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CHAPTER I 

INTRODUCTION 

It has been known for many years that a major portion 

of nitrogen which is consumed by plants is made available to 

them through biological nitrogen fixation (Postgate, 1974a). 

Much of this fixation is accomplished by leguminous plants 

in association with certain bacteria. 

With the advent of connnercial fertilizers, nitrogen in 

a form available to plants is now usually applied directly 

to the soil. As a result, studies in biological nitrogen 

fixation have been somewhat neglected, especially in the 

prairie legumes (Nutman, 1971). 

Since many types of nitrogenous conunercial fertilizers 

require manufactured energy in their production, the 

increased use of legumes as the nitrogen source could result 

in considerable energy conservation. 

The extensive use of nitrogenous fertilizers during the 

past few years has resulted in much run-off and erosion of 

nutrients from the soil. These nutrients eventually enter 

streams and lakes resulting in eutrophication, and often in 

dissolved oxygen deficiency. Such oxygen deficiency there­

fore adversely affects growth of heterotrophs in the area. 

It is probable that more extensive production of legumes 
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could result in less demand for nitrogenous fertilizers, and 

therefore less eutrophication. 

While we know that legume species occupy a diversity of 

habitats and thus probably have wide-ranging nutrient 

requirements, the effect of specific nutrients on the capa­

bility of legumes to fix nitrogen needs further study (Lie, 

1974). 

The age at which leguminous plants initiate the 

nitrogen-fixing process and the age at which the plants are 

most efficient as nitrogen fixers varies with the species 

(Lofton, 1976). The temperature at which plants are cultured 

may also affect their potential as nitrogen fixers (Hardy et 

al., 1968). More research is needed concerning the effect 

of phenophase and temperature on the nitrogen-fixing proper­

ties of the prairie legumes. 

Statement of the Problem 

The purpose of this study was to investigate the effect 

of nutrients, phenophase, and temperature on the nitrogen­

fixing potential of the following prairie legume species: 

I. Psoralea tenuiflora Pursh 

II. Cassia fasciculata Michx. 

III. Desmodium sessilifolium (Torr.) T.&G. 



3 

Hypotheses 

I. Nutrient deficiencies in the plant species investi­

gated have a significant effect on their nitrogen­

fixing potential. 

II. The phenophase of plant species investigated has a 

significant effect on their nitrogen-fixing poten­

tial. 

III. Changes in temperature have a significant effect on 

the nitrogen-fixing potential of the plants investi­

gated. 



CHAPTER II 

REVIEW OF LITERATURE 

Nitrogen is the major plant nutrient which limits pro­

duction of food and fiber in our population (Evans, 1976). 

Owens (1976) states that nitrogen appears to be the primary 

major nutrient which limits plant production in the world 

oceans, as well as certain fresh water systems. 

Biological nitrogen fixation is accomplished primarily 

in those plants which belong to the family Leguminosae in 

association with nitrogen-fixing bacteria. According to 

Vincent (1974), legumes have worldwide distribution and rank 

second or third among flowering plants in the number of spe­

cies which they contain. 

Burns and Hardy (1975) have estimated the total annual 

rate of biological nitrogen fixation to be in the area of 

175 x 106 metric tons per year. With the increasing demand 

for food, the amount of nitrogen which is fixed industrially 

in the form of nitrogen fertilizers has been increasing 

yearly. The amount of nitrogen fixed by the Haber-Bosch 

method for the year 1975 was estimated by Burns and Hardy to 

be 44 x 106 metric tons. 

Large amounts of energy are required in the industrial 

production of nitrogen fertilizers. In 1972, 11.4 million 

4 
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tons of anhydrous ammonia were produced in the United States 

requiring 456 billion cubic feet of natural gas. This repre­

sented two percent of all of the natural gas consumed during 

the year (Evans, 1975). With increasing demands for energy, 

it is apparent that more research in the area of biological 

nitrogen fixation is necessary. Postgate (1972) states that 

research in biological nitrogen fixation made enormous prog­

ress in the decade 1960-1970, with the most impressive 

advances in the enzymological and chemical aspects, but far­

reaching developments also occurred in the more biological 

and ecological aspects. According to Quispel (1974), a 

renewed interest .in biological nitrogen fixation is develop­

ing. 

Yates (1974) and Postgate (1971) report that nitrogen 

fixation has been studied more intensively in Russia than in 

most countries during this century. Most of their work has 

been done with emphasis on the agricultural aspects of nitro­

gen fixation. There has been little contact between the East 

and West concerning problems in nitrogen fixation. 

It has been found that the addition of nitrogen to soil 

surrounding the roots of legumes results in a decrease in 

biological nitrogen fixation by the legumes. Pate (1976) 

found that in field peas, addition of 315 parts per million 

nitrogen caused a drastic curtailment of nitrogenase activity 

within 48 hours. After the removal of nitrogen, it took an 

additional 48 hours to re-estabJ_ish nitrogenase activity. 

Dilworth (1974) reported that the addition of high levels of 



fixed nitrogen to legumes is known to inhibit nodule forma­

tion and accelerate nodule destruction. Hardy and Havelka 

(1976), and Lie et al. (1976) both report drastic decreases 

in nitrogen fixation with the addition of fertilizer nitro­

g~. 

6 

It is unfortunate that so little work has been done in 

nitrogen fixation using native prairie legume species. Pate 

(1976) states that virtually no work has been done on the 

response of naturally occurring species of legumes to added 

nitrogen in their native habitats. Similarly, Nutman (1971) 

reports that little work has been done on the amounts of 

nitrogen fixed by naturally occurring legumes .. He assumes 

that the amounts are quite large since naturally occurring 

legumes usually contain more nitrogen than associated non­

legumes, and are widely distributed as herbs in grasslands, 

bushes, and trees in savannas. Frequently legumes are a 

major constituent of the flora. Stewart (1966) assumes that 

wild legumes are effectively nodulated as they rapidly colo­

nize nitrogen-deficient habitats such as nutritionally 

exhausted arable lands, gravel wastes, and newly cleared 

areas. 

