
HYDRAULIC SYSTEMS DEGRADATION DETECTION USING

SPARSE SENSORS

By

JOSEPH KELLEY

Bachelor of Science in Mechanical Engineering
University of Missouri Kansas City

Kansas City, Missouri, United States
2012

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
Masters of Science

May, 2018

COPYRIGHT c©

By

JOSEPH KELLEY

May, 2018

HYDRAULIC SYSTEMS DEGRADATION DETECTION USING

SPARSE SENSORS

Thesis Approved:

Martin Hagan

Thesis Advisor

Keith A. Teague

Carl D. Latino

iii

Name: Joseph Kelley

Date of Degree: May, 2018

Title of Study: HYDRAULIC SYSTEMS DEGRADATION DETECTION USING
SPARSE SENSORS

Major Field: Electrical Engineering

Abstract: A common issue in hydraulic systems is the degradation of sub-components.
This is an important issue because hydraulics are the backbone of manufacturing, con-
struction, and aerospace. When designing a hydraulic system, the sub-component’s
reliability is the primary requirement in component selection, because they deter-
mine the system’s overall reliability. But, how the system actually fails is probabilis-
tic, which varies based on operational conditions. To measure failure in a physical
system during operation a model must be developed that measures the change in
degradation from its initial healthy state. The accuracy of the prediction depends
on the dynamics of the system and the system’s operational input space. This thesis
will present an approach for measuring degradation in a hydraulic system by using
a dynamic model’s prediction error to classify between sub-component fault states.
The purpose of an inline fault detection system is to quickly recognize a failure and to
provide information to the maintenance group on which sub-component has failed.

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 SYSTEM DESCRIPTION 4

2.1 Introduction . 4

2.2 Electrically Powered Motor and Fixed Displacement Pump 7

2.2.1 Performance . 7

2.2.2 Degradation . 8

2.3 Voltage Controlled Servo-Valve . 9

2.3.1 Performance . 9

2.3.2 Degradation . 10

2.4 Hydraulic Controlled Motor . 11

2.4.1 Performance . 11

2.4.2 Degradation . 12

2.5 Proportionally Controlled Relief Valve 13

2.5.1 Performance . 13

2.5.2 Degradation . 14

2.6 System Load . 14

2.6.1 Performance . 14

2.6.2 Degradation . 14

2.7 Common Degradation Types . 14

3 LINEAR MODELING OF HEALTHY SYSTEM 16

iv

3.1 Introduction . 16

3.2 Box-Jenkins Model . 17

3.2.1 Preliminary Identification . 18

3.2.2 Parameter Estimation . 20

3.2.3 Model Validation . 22

3.3 Data Collection and Sensor Location 24

3.3.1 Sensor Location . 24

3.3.2 Linear Operational Ranges . 24

3.3.3 Frequency Response . 25

3.4 Model Training and Validation . 26

3.4.1 Preliminary Identification . 27

3.4.2 Preliminary Parameter Estimation 30

3.4.3 Model Validation . 31

3.4.4 Final Parameter Estimation 37

3.5 Implement Box-Jenkins Model . 39

4 NON-LINEAR MODELING OF HEALTHY SYSTEM 41

4.1 Introduction . 41

4.2 Neural Network Background . 42

4.2.1 Single-Input and Multiple-Input Networks 42

4.2.2 Feedforward Network . 44

4.2.3 Backpropragation Algorithm 47

4.3 NARX Model . 49

4.3.1 Function Approximation . 50

4.3.2 NARX Model Network Architecture 52

4.3.3 NARX Model Validation . 55

4.4 Data Collection and Sensor Location 56

4.4.1 Sensor Location . 57

v

4.4.2 Operational Range . 57

4.4.3 Sampling Frequency . 58

4.5 Model Training and Validation . 58

4.5.1 Parameter Estimation . 58

4.5.2 Model Validation . 59

4.6 Implement NARX Model . 64

4.7 Comparing Performance of Linear and Nonlinear Models 65

5 HEALTH MONITORING 67

5.1 Introduction . 67

5.2 Single Fault Prediction . 68

5.2.1 Sensor and Fault Location . 70

5.2.2 Statistical Test . 71

5.2.3 Implementation of Statistical Test 72

5.3 Multiple Fault Prediction . 74

5.3.1 Sensor and Fault Locations 75

5.3.2 Implementing Statistical Test 76

5.4 Multiple Faults and Multiple Sensors 79

5.4.1 Sensors and Faults Location 80

5.4.2 Implementation of Statistical Test 81

5.4.3 Classification Neural Network 86

5.4.4 Classification Neural Network Architecture 87

5.4.5 Classification Neural Network Validation 89

5.4.6 Implementation of Classification Neural Network 90

6 RESULTS FOR HEALTH MONITORING 93

6.1 Introduction . 93

6.2 Sensor and Fault Locations . 97

vi

6.3 Data Collection . 98

6.4 Implementing the Statistical Test . 100

6.5 Neural Network for Classification . 102

6.6 Results . 104

7 CONCLUSIONS 107

7.0.1 Future Work . 109

BIBLIOGRAPHY 111

vii

LIST OF TABLES

Table Page

3.1 Servo-Valve Input Ranges . 25

3.2 Preliminary Identification System Orders for Box-Jenkins Model . . . 31

3.3 Model Validation Q-statistic and S-statistic for Original Model 32

3.4 Model Validation Q-statistic and S-statistic for Updated Model . . . 32

3.5 B(q) and F (q) Roots . 33

3.6 C(q) and D(q) Roots . 33

3.7 B(q) Confidence Limits . 34

3.8 F (q) Confidence Limits . 34

3.9 C(q) Confidence Limits . 34

3.10 D(q) Confidence Limits . 35

3.11 Final System Orders for Box-Jenkins Model 37

4.1 Servo-Valve Input Ranges . 57

4.2 NARX Model Architecture . 59

4.3 NARX Model Architecture . 61

4.4 NARX Model Effective Number of Parameters 62

4.5 NARX Model Architecture . 63

4.6 NARX Model Effective Number of Parameters 63

5.1 Health States Relative Entropy vs Sampled Prediction Errors 74

5.2 Health States Relative Entropy vs Sampled Prediction Errors 78

5.3 Load Fault States Relative Entropy vs Sampled Operational Data . . 85

5.4 Load Fault Classification Neural Network Architecture 91

viii

6.1 Load Fault States Relative Entropy vs Sampled Operational Data . . 102

6.2 Fault Detection Classification Neural Network Architecture 103

6.3 Fault Detection Data Set Split Between Training, Validation, and Test 103

6.4 Classes Number and Health State . 105

ix

LIST OF FIGURES

Figure Page

2.1 Control System Diagram of Hydrostatic Transmission 5

2.2 Physical Hydrostatic System . 6

2.3 Gear Pump . 8

2.4 Voltage Controlled Servo Valve . 10

2.5 Proportionally Controlled Relief Valve 13

3.1 Frequency Response . 26

3.2 Input and Output Training Data . 27

3.3 Impulse Response . 28

3.4 Hydrostatic Transmission G-GPAC 29

3.5 Hydrostatic Transmission Autocorrelation of Disturbance 30

3.6 Hydrostatic Transmission H-GPAC 30

3.7 Autocorrelation of the Residual Errors for Equation 3.24 35

3.8 Z-Plane for G(q) . 36

3.9 Z-Plane for H(q) . 36

3.10 Estimated Impulse Response for Equation 3.24 38

3.11 Estimated Frequency Response for Equation 3.24 39

3.12 Estimated One Step Ahead Prediction for Equation 3.24 40

4.1 Single-Input Network . 42

4.2 Log-Sigmoid Transfer Function . 43

4.3 Multiple-Input Network . 44

4.4 Multiple-Input Multiple-Output . 45

x

4.5 Two Layer Network . 46

4.6 Simplified Two Layer Network . 46

4.7 Multiple-layer Function Approximation 50

4.8 Multiple-layer Function Approximation Example 52

4.9 Non-Linear Autoregressive Exogenours (NARX) Model 52

4.10 Closed Loop Non-Linear Autoregressive Exogenours (NARX) Model . 53

4.11 NARX Model Architecture . 59

4.12 Auto-correlation of Residual Errors 60

4.13 Auto-correlation of Inputs Against Residual Errors 60

4.14 Auto-correlation of Residual Errors 61

4.15 Cross-correlation of Inputs Against Residual Errors 62

4.16 Mean Square Error - Network Performance 64

4.17 One-Step Ahead Prediction . 65

4.18 One-Step Ahead Prediction for Linear Box-Jenkins Model 66

4.19 One-Step Ahead Prediction for NARX Model 66

5.1 Single Load Fault Detection Diagram 69

5.2 Sensor and Fault Location . 70

5.3 Known Health States for Gearbox Angular Velocity 72

5.4 Sampled Prediction Errors vs Known Health States for Gearbox An-

gular Velocity . 73

5.5 Multiple Load Faults Detection Diagram 75

5.6 Sensor and Fault Location . 76

5.7 Known Health States for Gearbox Angular Velocity 77

5.8 Sampled Prediction Errors vs Known Health States for Gearbox An-

gular Velocity . 78

5.9 Multiple Load Faults Detection using Multiple Sensors Diagram . . . 80

5.10 Sensors and Faults Location . 81

xi

5.11 System Load Fault PDFs for Gearbox Angular Velocity 82

5.12 System Load Fault PDFs for Gearbox Torque 82

5.13 System Load Fault PDFs for Motor Flow Rate 83

5.14 System Load Fault PDFs for Gearbox Angular Velocity 84

5.15 System Load Fault PDFs for Gearbox Torque 84

5.16 System Load Fault PDFs for Motor Flow Rate 85

5.17 Classification Neural Network Architecture 87

5.18 Example Confusion Matrix . 90

5.19 Matlab Classification Neural Network for Fault Detection 91

5.20 Load Fault Classification Network Confusion Matrix 92

6.1 Fault PDFs for Gearbox Angular Velocity 94

6.2 Fault PDFs for Gearbox Torque . 94

6.3 Fault PDFs for Motor Flow Rate . 95

6.4 Multiple Load Faults Detection using Multiple Sensors Diagram . . . 96

6.5 Hydrostatic Transmission Key Performance Sensors and Faults Locations 97

6.6 Data Diagram . 99

6.7 Fault PDFs for Gearbox Angular Velocity 100

6.8 Fault PDFs for Gearbox Torque . 101

6.9 Fault PDFs for Motor Flow Rate . 101

6.10 Trained Network Confusion Matrix 104

6.11 Trained Network Confusion Matrix 105

xii

CHAPTER 1

INTRODUCTION

Hydraulics are the backbone for the aerospace, construction, and manufacturing in-

dustry, but a common issue is degradation of sub-components in the system. For

hydraulics it is critical to maximize the reliability, which requires a maintenance

group with expert knowledge, endurance testing of sub-components, and historical

data for failures. Even the most reliable systems will still have a chance of failure,

with the types of failure changing based on operational and environmental conditions,

so it is important to have an approach for continually checking the health state of

system. In industry it is common to use off-line equipment to validate the health

of sub-components in a hydraulic system, but this requires a deep understanding of

the system and its failure modes. This process can be automated, which has became

common practice in industry. This thesis will present an approach to do inline fault

detection, based on using dynamic modeling, statistical testing, and classification.

If a system can be inline tested for faults, the need to continually take the system

off-line for health monitoring would be removed, which would reduce the cost and

time for maintenance. This would also allowing for taking preemptive methods when

faults are detected in real-time.

