thought to act as the physical link between the IM and OM components of the transport 

system. MFPs are anchored to the cytoplasmic membrane through an N-terminal 

transmembrane segment or a lipid moiety, while the rest of the protein extends into the 

periplasm. AcrA, the MFP component of the multidrug resistant pump AcrAB-TolC of E. 

coli, was shown to be an elongated protein capable of spanning the periplasm (Avila-

Sakar et al., 2001; Zgurskaya and Nikaido, 1999a). The crystal structure of MexA of the 

multidrug resistance pump MexAB-OprM of Pseudomonas aeruginosa revealed an 

elongated structure with a length of 89Å (Higgins et al., 2004). Biochemical evidences 

showed that MFPs can interact with both the IM and OM components. AcrA was found 

to form cross-linked complexes with its cognate transporter AcrB and the OM channel 

TolC (Husain et al., 2004; Touze et al., 2004; Zgurskaya and Nikaido, 2000a).  
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MFPs were thought to be unique to Gram-negative bacteria, but structural 

homologues of MFPs have also been identified in Gram-positive bacteria that lack an 

OM membrane, suggesting that MFPs may play more than just a structural role (Harley et 

al., 2000). The Gram-positive MFPs function as essential components of ABC 

transporters such as SapT which is involved in the production of the bacteriocin sakacin 

A in lactobacillus sake (Axelsson and Holck, 1995). It is unclear whether the functions of 

MFPs from Gram-positive bacteria are similar to that of Gram-negative bacteria.  In order 

to investigate whether the functional role of MFPs are conserved in both Gram-negative 

and Gram-positive bacteria, we purified and reconstituted in vitro a MacAB homologue 

from Bacillus subtilis, YknXYZ and assessed the ability of the Gram-positive MFP in 

stimulating the ATP hydrolysis of its cognate transporter.  

 

3.3 Results 

3.3.1 Identification of the MacAB homologues in Bacillus subtilis. Using Blast search 

we identified four proteins that showed sequence homology to MacB: YvrO, YvrN, 

YknY and YknZ. YvrO and YknY are putative ATP-binding proteins, whereas YvrN and 

YknZ are putative permeases. The ATP-binding protein YvrO, showed a 53% identity 

and 74% similarity to the nucleotide binding domain (NBD) of MacB, whereas YknY 

showed 48% identity and 73% similarity. Both YvrO and YknY contains the highly 

conserved Walker A and B consensus nucleotide binding motif and the LSGGQ signature 

motif of ABC transporters (Jones and George, 2004) (Fig. 3.1, data shown for YknY 

only). The permease YvrN exhibit a 30% identity and 50% similarity to the 

transmembrane domain (TMD) of MacB, whereas YknZ exhibits a 33% identity and 55%  
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YknY     MIQLSNVRKSYQIGKETFDVLHSIDLDIHQGEYVSIMGPSGSGKSTIMNIIGCLDRPTSG  60 
         +++L ++R+SY  G E  +VL  I LDI+ GE V+I+G SGSGKST+MNI+GCLD+ TSG 
MacB     LLELKDIRRSYPAGDEQVEVLKGISLDIYAGEMVAIVGASGSGKSTLMNILGCLDKATSG  63 
 
YknY     TYQLDGEDISSYKDKELAAVRNRSIGFVFQQFQLLPRLNAKKNVELPMIYSGIGKKERQE  120 
         TY++ G+D+++     LA +R    GF+FQ++ LL  L A++NVE+P +Y+G+ +K+R   
MacB     TYRVAGQDVATLDADALAQLRREHFGFIFQRYHLLSHLTAEQNVEVPAVYAGLERKQRLL  123 
 
YknY     RAERALEKVGLADRMLHMPNELSGGQKQRVAIARAIVNEPKLILADEPTGALDTKTSEAI  180 
         RA+  L+++GL DR  + P +LSGGQ+QRV+IARA++N  ++ILADEPTGALD+ + E + 
MacB     RAQELLQRLGLEDRTEYYPAQLSGGQQQRVSIARALMNGGQVILADEPTGALDSHSGEEV  183 
 
YknY     MDQFTALNAEGTTIVLVTHEPEVADCTNRIVMVRDGNIV  219 
         M     L   G T+++VTH+P+VA    R++ +RDG IV 
MacB     MAILHQLRDRGHTVIIVTHDPQVAAQAERVIEIRDGEIV  222 
 
 
 
YknZ     ENIRMALSSVLAHKMRSILTMLGIIIGVGSVIVVVAVGQGGEQMLKQSISGPG-NTVELY  63 
         E + MA  ++ A+KMR++LTMLGIIIG+ SV+ +V VG   +QM+   I   G NT+++Y 
MacB     EALTMAWRALAANKMRTLLTMLGIIIGIASVVSIVVVGDAAKQMVLADIRSIGTNTIDVY  315 
 
YknZ     YMPSDEELASNPNAAAESTFTENDIKGLKGIEGIKQVVASTSESMKARYHEEETDATVNG  123 
           P  +    +P    +     +D+  ++    +     + S++++ RY+  +  A+ NG 
MacB     --PGKDFGDDDPQY--QQALKYDDLIAIQKQPWVASATPAVSQNLRLRYNNVDVAASANG  371 
 
YknZ     INDGYMNVNSLKIESGRTFTDNDFLAGNRVGIISQKMAKELFD-KTSPLGEVVWINGQPV  182 
         ++  Y NV  +    G TF         +V ++     ++LF  K   +GEV+ +   P  
MacB     VSGDYFNVYGMTFSEGNTFNQEQLNGRAQVVVLDSNTRRQLFPHKADVVGEVILVGNMPA  431 
 