Hewitt and Smith (1974) state that the amount of fer­

tilizer applied to crop land doubles every 10 years. Some 

of the disadvantages to fertilizer application have been 

discussed previously. It is known that several minerals are 

necessary if nitrogen fixation in legumes is to occur. 

Epstein (1972) and others have recognized the importance of 
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iron, molybdenum, and cobalt in the nitrogen-fixing systems 

of legumes. Postgate (1974b) indicates that molybdenum 

seems to be the strongest candidate for involvement in the 

N2 binding site, but presents no direct evidence for this 

view. He also states that limitation of phosphates affect 

the ATP-ADP ratio, and therefore inhibits the nitrogen fixa­

tion mechanism. 

Barber (1968) found that accumulations of phosphate in 

the· roots of tomato and clover plants, and its transfer to 

the shoots were increased in the presence of microorganisms. 

If phosphate concentration is low, little phosphate is trans­

ferred to the shoots as microorganisms apparently absorb 

phosphate at the expense of the plant. Barber suggests that 

microorganisms may release phosphate into the soil and pro­

mote an increase in crop yields through mineral phosphate 

accumulation in the soil. This phenomenon has reportedly 

received much attention in the Soviet Union. At present, 

our knowledge of the role of microorganisms in the inorganic 

nutrition of plants is very incomplete. 

Van Overbeek (1976) has reviewed the possibility of 

eventually producing wheat and rice plants with the aid of 

ammonia from biological nitrogen fixation rather than from 

synthetic fertilizers. The primary objective is to produce 

nutritious c+ops without the high cost in energy now required 

in the manufacture and transport of fertilizers. 

Some work has been done in determining the effect of 

phenophase on the ability of plants to fix nitrogen. Sprent 
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(1976) determined that nitrogen fixation in peas and field 

beans decreased when pods were developing. Harn, Lawn, and 

Brun (1976) state that the acetylene-reducing capacity of 

field grown soybeans (Glycine max) increased during flower­

ing, reached a maximum near the end of the flowering period, 

and declined sharply during early pod filling. They state 

that the decrease during pod filling was due to an inade­

quate supply of photosynthate transported to the nodules. 

The addition of nitrogen fertilizer after flowering resulted 

in an increased seed yield and protein content. Hardy and 

Havelka found that in Glycine max more than 90 percent of 

the total nitrogen fixed by the plant occurred during the 

last half of the growth cycle which was represented as the 

period of reproductive growth. They believe that the amount 

of photosynthate available to nodules may be a most signifi­

cant factor limiting nitrogen fixation. As plants mature, 

the reproductive sinks appear to compete with nodules for 

available photosynthate. Lofton (1976) working with nine 

different prairie legume species found wide variation in the 

capacity of individual species to reduce acetylene to ethy­

lene at age nine weeks and twelve weeks. It appears that 

plant phenology has a great effect on the capacity of plants 

to fix atmospheric nitrogen. 

The effect of temperature on nitrogen fixation in field 

legumes has been reported by several investigators. Lie, et 

al. (1976) found that no nodulation occurred in peas at 30~C 

but did occur at 26°C. Stewart (1966) reports that in 



Phaesolus vulgaris nodulation is reduced or entirely inhib­

ited by high temperatures, but the higher temperatures do 
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riot affect root growth. Low temperatures do not affect the 

fixation process so markedly. An increase of 4°C above 

optimum for fixation inhibited fixation by SO percent, while 

a decrease of S°C decreased fixation by about four percent. 

Gibson (1971) states that lower root temperatures retard 

root hair infection more than they affect nodule initiation, 

and that higher root temperatures upset the formation of 

bacteroid tissue and hasten its degeneration. Hardy, et al. 

(1968) found that in soybeans (Glycine max) the optimum tem­

perature for nitrogen fixation was from 20-30°C and possibly 

at 35°C. Higher temperatures may result in a decrease in 

fixation rate because of the adverse effect on bacteroid 

formation. Dart and Day (1971) indicate that the temperature 

at which plants are cultured can greatly affect legume­

Rhizobium symbiosis by decreasing nodule formation and devel­

opment, and consequent nitrogen fixation. They found that 

the optimum temperature varied with the species. Of five 

species which were investigated the optimum temperature was 

between 20 and 35°C except for cowpea (Vigna sinensis) which 

had an optimum of 40°C. 

Lie (1971) states that the effect of temperature on the 

symbiotic system is complex. In peas, nodulation occurred 

at 26°C but not at 20°C. This requirement for the higher 

temperature was only confined to the second or third day 

after inoculation. He found that bean and pea plants are 
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devoid of nodules when kept at 30°C. High temperatures 

result in reduction of both nodule formation and nitrogen 

fixation. Masterson and Murphy (1976) conclude that soil 

temperature is the environmental factor having the greatest 

single influence on nitrogen fixation and growth in white 

clover (Trifolium repens). The highest rate of fixation 

occurred at 21°C and decreased as temperature was increased 

to 27°C. There appears to be little doubt that temperature 

plays an important part in the nitrogen-fixing activity of 

legume plants. 