There have been a number of papers on fault detection in hydraulic systems us-

ing both linear and non-linear observer approaches. A common approach in fault

detection is developing an observer from the differential equations for the system [1]

[2], these differential models can be both linear and non-linear. The fault is detected

based on the prediction error of the observer reaching a set threshold. This type of

1

fault detection is used for measuring the system’s performance degradation inline,

but does not provide the operator with an understand of individual sub-component

health. Since the differential equations of a system can be difficult to derive, and be-

cause of uncertainty in parameter estimation, system identification approaches have

been presented using neural networks [3] [4]. Similar to the differential equation ap-

proach, the neural network acts as an observer that uses the prediction error to detect

a fault. These approaches only determine if a fault is present, but there have been

methods that classify types of faults using neural networks and fuzz logic [5] [6]. For

this thesis, these methods of system identification and fault classification will be com-

bined for inline measurement of sub-component health states for a physical hydraulic

system.

The general approach that will be presented for inline fault detection is dynamic

modeling of the system to create a health reference model. When the system is

operated in a healthy state, the dynamic model will be able to accurately predict the

performance of the system using past inputs and outputs. As the system degrades the

dynamics of the system will change, which will result in the healthy reference model

being unable to accurately predict the performance of the system. The amount of

error in the health reference model will depend on the type and severity of the fault.

This means that the error in the health reference model will allow sub-component

faults to be classified by the knowledge of what a fault looks like. This can be

achieved by simulating faults in the system or from historical data. For this thesis

the faults will be simulated in a physical hydraulic system.

The outline of this thesis follows. Chapter 2 will discuss the hydraulic system

being used for fault detection, the sub-component differential equations, and the

common types of faults in the system. After the hydraulic system is introduced,

dynamic modeling approaches will be presented in Chapter 3 and 4, with Chapter

3 demonstrating linear dynamic modeling and Chapter 4 demonstrating non-linear

2

dynamic modeling. The dynamic models are trained on a healthy system, and then

Chapter 5 and 6 will discuss how the errors in the health dynamic models can be used

to classify faults. Chapter 5 will introduce the general equations for fault detection,

and Chapter 6 will present the full implementation of the fault detection system.

3

CHAPTER 2

SYSTEM DESCRIPTION

2.1 Introduction

The purpose of hydraulic systems is to transfer mechanical generated power using

a working fluid to perform mechanical work. By using a working fluid to transmit

power, a hydraulic system is able to achieve high efficiency and handle high torque

loads. With modern advancements in controls and sensors, hydraulic systems have

become more stable and are the backbone in aerospace, heavy construction, and man-

ufacturing systems. A common application of a hydraulic system is in velocity and

torque control of motors coupled to a gearbox. In vehicles these systems are known

as hydrostatic transmissions, which allow a vehicle to have a gearless transmission.

The hydraulic motor can be flow controlled using two common approaches; pump and

servo-valve control. A pump control is the most common in hydrostatic transmission

systems due to the low response times required in heavy construction systems, but

a servo-valve can be used in applications where a faster response is required than a

variable controlled pump can achieve.

In this section a hydrostatic transmission and its individual sub-components will

be discussed, to illustrate how a degradation in a sub-component can contribute to a

fault. The hydrostatic transmission discussed in this thesis is a servo-valve controlled

hydrostatic system that allows continuous velocity and torque control for low flow

applications (less then 5 gal/min). The control system description of a hydrostatic

transmission, which uses a voltage controlled servo-valve, is shown in Figure 2.1.

A hydrostatic system that is servo-valve controlled has six main components:

4

Figure 2.1: Control System Diagram of Hydrostatic Transmission

electrically powered motor, fixed displacement pump, pressure controlled relief valve,

voltage controlled servo-valve, and hydraulic controlled motor. Each component will

be discussed in-depth in the following sections, but we first provide a system overview.

The purpose of a hydrostatic system is to generate an angular velocity (θs) at the

system load using a voltage controlled servo-valve and hydraulic motor. The servo-

valve is a flow control device that is operated by a voltage difference (vi) across a

solenoid coil that causes a displacement in a spool. Depending on the position of the

spool, the size of the opening for the flow channels into the hydraulic motor can be

adjusted, which allows the flow rate (Qs) into the hydraulic motor to be controlled.

By controlling the flow into the hydraulic motor, the angular velocity (θs) of the

motor can be varied.

To insure the system has a fast response, the pressure (Pp) and flow rate (Qp) at

the inlet of the servo-valve are held constant using a fixed displacement pump and

pressure control relief valve. The fixed displacement pump in this application is a gear

pump, which is coupled to an electrically powered motor that generates a constant

flow rate at the inlet of the servo-valve. The pressure at the inlet of the servo-valve

is held constant by a proportional controlled relief valve, which is designed to relieve

excess pressure in the system. The proportional controlled relief valve can be set at a

specified cracking pressure, which will insure that the pressure of the hydraulic system

does not exceed the system maximum operational pressure. The fixed displacement

5

pump is selected based on the its ability supply a continuous pressure greater than

the cracking pressure of the proportional controlled relief valve, to insure that there

is no mechanical power loss in the system.

A physical model of the system is shown in Figure 2.2.

Figure 2.2: Physical Hydrostatic System

Further discussion of the sub-components in a servo-valve controller hydrostatic

system continues in the following sections. Each section will describe the sub-component

differential models and operation of the sub-component in both healthy and unhealthy

states.

6

2.2 Electrically Powered Motor and Fixed Displacement Pump

2.2.1 Performance

The hydraulic system power is supplied by a gear pump that is driven by an electronic

motor. A gear pump is a fixed displacement pump, which means that the flow from

the outlet of the gear pump is equal to the rotational speed of the motor times the

volumetric displacement of the pump, given that there is no efficiency loss due to

internal or external leakage. If there is internal or external leakage, the inefficiency

will be a product of the pressure difference across the pump. This is why it’s common

for hydraulic systems to use a booster pump to supply a fixed displacement pump,

since it will insure there is a minimal pressure drop across the pump. The theoretical

equation that governs a fixed displacement pump is shown in Equation 2.1 [7].

Qp = Dm · θ̇m +

(
Cim +

Cem
2

)
· PL (2.1)

where:

Qp = Flow Rate at Outlet of Pump (in3/sec)

Dm = Volumetric Displacement of Motor (in3/rad)

Cim = Internal Leakage Coefficient (in3/sec/psi)

Cem = External Leakage Coefficient (in3/sec/psi)

PL = Psi − Pso = Load Pressure (psi)

The design of a gear pump is shown in Figure 2.3. The gear pump was designed so

that the meshing of the gears to the internal wall of the pump creates fluid pockets.

As the gears are rotated, using the electrical motor coupled to the pump, the fluid in

the pump is displaced into the outlet of the pump. The displaced fluid at the outlet

of the pump generates compressibility flow due to the increased pressure change at

the outlet. Gear pumps are designed for low pressure application, due to the contact

7

between gear’s teeth in the pump.

Figure 2.3: Gear Pump

2.2.2 Degradation

From the performance Equation 2.3 for a fixed displacement pump, it can be seen

that the degradation in pump performance is due to internal and external leakage,

which is a product of the pressure drop across the system. The internal leakage inside

the pump is based on the tolerance of the gear teeth to the pump’s inner housing,

which acts like an orifice that is dependent on the pressure difference, flow area,

and discharge coefficient. As a pump begins to wear out, the tolerance of the gears

teeth to the pump’s inner housing increase, which results in higher internal leakage.

The external leakage is dependent on the drain port and pump connection fitting

tolerances, which increase as the pump degrades. With the internal and external

leakage increasing over the life of the pump, the ability for the system to provide the

required pressure and flow to the system will decrease.

8

2.3 Voltage Controlled Servo-Valve

2.3.1 Performance

The voltage controlled servo-valve is the main component in a hydrostatic system,

since it determines the flow and pressure into the hydraulic controlled servomotor.

The servo-valve controls the flow into the motor based on an operator supplied input

voltage across a solenoid coil that causes a displacement in a spool. Depending on

the displacement of the spool and pressure drop across servo-valve, the flow rate into

the hydraulic motor can be calculated based on the differential Equation 2.2 [7].

Qsi = Cd · w · xv
√

2

ρ
(Ps − Psi)− (Cim +

Cem
2

)(Ps − Pr) (2.2)

where:

Qsi = Flow Rate at Inlet of Motor (in3/sec)

Qso = Flow Rate at Outlet of Motor (in3/sec)

Ps = Supply Pressure (psi)

Pr = Return Pressure psi)

Psi = Pressure at Inlet of Motor (psi)

Cd = Discharge Coefficient

ρ = Density (lb/in3)

w = Width of Port (in)

The design of the servo-valve used in this application is shown in Figure 2.4. The

spool valve is positional controlled using a nozzle flapper that is tilted by the voltage

difference between two solenoid coils. The nozzle flapper has a built in feedback

system. The spool position is shifted based on the tilt of the nozzle flapper. A back

pressure is generated that opposes the tilt of the nozzle flapper. The feedback in the

system allows for positional control of the spool and improves the stability of the

9

system.

Figure 2.4: Voltage Controlled Servo Valve

2.3.2 Degradation

The common degradation in a servo-valve is internal and external leakage, due to

tolerance increases in the spool and decay in the magnitude of the electromagnetic

field in the solenoid coils. The internal leakage in the valve is based on tolerances

between the supply and return port, which increase with wear in the servo-valve.

The external leakage is based on the fittings of the port connection. The decay in

the magnitude of the electromagnetic field can be from loss in supply current or

wear in the solenoid coils. A degradation in spool tolerances, valve fittings, and

electromagnetic field reduces the maximum operational flow rate and pressure at the

inlet of the hydraulic controller motor.

10

2.4 Hydraulic Controlled Motor

2.4.1 Performance

A hydraulic controlled motor provides a torque to a load that generates an angular

velocity in the gearbox. The motor is controlled based on both the pressure and flow

at the inlet of the motor, which is maintained by the supply pump and servo-valve.

A hydraulic controlled motor is designed to have blades that extend to the housing of

the motor, which forms fluid pockets that are uniform in size. A hydraulic controlled

motor is bidirectional, which can be velocity and torque controlled.

The performance of a hydraulic controlled motor is governed by Equations 2.3

and 2.4 [7]. The leakage in the motor is defined by two coefficients Cim and Cem,

for internal leakage between blades inside the motor and external leakage through a

drain port or pump fittings, respectively. Equation 2.3 includes the compressibility

flow in the motor, which is proportional to the derivative of the pressure drop. The

angular velocity of the motor is governed by Equation 2.4. The torque at the motor

is based on the pressure drop across the system times the volumetric displacement of

the motor. The differential equations show that the leakage in the motor reduces the

pressure difference across the system, which decreases the magnitude of the torque

load across the motor.

QL −Dm · θ̇s − (Cim +
Cem

2
)PL =

V0
2βe
· ṖL (2.3)

where:

QL = Qsi+Qso
2

= Load Flow (in3/sec)

Qsi = Flow Rate at Inlet of Motor (in3/sec)

Qso = Flow Rate at Outlet of Motor (in3/sec)

Dm = Volumetric Displacement of Motor (in3/rad)

Cim = Internal Leakage Coefficient (in3/sec/psi)

11

Cem = External Leakage Coefficient (in3/sec/psi)

PL = Psi − Pso = Load Pressure (psi)

Psi = Pressure at Inlet of Motor (psi)

Pso = Pressure at Outlet of Motor (psi)

V0 = Vsi + Vso = Total Volume for both Inlet and Outlet of Motor (in3)

βe = Bulk Modulus of System Fluid (psi)

Tm = (Psi − Pso)Ḋm = Jt · θ̈s +Bs · θ̇s +G · θs + TL (2.4)

where:

Tm = Torque Generated by Motor (in · lb)

Jt = Inertia of Motor and Load (in · lb · sec2)

Bm = Viscous Damping Coefficient (in · lb · sec)

G = Torsional Spring Torque on Motor (in · lb/rad)

TL = Torque Load on Motor (in · lb)

2.4.2 Degradation

The degradation of the motor is based on the amount of internal and external leakage

inside the motor. The internal leakage is based on the tolerance between the blades

of the motor and the inside housing of the motor, while the external leakage is based

on the drain port and pipe fitting tolerances. When both the internal and external

leakage increase, the angular velocity of the motor will decrease based on Equation

2.3 and 2.4. The amount of leakage loss during operation of the motor is dependent

on both wear and pressure drop across the motor. As the pressure drop increases

across the motor, the level of degradation in the motor will increase, and the ability

of the motor to provide the required angular velocity will decrease.