YknZ     EIIGVLKKVTGLL-SFDLSEMYVPFNMMKSS-FGTSDFSNVSLQVESADDIKSAGKEAAQ  240 
          +IGV ++   +  S  +  +++P++ M     G S  ++++++V+   D   A ++  + 
MacB     RVIGVAEEKQSMFGSSKVLRVWLPYSTMSGRVMGQSWLNSITVRVKEGFDSAEAEQQLTR  491 
 
YknZ     LVNDNHGTEDSYQVMNMEEIAAGIGKVTAIMTTIIGSIAGISLLVGGIGVMNIMLVSVTE  300 
         L++  HG +D +   NM+ +   + K T  +   +  +A ISL+VGGIGVMNIMLVSVTE 
MacB     LLSLRHGKKDFF-TWNMDGVLKTVEKTTRTLQLFLTLVAVISLVVGGIGVMNIMLVSVTE  550 
 
YknZ     RTREIGIRKSLGATRGQILTQFLIESVVLTLIGGLVGIGIGYGGA-ALVSAIAGWPSLIS  359 
         RTREIGIR ++GA    +L QFLIE+V++ L+GG +GI +    A  L   + GW    S 
MacB     RTREIGIRMAVGARASDVLQQFLIEAVLVCLVGGALGITLSLLIAFTLQLFLPGWEIGFS  610 
 
YknZ     WQVVCGGVLFSMLIGVIFGMLPANKAAKLDPIEALRYE  397 
            +    L S + G++FG LPA  AA+LDP++AL  E 
MacB     PLALLLAFLCSTVTGILFGWLPARNAARLDPVDALARE  648 
 
 
 
 

Figure 3.1 Alignment of YknY and YknZ protein sequences to MacB (Top) Sequence 

alignment of YknY to Nucleotide Binding Domain (NBD) of MacB. Grey highlights 

consensus sequences of ABC transporters. (Bottom) Sequence alignment of YknZ to 

transmembrane domain (TMD) of MacB. Transmembrane segments in YknZ and MacB 

are highlighted in cyan and yellow respectively 

 

Walker A 

Walker B Signature 
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similarity. The sequence similarity between MacB and putative ABC transporters in 

Gram-positive organisms such as MsrA was shown to be restricted to the ATP binding 

domain (Kobayashi et al., 2001b). However, the sequence similarity between MacB with 

YvrN and YknZ extends into the TMD (Fig. 3.1, data shown for YknZ only).  

Hydropathy analysis revealed that similar to the TMD of MacB, YvrN and YknZ contain 

four predicted transmembrane segments (TMS) (Fig. 3.2B). Global TMS alignment of 

YvrN and YknZ with MacB revealed that the TMS1 and TMS2 have high sequence 

conservation (Fig. 3.1, data shown for YknZ only), suggesting that a common function 

exist.   

MFP-dependent transporters are usually encoded in the same operon with its 

cognate MFP. The same is true for YvrON and YknYZ. yvrON genes are encoded within 

an operon that encodes a putative MFP YvrP, which exhibits 22% identity and 41% 

similarity to MacA. Similarly, yknYZ genes are encoded within an operon that also 

encodes a putative MFP YknX, which exhibit 21% identity and 42% similarity to MacA. 

Hydropathy analysis of YvrP and YknX revealed that both proteins contain a putative N-

terminal transmembrane helix (Fig. 3.2B data shown for YknX only). YknX is also 

predicted to have a signal peptide (Tjalsma et al., 2000). Encoded within the same operon 

as YknXYZ, is a fourth component YknW (Fig. 3.2A), the function of which is not 

known. YknW is predicted to be a membrane protein with five transmembrane helices 

(Fig. 3.2B) and homologues are often encoded either upstream or downstream of 

yknXYZ-like genes in other Bacillus strains (Butcher and Helmann, 2006). The yknWXYZ 

operon is implicated in providing self-resistance to endogenously produced SdpC toxin in 

the absence of  the  immunity protein SdpI. The  yvrPON  operon is found to be regulated  
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Figure 3.2  yknWXYZ operon and hydropathy analysis. (A) yknWXYZ operon. (B) 

Hydropathy anaylysis of YknW, YknX, YknY and YknZ. (C) Hydropathy analysis of 

MacB. (Blue curve – hydropathy; Red curve – amphipathicity; Blue bars – putative TMS) 

YknY 

YknZ 

MacB 
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by ComK competence transcription factor but its function is unknown (Berka et al., 

2002). It is unclear what role does MFP play in the transport systems of Gram-positive 

bacteria or whether the MFPs from Gram-positive and Gram- negative bacteria share 

similar mechanisms. It was demonstrated that the MFP MacA stimulates the ATPase 

activity of MacB in vitro (Tikhonova et al., 2007). To examine whether the role of MFP 

is conserved in both Gram-negative and Gram-positive bacteria we cloned yvrPON and 

yknWXYZ genes for reconstitution studies. We wanted to test whether the Gram-positive 

MFP also stimulates the ATPase activity of its cognate ATPase in vitro. 