CHAPTER III 

DESCRIPTION OF SPECIES 

Psoralea tenuiflora 

Better known as few-flowered scurfpea, Psoralea tenui­

flora is a perennial legume which is usually found on dry 

prairies, open woods, and rocky banks. It is a drought­

resistant species, and occurs on plains and prairies through­

out the United States. It grows to a height of one meter, 

produces small purple flowers in June, and palmately trifoli­

ate leaves with linear to oblong-oblanceolate leaflets. It 

begins growth in early spring. During late summer an abscis­

sion layer forms at the base of the stem and the upper por­

tion of the plant detaches from the roots, and is blown about 

by the wind. It produces abundant seeds with extremely 

resistant seed coats. It is not considered as a major type 

of forage for livestock, but is eaten in the early stages of 

development (Pasture and Range Plants, 1956; Gray's Manual 

of Botany, 1950). 

Cassia fasciculata 

This plant is known as the showy partridgepea. It is a 

native, warm season annual legume which produces abundant 

yellow flowers on short branches from July to September. It 

grows to a height of 1.5-9 dm and is found on sandy loam 

11 
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soils of central and eastern United States. It is a common 

plant on old fields or disturbed areas. Cassia is readily 

eaten by livestock and is reported to be very nutritious. 

It P!oduces seed with resistant seed coats. It nodulates 

abundantly with the bulk of the nodules attached to the pri-

mary root. It appears to offer possibilities for cropland 

improvement, and food and cover for wildlife (Pasture and 

Range Plants, 1956; Gray's Manual of Botany, 1950). 

Desmodium sessilifolium 

Commonly referred to as sessile tickclover, this plant 

is a warm season, deep rooted perennial legume. It produces 
-

sessile leaves or leaves with petioles from 2-3 mm in length. 

It produces small whitish-purple flowers and hairy seed pods 

which stick to clothing and animals. The plant usually grows 

to heights of 1-1.5 meters, and is found with tall grasses in 

the central and eastern parts of the United States. 

Desmodium is abundant on sandy loam s@ils, It is often 

observed along roadsides. This species is nutritious and is 

readily eaten by livestock. It produces abundant nodules 

(Pasture and Range Plants, 1956; Gray's Manual of Botany, 

1950) . 



CHAPTER IV 

METHODOLOGY 

Seed Collection and Germination 

All seeds used in this investigation were collected dur­

ing the summer and fall of 1976. Adequate quantities of seed 

from Psoralea tenuiflora, Cassia fasciculata, and Desmodium 

sessilifolium were gathered locally in the Lake Carl Black­

well area approximately 10 miles west of Stillwater, Oklahoma. 

Seeds of the Leguminosae characteristically possess seed 

coats which are somewhat impervious to water (Ballard, 1971). 

Scarification was therefore necessary before seeds were 

placed into the growth medium. Seeds were scarified individ­

ually using a number 3 square jewelers file. Magnification 

was provided by use of a Bausch and Lomb 7 power jewelers 

loop. In each case the testa was penetrated to permit 

ab.sorption of water by the seed and therefore enhance the 

germination process. Trial germination tests were conducted 

to determine seed viability. These tests also indicated that 

the scarification technique employed resulted in a decrease 

in the time required for germination. Seed which normally 

require weeks or months to germinate using other methods of 

scarification were found to germinate readily within a period 

of 1 to 5 days. 

13 
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Fine, white, washed river sand was placed in 100 ml 

petri dishes and moistened with distilled water. These were 

autoclaved for 20 minutes at a pressure of 15 p.s.i. Scari­

fied seeds were placed into the moist sand in the petri 

dishes. Twenty seeds were placed in each petri dish and 

incubated in an illuminated growth chamber with a light 

intensity of approximately 10,000 lux using a 12 hour photo­

period·. The temperature was maintained at 2 7°C. Desmodium 

seed germinated in 1-3 days. Psoralea and Cassia seed ger­

minated in 1-5 days. 

Transplanting and Seedling Development 

Styrofoam pots with a capacity of 250 ml were used 

throughout this study. The base of each pot was pierced for 

drainage. The potting medium consisted of equal parts of 

white, washed river sand (washed 5 times) and number 3 ver­

miculite (Lofton, 1976). The medium was mixed thoroughly, 

sterilized, and placed into the styrofoam pots. Germinated 

seeds in the petri dishes were transplanted into the styro­

foam pots using one seedling per pot. 

At the time of transplanting, each seedling was inocu­

lated with Rhizobium spp. The inoculum was prepared by iso­

lating Rhizobium spp. from nodules of each of the three plant 

species using the streak-plate technique. Nodules were 

detached from the roots and placed in sterile petri dishes. 

Surface sterilization of nodules was accomplished by use of 

a 10 percent Clorox solution. The nodules were removed after 
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3-5 minutes and washed 5 times in sterile distilled water. 

Each nodule was then dissected, and crushed in 2 ml of ster­

ile distilled water using a sterile 1 cm diameter glass rod. 

The resulting suspension was used to streak petri dishes 

containing a nutrient agar-yeast extract medium. The organ­

isms were then incubated for 1-2 weeks at 29°C. Rhizobium 

cultures from each of the plant species were obtained by 

subsequent sub-culturing. 

Prior to. inoculation, a Rhizobium bacterial suspension 

was prepared from each of the three plant species. The three 

suspensions were then combined. The resulting slurry was 

used in inoculating all of the seedlings. Ten ml of slurry 

were added to each pot into which the seedlings had been 

transplanted. The pots were placed on 65 cm x 45 cm x 2.5 

cm aluminum trays, each tray containing 35 pots. The trays 

were placed in the greenhouse. 

tained at approximately 27°C. 

The temperature was main­

All plants were illuminated 

using overhead agro-lites with an intensity of approximately 

20,000 lux. A 12 hour photoperiod was maintained throughout 

the investigation. 

Three different nutrient combinations were used in this 

study. 

1. 

2. 

One group of seedlings received a complete nutrient 

solution (Arnon and Hoagland, 1940). 

A second group of seedlings received a complete 

nutrient solution except for being nitrogen free. 
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3. A third group received a complete nutrient solution 

except for being phosphorus and nitrogen free. 