12

2.5 Proportionally Controlled Relief Valve

2.5.1 Performance

A proportionally controlled relief valve is designed to balance the pressure at the

outlet of a fixed displacement pump. A relief valve uses a spool that is spring loaded,

that when opened allows access pressure to be discharged. The valve is designed to

open at a specific cracking pressure for a preset operating system flow rate. The

cracking pressure for the relief valve is based on the spring stiffness and surface area

of the spool (Equation 5) [8].

Ps · As = Ks · (x0 + xv) (2.5)

where:

Ps = System Pressure (psi)

As = Spool Area (in2)

Ks = Spring Stiffness (lb/in)

x0 = Precompressed Spring Length (in)

xv = Spool Displacement (in)

Figure 2.5: Proportionally Controlled Relief Valve

13

2.5.2 Degradation

The degradation in the relief valve is caused by wear in the spring stiffness and

spool tolerance. When wear occurs in the spring stiffness, the cracking pressure for

the relief value is reduced, and the maximum pressure at the outlet of the fixed

displacement pump is reduced. Similarly, if the tolerances of the spool to the relief

valve housing increase, the maximum pressure at the outlet of the fixed displacement

will be reduced, due to internal leakage.

2.6 System Load

2.6.1 Performance

The angular velocity of the hydraulic controlled motor is based on torque of the

system load and torque generated by the motor, which is governed by Equation 2.4.

2.6.2 Degradation

An increase in system load can generate degradation in the system if the torque load

increases past the operational limits of the system. At increased system loads there

will be additional wear on the gearbox and motor, which will reduce the angular

velocity of the hydraulic controlled motor.

2.7 Common Degradation Types

In the sections above, performance degradation states for each sub-component in

the hydrostatic system were discussed. In most cases, the degradation is caused by

excessive wear. The common root causes of wear are air in the fluid (cavitation),

increased contamination, water in working fluid, and high temperatures [8].

• Cavitation is created in a pump when the inlet pressure of the pump is greater

than the outlet pressure, which causes an unsteady flow that cannot completely

14

fill the pump housing. The unsteady flow causes air pockets in the fluid that

implode under high pressure, leading to erosion on the surface of the pump.

• Increased contamination in a hydraulic system can come from the operational

environment, erosion of sub-components, clogging of filters, etc. When contam-

ination increases, higher surface wear will occur.

• Water in the fluid can lead to corrosion wear, since metal is positively charged

and will give up its excess energy by dissolving into water producing rust. Over

time the surface of the metal in the vane pump will corrode, leading to increased

tolerances in the system.

• High temperatures in a system will increase oxidation rates and contact wear

in hydraulic parts, due to reduction in fluid viscosity.

15

CHAPTER 3

LINEAR MODELING OF HEALTHY SYSTEM

3.1 Introduction

Chapter 2 showed the differential equations for each sub-component in the hydrostatic

transmission and their corresponding unhealthy state. To classify an unhealthy state,

the severity of degradation needs to be measured from a known healthy state of the

hydrostatic transmission. The healthy state will be based on the transfer function of

the system, which is determined based on the dynamics of the hydraulic system. It is

difficult to estimate the transfer function from the differential equations of the sub-

components, due to the unknown design parameters for the system. A linear model

will be estimated instead, using system identification techniques. Some common

linear models are autoregressive exogenous (ARX), autoregressive moving average

exogenous (ARMAX), and Box-Jenkins. In this report the Box-Jenkins model will

be discussed, since it allows the dynamics and noise in the hydraulic system to be

individually modeled.

The Box-Jenkins model is a widely used technique for linear modeling and has

been implemented in a large range of applications; such as economics, process control,

power grids, and etc. The benefit of the linear model is the knowledge that can

be gained about the dynamics of the system. Most non-linear models are black

box approaches, where very little insight can be gained about the dynamics of the

system. The linear models ARX, ARMAX, and Box-Jenkins use past inputs and

outputs to estimate the next output of the system. In most applications a linear

model is preferred, but due to the complexity of physical systems their responses are

16

most often non-linear. A system can be operated in regions where the system behaves

linearly, by keeping inputs and outputs within a small operating range. This chapter

will linearize the servo-motor into a few small regions where linear models can be

used.

3.2 Box-Jenkins Model

The steps of system identification and modeling are 1) preliminary identification,

2) parameter estimation, and 3) model validation [9]. Each of the steps will be

discussed in the following sections, but the Box-Jenkins model will be presented first.

The Box-Jenkins model is a single-input single-output (SISO) model. For the servo-

motor, the input into the system is the voltage into the servo-valve that controls

flow into the hydraulic motor, causing the hydraulic motor to rotate with an output

angular velocity. The output is determined by two components. The first is the

response of the system dynamic to the control input. The second is the system

response to disturbances and noise, which can be from vibrations and noise in the

hydraulic system. For the Box-Jenkins model the two components are combined. The

Box-Jenkins model is shown in Equation 3.1 [10, pg.87] with the two components

represented by G(q)u(t) and H(q)e(t). In the Box-Jenkins model it is assumed that

the disturbance is independent of the input signal. This assumption holds if the

system is modeled over small operational regions that are linear.

y(t) = G(q) · u(t) +H(q) · e(t) (3.1)

where:

G(q) = B(q)
F (q)

H(q) = C(q)
D(q)

B(q) = b1 · q−1 + b2 · q−2 + · · ·+ bnb · q−nb

F (q) = 1 + f1 · q−1 + f2 · q−2 + · · ·+ fnf · q−nf

17

C(q) = 1 + c1 · q−1 + c2 · q−2 + · · ·+ cnc · q−nc

D(q) = 1 + d1 · q−1 + d2 · q−2 + · · ·+ dnd · q−nd

and q−1 represents a time delay

3.2.1 Preliminary Identification

The preliminary identification is performed by analyzing the impulse response, auto-

correlation of the disturbances, and frequency response of the input and output data

from the system to identify the orders of the transfer functions G(q) and H(q). The

orders (nb, nf , nc, and nd) of the Box-Jenkins model (Equation 3.1) should match

with the physical hydrostatic transmission system. If the orders of the system are

chosen to be larger than the actual system, over-fitting can occur when estimating the

parameters. However, if the orders of the system are chosen to be smaller than the

actual system, then the Box-Jenkins model will be unable to capture the dynamics

or disturbances of the actual system.

The impulse response in a linear time invariant (LTI) system defines the output

signal’s response for any input signal when there is no noise in the system. In this

report the impulse response is used to estimate the time delay and orders (nb and nf)

of the dynamic model (G(q)), which are defined by the parameters for B(q) and F (q)

from Equation 3.1. The impulse response can be estimated from the cross-correlation

of the input and output against the cross-correlation of the input signal (Equation

3.3) [9, pg.67], which measures the correlation of changes in the input signal against

changes in the output signal.

y(t) =
T∑
k=1

g(t)u(t− k) + v(t) (3.2)

where:

y(t) = Output Signal

18

g(t) = Impulse Response

u(t) = Input Signal

v(t) = H(q) · e(t) = Random Process

g = R−1u · ruy (3.3)

where:

Ru =



Ruu(0) Ruu(1) · · · Ruu(k)

Ruu(1) Ruu(2) · · · Ruu(k − 1)

...
...

. . .
...

Ruu(k) Ruu(k − 1) · · · Ruu(0)


, g =



g(0)

g(1)

...

g(k)


, ruy =



Ruy(0)

Ruy(1)

...

Ruy(k)


(3.4)

Ruy(k) = E [u[i]y[i− k]] = Cross-correlation of Input to Output Signal

Ruu = E [u[i]u[i− k]] = Cross-correlation of Input Signal

The disturbance (v(t)) is estimated using Equation 3.5. Any part of the output

response that does not correlate with the input will be part of the disturbance model

(H(q)). The orders (nc and nd) of the disturbance model, which are defined by the

parameters for C(q) and D(q) from Equation 3.1, can be estimated based on the slope

of the auto-correlation of the disturbance signal (Equation 3.6).

v(t) = y(t)−
T∑
k=1

g(t)u(t− k) (3.5)

Rk = E [v[i]v[i− k]] (3.6)

The frequency response of the system is estimated based on the cross power spec-

trum between the input and output divided by the power spectrum of the input

19

(Equation 3.7) [10, pg.41]. An issue with the frequency response is that the dynamics

and disturbance are mixed together, which makes estimating the orders (nb and nf) of

the dynamic model (G(q)) for B(q) and F (q) difficult when using only the frequency

response.

Ĥf =
Φ̃xy(f)

Φ̂x(f)
(3.7)

where:

Φ̃xy(f) = 1
T
X∗(f, T)Y (f, T)

Φ̂x(f) = 1
T
X∗(f, T)X(f, T)

T = Number of Samples

In order to determine the orders and lags of G(q) and H(q) from g(t) and Rv(t), we

will use the Generalized Partial Autocorrelation Function (GPAC). This is discussed

by Woodward, Wayne A and Gray, and Henry L in ”On the relationship between the

S array and the Box-Jenkins method of ARMA model identification” [11]. We will

provide examples in a later section.

3.2.2 Parameter Estimation

After the G(q) and H(q) model orders are estimated, the Box-Jenkins model parame-

ters can be estimated using the Levenberg-Marquardt algorithm [12]. The Levenberg-

Marquardt algorithm adjusts the Box-Jenkins model’s parameters (Equation 3.8) to

minimize the sum square prediction error residuals shown in Equation 3.9 [10, pg.219].

A linearized model of the error is shown in Equation 3.10, where the partial deriva-

tives of error residuals with respect to the design parameters (θ) are estimated by a

numerical approach as shown in Equation 3.11.

θ =
[
b1 · · · bnb f1 · · · fnf c1 · · · cnc d1 · · · dnd

]T
(3.8)

20

θ̂ML = arg
θ
min

n∑
t=1

ε2(t, θ) (3.9)

where:

ε(t, θ) = Residual Prediction Errors

ε(t, θ) = ε(t, θ0) +
n∑
i=1

[
∂ε(t, θ)

∂θi

]
θ=θ0

(θi − θ0i) (3.10)

where:

n = Number of Parameters

∂ε(t, θ)

∂θi
=

ε(t,



θ1 + h

θ2
...

θn


)− ε(t,



θ1 − h

θ2
...

θn


)

2h
(3.11)

The Levenberg-Marquardt process is an iterative approach that converges to a

maximum likelihood estimate of the parameters (θ̂ML) based on the system’s training

data. The update rule for the Levenberg-Marquardt algorithm is shown by Equation

3.12, which uses the Jacobian matrix (Equation 3.13).

θ̂(k + 1) = θ̂(k) +
[
JTk Jk + µI

]−1
JTk εk (3.12)

where:

k = Iteration Step

21

J =



∂ε(1,θ)
∂θ1

∂ε(1,θ)
∂θ2

· · · ∂ε(1,θ)
∂θn

∂ε(2,θ)
∂θ1

∂ε(2,θ)
∂θ2

· · · ∂ε(2,θ)
∂θn

...
...