 

3.3.2 Expression of yvrPON in E. coli. To test the functionality of YvrPON in 

marcrolide transport in E. coli, yvrPON operon was cloned into pUC18 as described in 

Materials and Methods. The resulting plasmid, pUC-YvrPON was transformed into 

DH5 . Membrane fractionation (Appendix F) was carried out with DH5 /pUC-YvrPON, 

grown to exponential phase. No bands corresponding to YvrP or YvrN was detected, 

suggesting that these proteins were not expressed. A 30kDa band corresponding to YvrO 

was found in the membrane fraction albeit at very low level (data not shown).  We next 

cloned the yvrPON operon into an arabinose inducible expression vector pBAD/MycHis-

C. The expression of YvrPON from the resulting plasmid, pBPON
His

, in DH5  E. coli 

strain was induced at different concentrations of L-arabinose. Membrane fractionation 

revealed that a 30kDa band corresponding to YvrO was detected in the membrane 

fraction after 2 hours of induction with 0.1% arabinose (Fig. 3.3A). YvrO is a hydrophilic 

ATP-binding protein and was expected to be found in the soluble fraction. Its localization 

to  the  membrane  fraction  could  be  due  to  association  with  a membrane component.  
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Figure 3.3 Expression of YknXYZ and YvrPON. Membrane fractionation of DH5  

strain carrying (A) pBXYZ
His

 or (B) pBPON
His

 after 2hrs of induction at different 

concentration of arabinose. P – membrane fraction; S – soluble fraction. (*) represents 

differential protein expression. 
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However, no bands corresponding to YvrP or YvrN was detected in the membrane 

fraction. Unexpectedly, differential protein expression was observed in the soluble 

fraction. A 50kDa band was induced whereas a 47.5kDa band was missing. The identity 

of these proteins remained to be clarified. Our results suggest that the expression of 

yvrPON could be toxic to E. coli.  

 

3.3.3 Expression of and localization of YknWXYZ in E. coli. Similar to YvrPON, we 

wanted to test the function of YknXYZ in macrolide transport in E. coli. yknXYZ operon 

was cloned into pUC18 and the resulting plasmid, pUC-YknXYZ was transformed into 

DH5 However, yknXYZ was not expressed from this construct. We next cloned 

yknXYZ into an arabinose inducible expression vector, pBAD/MycHis-C. The expression 

of YknXYZ from the resulting plasmid pBXYZ
His

 in DH5  E. coli strain was induced at 

different concentrations of L-arabinose. Membrane fractionation revealed that a 30kDa 

band corresponding to YknY was detected in the membrane fractions when induced with 

0.01% arabinose (Fig. 3.3A). Similar to YvrO, YknY is a hydrophilic ATP-binding 

protein (Fig. 3.2). Its localization to the membrane fraction could also be due to 

association with a membrane component. Another band running close to the 47.5 kDa 

marker corresponding to either YknX or YknZ was overexpressed at the same arabinose 

concentration. Since the proteins share sequence homology to MacA and MacB, we tried 

to detect the proteins using MacA and MacB antibodies. Neither antibody reacted with 

the 47.5kDa band. Since YknZ is tagged with six histidines, we used INDIA anti-His 

probe (Pierce) to detect YknZ-His. The INDIA anti-His probe did not react with the band 

(data not shown), suggesting that the 47.5kDa band is YknX. Our results suggested that 
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YknZ was either not expressed from the construct or that expression was too low for 

detection. We were unable to express all three proteins for functional assay.  

To test the function of these proteins in vitro, genes encoding YknW, YknX, 

YknY and YknZ were cloned separately into pET21d(+) vector, under the control of T7 

promoter. To facilitate purification, six-histidine tags were added to the C termini of each 

protein. Plasmids pETW
His

, pETX
His

, pETY
His

 and pETZ
His

 were transformed into 

BL21(DE3) expression strain and expression of each was induced with 1mM of 

isopropyl- -D-thiogalactopyranoside (IPTG). To examine the expression of the Bacillus 

proteins, whole cell extracts before and after induction were analyzed by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). To determine the intracellular 

localization of expressed Bacillus proteins in E. coli, strains carrying the corresponding 

plasmids were harvested and disrupted by sonication. The total membrane fraction and 

soluble fraction were separated by ultracentrifugation. Both the fractions were resolved 

by SDS-PAGE and visualized by staining with Coomassie brilliant blue (CBB). YknX 

showed high levels of expression in BL21(DE3) (Fig. 3.4A) with apparent molecular 

weight (MW) of 50kDa. As expected, YknX, which contains a putative N-terminal 

transmembrane domain localized in the membrane (Fig. 3.4B). YknY also showed high 

levels of expression in BL21(DE3) (Fig. 3.4C) with an apparent MW of 31kDa. The 

ATPase YknY, homologous to the cytoplasmic NBD of MacB, is hydrophilic (Fig. 3.2B) 

and localized in the soluble fraction (Fig. 3.4D).YknW and YknZ on the other hand, were 

not detected (data not shown).  

It is possible that the overexpression of these membrane proteins is toxic for E. 

coli. A  mutant  host  C43(DE3),  a  derivative  of   BL21(DE3)  which  allows  the  over- 
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Figure 3.4 Expression and localization of YknX and YknY. (A) and (C) Whole cell 

extracts of BL21(DE3) carrying pETX
His

 or pETY
His

 were collected at different time 

points after induction with 1mM IPTG and resolved on 12% SDS-PAGE and stained with 

CBB. (B) and (D) Membrane fractionation of BL21(DE3)/ pETX
His

 or pETY
His

; P – 

Membrane fraction, S – Soluble fraction. YknY
His

 – YknY purified from 

C43(DE3)/pETY
His

. Samples were separated on 12% SDS-PAGE and stained with CBB. 

(*) represents YknY degradation product. 

D C 
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Figure 3.5 Expression and localization of YknW. (A) Whole cell extracts of BL21(DE3) 

carrying pETW
His

 were collected at different time points after induction with 1mM IPTG 

and resolved on 12% SDS-PAGE and stained with CBB. (B) Membrane fractionation of 

BL21(DE3)/pET21d(+) or pETW
His

; P – Membrane fraction, S – Soluble fraction. 