All seedlings were root-irrigated to saturation by plac­

ing the appropriate nutrient solution into the aluminum trays 

and watering periodically as necessary with the solution. 

The technique used for watering is described by Becker and 

Crockett (1976). All pots were leached with distilled water 

at 10 day intervals to prevent salt accumulation in the pot­

ting medium. 

In order to determine if plant phenophase affects their 

nitrogen-fixing capabilities, three g~oups of plants were 

assayed, each group at a different age and phenophase. The 

plants were randomly assigned to groups. 

Group 1--age 4 weeks 

Group 2--age 8 weeks 

Group 3--age 12 weeks 

The acetylene-ethylene reduction technique was employed 

to provide an index of the nitrogen-fixing capacity of the 

plants used. 

Assay Technique 

At the proper phenophase level each plant was removed 

from its pot, . the roots suspended in a 125 ml filter flask, 

and the stem inserted into a number 4 rubber stopper to pro­

vide support (Lofton, 1976). Stoppers were sealed with 

plasticine modeling clay (Burris, 1974) to eliminate entry 

of outside air into the flasks. The side-arm of each flask 
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was fitted with a size 6 serum cap. Air in each flask was 

evacuated through the side-arm by use of a Phillips-Drucker 

Model M-803 suction surgical pump which developed a vacuum 

of 18-20 inches of mercury. A specially designed apparatus 

consisting of a 3 ml disposable hypodermic syringe fitted 

into one end of a 90 cm length of vacuum tubing was used to 

connect the flasks to the pump. A hypodermic needle attached 

to the syringe was inserted into the serum cap covering the 

side-arm of the flask, and the opposite end of the vacuum 

tubing was attached to the vacuum pump. This provided a very 

efficient, effective and uniform method of evacuation of air 

from the flasks. 

A 22.5 ml oxygen-90 ml acetylene mixture was injected 

into each evacuated flask using a 50 ml air tight disposable 

syringe. The acetylene mixt'ure was composed of 0.1 atm acet­

ylene and 0.9 atm helitim. 

The flasks containing the plants were randomly placed 

into three groups, each group containing an equal number of 

the three plant species to be investigated. Each group was 

placed into a separate illuminated growth chamber for 60 

minutes at a given temperature and at a light intensity of 

approximately 10,000 lux. The temperatures used were as 

follows: 

. Group l--ls 0 c. 

Group 2--22°C. 

Group 3--30°C. 
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At the end of the 60 minute exposure period, a gas sam­

ple was collected from each flask and each sample was stored 

in a 13 mm evacuated serum bottle which was previously fitted 

with a number 6 serum cap. 

Gas Chromatographic Analysis 

The gas in each serum bottle was analyzed to determine 

the amount of ethylene produced from the acetylene which had 

been reduced by the Rhizobium spp (Wacek and Brill, 1976). 

The gas analyses were performed by use of a Hewlett-Packard 

gas chromatograph with a hydrog.en flame-ionization detector 

(Hardy, Burns, and Holsten, 1973). Nitrogen was used as the 

carrier gas. Nitrogen gas flow was adjusted to 14 p.s.i., 

oxygen to 20 p.s.i., and hydrogen to 7.5 p.s.i. 

Twenty-five..ul gas samples were injected into the gas 

chromatograph using a Hamilton 50 pl gas-tight syringe. A 

3.175 mm x 1.8 m stainless steel column containing 80/100 

mesh Porapak N held at 50°C was employed to separate the 

ethylene from the acetylene. The quantity of ethylene pro­

duced was determined by use of the hydrogen flame-ionization 

detector. This provided a measure of the nitrogen.,.fixing 

potential of the plants which were investigated (Roughley 

and Dart, 1969). Each treatment consisted of five replica­

tions. 
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Statistical Design 

Analysis of variance was employed to determine the rela­

tionship between nutrients, phenophase, and temperature as 

they affect acetylene reduction in the legumes studied. 



CHAPTER V 

RESULTS 

The results are divided into two sections since two 

separate analyses were employed in the statistical design. 

Temperature and Age Effects 

Section one deals with the relationship between tempera­

ture and age as they influence acetylene reduction in the 

three species of legumes studied. The mean number of µ moles 

of acetylene reduced per day by each of the three legume 

species at ages four, eight, and twelve weeks, and at temper­

atures of 15°C, 22°C, and 30°C was determined (Appendix A). 

The statistically significant three-way interaction 

(Appendix B) indicated that the combined effects of any two 

variables were different at each increment of the third vari-

able. For example, age and temperature interact differently 
I 

for each plant species. It is, therefore, impossible to 

draw general conclusions concerning the effects of one or 

two variables over all increments of the third variable. 

Based on the presence of the statistically significant' three-
' 

way interaction, a two-way analysis of variance was done 

(Table I) which examined the effects of age and temperature 

for each plant species. 

20 



Plant 

Psoralea 
tenuiflora 

Cassia 
rasciculata 

Desmodium 
sessilirolium 

TABLE I 

ANALYSIS OF VARIANCE SUMMARY TABLE FOR AGE 
AND TEMPERATURE FOR EACH PLANT SPECIES 

Effect 

Temperature Age Temp. 

Mean F Mean F Mean 
Square Value a Square Value Square 

135.89 
.... 

33.21" 11.70 2.86 7.47 

.J. 