. . .
...

∂ε(N,θ)
∂θ1

∂ε(N,θ)
∂θ2

· · · ∂ε(N,θ)
∂θn


(3.13)

where:

N = Number of Training Points

3.2.3 Model Validation

Once the Box-Jenkins model parameters are estimated, model validation can be per-

formed to determine if the estimated model is over-fitting or under-fitting the actual

system. A few different methods can be implemented for model validation, such as

pole zero cancellation, chi-square statistics, and autocorrelation of the predication

errors. All methods will be discussed in this report, with the model validation being

used to update the orders of the system found by preliminary identification. The pro-

cess of using model validation to adjust the Box-Jenkins model orders and retraining

of the model parameters is key to system identification. It allows the designer to

continually adjust parameter orders until the model can achieve the best fit of the

physical system.

The model validation technique of pole-zero cancellation is to remove the poles

and zeros in the G(q) or H(q) models that are at the same location. If there is a

pole-zero cancellation, the orders of the G(q) or H(q) are reduce by one, since the

Box-Jenkins model is over-fitting. It is also possible to reduce the model order if the

highest order parameter is close to zero. To determine if a parameter is near zero, we

need to find confidence intervals for the parameters estimates, using Equation 3.14

[10, pg.217-218] to compute the covariance matrix of the parameters.

22

cov(θ̂ML) = σ̂2
ε

[
JT (θ̂ML)J(θ̂ML)

]−1
(3.14)

where:

σ̂2
ε = 1

N
εT ε = Variance of Residual Errors

Two chi-square test can be used to examine if G(q) and H(q) provide a good fit to

the physical system [9, pg.338-343]. The Equations 3.17 and 3.18 for the Q-statistic

and S-statistic are shown below. The Q-statistic determines if the residual errors are

white noise, which indicates that the H(q) is a good fit to the system. The S-statistic

determines if the residual errors are uncorrelated with the input, which indicates that

the G(q) is a good fit to the system.

R̂ε =
1

N − k

N−k∑
t=1

ε(t)ε(t+ k) (3.15)

R̂uε =
1

N − k

N−k∑
t=1

u(t)ε(t+ k) (3.16)

Q = N ·
K∑
k=1

r2ε (k) ∼ χ2(k − nc − nd) (3.17)

where:

rε(k) = R̂ε(k)

R̂ε(0)

S = N ·
K∑
k=1

r2uε(k) ∼ χ2(k − nb − nf) (3.18)

where:

rε(k) = R̂uε(k)√
σ2
u·σ2

ε

If the model is correct, Q and S will satisfy chi-square distributions. Otherwise,

their values will be inflated.

23

3.3 Data Collection and Sensor Location

In system identification using linear modeling, the accuracy of the estimated model

parameters is dependent on the measured data. For a linear model to properly match

the physical system the measured data needs to be obtained with minimal noise and

must be rich enough to capture the full dynamics of the system. This section will

discuss the sensor location, linear operational ranges, and frequency response.

3.3.1 Sensor Location

The location of the sensors determines if the response of a system can be directly

measured and the amount of noise in the sensor. The Box-Jenkins model is a single-

input single-output (SISO) model. The input in a hydrostatic transmission is the

voltage into the servo-valve, which was discussed in Chapter 2. The voltage change

in the servo-valve will create a displacement in the spool, which changes the flow

and pressure at the outlet of the servo-valve. The flow and pressure at outlet of

the servo-valve and inlet of the hydraulic controlled motor will control the gearbox

angular velocity and torque, depending on the load of the system. The sensors are

located to measure the key performance characteristics of the system, which are flow

at the outlet of the servo-valve, angular velocity of the gearbox, and torque on the

gearbox. For this chapter the healthy linear model output will be the angular velocity

of the gearbox, but the system identification process was implemented for all three

key performance characteristics.

3.3.2 Linear Operational Ranges

When using linear modeling approaches on a non-linear system, we need to constrain

the operating range. For the hydrostatic transmission, we will consider two operating

ranges, as shown in Table 3.1. Each range has a data sets with 10,000 sampled points.

The Box-Jenkins model will trained on one data set.

24

Table 3.1: Servo-Valve Input Ranges

Operational Range Minimum Voltage Maximum Voltage Sample Size Data Sets

1 0 2 10000 1

2 2 4 10000 1

Each data set’s input and outputs are normalized around zero using Equation 3.19

and 3.20. Normalizing the input and output improves training of the Box-Jenkins

model and is required for implementing the techniques discussed above for system

identification.

u(t) = u(t)− 1

N

N∑
i=1

u(i) (3.19)

y(t) = y(t)− 1

N

N∑
i=1

y(i) (3.20)

3.3.3 Frequency Response

To estimate the Box-Jenkins model the dynamics of the key performance character-

istics need to be captured. To see the dynamics of the system there should be no low

pass filters on the sensors to prevent attenuation and the sensors’ sampling frequency

needs to be more than twice the highest frequency in the dynamics of the system to

satisfy the Nyquist criterion. The system frequency response can be estimated from

Equation 3.7. The data can be collected while running white noise into the system,

but pure white noise can lead to extreme changes that can possible harm the physical

system. The alternative approach is to send in white noise through a first order low

pass filter (Equation 3.21). By passing the white noise through a low pass filter, the

extreme changes in the input are removed and the changes are more gradual, but

25

still random. This input will still be sufficiently exciting to reveal all of the system

dynamics.

y(t) =
0.9

1 + 0.9 · q−1
u(t) (3.21)

After running filtered white noise signal into the hydrostatic transmission the

frequency response was measured and is shown in Figure 3.1 for the first operational

range from Table 3.1.

10-1 100 101 102

Frequency (Hz)

32

34

36

38

40

42

44

46

48

50

M
ag

ni
tu

de
 (

dB
)

Frequency Response

Figure 3.1: Frequency Response

3.4 Model Training and Validation

This section describes the system identification of a healthy hydrostatic transmission

with angular velocity as the output. Two models will be estimated for the opera-

tional input range from Table 3.1 and their model performance will be discussed in

the results section below. The process of system identification (preliminary identi-

fication, parameter estimation, and model validation) will be demonstrated for only

the first operational input range from Table 3.1. Once the final Box-Jenkins models

26

are trained, a healthy reference state for the hydrostatic transmission can be used to

measure level of degradation in the system.

3.4.1 Preliminary Identification

Preliminary Identification is performed on the servo-valve first operational input range

(Table 3.1) for the hydrostatic transmission. The white noise input voltage into the

servo-valve and the measured angular velocity in the gearbox is shown in Figure 3.2

below. The input voltage and output angular velocity are normalized around zero

using Equations 3.19 and 3.20.

2200 2400 2600 2800 3000 3200 3400 3600

Sample Number

-2

0

2

In
pu

t V
ol

ta
ge

Input Voltage vs Output RPMs

-200

0

O
ut

pu
t R

P
M

s

Figure 3.2: Input and Output Training Data

Using the input voltage and output angular velocity the impulse response can be

estimated using Equation 3.3. The impulse response is shown in Figure 3.3 below.

The impulse response shows a lag of 4 samples at 200Hz, which means the time lag is

0.02 seconds. The lag time in the system is indicated in Figure 3.3 by the number of

samples at zero before the response begins. The impulse response also indicates that

27

the hydrostatic transmission is at least a second order system.

0 10 20 30 40 50 60 70 80
-2

0

2

4

6

8

10

12

14

16
Impulse Response - g(t)

Figure 3.3: Impulse Response

The G(q) orders (nb and nf) can be estimated from the G-GPAC, which is shown

in the Figure 3.4 below. The B(q) and F(q) order sizes (nb and nf) can be estimated

from the G-GPAC by looking for a constant column with a row of zeros to the right

of the first value of the constant column. There is a noticeable pattern at nb = 4 and

nf = 4 (row 8 and column 4).

28

2 4 6 8 10 12 14

nf

0

5

10

15

nb
+

la
gs

G-GPAC

Figure 3.4: Hydrostatic Transmission G-GPAC

The H(q) orders (nc and nd) can be estimated from the GPAC of the estimated

disturbance’s autocorrelation found by using Equations 3.5 and 3.6, which is called

the H-GPAC. The autocorrelation of the disturbance is shown in Figure 3.5 and the H-

GPAC is shown in Figure 3.6. From Figure 3.5 the autocorrelation of the disturbance

does not decay to zero, since there is a periodic noise signal. This will make using the

H-GPAC difficult for estimating the orders of nc and nd. The order sizes of C(q) and

D(q) can be estimated in the H-GPAC based on a constant column of values with a

row of zeros right of the first value in the constant column. For C(q) and D(q) there

is one noticeable pattern at nc = 1 and nd = 3 (row 1 and column 3).

29

0 50 100 150 200 250 300
-5

0

5

10

15

20

25
Autocorrelation Matrix - Rv

Figure 3.5: Hydrostatic Transmission Autocorrelation of Disturbance

2 4 6 8 10 12 14

nd

0

5

10

15

nc

H-GPAC

Figure 3.6: Hydrostatic Transmission H-GPAC

3.4.2 Preliminary Parameter Estimation

From preliminary identification, the system orders for the Box-Jenkins model are

shown in Table 3.2 and the Box-Jenkins model is shown by Equation 3.22. The Box-

Jenkins model parameters are estimated using the Levenberg-Marquardt algorithm

discussed in the prior section.

30

y(t) = q−4 · b1 · q−1 + b2 · q−2 + b3 · q−3 + b4 · q−4

1 + f1 · q−1 + f2 · q−2 + f3 · q−3 + f4 · q−4
u(t)

+
1 + c1 · q−1

1 + d1 · q−1 + d2 · q−2 + d3 · q−3
e(t)

(3.22)

Table 3.2: Preliminary Identification System Orders for Box-Jenkins Model

nb nf nc nd Delays

4 4 1 3 4

The trained Box-Jenkins model is shown in Equation 3.23 below.

y(t) = q−4 · 1.5916 · q−1 + 0.6997 · q−2 − 0.4507 · q−3 + 0.9412 · q−4

1− 1.6400 · q−1 − 0.1340 · q−2 + 1.3780 · q−3 − 0.5916 · q−4
u(t)

+
1− 0.5600 · q−1

1− 0.7518 · q−1 + 0.1212 · q−2 − 0.2251 · q−3
e(t)

(3.23)

3.4.3 Model Validation

The estimated Box-Jenkins model, shown by Equation 3.23, can be tested using the

Q-statistic and S-statistic for goodness of fit. The Q-statistic and S-statistic are shown

in Table 3.3. Based on the Q-statistic of 394.523 with a 31 degrees of freedom, H(q)

is under-fitting, since the Chi Square Distribution’s 0.05 percentile is 44.9853, which

is smaller than the Q-statistic. The H(q) orders (nc and nd) need to be increased.

The S-statistic is 11.2891 with 27 degrees of freedom, which indicates the G(q) is a

good fit, since the S-statistic is below the Chi Square Distribution’s 0.05 percentile

of 40.1133.

31

Table 3.3: Model Validation Q-statistic and S-statistic for Original Model

Q-statistic S-statistic

394.523 11.2891

Degrees of Freedom Degrees of Freedom

31 27

The order for H(q) can be increased to nc = 4 and nd = 5, which produces a

Q-statistic shown in Table 3.4 after retraining the Box-Jenkins model with the new

system orders. Although the chi-square test is not quite satisfied, this was the smallest

Q value that was obtained over several sets of orders.