Samples were separated by 12% SDS-PAGE and stained with CBB. 
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production of membrane proteins in E. coli (Miroux and Walker, 1996) was used for 

expression of YknW and YknZ. Only YknW can be expressed in this strain albeit at very 

low levels (Fig. 3.5A). YknW has an apparent MW of 23kDa. Expression can be seen 

only after 3 hours of induction. YknW, a predicted membrane protein comprising five 

putative transmembrane segments is also localized in the membrane (Fig. 3.5B). 

Prolonged induction up to 24 hrs did not improve the level of expression (data not 

shown). YknZ was not expressed under similar conditions. In order to test whether the 

expression of YknZ is dependent on YknY, yknYZ genes are cloned into pET21d(+) 

vector and checked for expression. YknY was expressed but no YknZ was detected (data 

not shown). 

 

3.3.4 Purification of histidine-tagged YknW, YknX and YknY. Both YknW-6His and 

YknX-6His were purified from Triton X-100 (TX) soluble membrane fraction. Total 

membrane fractions collected from cells expressing YknW-6His or YknX-6His were 

solubilized in 5% TX. Insoluble fractions were removed by ultracentrifugation and His-

tagged proteins were purified from the soluble fractions using Cu
2+

 affinity 

chromatography. The cytoplasmicYknY-6His was purified from soluble fraction 

following initial removal of total membrane fraction. Purified proteins were analyzed on 

SDS-PAGE and visualized with silver stain (Fig. 3.6A) or immunoblotting with INDIA 

anti-His probe (Fig. 3.6B). Two major bands can be observed for purified YknW 

corresponding to the previously observed 23kDa band and a second band, which ran 

lower that the 16.5kDa marker. The smaller band may correspond to the degraded 

product of YknW. However, both the bands failed detection with the anti-His probe (Fig.  
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Figure 3.6  Purification of YknW, YknX and YknY. (A) Purified YknW, YknX and 

YknY were resolved on 12% SDS-PAGE and visualized by silver stain. (B) 

Immunoblotting analysis of purified proteins using INDIA anti-His probe (Pierce). C. 

Purified YknW, YknX and YknYLZ were resolved on 12% SDS-PAGE and stained with 

CBB. 

 

 

 

 

A B C 



 87 

3.6B). It is possible that the C-terminal His-tagged is cleaved and thus could not be 

detected. A 50kDa band corresponding to purified YknX was detected on silver stained 

SDS-PAGE along with several smaller bands (Fig. 3.6A). All observed bands were 

detected by the anti-His probe (Fig. 3.6B), and thus could correspond to degraded 

products of YknX-6His. The overproduced 31kDa YknY was detected on SDS-PAGE, 

not as a major band but a minor band (Fig. 3.4D and 3.6A). Instead, a 28kDa major band 

was detected as well as several other smaller bands. Both the 31kDa and 28kDa bands 

were detected by the anti-His probes. Smaller bands corresponding to degradation 

products of YknY can also be detected (Fig. 3.6B). Both the 31kDa and 28kDa bands 

remain stable under storage in 50% glycerol containing buffer. 

 

3.3.5 YknX cannot stimulate the ATPase activity of MacB. The ATP hydrolysis 

activity of MacB was shown to be stimulated by MacA (Tikhonova et al., 2007). To 

determine whether the MacA homologue YknX can stimulate the ATPase activity of 

MacB, we measured the rate of ATP hydrolysis by MacB when reconstituted into 

proteoliposomes together with YknX. YknX did not stimulate the ATPase activity of 

MacB (Fig. 3.7). The stimulation of MacB by MacA was shown to be concentration 

dependent, achieving a half-maximum stimulation when the molar ratio of MacB: MacA 

was about 2:3 (Tikhonova et al., 2007). To verify that the lack of stimulation is not due to 

the condition tested, we measured the ATPase activity of MacB at different molar ratio of 

MacB: YknX. Under all tested conditions, YknX showed no stimulation of MacB (Fig. 

3.8), revealing that the functional relationship between the MFP and its cognate 

transporter is specific and is not interchangeable.                                                                                                                                      
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Figure 3.7 ATPase activity of MacB reconstituted into proteoliposomes. (A) Proteo-

liposomes containing MacB, MacAB, YknXMacB, or YknX were resolved on 12% SDS-

PAGE and stained with CBB. (B) Relative rate of ATP hydrolysis. (C) Specific activity 

of reconstituted MacB  
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Figure 3.8 ATPase activity of MacB reconstituted into proteoliposomes. (A) MacB was 

reconstituted into proteoliposomes at different molar ratio of MacB: YknX. ( lane 3 – 1:1, 

lane 4 – 1:2, lane 5 – 1:3, lane 6 – 1:6). Proteoliposomes were resolved by 12% SDS-

PAGE and stained with CBB. (B) Specific activity of reconstituted MacB. 
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3.3.6 YknY purified from E. coli is an active ATPase. To ascertain whether an active 

ATPase was purified, we tested the ATP hydrolysis of the purified YknY in detergent 

solution. The rate of ATP hydrolysis in the reaction mixture containing 0, 0.25, 0.5, 1.0 

or 1.5 g of total protein was measured and we found that the rate of ATP hydrolysis 

increased with increasing amount of purified YknY (Fig. 3.9). The purified YknY 

exhibited the specific ATPase activity of 38 nmol ATP min
-1

 mg
-1

 of protein.  