63.98* 2130.09 132.62" 1027.64 305.45 

1034.36 128.75* 1719.74 210.01* 121.66 

x Age 

F 
Value 

1. 86 

19. 02')\-

14.86* 

aAppropriate degrees of freedom for all computed F values are: dfnum=2, dfden=36. 
;'\ 

p < .01 

Error 

Mean 
Square 

4.09 

16.06 

8.19 
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In Psoralea tenuiflora, the only statistically signifi-

cant effect observed in the two-way analysis of variance was 

that concerning temperature (Table I). The effect of tem­

perature on the ability of Psoralea to reduce acetylene was 

further analyzed by use of the Scheff{ test (H. Scheffd, 

1959) which indicated that the mean at 22°C (8.13) was sig­

nificantly different (o< = .01) from the means at 15°C (4.47) 

and 30°C (2.20). The means at 15°C and 30°C, however, were 

not significantly different (Figure 1). Since the interac-

tion effect was not significant for Psoralea, one-way 

analyses were unnecessary. 

For both Cassia fasciculata and Desmodium sessilifolium 

the interaction in the two-way analysis of variance was sig-

nificant (Table I, and Figures 2 and 3). It was therefore 

necessary to perform a one-way analysis of variance on the 

data from both species. 

In Table II, the effect of age at each increment of tern-

perature is presented for both Cassia and Desmodium. The 

Scheffe test indicated that at 15°C the amount of acetylene 

reduced by Cassia was significantly greater at eight weeks 

than at four weeks, but was not significantly greater at 

twelve weeks than at eight weeks. At 22°C Cassia reduced 

significantly more acetylene at eight weeks than at four or 

twelve weeks. At 30°C there was no significant difference 

in the amounts of acetylene reduced by Cassia at four, eight, 
i 

or twelve weeks. At each of the temperature regimes (15°C, 

22°C, and 30°C) the amount of acetylene reduced by Desmodium 
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TABLE II 

SUMMARY TABLE FOR EFFECT OF AGE AT EACH INCREMENT OF TEMPERATURE 
FOR CASSIA FASCICULATA AND DESMODIUM SESSILIFOLIUM WHEN 

WATERED W'rTH A NITROGEN-FREE NUTRI~NT SOLUTION 

Plant Temperature Mean Square F Mean c2H2 
(Ag;e) (Error) Valueb Reduction 

10.2 4a 
Cassia 15°C 53.32 4.05 13.16* 14.0 =1211 rasciculata 16.7 - 8 

50.33* 
15.5 - 4 

22°C 1492.30 29.65 50.0 - 8 
32.0 -12 

6.2 - 4 
30°G 92.93 14.48 6.42 14.8 - 8 

10.3 -12 

Desmodium 47.32°1( 
7.3 - 4 

15°C 320.52 6.77 16.2 - 8 sessiiirolium 23.3 -12 

188.10* 
11. 5 - 4 

22°C 1339. 76 7.12 31. 4 - 8 
44.0 -12 
5.0 - 4 

30°C 302.79 10.67 28.37* 15.3 - 8 
20.3 -12 

aMeans are rank-ordered with number following dash indicating age in weeks. Vertical 
lines indicate means for which no pairwise difference exceeded the appropriate Scheffe 
critical difference. 

bin all cases above, dfnum=2, dfden=l2 
*p < . 01 

N 
lTI 
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was significantly greater at eight weeks than at four weeks, 

and at twelve weeks than at eight weeks. 

Based on the results of Table III and Figures l, 4, and 

5, all three species reduced more acetylene at 22°C than at 

15°C or 30°C. For both Cassia and Desmodium there was no 

significant difference in the amount of acetylene reduced at 

15°C and '30°C when assayed at either age eight or twelve 

weeks. 

Nutrient and Age Effects 

Section two deals with the relationship,between nutri­

ents and age as they affect acetylene reduction in the three 

species. The mean number of p moles of acetylene reduced 

per day for each species at ages four, eight, and twelve 

weeks, and when supplied with no phosphorus as compared to a 

complete nutrient solution was determined (Appendix C). 

The three-way interaction (Appendix D) again indicated 

that the combined effects of any two variables were differ­

ent at each increment of the third variable. By use of the 

three-way analysis alone, again it was not possible to draw 

general conclusions concerning the effects of one or two 

variables over all increments of the third variable. Since 

the three-way interaction was significant which indicated 

that time and nutrient status was different for each plant 

species, a two-way analysis of variance was conducted (Table 

IV). The results of the two-way analysis of variance 



TABLE III 

SUMMARY TABLE FOR EFFECT OF TEMPERATURE AT EACH AGE INCREMENT FOR 
CASSIA FASCICULATA AND DESMODIUM SESSILIFOLIUM WHEN WATERED 

WITH A NITROGEN-FREE NUTRIENT SOLUTION 

Plant Age Mean Square_ F Mean c2H2 
(Temp.) (Error) Value Reduction 

Cassia 60. 18')'(-b 
15.5 -22oa 

4 Weeks 108.77 1. 81 10.2 -15° fasciculata 6.2 -30° 

85.93* 
50.0 -22° 

8 Weeks 1961. 90 22.83 16.7 -150 l 
14.8 -30° 

28.4i'~ 
32.0 -22° 

12 Weeks 670.33 23.55 14.0 -150 I 
10.3 -30° 

Desmodium 81.14* 
11. 5 -22° 

4 Weeks 54.32 6.23 7.3 -15° sessilifolium 5.0 -30° 

45 .15')'( 
31. 4 -22° 

8 Weeks 411.31 9.11 16.2 -150 I 
15.3 -30° 

.... 44.0 -22° 
12 Weeks 832.06 14.84 56.08" 23.3 -150 I 

20.3 -30° 

aMeans are rank-ordered with number following dash indicating temperature in 
degrees c. Vertical lines indicate means for which no pairwise differences 
exceeded the appropriate Scheffe1 critical difference. 

bin all cases above, dfnum=2, dfd =12. en 
*p < .01 

N 
'-1 
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Plant 

Psoralea 
tenuiflora 

Cassia 
fasciculata 

Desmodium 
sessilifolium 

TABLE IV 

ANALYSIS OF VARIANCE SUMMARY TABLE FOR NUTRIENT 
MAKE-UP AND AGE FOR EACH PLANT SPECIES 

Effect 

Nutrient Age Nut. 