Table 3.4: Model Validation Q-statistic and S-statistic for Updated Model

Q-statistic S-statistic

89.7085 11.2891

Degrees of Freedom Degrees of Freedom

26 27

With the model order being adequate, the next step is to see if the orders can

be reduced to prevent over-fitting by checking to there is pole zero cancellation in

G(q) and H(q). From examination of the zeros of B(q) and poles of F (q) in Table

3.5 there is no pole zero cancellation, so the orders of nb and nf can stay at 4 and 4,

respectively. The same can be seen for the zeros of C(q) and poles of D(q) in Table

3.6, where there is no pole zero cancellation and the orders of nc and nd are adequate

at 4 and 5, respectively.

32

Table 3.5: B(q) and F (q) Roots

B(q) Zeros F (q) Poles

-1.1498 + 0.000i -0.9117 + 0.0000i

0.3733 + 0.6645i 0.8907 + 0.0000i

0.3733 - 0.6645i 0.8278 + 0.1770i

0.8278 - 0.1770i

Table 3.6: C(q) and D(q) Roots

C(q) Zeros D(q) Poles

0.6524 + 0.4132i -0.1284 + 0.6857i

0.6524 - 0.4132i -0.1284 - 0.6857i

-0.0445 + 0.6213i 0.8353 + 0.4372i

-0.0445 - 0.6213i 0.4065 + 0.4372i

0.4065 - 0.4372i

With there being no pole zero cancellation we can check to see if some parameters

are near zero. The confidence limits for the parameters are shown in Tables 3.7, 3.9,

3.10, and 3.8 below. Based on the confidence limits, the B(q) and F (q) orders can

remain the stay at nb = 4 and nf = 4, since b4 and f4 upper and lower limits do

not straddle zero. The confidence limits for C(q) and D(q) show that the orders nc

and nd can also stay the same at 4 and 5, respectively, since none of the confidence

intervals include zero.

33

Table 3.7: B(q) Confidence Limits

Lower Limit θ Upper Limit

b1 1.2196 1.6051 1.9996

b2 -0.0492 0.6470 1.3432

b3 -1.2206 -0.4455 0.3296

b4 0.5530 1.0721 1.5912

Table 3.8: F (q) Confidence Limits

Lower Limit θ Upper Limit

f1 -1.9638 -1.6347 -1.3056

f2 -0.9730 -0.1301 0.7128

f3 0.6282 1.3594 2.0906

f4 -0.7971 -0.5819 -0.3667

Table 3.9: C(q) Confidence Limits

Lower Limit θ Upper Limit

C1 -1.3952 -1.2158 -1.0365

C2 0.6419 0.8683 1.0946

C3 -0.5800 -0.4533 -0.3265

C4 0.1680 0.2314 0.2949

34

Table 3.10: D(q) Confidence Limits

Lower Limit θ Upper Limit

D1 -1.5708 -1.3915 -1.2123

D2 0.8456 1.0989 1.3522

D3 -0.9864 -0.8340 -0.6815

D4 0.3581 0.4274 0.4968

D5 -0.1736 -0.1449 -0.1161

The final Box-Jenkins model is shown in Equation 3.24 below, using the system

orders shown in Table 3.11. The autocorrelation of the residual errors is calculated

using Equation 3.15 and is shown in Figure 3.7. The autocorrelation of the residual

errors is an impulse, which means there is no correlation in the errors, and the Box-

Jenkins model in Equation 3.24 is a good fit for the training data.

0 10 20 30 40 50 60 70 80
-1

0

1

2

3

4

5

6

7

8
Autocorrelation for Error Estimate

Figure 3.7: Autocorrelation of the Residual Errors for Equation 3.24

The final tuned model parameters tuned shown in Equation 3.24, and they ad-

equately fit the physical model. The stability of the model can be checked by the

examining the poles and zeros for G(q) and H(q). For a Box-Jenkins model to be

35

stable the poles (Table 3.5 and 3.6) for G(q) and H(q) must be inside the unit circle

of the z-plane. The z-plane for G(q) and H(q) is shown in Figure 3.8 and 3.9. Based

on Figure 3.8 and 3.9 the final Box-Jenkins model is stable, since all ploles are within

the unit circle.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Z-Plane for G(q) = B(q) / F(q)

Zeros
Poles
Unit Circle

Figure 3.8: Z-Plane for G(q)

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
P

ar
t

Z-Plane for H(q) = C(q) / D(q)

Zeros
Poles
Unit Circle

Figure 3.9: Z-Plane for H(q)

36

3.4.4 Final Parameter Estimation

After model validation, the final model orders for the Box-Jenkins model are shown in

Table 3.11 below. The final Box-Jenkins model for the first operation range is shown

by Equation 3.24 and by 3.25 for the second operational range. Both operational

ranges have the same Box-Jenkins model orders found by model validation.

Table 3.11: Final System Orders for Box-Jenkins Model

nb nf nc nd Delays

4 4 4 5 4

y(t) = q−4 · 1.6051 · q−1 + 0.6470 · q−2 − 0.4455 · q−3 + 1.0721 · q−4

1− 1.6347 · q−1 − 0.1301 · q−2 + 1.3594 · q−3 − 0.5819 · q−4
u(t)

+
1− 1.2158 · q−1 + 0.8683 · q−2 − 0.4533 · q−3 + 0.2314 · q−4

1− 1.3915 · q−1 + 1.0989 · q−2 − 0.8340 · q−3 + 0.4274 · q−4 − 0.1449 · q−5
e(t)

(3.24)

y(t) = q−4 · 1.0243 · q−1 + 0.4649 · q−2 − 0.3376 · q−3 + 0.4326 · q−4

1− 1.7134 · q−1 − 0.0310 · q−2 + 1.3646 · q−3 − 0.6099 · q−4
u(t)

+
1− 0.1709 · q−1 + 0.3986 · q−2 − 0.8507 · q−3 + 0.0504 · q−4

1− 0.4255 · q−1 + 0.1185 · q−2 − 0.9325 · q−3 + 0.1360 · q−4 + 0.2486 · q−5
e(t)

(3.25)

Let’s examine the performance of the first operational range model (Equation

3.24). The estimated impulse response is shown in the Figure 3.10, where the impulse

response of Equation 3.24 is shown in red and the impulse response estimated from the

training data using Equation 3.3 is shown in blue. The impulse response of Equation

3.3 is a close fit and is able to capture the dynamics of the physical system.

37

0 10 20 30 40 50 60 70 80
-2

0

2

4

6

8

10

12

14

16
Impulse Response - g(t)

Figure 3.10: Estimated Impulse Response for Equation 3.24

The estimated frequency response for Equation 3.24 is shown in Figure 3.11. Fig-

ure 3.11 shows the frequency response for the impulse model (G(q)) (blue line in

figure), disturbance model (H(q)) (orange line in figure), and the Box-Jenkins model

(yellow line in figure), which combines the G(q) and H(q) models based on Equation

3.1. The estimated Box-Jenkins frequency response correlates with the estimated

frequency response in Figure 3.1 with the high frequencies being modeled by the dis-

turbance model (H(q)). This figure indicates how the Box-Jenkins model combines

the impulse and disturbance model to estimate the physical system.

38

10-1 100 101 102

Frequency (Hz)

10

15

20

25

30

35

40

45

50

M
ag

ni
tu

de
 (

dB
)

Frequency Response

G(e jw)

H(e jw)
Box-Jenkins Frequency Resposne

Figure 3.11: Estimated Frequency Response for Equation 3.24

3.5 Implement Box-Jenkins Model

With the Box-Jenkins models trained (Equation 3.24 and 3.25) for the operational

ranges from Table 3.1, the models can be used for one step ahead prediction using

Equation 3.26 [10, pg.87]. The predication error can be completed with Equation

3.27. The magnitude of the residual errors will indicate the level of degradation in

a healthy control system. This concept will be discussed in-depth in the following

chapters, with the key performance characteristics of the system (flow at the hydraulic

motor, angular velocity at the gearbox, and torque at the gearbox) modeled using

system identification techniques introduced in this chapter. Figure 3.12 shows the

one step ahead prediction using the Box-Jenkins model from Equation 3.24. The

Box-Jenkins model is able to accurately predict the next step in the hydrostatic

transmission for a healthy system, which can be implemented as a reference state for

a healthy system.

39

ŷ(t|θ) =
D(q)B(q)

C(q)F (q)
u(t) +

[
1− D(q)

C(q)

]
y(t) (3.26)

ε(t) = y(t)− ŷ(t|θ) (3.27)

where:

ŷ(t|θ) = Estimated One Step Ahead Prediction

y(t) = Measured Output

ε(t) = Residual Error

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

Samples

-100

-50

0

50

100

A
ng

ul
ar

 V
el

oc
ity

 (
rp

m
)

One-Step Ahead Prediction vs Acutal Output

Actual RPM
Estimated RPM

Figure 3.12: Estimated One Step Ahead Prediction for Equation 3.24

40

CHAPTER 4

NON-LINEAR MODELING OF HEALTHY SYSTEM

4.1 Introduction

Chapter 3 demonstrated linear modeling of the hydrostatic transmission discussed in

Chapter 2. The purpose of the linear model was to create a healthy reference state for

classifying an unhealthy state based on the degradation in the hydrostatic transmis-

sion system. The issue with linear modeling is that the hydrostatic tranmission has

some nonlinearities. This required multiple linear models to be trained over smaller

operational ranges where the system behaves linearly. Another approach that this

chapter will present is to use non-linear modeling techniques; such as the non-linear

autoregressive exogenous (NARX) model, which can capture the full dynamics of the

system for the entire operational space.

The NARX approach is known as a black box technique, where the model is able

to capture the dynamics of the system, but the parameters of the model do not have

a physical meaning. The benefit of a non-linear model is that the entire operational

range and non-linearity in the system can be captured by a single model. By including

the non-linearity of the system in the model the prediction errors of the healthy ref-

erence state can be reduced. The weakness of the NARX model is that the weights of

the model cannot be used to measure accuracy and do not present information about

the model’s goodness of fit. Also, there are no preliminary identification techniques,

so finding the proper model complexity is reduced to trial and error approaches.

41

4.2 Neural Network Background

A NARX model is a recursive neural network that uses tapped-delay lines of past

inputs and outputs to make a one step ahead prediction of the next output. This is

similar to the linear models discussed in Chapter 3. The training of a neural network

is more complex than the training of a linear model and requires an understand-

ing of the background notation of a neural network. This section will present the

single-input network, multiple-input network, feedforward network, and the backpro-

pragation algorithm for training of a static neural network. The basic notation from

this chapter provides the building blocks for implementing and training of a NARX

model. The notation and principles presented in this chapter are based on [13].

4.2.1 Single-Input and Multiple-Input Networks

The basic notation for a single-input network is shown in Figure 4.1, with the output

(a) being calculated using Equation 4.1. The transfer function (f) can be a linear

or non-linear function. A common non-linear function is the log-sigmoid, which is

shown in Figure 4.2 and Equation 4.2. The weight (w) and bias (b) are parameters

that can can be tuned during training of the network.

Figure 4.1: Single-Input Network

a = f(w · p+ b) (4.1)

where:

a = Neuron Output

42

w = Neuron Weight

b = Neuron Bias

p = Neuron Input

f = Transfer Function

The log-sigmoid transfer function, shown in Figure 4.2, converts the transfer func-

tion input (n ∈ R) between 0 and 1. The log-sigmoid is also differentiable, which is

an important property that will be discussed in the training of a neural network in

the following sections.