 

3.3.7 Construction of YknY-YknZ fusion protein. Attempts to express YknZ protein in 

E. coli were unsuccessful. E. coli could suppress the expression of YknZ due to its toxic 

effects.  YknZ may lack the targeting sequence that can be recognized by E. coli. Even 

though membrane proteins in Bacillus are also secreted through a similar sec pathway, 

the secretory signals may vary between the two species. In order to cope with this 

problem, we constructed a fusion protein between YknY and YknZ. The stretch of amino 

acid linking the NBD and TMD of MacB was used to link YknY and YknZ (Fig. 3.10A). 

The YknY-YknZ fusion protein mimics the E. coli MacB protein (compare Fig. 3.10B 

and 3.2C). The linker region was PCR amplified with flanking XhoI sites. The linker was 

restricted and inserted into pETY plasmid to yield pETYL
His

. The yknZ gene was 

subsequently introduced in the pETYL
His

 plasmid. The resulting plasmid, pETYLZ
His

 

was transformed into BL21(DE3) strain. The fusion protein YknYLZ was expressed in E. 

coli at low level after two hours of induction (Fig. 3.11). YknYLZ has an apparent MW 

of 70kDa. Increasing the induction time did not increase the level of expression (data not 

shown). YknYLZ was found in the membrane fraction (P), suggesting that the fusion 

protein is properly targeted to the cell membrane of E. coli. 
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Figure 3.9 ATPase of YknY. (A) and (B) ATP hydrolysis of YknY in detergent solution. 

The rate of ATP hydrolysis was determined at varying amounts (0, 0.25, 0.5, 1.0 or 

1.5 g) of YknY preparation. 
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 B 

                 

 

Figure 3.10 Construction of YknY-YknZ fusion protein (YknYLZ).  (A) The amino acid 

stretch that links the NBD and TMD of MacB was used as a linker between YknY and 

YknZ proteins. (B) Hydropathy analysis of YknYLZ. (Blue curve – hydropathy; Red 

curve – amphipathicity; Blue bars – putative TMS) 
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Figure 3.11 Expression and localization of YknYLZ. Whole cell extracts of Bl21(DE3) 

strain carrying pET21d(+) or pETYLZ
His 

 w collected at 0 or 2 hrs after IPTG induction 

as well as insoluble (P) and soluble (S) fractions collected from membrane fractionation 

were analyzed on 12% SDS-PAGE and stained with CBB. 
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3.3.8 YknYLZ is insoluble in most common detergents tested. During our initial 

attempt to purify of YknYLZ, we found that TX failed to solubilize YknYLZ from E. coli 

membranes. We tried several other commonly used detergents including Alkyl- -D-

maltoside (DDM), CHAPS, octyl-polyoxyethylene (octyl-POE), sarkosyl, octyl glucoside 

(OG) and Igepal (Nonidet-P40). We found that YknYLZ was completely solubilized in 

1% sarkosyl and only partially solubilized in 0.05% Igepal (IG). None of the other 

detergents tested could solubilize YknYLZ (Fig. 3.12A). We also tested the solubility of 

YknYLZ with lysophosphatidylglycerol (LPG), which was shown to be useful for 

solubilizing membrane proteins with strong tendency to aggregate (Huang et al., 1998). 

LPG solubilized YknYLZ completely. YknYLZ was detected only in the soluble fraction 

after LPG treatment (Fig. 3.12B). Because sarkosyl is a strong denaturant, the milder 

detergents Igepal and LPG were used for purification of YknYLZ.  

 

3.3.9 Purification of YknYLZ. To purify YknYLZ-6His, total membrane of BL21(DE3) 

/pETYLZ
His

 was solubilized in 0.1% IG. YknYLZ was purified from the soluble fraction 

using Cu
2+ 

affinity chromatography. Proteins were eluted from the column with 

increasing concentration of imidazole. Surprisingly, YknYLZ was eluted in both 100mM 

and 250mM imidazole fractions (Fig. 3.13), suggesting that YknYLZ could assumed two 

different conformation. YknYLZ purified from both fractions were assayed for its ability 

to hydrolyze ATP in detergent lipid solution. We found that the YknYLZ recovered from 

the 250mM imidazole fraction was inactive (data not shown) whereas YknYLZ 

recovered from the 100mM imidazole fraction exhibit a basal ATPase activity of 4.9 

nmol ATP min
-1

mg
-1

. In the presence of the MFP YknX, the ATPase activity of YknYLZ 
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Figure 3.12 Solubilization of BL21(DE3)/pETYLZ
His

 total membrane with different 

detergents. (A)  1% sarkosyl, 0.05% Igepal, 30mM OG and 10mM CHAPS. (B) 0.6% 

LPG.  
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Figure 3.13 Purification profile of YknYLZ-6His. Total membranes of BL21(DE3)/ 

pETYLZ
His

 were solubilized in 0.1% Igepal (IG). The IG soluble fraction was loaded 

onto Cu
2+ 

charged-NTA column and bound protein were eluted with imidazole gradient 

of 5mM, 50mM, 100mM and 250mM. Fractions were resolved on 12% SDS-PAGE and 

visualized with silver stain. (*) and (**) marked the two possible conformation of 

YknYLZ. 
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Figure 3.14 ATPase activity of YknYLZ. The rate of ATP hydrolysis was measured in 

reaction containing 1:1 molar ratio of TX: lipids (7.2mM TX) and 1:3 molar ratio of 

ATPase: MFP. Reaction contains 0.2 g of YknYLZ. 
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increased by two fold to 12.4 nmol ATP min
-1

 mg
-1

 (Fig. 3.14). Our results show that the 

purified YknYLZ is functionally active and exhibit a MFP-dependent ATP hydrolysis. 