Mean F Mean F Mean 
Square Value a Square Value Square 

-·~ 8.81* 179.42 99.34" 15.91 9.18 

3897.53 324.86* 748.59 62.40* 395.27 

3088.31 864. 287( 632.64 177.o5* 372.99 

x Age 

F 
Value 

5.69* 

32.95* 

104.38* 

aAppropriate degrees of freedom for all computed F values are: dfnum=2, dfden=36. 

~·'p < .01 

Error 

Mean 
Square 

1. 81 

12.00 

3.57 

w 
0 



31 

indicated that the age x nutrient interaction was statisti­

cally significant for all three of the plant species 

investigated. 

A one-way analysis of variance was done to examine the 

effects of age at each nutrient matrix, and the effects of 

nutrients at each increment of time. As can be observed in 

Table V, the Scheffe/ test revealed that no significant dif­

ferences existed between the capacity of the three plant spe­

cies to reduce acetylene when the plants were provided with 

a complete nutrient solution, or a phosphorus-free nutrient 

sol~tion. The results were the same for plants at all ages 

(four, eight, and twelve weeks). Table V verifies that in 

every case, regardless of plant species or phenophase, a sta­

tistically significant increase in acetylene reduction oc­

curred in plants which received a nitrogen-free nutrient 

solution as compared to plants which received a complete 

nutrient solution, or a phosphorus-free solution. This is 

also illustrated in Figures 6 and 7. 

An examination of Table VI indicates that when Psoralea 

was watered with a nitrogen-free nutrient solution and 

assayed at the three age increments, based on the Scheff~ 

test no statistically significant differences in acetylene 

reduction occurred. Similar results were obtained when 

Psoralea was watered with a phosphorus-free nutrient solu­

tion. When watered with a complete nutrient solution, 

Psoralea reduced significantly more acetylene at twelve weeks 
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TABLE V 

SUMMARY TABLE FOR EFFECT OF NUTRIENT MATRIX AT EACH AGE 
INCREMENT FOR PSORALEA TENUIFLORA, CASSIA FASCICULATA, 

AND DESMODIUM SESSILIFOLIUM, AT A TE"MP. OF 22°c 

Plant 

Psoralea 
tenuiflora 

Cassia 
fasciculata 

Desmodium 
sessilifolium 

Age Mean Square 
(Weeks) (Nut.) (Error) 

4 44.66 0.37 

8 32.37 1. 35 

12 120.75 3.70 

4 255.63 1. 00 

8 3089.32 22.25 

12 1343.12 12.75 

4 140.84 1. 26 

8 1173.24 3.83 

12 2520.21 5.63 

F 
Valueb 

121. 587'" 

24. oo·"° 

32.62* 

256. 647~ 

138. 85")'( 

105.35 

_ .... 

111. 74" 

Mean CzH2 
Reduction 

6.7 -Na 
i. 1 c I 
1. 4 -P 

7.0 
3.4 
2.1 

10.7 
4.2 
1.1 

-N 

-~1 
-N 

-~' 
15.5 -N 

3.8 cl 
2.5 -P 

50.0 -N 
7.6 cl 
6.4 -P 

32.0 -N 
5.5 cl 
2.0 -P 

11. 5 -N 
2. 9 cl 
1. 8 -P 

31. 4 -N 

t~ -~I 
44. 0 -N 

7.8 cl 
2.8 -P 

aMeans are rank-ordered with number following dash indicating 
nutrient (N=no nitrogen; C=complete nutrients; P=no phos­
phorus). Vertical lines indicate means for which no pair­
wise difference exceeded the appropriate Schef fd critical 
difference. 

bin all cases above, dfnum=2, dfden=l2 

")'~p < .01 
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TABLE VI 

SUMMARY TABLE FOR EFFECT OF AGE AT EACH NUTRIENT MATRIX 
FOR PSORALEA TENUIFLORA, CASSIA FASCICULATA, AND 

DESMODIUM SESSILIFOLIUM AT A TEMP. OF 22°c 

Plant 

Psoralea 
tenuiflora 

Cassia 
fasciculata 

Desmodium 
sessilifolium 

Nutrient 

-N 

-P 

c 

-N 

-P 

c 

-N 

-P 

c 

Mean Square 
(Age) (Error) 

24.67 4.14 

1. 41 0.65 

8.20 0.63 

1492.30 29.65 

28.90 1. 91 

17.92 4.43 

1339.76 7.12 

8.60 1. 51 

30.26 2.09 

F 
Valueb 

5.97 

2.15 

13. 04-;'c 

50.33* 

4. 04 

188. 107( 

5. 70 

14.48";\-

Mean c2H2 
Reduction 

6.7 - 4a 
7.0 - 8 

10. 7 -12 . 
1. 4 - 4 
2.1 - 8 
Ll -12 

~:L = ~ 11 
4.2 -12 

15.5 - 4 
50.0 - 8 
32.0 -12 
6.4 - 8 
2.5 - 4 
2.0 -12 
3.8 - 4 
7.6 - 8 
5.5 -12 

11. 5 - 4 
31. 4 - 8 
44.0 -12 
1. 8 - 4 
4.4 - 8 
2.8 -12 

2. 9 - 4 1, 
5.4 - 8 
7.8 -12 

aMeans are rank-ordered with number following dash indicating 
age in weeks. Vertical lines indicate means for which no 
pairwise difference exceeded the appropriate Scheffe 
critical difference. 

bin all cases above, df =2, dfd =12 num en 
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than at four weeks, but not more at twelve weeks than at 

eight weeks. 
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When watered with a nitrogen-free nutrient solution, 

Cassia reduced significantly more acetylene at eight weeks 

than at four weeks, and also more at eight weeks than at 

twelve weeks (Table VI). When Cassia was watered with a 

phosphorus-free nutrient solution, significantly more, acety­

lene was reduced at eight weeks than at four weeks, but no 

statistically significant difference at twelve weeks from 

four weeks. No statistically significant differences were 

found when a complete nutrient solution was added to Cassia 

and assayed at four, eight, and twelve weeks. 