-5 0 5

n = w * p + b - Transfer Function Input

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
-

N
eu

ro
n

O
ut

pu
t

Figure 4.2: Log-Sigmoid Transfer Function

a =
1

1 + e−n
(4.2)

where:

n = w · p+ b = Transfer Function Input

The single-input network can be expanded to include multiple inputs as shown

43

in Figure 4.3. For a multiple-input network the output can be solved for by using

Equation 4.3, which is an extension of the single-input equation. Equation 4.3 can

be written in matrix form based on Equation 4.4.

Figure 4.3: Multiple-Input Network

a = f

(
R∑
i=1

w1,i · pi + b

)
(4.3)

a = f (Wp + b) (4.4)

where:

W =

[
w1,1 w1,2 · · · w1,R

]
= Weight Array

p =

[
p1 p2 · · · pR

]T
= Input Array

For both the single-input and multiple-input network, the network has only one

neuron. The complexity of the network can be increased by adding additional neurons.

4.2.2 Feedforward Network

Based on Figure 4.3, the network complexity can be increased by adding additional

neurons, as shown in Figure 4.4. The outputs of a multiple-input multiple-output

networks can be calculated using Equation 4.5. In Figure 4.4 the networks has S

neurons and R inputs. Every input (p) is connected to each of the neurons in the

network, which creates a weight matrix (W) that has the dimensions of R by S .

44

Figure 4.4: Multiple-Input Multiple-Output

a1 = f
(
W1p + b1

)
(4.5)

where:

W1 =



w1,1 w1,2 · · · w1,R

w2,1 w2,2 · · · w2,R

...
...

. . .
...

wS,1 wS,2 · · · wS,R


= Weight Matrix

p =

[
p11 p12 · · · p1R

]T
= Input Array

b1 =

[
b11 b12 · · · b1S

]T
= Bias Array

a1 =

[
a11 a12 · · · a1S

]T
= Output Array

Networks in Figure 4.4 can be stacked to create more layers. This type of network

is known as a feedforward network. In a feedforward network, the output (a) becomes

the input for the next layer, as shown in the two layer neural network in Figure 4.5

45

and Equation 4.6. The two layer neural network will be expanded in the future when

introducing the neural network non-linear autoregressive exogenous (NARX) model.

Additional layers can be added to a neural network, but it has been shown that a two

layer network is a universal approximator. The network architecture is defined by

the number of layers, neurons in each layer, and the transfer function at each layer.

The feedforward network is a static network and a directed graph model where there

are no recurrent layers. Since the weight, bias, and inputs are matrices, the network

illustrated by Figure 4.5 can be simplified to Figure 4.6. In the future, Figure 4.6 will

be used to show the neural network architecture..

Figure 4.5: Two Layer Network

a2 = f2(W2f1(W1p + b1) + b2) (4.6)

Figure 4.6: Simplified Two Layer Network

46

Based on Equation 4.1 and 4.6, a generalized algorithm can be used for calculating

the output (aM) for any feedforward network architecture. The generalized algorithm

for performing forward propagation through a feedforward network is shown by Equa-

tion 4.7 [13, chp.11 pg.26].

a0 = p (4.7)

am+1 = fm+1(Wm+1am + bm+1) for m = M - 1,..., 2, 1

a = aM

4.2.3 Backpropragation Algorithm

In the previous sub-sections the forward propagation algorithm for a static network

was presented. The output of the static network is dependent on the inputs, weights,

and bias variables, where the weight and bias are tuned by minimizing the mean

square error performance index (Equation 4.8) [13, chp.11 pg.25] using stochastic

gradient descent shown by Equation 4.9 and 4.10 [13, chp.11 pg.26].

F̂(x) = (t(k)− a(k))T (t(k)− a(k)) = eT (k)e(k) (4.8)

where:

a = Output Array

t = Training Points Array

wmi,j(k + 1) = wmi,j(k)− α ∂F̂

∂wmi,j
(4.9)

bmi (k + 1) = bmi (k)− α ∂F̂

∂bmi
(4.10)

where:

47

α = Learning Rate

The partial derivatives of the transfer function with respect to the weight and

bias in Equation 4.9 and 4.10 are calculated using the chain rule shown by Equation

4.11 and 4.12 below [13, chp.11 pg.9]. From the chain rule, the partial derivative of

the performance function (F) with respect to the input of the transfer function (n)

is known as the sensitivity (s).

∂F̂

∂wmi,j
=

∂F̂

∂nmi
× ∂nmi
∂wmi,j

(4.11)

∂F̂

∂bmi
=

∂F̂

∂nmi
× ∂nmi
∂bmi

(4.12)

where:

smi = ∂F̂
∂nmi

= Sensitivity

From the chain rule, the sensitivity (s) can be calculated for each neural network

layer using the backpropagation algorithm (Equation 4.13) [13, chp.11 pg.26]. The

sensitivity (s) can then be used to update the weight (W) and bias (b) based on

the stochastic gradient descent algorithm (Equation 4.14) [13, chp.11 pg.26]. This

approach to training of the weights and biases for the feedforward network is an

iterative approach, where the rate of convergence is dependent on the learning rate

(α).

sM = −2ḞM(nM)(t− a) (4.13)

sm = Ḟm(nm)(Wm+1)T sm+1 for m = M - 1,..., 2, 1

where:

48

Ḟm(nm) =



ḟm(nm1) 0 · · · 0

0 ḟm(nm2) · · · 0

...
...

. . .
...

0 0 · · · ḟm(nmSm)


ḟm(nmj) =

∂fm(nmj)

∂nmj

Wm(k + 1) = Wm(k)− αsm(am−1)T (4.14)

bm(k + 1) = bm(k)− αsm

where:

α = Learning Rate

4.3 NARX Model

After presenting the basic notation and training algorithm for feedforward neural

networks in the previous section, this section will introduce recurrent neural networks

for time series modeling. The specific recurrent neural network that will be introduced

in this chapter is the non-linear autoregressive exogenous (NARX) model, which is a

non-linear variation of the linear autoregressive exogenous (ARX) model. An ARX

model uses past inputs and outputs from the dynamic system to predict the next

output. The linear ARX model is shown by Equation 4.15 [9].

y(t) =
B(q)

A(q)
· u(t) +

1

A(q)
· e(t) (4.15)

where:

B(q) = b1 · q−1 + b2 · q−2 + · · ·+ bnb · q−nb

A(q) = 1 + a1 · q−1 + a2 · q−2 + · · ·+ ana · q−na

49

The difference between an ARX and a Box-Jenkins model is that the noise in the

system can not be separated from the dynamics of the system. This issue can be seen

in Equation 4.15 where the disturbance model’s (1/A(q)) optimization parameters

(A(q)) are included in the dynamic model (B(q)/A(q)). The NARX model has the

same issue has the ARX model of begin unable to separate the noise and dynamics,

but the NARX model is able to capture the non-linear dynamics in the system that

ARX and Box-Jenkins models cannot capture. The NARX model is a black box ap-

proach where the weights in the neural network model do not have a direct correlation

to the differential equations for the sub-components of the hydrostatic transmission

presented in Chapter 2.

This section will first present the neural network architecture for performing func-

tion approximation. Then the NARX architecture will be presented, along with the

corresponding backpropagation algorithm and several model validation approaches.

4.3.1 Function Approximation

A common application for neural networks is function approximation. This generally

uses a two layer neural network (Figure 4.7) [13, chp.11 pg.14] with the first layer being

a log-sigmoid and a linear output layer. These types of neural networks have have

been implemented in control systems for static modeling of systems. The multiple-

layer neural network can be trained using the backproprogation algorithm shown by

Equation 4.13 and 4.14.

p1 a1 a2

1 1

n1 n2

W2,1

b1

W1,1

b2

R S1 S2

S1xR

S1x1

S1x1

S1x1

S2x1

S2xS1

S2x1

S2x1Rx1

S2x1

Figure 4.7: Multiple-layer Function Approximation

50

To implement the backpropagation algorithm for the network shown in Figure 4.7,

the derivative of the transfer function (fm) with respect the transfer function input

(nm) must be calculated for each layer in the neural network. The derivative of the

log-sigmoid (Equation 4.2) transfer function for the first layer is shown by Equation

4.16, and the derivative of the linear transfer function is shown by Equation 4.17.

Using Equations 4.16 and 4.17, the matrix F̂m can be derived, which allows each

layer’s sensitivities (sm) to be calculated for performing stochastic gradient descent

(Equation 4.14).

f 1
i = sigmoid(n) · (1− sigmoid(n)) (4.16)

where:

sigmoid(n) = 1
1+e−n

f 2
i = 1 (4.17)

An example of a multiple-layer function approximation network that is fitted to

a set of training points as shown in Figure 4.8. The function approximation network

for this example has a single input and output. Figure 4.8 shows the flexibility for

the neural network to fit non-linear functions.

51

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

p - Input

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
-

O
ut

pu
t

Equation: y = exp(-abs(p)) * sin(pi * p)

a - Network Outputs
t - Training Points

Figure 4.8: Multiple-layer Function Approximation Example

4.3.2 NARX Model Network Architecture

The NARX model has a similar network architecture to the multiple-layer function

approximation network presented in the previous section. The input into the NARX

model is sequence of past system inputs and outputs, which is represented by a

tapped-delay line (TDL) in the network [13, chp.27 pg.5].

a1(t)

1

1
n1(t) n2(t)

A A A

A A A
LW2,1

A A

A A

A A
b1

A A A

A A A
IW1,1

A A A

A A A

A A A
b2A A A

A A A
IW1,2

T
D
L

T
D
L

1

a2 (t) (t+1)=

(t)y

(t)u

S
1

S
2

y

Figure 4.9: Non-Linear Autoregressive Exogenours (NARX) Model

The NARX model in Figure 4.9 is a one-step ahead predictor, which uses the past

inputs (u(t)) and outputs (y(t)) to make a prediction of the next output (y(t + 1)).

For one-step ahead prediction, the NARX model is open-loop with no feedback. To

52

make multiple-step ahead predictions, the NARX model can be made closed loop by

feeding back the output (y(t)) (Figure 4.10). For the application of fault detection, a

one-step ahead model is sufficient for creating a healthy reference state, so the network

architecture in Figure 4.9 will be implemented. The open-loop NARX model also has

the benefit of being trained using the static backpropagaion algorithm (Equation

4.13 and 4.14). For a closed-loop NARX model the network has to be trained using

the real-time recurrent learning algorithm, which is more complex than the static

backpropagaion algorithm.

a1(t)

1

1
n1(t) n2(t)

A A A

A A A
LW2,1

A A

A A

A A
b1

A A A

A A A
IW1,1

A A A

A A A

A A A
b2A A A

A A A
IW1,2

T
D
L

T
D
L

1

a2 (t) (t+1)=

(t)y

(t)u

S
1

S
2

y

Figure 4.10: Closed Loop Non-Linear Autoregressive Exogenours (NARX) Model

The output (y(t+ 1)) for the NARX model in Figure 4.9 can be calculated using

the forward propagation algorithm in Equation 4.7, where the input (p) into the static

neural network is shown by Equation 4.18. The weights (IW1,1 and IW1,2) for the

first layer can be combined into a single weight (W1) matrix shown by Equation 4.19.

Using the input (p) and combined weights (W1) the NARX model in Figure 4.9 can

be simplified to the function approximation network in Figure 4.7, where the network

can be trained using the backpropagaion and update algorithm shown in Equation

4.13 and 4.14, respectively.

p =

[
y(t) y(t− 1) · · · y(t− ny) u(t) u(t− 1) · · · u(t− nu)

]T
(4.18)

53

where:

ny = Number of Tap-Delays for Output Signal

nu = Number of Tap-Delays for Input Signal

W1 =



w1,1 w1,2 · · · w1,ny w1,1 w1,2 · · · w1,nu

w2,1 w2,2 · · · w2,ny w2,1 w2,2 · · · w2,nu

...
...