 YknYLZ -6His was also purified from LPG soluble membrane fraction. The 

elution profile of YknYLZ revealed that similar to the purification of YknYLZ from IG-

soluble fraction, the protein peaked at 100mM and 250mM imidazole fractions but the 

peaks were not as clearly defined (data not shown). So far, the ATPase activity of 

YknYLZ recovered from these fractions did not show an MFP-dependent ATP hydrolysis 

in either lipid vesicles or proteoliposomes (data not shown).  

 Attempts to concentrate purified YknYLZ-6His were unsuccessful as increasing 

the concentration of YknYLZ protein leads to aggregation. Using quantitative SDS-

PAGE to determine the concentration of YknYLZ, we found that monomeric YknYLZ 

with an apparent MW of 70kDa can be detected at concentration of  0.1mg/mL. Our 

results showed that YknYLZ has a strong tendency to aggregate when present at high 

concentration. 

 

3.4 Discussion 

The MFP MacA was shown to stimulate the ATPAse activity of the corresponding ABC 

transporter MacB (Tikhonova et al., 2007) establishing MFPs as an active efflux 

component.  The study of ATP hydrolysis in a reconstituted system proves to be useful in 

gaining insight to how the efflux components assemble into a functional complex. In this 

study, we used a similar approach to study the functional relationship between MFP and 

its cognate transporters from a Gram-positive bacterium. Homologues of MacAB, 

YvrPON and YknXYZ were identified in Bacillus subtilis. Similar to MacB, transporters 
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from both systems are encoded within the same operon with a MFP. YknXYZ is unique 

in that a fourth component, YknW is also found encoded in the same operon. The 

function of YknW is not known but homologues of YknW are often encoded either 

upstream or downstream of yknXYZ-like genes in other Bacillus strains (Butcher and 

Helmann, 2006), suggesting that the YknW may be involved in the function of YknXYZ. 

Both the MFP and ATP-binding protein from the YknXYZ system were expressed in E. 

coli. The permease on the other hand was not detected. However, the fusion protein 

YknYLZ, which fuses the ATP-binding protein and the permease to mimic the MacB 

protein, was expressed in E. coli. We found that the MFP YknX stimulates the ATPase 

activity of YknYLZ fusion protein (purified from TX soluble membrane fraction) in lipid 

vesicles. The ATPase activity of the fusion protein YknYLZ increased by two fold in the 

presence of YknX from 4.9 nmol ATP min
-1

mg
-1

 to 12.4 nmol ATP min
-1

 mg
-1

 (Fig. 

3.12). The stimulation was low in comparison to the stimulation of MacB by MacA, 

which showed a 50-fold increased under the same conditions (Tikhonova et al., 2007). 

The ATP hydrolysis by YknYLZ at different concentrations of ATP has not been tested. 

It is likely that YknYLZ has a higher KM for ATP and therefore exhibit a lower ATPase 

activity under the condition tested. The data presented here is preliminary but do suggest 

that the role of MFP is conserved in both Gram-negative and Gram-positive bacteria. 

 The stimulation of YknYLZ by the MFP YknX is specific as YknX could not 

substitute the function of MacA in stimulating the ATPase activity MacB. Our result is 

consistent with previous studies that showed that most MFPs are not interchangeable 

(Elkins and Nikaido, 2003; Yoneyama et al., 1998). We conclude that the functional 

interaction between MFPs and the corresponding transporters is specific.   
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3.5 Materials and Methods 

 

Media and growth conditions, standard protein assays and total membrane fractionation 

are described in appendices D, E and F respectively. 

 

3.5.1 Cloning and expression of MacAB homologues in E. coli. To construct pUC-

YvrPON and pUC-YknXYZ, yvrPON or yknXYZ genes are amplified from Bacillus 

subtilis 168 chromosome using the primer pairs: fyvrPONSacI and ryvrPONkpnI(stop) or 

fyknXYZSacI and ryknXYZKpnI(stop) respectively. Each PCR product was digested 

with NcoI and KpnI restriction enzymes and inserted into plasmid pUC18 treated with 

the same enzymes. To construct pBXYZ
His

 and pBPON
His

, yknXYZ or yvrPON genes are 

amplified from B. subtilis 168 chromosome using the primer pairs: fyknXYZNcoI and 

ryknXYZKpnI or fyvrPONNcoI and ryvrPONkpnI, respectively. Each PCR product was 

digested with NcoI and KpnI restriction enzymes and inserted into plasmid 

pBAD/MycHis-C treated with the same enzymes. To facilitate the purification of the 

Bacillus proteins for reconstitution studies in vitro, the yknW, yknX, yknY, yknZ or yknYZ 

genes were individually cloned into the His tag expression vector pET21d(+) (Novagen). 

The primer pairs used for PCR amplification of each gene is as follows (see Table 

plasmids): yknW, fyknWNcoI and ryknW XhoI; yknX, fyknXYZNcoI and ryknXXhoI; 

yknY, fyknYZ NcoI and ryknYXhoI; yknZ, fyknZNcoI and ryknYZXhoI; yknYZ, 

fyknYZNcoI and ryknYZXhoI. Respective PCR product was digested with NcoI and 

XhoI restriction enzymes and inserted into plasmid pET-21d (+) treated with the same 

enzymes. The resulting plasmids pETW
His

, pETX
His

, pETY
His

, pETZ
His

 or pETYZ
His 

were 
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transformed into BL21(DE3) or C43(DE3) strains and expression were induced with 

1mM IPTG. Whole cell extracts were analyzed for protein expression. Samples were 

resolved on SDS-PAGE and stained with Coomassie brilliant blue (CBB). 