When exposed to a nitrogen-free solution, Desmodium 

reduced significantly more acetylene at eight weeks than at 

four weeks, and more at twelve weeks than at eight weeks 

(Table VI). There were no statistically significant differ­

ences in acetylene reduction at any of the age increments 

when Desmodium was watered with a phosphorus-free nutrient 

solution. When a complete nutrient solution was employed, 

Desmodium reduced significantly more acetylene at twelve 

weeks than at four weeks, but not more at twelve weeks than 

at eight weeks. 

An exa~ination of Figures 8 and 9 indicates that both 

Cassia and Desmodium reduce more acetylene at all three age 

increments when provided with a nutrient solution lacking 

nitrogen than when provided with a complete nutrient solu­

tion, or one which lacks phosphorus. Figure 10 reveals that 
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essentially the same pattern occurs in Psoralea but the dif­

ferences are much less pronounced. 



CHAPTER VI 

DISCUSSION 

Of the legumes studied (Psoralea tenuiflora, Cassia 

fasciculata, and Desmodium sessilifolium), Psoralea reduced 

the least amount of acetylene at all ages (four, eight, and 

twelve weeks), at all nutrient ·regimes (complete nutrient 

matrix, phosphorus-free matrix, and nitrogen-free matrix), 

and at all temperatures (15°C, 22°C, and 30°C) investigated. 

An inspection of the root systems revealed that Psoralea 

produced fewer nodules, and that the nodules were generally 

small compared to those which were produced by either Cassia 

or Desmodium. It seems quite probable that Psoralea did not 

become effectively nodulated. After formation of the sixth 

trifoliate leaf, Psoralea appeared to cease, or drastically 

reduce growth, but the plants did persist throughout the 

twelve week period. 

Lofton (1976) reported that Psoralea tenuiflora when 

growing in the greenhouse did not survive beyond the sixth or 

seventh week. Becker and Crockett (1976) state that growth 

of Psoralea agrophylla stopped after formation of the third 

or fourth trifoliate leaves. In its natural habitat, 

Psoralea tenuiflora grows luxuriantly and usually reaches 

anthesis in early summer. It seems that more research is 

40 
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necessary before a satisfactory explanation for the rather 

poor growth pattern of Psoralea under controlled conditions 

can be established. 

When assayed at age four weeks, Cassia reduced rela­

tively small quantities of acetylene. At four weeks the 

plants were small, but tremendous growth took place between 

four and eight weeks. At age eight weeks, Cassia reduced 

more acetylene than either Psoralea or Desmodium. At twelve 

weeks Cassia exhibited a marked decrease in the amount of 

acetylene reduced (Figure 6). Flowering and fruiting took 

place in Cassia at age eight to twelve weeks. Hardy and 

Havelka (1976) found that in some legumes the reproductive 

sinks compete with nodules for available photosynthate. 

Sprent (1976) reported a decrease in nitrogen fixation in 

peas and beans during pod development. It is possible that 

the decrease in acetylene reduction by Cassia at age twelve 

weeks was due to flowering and fruiting prior to the twelve­

week assay. 

While Desmodium reduced less acetylene at age eight 

weeks than did Cassia, at age twelve weeks Desmodium reduced 

significantly more acetylene than Cassia. There was, how­

ever, a slight decrease in the accelerated rate of acetylene 

reduction by Cassia from eight weeks to twelve weeks as can 

be observed in Figure 7. This could have been due to the 

approaching flowering and fruiting periods, or perhaps due to 

injury suffered from insect infestation at age seven to 

twelve weeks. 
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In all three species, significantly more acetylene was 

·reduced at a temperature of 22°C than at temperatures of 15°C 

or 30°C. Since only the three above temperatures were 

investigated, it cannot be stated that 22°C is the optimum 

for acetylene reduction in the three species. It appears, 

however, that the optimum temperature lies in the area of 

22°C rather than at 15°C or 30°C. During the growing season 

the soil surrounding the roots of the three legumes is usu­

ally nearer a temperature of 22°C than at 15°C or 30°C. 

Soil temperature may well provide a partial explanation for 

the distribution patterns found in the three species. 

In this study, the effect of minerals on the ability of 

Cassia and Desmodium to reduce acetylene has been shown to 

be quite pronounced. The largest quantity of acetylene was 

reduced when plants were provided with a nitrogen-free nutri­

ent solution. When ample quantities of available nitrogen 

were added, acetylene reduction by Cassia and Desmodium 

decreased significantly. The complete explanation for this 

phenomenon is not known. If adequate quantities of nitrogen 

are added, the plant has no need for the presence of 

Rhizobium, but in the absence of available nitrogen the 

presence of Rhizobium in the nodules on the roots is the only 

means of survival for the plant. 

When watered with a phosphorus-free nutrient solution 

both Cassia and Desmodium reduced significantly less acety­

lene than when watered with a nitrogen-free nutrient solu­

tion. In the absence of phosphorus, nucleic acid synthesis 
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no doubt was reduced as well as synthesis of ATP (Postgate, 

1974b). With decreasing amounts of these and other organic 

constituents containing phosphorus, photosynthesis would be 

expected to decrease and therefore less carbohydrate would 

be translocated to the roots. Nodular development, and 

Rhizobium activity in nodules which had developed would 

decrease (Pate, 1976). 