. . .
...

...
...

. . .
...

wS,1 wS,2 · · · wS,ny wS,1 wS,2 · · · wS,nu


(4.19)

where:

S = Number of Neurons

In this report the NARX model will be trained using the Levenberg-Marquardt

algorithm with Bayesian Regularization instead of stochastic gradient descent. The

Levenberg-Marquardt algorithm improves the training speed by switching between

the Gauss-Newton and Gradient Descent methods depending on whether or not the

performance index surface is quadratic. Bayesian Regularization helps to prevent

the common issue of over-fitting by using a performance index that combines sum

square error with sum squared weights, as shown by Equation 4.20 [13, chp.13 pg.8].

Bayesian Regularization uses β to weight the mean square error, while α weights the

sum squared weights and biases (W and b). By changing the values of α and β the

performance index regularization can be changed based on whether or not the network

is over-fitting. For Bayesian Regularization, the values of α and β are updated at

each iteration of Levenberg-Marquardt. The Levenberg-Marquardt with Bayesian

Regularization is discussed in-depth in [13].

F (x) = βED + αEW = β

Q∑
q=1

(tq − aq)
T (tq − aq) + α

n∑
i=1

x2i (4.20)

54

4.3.3 NARX Model Validation

After training the NARX network, model validation can be performed to determine if

the model is over-fitting or under-fitting the actual system. For time series forecasting

using NARX models the techniques for model validation are Bayesian Regularization,

auto-correlation of the residual errors, and auto-correlation of the inputs against the

residual errors. All methods will be demonstrated in this report, with the model

validation being used to update the number of neurons in the NARX model. The

approach of model validation is iterative with NARX model complexity being adjusted

until the best fit of the physical system is achieved.

Bayesian Regularization computes a term called the effective number of param-

eters - the γ in Equation 4.21 [13, chp.13 pg.16]. If γ is almost equal to the total

number of weights and biases in the neural network, then the number of neurons

in the network can be increased. After the size of the network is large enough, γ

will remain constant as the number of neurons is increased. This allows an iterative

approach for measuring the appropriate number of neurons in the network.

γ = n− 2αMP tr(HMP)−1 (4.21)

where:

HMP = Hessian Matrix

n = Number of Optimization Parameters (W and b)

Another model validation tool is the auto-correlation function (ACF) of the resid-

ual errors, which was used in Chapter 3 for model validation of a linear model. The

residual errors should be white noise, which means that the ACF should be an im-

pulse at zero. This indicates that the prediction errors are uncorrelated, meaning the

NARX model is able to capture the full dynamics of the system. If there is a correla-

tion in the residual errors then the NARX model complexity needs to be increased by

55

adding more delays or more neurons. The estimated auto-correlation of the residual

errors is shown by Equation 4.22 [13, chp.27 pg.9].

Rε =
1

N − k

N−k∑
t=1

ε(t)ε(t+ k) (4.22)

where:

ε = Residual Errors

The last model validation tool is the cross-correlation of the input against residual

errors, which should show no correlation. If there is a correlation between the inputs

and residual errors, then the neural network complexity needs to be increased by

adding more delays to the inputs or more neurons to the first layer. The cross-

correlation of the inputs against the residual errors is shown by Equation 4.23 [13,

chp.27 pg.10].

Ruε =
1

N − k

N−k∑
t=1

u(t)ε(t+ k) (4.23)

where:

u = Signal Input

4.4 Data Collection and Sensor Location

The ability to fit a model to a dynamic system is dependent on the measured data.

For a NARX model to properly fit a physical system, the measured data need to have

minimal noise and capture the full dynamics of the system. This section will discuss

the location of the sensors, system operational range, and sampling frequency.

56

4.4.1 Sensor Location

The sensors are located in the hydrostatic transmission to measure the key perfor-

mance characteristics of the system, which are flow at the outlet of the servo-valve,

angular velocity of the gearbox, and torque on the gearbox. The input into the

hydrostatic transmission is the voltage into the servo-valve, which was discussed in

Chapter 2. The change in the voltage of the servo-valve will generate a displacement

in the spool, which changes the flow and pressure into the hydraulic controlled motor.

Depending on the flow and pressure at the inlet of the motor, an angular velocity and

torque will be created in the gearbox based on the system load. In this chapter, a

healthy reference state for the angular velocity of the gearbox will be modeled using a

NARX model to demonstrate the process for fitting a non-linear model to a dynamic

system.

4.4.2 Operational Range

For linear modeling, the operational range for the input voltage into the servo-valve

was divided into linear ranges as shown by Table 3.1. The advantage of using a

NARX model is that the full operational range of the input voltage servo-valve can be

captured using a single model, since a NARX model is able to fit the non-linear parts

of the dynamic system. The full operational range for the hydrostatic transmission

is shown by Table 4.1 below. The NARX model will be trained with a data set of

10,000 points.

Table 4.1: Servo-Valve Input Ranges

Operational Range Minimum Voltage Maximum Voltage Sample Size Data Sets

1 0 4 10000 1

57

4.4.3 Sampling Frequency

To properly estimate the NARX model to fit the dynamics of the system the key

performance characteristics need to be captured. Based on the Nyquist criterion, to

capture the dynamics of the system, the sampling frequency needs to be more then

twice the highest frequency in the system dynamics. The system dynamics range

can be determined from the frequency response shown in Figure 3.1. The input to

the system is generated by running white noise through a low pass filter shown by

Equation 3.21, which reduces the extreme changes in the input into the servo-valve,

as discussed in Chapter 3. Based on Figure 3.1, a sampling frequency of 200Hz was

sufficient to capture the dynamics of the hydrostatic transmission. The data set in

Table 4.1 was captured with a sampling rate of 200Hz, with the input being passed

through the low pass filter, as discussed above.

4.5 Model Training and Validation

The NARX model will be trained on the operational range shown in Table 4.1 for the

input voltage into the servo-valve. The process of fitting the NARX model consists

of parameter estimation and model validation. This section will go through each of

the processes discussed above by fitting a non-linear model to the healthy reference

state for the hydrostatic transmission, with angular velocity as the output.

4.5.1 Parameter Estimation

The NARX model shown in Figure 4.9 will be trained using the architecture shown in

Table 4.2. This model architecture is determined based on the linear models discussed

in Chapter 3, which had a dynamic system order of three with a time delay of two

samples. This indicates that the TDL for the input and output should be at least

five. The NARX modeled is trained using backpropagation and the optimization

algorithm of Levenberg-Marquardt with Bayesian Regularization using MATLAB’s

58

neural network toolbox [14].

Table 4.2: NARX Model Architecture

Input Tap-Delay Size Output Tap-Delay Size Number of Neurons in First Layer

5 5 10

The NARX model from MATLAB for the network architecture in Table 4.2 is

shown in Figure 4.11.

Figure 4.11: NARX Model Architecture

4.5.2 Model Validation

The tools that will be used in this section for model validation are Bayesian Regu-

larization, auto-correlation of the residual errors, and cross-correlation of the inputs

against the residual errors. The auto-correlation of the residual errors and cross-

correlation of the inputs against residual errors will be used to determine the TDL

required for the model to capture the entire dynamics of the system. This will be

an iterative approach, where the TDL size will be continually increased until the

auto-correlation for the residual errors and the cross-correlation of the inputs against

the residual errors are within a confidence limit of zero. After the TDL size is es-

timated, the number of neurons in the first layer will be estimated using Bayesian

Regularization’s effective number of parameters.

59

For the NARX model in Figure 4.11, which has the network architecture shown

in Table 4.2, the auto-correlation of the residual errors for the trained model is shown

in Figure 4.12 and the cross-correlation of the inputs against the residual errors is

shown in Figure 4.13. These figures indicate that the TDL needs to be enlarged, since

the magnitude of the correlations are not within the confidence limits around zero.

-20 -15 -10 -5 0 5 10 15 20

Lag

-2

0

2

4

6

8

10

C
o

rr
el

at
io

n

Autocorrelation of Error 1

Correlations
Zero Correlation
Confidence Limit

Figure 4.12: Auto-correlation of Residual Errors

-20 -15 -10 -5 0 5 10 15 20

Lag

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

C
o

rr
el

at
io

n

Correlation between Input 1 and Error 1 = Target 1 - Output 1

Correlations
Zero Correlation
Confidence Limit

Figure 4.13: Auto-correlation of Inputs Against Residual Errors

60

After increasing the TDL sizes in the model to 15, as shown by network architec-

ture in Table 4.3, the correlations are within the confidence limits as shown in Figure

4.14 and 4.15.

Table 4.3: NARX Model Architecture

Input TDL Size Output TDL Size Number of Neurons in First Layer

15 15 10

-20 -15 -10 -5 0 5 10 15 20

Lag

0

0.5

1

1.5

2

2.5

3

3.5

C
o

rr
el

at
io

n

Autocorrelation of Error 1

Correlations
Zero Correlation
Confidence Limit

Figure 4.14: Auto-correlation of Residual Errors

61

-20 -15 -10 -5 0 5 10 15 20

Lag

-0.03

-0.02

-0.01

0

0.01

0.02
C

o
rr

el
at

io
n

Correlation between Input 1 and Error 1 = Target 1 - Output 1

Correlations
Zero Correlation
Confidence Limit

Figure 4.15: Cross-correlation of Inputs Against Residual Errors

With the proper TDL sizes for the input and output signal determined (Table

4.3), Bayesian Regularization can be implemented to determine the effective number

of parameters. For the NARX architecture in Figure 4.3 the effective number of

parameters using Bayesian Regularization is shown in Table 4.4. The effective number

of parameters in the network is close to the total number of parameters, so the number

of neurons in the first layer can be increased.

Table 4.4: NARX Model Effective Number of Parameters

Total Number of Parameters Effective Number of Parameters

321 301

The number of neurons in the first layer of the NARX model can be increased to

35, as shown by the network architecture in Table 4.5. After training the network

(Table 4.5) using Levenberg-Marquardt with Bayesian Regularization, the effective

number of parameters is shown in Table 4.6.

62

Table 4.5: NARX Model Architecture

Input TDL Size Output TDL Size Number of Neurons in First Layer

15 15 35

Table 4.6: NARX Model Effective Number of Parameters

Total Number of Parameters Effective Number of Parameters

1,120 934

From Table 4.6 the effective number of parameters is close to the total number of

parameters, but based on the performance of the mean square error of the test data

set, shown in Figure 4.16, there was little decrease in mean square error after initial

training of the network. The network architecture in Table 4.5 with 35 neurons in

the first layer is sufficient for capturing the dynamics of the system.

63

0 100 200 300 400 500 600 700 800 900 1000

1000 Epochs

100

102

104

106

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

 (
m

se
)

Best Training Performance is 2.3945 at epoch 1000

Train
Test
Best

Figure 4.16: Mean Square Error - Network Performance

4.6 Implement NARX Model

After performing parameter estimation and model validation, the optimal NARX

model for the hydrostatic transmission’s hydraulic motor angular velocity is shown in

Table 4.5. The trained NARX model can be used as a one-step ahead estimator, which

can be compared with the measured output of angular velocity to find the residual

error (Equation 4.24). The magnitude of the residual error indicates the level of

degradation in the system. In following sections, each key performance characteristic

(flow at the hydraulic motor, angular velocity at the gearbox, and torque at the

gearbox) will be modeled using the approaches demonstrated in this chapter. Figure

4.17 shows the one-step ahead prediction based on the NARX model, with the network

architecture in Table 4.5. The NARX model is able to accurately predict the next

step in the hydrostatic transmission for a healthy system.