 To construct fusion protein between YknY and YknZ, the DNA sequence 

encoding region between the nucleotide binding domain (NBD) and transmembrane 

(TM) segment of MacB was PCR amplified from pUMacAB (Tikhonova et al., 2007)  

using the primers fLinkerSalI and rLinkerXhoI. The PCR amplified fragment was 

digested with SalI and XhoI endonuleases and cloned into XhoI site of pETY
His

 to 

produce pETYL
His

. yknZ gene was PCR amplified using the primers fyknZSalI and 

ryknYZXhoI, treated with SalI and XhoI and cloned into the XhoI site of pETYL
His

 to 

produce pETYLZ
His

. Protein expression was analyzed as described above. 

 

3.5.2 Purification of His-tagged proteins. Total membranes of E. coli strains expressing 

respective His-tagged proteins: YknW
His

, YknX
His

, YknY
His

 and YknYLZ
His

 were 

collected as described in Appendix F.  For purification of YknW
His

, total membranes 

were solubilized in 5% Triton X-100 (TX) prepared in binding buffer containing 20mM 

Tris-HCl pH 7.0, 200mM NaCl, 1mM PMSF, and 5mM imidazole as follows: First, 

membrane pellet was resuspended in binding buffer. Sonication was carried out to help 

dissolve the membrane pellet. An equal volume of 10% Triton X-100 (TX) prepared in 

binding buffer was then added to the membrane suspension and allowed to mix overnight 

by stirring at 4
0
C. After removal of TX insoluble fraction by ultracentrifugation at 70,000 

x g for 30min, the supernatant was loaded onto Cu
2+

 charged-NTA column equilibrated 
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with binding buffer containing 0.2% TX (wash buffer). The column was washed with an 

imidazole step-gradient containing 5mM, 25mM, 50mM, 100mM and 250mM.  

YknX
His

 and YknYLZ
His

 were purified as described for YknW
His

 with the 

following modifications. For purification of YknX
His

, binding buffer contains 20mM 

HEPES-KOH pH 7.7, 500mM NaCl, 1mM PMSF and 5mM Imidazole. An imidazole 

gradient of 5mM, 20mM, 50mM and 100mM was used. For purification of YknYLZ
His

 

using the detergent IGEPAL (IG), binding buffer contains 20mM Tris-HCl pH 7.0, 

200mM NaCl, 1mM PMSF, 0.05 mM -mercaptoethanol and 5mM imidazole. Total 

membrane was solubilized with 0.1% IG-containing binding buffer (also the wash 

buffer). For purification of YknYLZ-6His using the detergent lysophosphatidylglycerol 

(LPG), binding buffer contains 20mM Tris-HCl pH 7.0, 100mM NaCl, 1mM PMSF, and 

0.05 mM -mercaptoethanol. Total membrane was solubilized in 0.6% LPG-containing 

binding buffer. LPG solubilized fraction was adjusted with binding buffer to 0.1% LPG 

and supplemented with 5mM imidazole before loading onto Cu
2+

 charged-NTA column. 

The wash buffer comprised of binding buffer supplemented with 0.01%LPG, 0.1% IG 

and varying concentration of imidazole. YknYLZ was eluted with imidazole gradient of 

5mM, 50mM, 100mM and 250mM. 

For purification of YknY
His

, harvested cells were resuspended in buffer containing 

20mM Tris-HCl, 200mM NaCl, 1mM PMSF, 0.05mM -mercaptoethanol and 5mM 

imidazole. Lysozyme were added to the cell suspension to a final concentration of 

100 g/mL and incubated on ice for 30min. Cells were then sonicated and unbroken cells 

were removed by low speed centrifugation. Membrane fraction was separated by 

ultracentrifugation at 250,000 x g for 1 hr. The soluble fraction was loaded onto Cu
2+
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charged-NTA column. The column was washed with an imidazole gradient of 5mM, 

50mM, 100mM, 250mM and 500mM. 

 

3.5.3 Reconstitution of proteins into proteoliposomes. E. coli polar lipids (Avanti) 

were dissolved in reconstitution buffer [20mM HEPES-KOH (pH7.0), 5mM DTT] to a 

final concentration of 20mg/mL. The mixture was sonicated until mixture looked 

transparent. 5mg of E. coli lipids were mixed in 0.5mL reconstitution buffer containing 

0.45% TX. Equal volumes of protein sample (25-50 g) prepared in the same buffer was 

added to the lipid mix and incubated for 30 min at room temperature (RT). TX was then 

removed using SM-2 Adsorbent Bio-Beads (Bio-Rad). Before use, the beads were 

washed 3 times in methanol, 5 min each. This step is repeated with water and 

reconstitution buffer. The protein-lipid mixture was incubated with 40mg of beads for 1 

hr at RT. This step was repeated with fresh beads for 1 hr at RT and again for 1 hr at 4
0
C. 

Proteoliposomes were diluted with two volumes of ice cold reconstitution buffer and 

collected by centrifugation at 250,000 g for 1 hr at 4
0
C. The pellet was resuspended in 

50 L of buffer containing 20mM HEPES-KOH (pH7.0), 5mM DTT and 50mM KCl and 

briefly sonicated. The proteoliposomes were stored at 4
0
C and used for assays within 2-3 

days. 

 The concentration of proteins reconstituted into proteoliposomes was determined 

by quantitative SDS-PAGE. Proteoliposomes samples and bovine serum albumin (BSA) 

in increasing concentration were resolved on 12% SDS-PAGE and stained with CBB. 