During the study it was extremely difficult to control 

some of the variables. The greenhouse temperature, for 

example, varied somewhat because of the unusually cool win­

ter experienced here in Oklahoma. What effect this had on 

the outcomes of the study is not known. At age seven weeks 

the plants became mildly infested with Drosophila spp. Eggs 

were laid by the Drosophila on the soil surf ace in the pots 

and the larvae presumably burrowed into the potting medium. 

Insecticide (Diazinon SOW) had to be applied to the soil in 

order to control the insects. What effect the larvae had on 

the roots of the plants, and the effect of the insecticide 

on Rhizobium in the nodules on the roots of the plants is 

also not known. 

It appears that t~ere are several areas which should be 

investigated in future studies. An attempt should be made 

to determine if the patterns which were established using 

the three legume species in this study occur in other leg­

umes. An extension of the phenophase before assaying could 

prove to be of value. For example, it would be interesting 

to learn what effect a s:ixteen, twenty, or twenty-four week 
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growth period would have on the capacity of certain legumes 

to reduce acetylene. The effects of other minerals on the 

nitrogen-fixing capabilities of legumes could prove to be of 

great value. Perhaps other strains of Rhizobium could estab­

lish a more effective symbiotic relationship with the legume 

plants. 



CHAPTER VII 

SUM.MARY 

The ability of Psoralea tenuiflora, Cassia fasciculata, 

and Desmodium sessilifolium to reduce acetylene has been 

shown to be dependent on the make-up of the nutrient solution 

with which they were watered. When provided with a nitrogen­

free nutrient solution, all three species of legumes reduced 

significantly more acetylene than when watered with a com­

plete nutrient solution, or a phosphorus-free nutrient 

solution. 

The acetylene-reducing capacity of Desmodium was found 

to increase progressively with age: more acetylene was 

reduced at age eight weeks than at four weeks, and more at 

twelve weeks than at eight weeks. Cassia reduced more acety­

lene at eight weeks than at four weeks, but not more at 

twelve weeks than at eight weeks. With Psoralea, age had no 

significant effect on the ability to reduce acetylene when 

watered with a nitrogen-free or a phosphorus-free nutrient 

solution. Based on this investigation, it appears that the 

age of plants usually has a significant effect on their 

capacity to reduce acetylene. 

The effect of temperature on the ability of the three 

species to reduce acetylene has been shown to be a 

45 
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significant factor. More acetylene was reduced when plants 

were subjected to a temperature of 22°C than at 15°C or 30°C. 

As with most investigations, it appears that as many or 

more problems arose as were solved during the progress of the 

study. This investigation supports the premise that nitrogen 

fixation in some leguminous plants is severely affected by 

temperature changes, by nutrient availability, and by the 

phenophase of the plants themselves. 
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APPENDIX A 

MEAN NUMBER OF Jl MOLES OF C2H2 REDUCED PER SPECIES 
PER DAY AT AGES 4, 8, AND 12 WEEKS, AT 

TE11PERATURES OF 15°C, 22°c, AND 30°C 
WHEN SUPPLIED WITH A NITROGEN-FREE 

NUTRIENT SOLUTION 

Species Age in 15°C 22°G Weeks 

Psoralea 4 4.5* 6. ik 
tenuirlora 8 4.1 7.0 

12 4.8 10.7 

Cassia 4 10.2 15.2 
rasciculata 8 16.7 50.1 

12 14.0 32.0 

Des modi um 4 7.3 11. 5 
sessiiirolium 8 16.l 31. 5 

12 23.3 44.0 

-·~ 'All values based on five replications. 
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30°C 

1. 6* 

2.6 
2.4 

6.2 
14.8 
10.3 

5.0 
15.3 
20.3 



APPENDIX B 

ANALYSIS OF VARIANCE SUMMARY TABLE FOR 
PLANT x TEMPERATURE x AGE 

Source Degrees of Mean 
Freedom Square 

Plant 2 3017.28 

Temperature 2 2697.44 

Age 2 1547.56 

Plant x Temperature 4 311.42 

Plant x Age 4 605.54 

Temperature x Age 4 233.64 

Plant x Temp. x Age 8 100.46 

Error 108 9.44 

·k p < . 01 
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F 
Value 

319. 4fk 

285. 56""' 

163.87""' 

32. g]'k 

64. 10""' 

24.73* 

10.64* 



APPENDIX C 

"MEAN NUMBER OF n MOLES OF C2H2 REDUCED PER SPECIES 
PER DAY AT AGES 4, 8, AND 12 WEEKS WHEN PLANTS 

WERE SUPPLIED WITH A COMPLETE Vs A . 
PHOSPHORUS-DEFICIENT SOLUTION 

Species Age in No Complete 
Weeks Phosphorus Nutrients 

Psoralea 4 -·~ 1. i''t; 1.4" 
tenuirlora 8 2.1 3.4 

12 1.1 4.2 

Cassia 4 2.5 3.8 
f asciculata 8 6.4 7.6 

12 2.0 5.5 

Desmodium 4 1. 8 2.9 
sessilirolium 8 4.4 5.4 

12 2.8 7.8 

.. , 
'All values based on five replications. 
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APPENDIX D 

ANALYSIS OF VARIANCE SUMMARY TABLE FOR 
PLANT x NUTRIENT x AGE 

Source Degrees of Mean 
Freedom Square 

Plant 2 1217.47 

Nutrient 2 5741. 61 

Age 2 855.55 

Plant x Nutrient 4 711. 83 

Plant x Age 4 290.80 

Nutrient x Age 4 432.43 

Plant x Nut. x Age 8 172.51 

Error 108 5. 79 

"J'r 
< .01 p 
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F 
Value 

210. 21·k 

991. 37''( 

140. 82";'( 

122.917~ 
~'-

50.21" 

74. 6 77~ 

29. 79·k 
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