Gels were scanned and the peak area of each protein band was quantified using 

ImageQuant proGram (Molecular Dynamics). 
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3.5.4 ATP hydrolysis assay. The ATP hydrolysis by YknYLZ assayed in detergent 

solution was carried out in 20 L of reaction mixture containing 0.2 to 0.4 g of ATPase, 

20mM HEPES-KOH (pH7.0), 5mM DTT, 50mM KCl , 2mM MgCl2, 0.45% TX and 

1mM Mg-ATP. The 
32

P -phosphate labeled ATP (3000 Ci mmol
-1

, Amersham) was 

mixed with unlabelled Mg-ATP prior to addition into the reaction mix. The molar ratio of 

MFP: ATPase was adjusted to 3: 1. A final concentration of 7.2mM E. coli lipids was 

also included in the reaction mix where needed. The reaction was incubated at 37
0
C and 

1 L aliquots were collected at different time points and added to 10 L of stop buffer 

containing 50mM Tris-HCl (pH 8.0), 20mM EDTA (pH8.0), 0.5% SDS, 200mM NaCl 

and 0.5mg/mL proteinase K. The mixture was incubated at 50
0
C for 20min to inactivate 

ATPase activity.  

 The ATPase activity of YknY was determined with the following modifications. 

The rate of ATP hydrolysis of YknY (0, 0.25, 0.5, 1.0 or 1.5 g) was assayed in solution 

containing 20mM HEPES-KOH (pH7.0), 5mM DTT, 50mM KCl, 2mM MgCl2 and 50% 

glycerol and 1mM Mg-ATP.   

 The rate of ATP hydrolysis by YknYLZ in proteoliposomes was assayed in 10 L 

of reaction mixture in the same manner as described for YknYLZ ATP hydrolysis in 

detergent solution with the following modification. Proteoliposomes containing 0.2 g of 

ATPase was added to reaction mixture [20mM HEPES-KOH (pH7.0), 5mM DTT, 50mM 

KCl , 2mM MgCl2, and 1mM Mg-ATP]. 

The hydrolysis of 
32

-ATP was analyzed using thin-layer chromatography. 1 L of 

samples collected at different time points were loaded onto PEI-F cellulose (10cm x 

20cm). The mobile phase contained 10% formic acid and 0.5mM LiCl. Hydrolyzed Pi 
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was quantified using Storm PhosphoImager and ImageQuant software (Molecular 

Dynamics). The peak area corresponding to hydrolyzed Pi represents the percent of ATP 

hydrolyzed. The percent of ATP hydrolyzed is quantified for each time point and the rate 

of ATP hydrolysis can be calculated as percent ATP hydrolyzed per min. 
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Appendix D 

Media, growth conditions and drug susceptibility 

 
 

Media and growth conditions 

The bacterial strains and plasmids used in this study are listed
 
in Appendix A. E. coli 

strains were grown at 37°C in Luria-Bertani
 
(LB) medium (10 g of Bactotryptone, 10 g of 

yeast extract, and
 
5 g of NaCl per liter). Antibiotics were added when needed to

 
the 

following final concentration: ampicillin (100 µg/ml),
 

kanamycin (34 µg/ml), 

spectinomycin (50 µg/ml),
 
tetracycline (25 µg/ml), and chloramphenicol (25 µg/ml).  

 

Drug susceptibility 

 Luria-Bertani medium supplemented with two-fold increments of drugs tested were 

prepared on 96-well microtiter plate. Exponentially growing cultures were inoculated at a 

density of 10
4
 per mL. Cells were grown overnight at 37

0
C. The lowest concentration of 

drugs where there is no cell growth represents the minimal inhibitory concentration 

(MIC). 
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Appendix E  

Protein assays  

 
SDS-PAGE. Protein samples were analyzed with sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE). Proteins samples were resolved on either 10% or 12% 

polyacrylamide gels. Protein bands were visualized with Coommassie Brilliant Blue 

(CBB) or Silver Stain.  

 

Protein concentrations. Proteins concentrations were determined using either the DC 

Protein Assay (Bio-Rad) or quantitative SDS-PAGE with bovine serum albumin (BSA) 

as standards. Quantitative SDS-PAGE was mainly used for proteoliposomes and protein 

samples in detergents incompatible with DC Protein Assay. Samples and bovine serum 

albumin (BSA) in increasing concentration were resolved on 12% SDS-PAGE and 

stained with CBB. Gels were scanned and the peak area of each protein band was 

quantified using ImageQuant proGram (Molecular Dynamics). 
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Appendix F  

Membrane fractionation 
 

Cells were harvested and resuspended in buffer containing 10mM Tris-HCl pH8.0, 5mM 

EDTA and 1mM PMSF. Lysozyme was added to a final concentration of 100 g/mL and 

incubated on ice for 30min (Osborn et al., 1972). The spheroplasts formed following the 

lysozyme-EDTA treatment were sonicated (Branson Sonifier 450) for 45s on ice. After 

removal of unbroken cells or cell debris, total membranes were collected by 

ultracentrifugation at 250,000 x g for 30min to 90min in Beckman 70-Ti rotor. For 

fractionation of the inner and outer membranes, total membranes were solubilized in 

Triton X-100 (TX) buffer and incubated on ice for at least 2 hrs or overnight at 4
0
C. The 

inner membrane is efficiently solubilized in 5% TX. Insoluble material was removed by 

ultracentrifugation at 70,000 x g for 30 min in Beckman 70-Ti rotor (Tikhonova and 

Zgurskaya, 2004).  
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