64

ε(t) = y(t)− ŷ(t|θ) (4.24)

where:

ŷ(t|θ) = Estimated One Step Ahead Prediction

y(t) = Measured Output

ε(t) = Residual Error

1800 2000 2200 2400 2600 2800 3000 3200

Samples

200

300

400

500

600

700

A
ng

ul
ar

 V
el

oc
ity

 (
rp

m
)

One-Step Ahead Prediction vs Acutal Output

Actual RPM
Estimated RPM

Figure 4.17: One-Step Ahead Prediction

4.7 Comparing Performance of Linear and Nonlinear Models

After showing the implementation of a NARX model, we can compare it against the

linear Box-Jenkins model presented in Chapter 3. If we train the Box-Jenkins over the

entire operational range shown in Table 4.1 the model’s performance can be shown in

Figure 4.18. The NARX model’s performance is shown in Figure 4.19. It can be seen

from the figures, that the NARX model is able to more accurately fit the physical

system for the entire operational range. This is due to there being non-linearities in

65

the system, which the linear Box-Jenkins is unable to capture. For fault detection

the inability to accurately fit the system over the entire operational range will result

in misclassification of fault states. For the remainder of this thesis the NARX model

will be used for fault detection for the reason discussed above.

5500 6000 6500 7000 7500

Samples

100

200

300

400

500

600

700

800

A
ng

ul
ar

 V
el

oc
ity

 (
rp

m
)

One-Step Ahead Prediction vs Actual Output - Linear Box-Jenkins Model
Actual RPM
Estimated RPM

Figure 4.18: One-Step Ahead Prediction for Linear Box-Jenkins Model

5500 6000 6500 7000 7500

Samples

100

200

300

400

500

600

700

A
ng

ul
ar

 V
el

oc
ity

 (
rp

m
)

One-Step Ahead Prediction vs Acutal Output - NARX Model

Actual RPM
Estimated RPM

Figure 4.19: One-Step Ahead Prediction for NARX Model

66

CHAPTER 5

HEALTH MONITORING

5.1 Introduction

In the previous chapters, dynamic modeling for a healthy hydrostatic transmission

was demonstrated. After creating a healthy model of the system, we can examine

how the prediction errors of the model change due to degradation of a sub-component

in the system. A tuned dynamic model will have a small prediction error when the

system is operating in a healthy state, but as the system is operated over time, parts

will degrade and the dynamics of the physical system will change. This leads to the

predication errors changing with the degradation of the system. In this chapter we

will examine this idea for predicting a single fault using a dynamic model of a single

sensor. Later in the chapter, multiple faults will be predicted using dynamic models

of multiple sensors in the hydrostatic transmission.

Before discussing a fault in the hydrostatic transmission, we need to re-introduce

the dynamic models presented in Chapter 3 and 4. The dynamic models are the

reference states for a healthy system, so remembering the ideas presented will give

the needed background to discuss fault detection using these dynamic models. In

Chapter 3 and 4 the hydrostatic tranmsission healthy reference state was modeled

using a linear Box-Jenkins mdoel and a NARX model. A Box-Jenkins model fol-

lowed a traditional approach of preliminary identification, parameter estimation, and

model validation, while the NARX model is a black box technique where there is no

preliminary identification. Instead the model complexity is tuned using parameter

estimation and model validation. There are benefits to both approaches, which was

67

discussed in-depth in the past chapters. After system identification, the tuned dy-

namic models can be implemented using Equations 3.26 and 4.7 to make a prediction

of output ŷ(t|θ) based on past inputs and output. The prediction ŷ(t|θ) can be com-

pared against a measured output y(t) from key performance sensors (motor flow rate,

gearbox angular velocity, and gearbox torque) in the system to measure the level of

degradation from the healthy reference model based on the prediction error ε(t) from

Equation 5.1. For the classification of faults in the system, the NARX model will be

implemented instead of a linear Box-Jenkins model, due to the benefits discussed in

Chapter 4.

ε(t) = y(t)− ŷ(t|θ) (5.1)

where:

ŷ(t|θ) = Estimated One Step Ahead Prediction

y(t) = Measured Output

ε(t) = Prediction Error

The prediction error is the key index for measuring a change in the dynamic

system. The level of change in the prediction error will indicate the severity of the

degradation. That was why Chapters 3 and 4 had an in-depth discuss of training and

validating of dynamic models, since minimizing the predication error on the healthy

model will prevent misclassifying a fault. In the next section, the prediction errors

using a NARX model will be used to detect a single fault in a system.

5.2 Single Fault Prediction

We will first examine a single fault using a single dynamic model of a sensor and

then we expand on the idea for multiple faults. For a single fault, only one dynamic

model of a sensor is needed to determine if the system is healthy or in an alert state

68

(30% loss in system nominal angular velocity). When a system is in an alert state,

the hydrostatic transmission should be stopped and examined.

The technique for determining if the system is in a healthy or alert state is to

compare an inline measurement of the prediction error distribution with known pre-

diction error distributions for both healthy and alert states. This is shown in Figure

5.1, where the inputs into the system are the voltage into the servo-valve and the gear-

box angular velocity. The servo-valve input voltage is fed into the dynamic model that

predicts ŷ(t|θ) for the gearbox angular velocity, which is subtracted from the current

measured gearbox angular velocity y(t). This produces a prediction error based on

Equation 5.1. This is done over a short time interval, and then the measured pre-

diction error distribution is compared against a known prediction error distribution

for both healthy and alert states. The state with the most similar prediction error

distribution is chosen as the current state of the system.

System Inputs

and Sensor

Measurements

NARX Healthy

Reference Models

Statistical

Testing

Kullback

Leilber

System

Degradation

State

NARX Model

Residual Errors

Between

Key Performance

Sensor and

NARX model

Output

Relative Entropy

of Sampled

Residual Errors

aganist

 Known Fault

States

Servo-Valve Input

Voltage

Gearbox Angular

Velocity

Healthy

Alert

Key Performance

Sensor

Figure 5.1: Single Load Fault Detection Diagram

The approach taken for statistical testing is to collect inline prediction errors

69

for an interval of time to form a inline prediction error distribution, which will be

statistically compared against the known health state distributions of the system.

This section will discuss the statistical approach for comparing distributions, but

before discussing statistical testing, the location of the sensors and faults in the system

will be presented.

5.2.1 Sensor and Fault Location

For this section the fault being predicted in the hydrostatic transmission is a load

increase, which is called a load alert. An increase in the load puts additional wear

on the gearbox, due to the increased torque on the gear teeth of the gearbox. The

key performance sensor that will be used to measure a load fault in the system is the

gearbox angular velocity. The location of a load fault and key performance sensor for

gearbox angular velocity is shown in Figure 5.2.

Figure 5.2: Sensor and Fault Location

The dynamic NARX model shown in Chapter 4 used a sampling rate of 200Hz,

70

which was sufficient to capture the dynamics of the hydrostatic transmission. For

fault detection, the prediction errors from the dynamic model are collected over 5

seconds at 200Hz for a total of 1,000 points. A 5 second interval was selected to

insure that when a load fault occurred the system can be stopped before there is any

long term damage to the system.

5.2.2 Statistical Test

The Kullback-Leibler test measures the relative entropy between two probability dis-

tributions using Equation 5.2 [15]. A relative entropy near zero indicates that the

probability distributions are very similar, while a higher relative entropy indicates

that the distributions are different.

DKL(P ||Q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx (5.2)

where:

p(x) = Health State Probability Distribution

q(x) = Sampled Prediction Errors Probability Distribution

For the this thesis, the Kullback-Leibler for two Gaussian probability distributions

is used, which is shown by Equation 5.3.

DKL(P ||Q) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(5.3)

where:

σ1 = Health State Probability Distribution Standard Deviation

µ1 = Health State Probability Distribution Mean

σ2 = Sampled Prediction Errors Probability Distribution Standard Deviation

µ2 = Sampled Prediction Errors Probability Distribution Mean

71

The relative entropy is an important statistical test that measures similarity of

two distributions. This will be used in the next section for statistically testing if the

inline measured prediction errors is correlated to a known health state distribution.

5.2.3 Implementation of Statistical Test

To predict the health state (healthy or alert) for the dynamic system, the distribution

of the inline measured prediction errors will be compared with the known health

state distribution. Example prediction error distributions for healthy and alert states

are shown in Figure 5.3. The raw distributions are approximated by the Gaussian

distribution which is a good fit for the data and allows the continuous Kullback-Leilber

to be used, which simplifies the relative entropy calculation and allows for real-time

implementation. Note that the healthy state distribution is for errors obtained when

using the trained healthy model to predict with data collected from the system in a

healthy condition. The alert state distribution is for errors obtained when using the

trained healthy model to predict with data obtained when the system had a failure.

Figure 5.3: Known Health States for Gearbox Angular Velocity

72

An example inline measured prediction error distribution for the dynamic system

operating in a load alert is shown in Figure 5.4. Using the inline prediction error

distribution, the relative entropy can be calculated for the inline prediction error

distribution against each known health state distribution. The results for the relative

entropy calculation are shown in Table 5.1. Based on table, the current health state of

the system is load alert, since it has the lowest relative entropy, indicating that inline

prediction error distribution is closest to the load alert distribution, which is clear

from Figure 5.4. For real-time implementation a threshold for the relative entropy

would be decided on based on maintenance cost and risk of not replacing. Selecting a

threshold is simple for a single fault, but with multiple faults the threshold becomes

more abstract and a rule system needs to be designed for making this choice.

Figure 5.4: Sampled Prediction Errors vs Known Health States for Gearbox Angular

Velocity

73

Table 5.1: Health States Relative Entropy vs Sampled Prediction Errors

Health State Healthy Load Alert

Relative Entropy 29.6664 0.0660

5.3 Multiple Fault Prediction

In the previous section the fault detection was presented for a single fault in the

hydrostatic transmission. In this section, that will be expanded to multiple health

states for a load fault. The multiple health states are healthy, load warning (15%

loss in system nominal angular velocity), and load alert (30% loss in system nominal

angular velocity). When a system is in a warning state, the system can still be

operated, but should be examined by maintenance. If the system is in an alert state,

the system should be stopped and examined. The diagram for implementing fault

detection for multiple load faults is shown in Figure 5.5. This is similar to the previous

section for a single load fault.

74

System Inputs

and Sensor

Measurements

NARX Healthy

Reference Models

Statistical

Testing

Kullback

Leilber

System

Degradation

State

NARX Model

Residual Errors

Between

Key Performance

Sensor and

NARX model

Output

Relative Entropy

of Sampled

Residual Errors

aganist

 Known Fault

States

Servo-Valve Input

Voltage

Gearbox Angular

Velocity

Healthy

Alert

Key Performance

Sensor

Warning

Figure 5.5: Multiple Load Faults Detection Diagram

This section will discuss sensor and fault location, and then will present the im-

plementation of fault detection for multiple faults using a single key performance

sensor.

5.3.1 Sensor and Fault Locations

This section will predict an increased load fault for multiple health states (healthy,

load warning, and load alert), using the key performance sensor for angular velocity

in the gearbox. The locations of the load faults and key performance sensor are shown

in Figure 5.6.

75

Figure 5.6: Sensor and Fault Location

The dynamic model sampling rate and time interval will be the same as presented

in the last section, which is 200Hz and 5 seconds for 1,000 points. These 1,000 points

will be used to classify the health state of the hydrostatic transmission in real-time.

5.3.2 Implementing Statistical Test

To predict the health state (healthy, load warning, and load alert) for the dynamic

system, the relative entropy of the inline prediction error distribution will be compared

with each of the health state distributions. The known health state prediction error

distributions are shown in Figure 5.7. The distributions are fitted with a Gaussian

as discussed in the previous section.

76

Figure 5.7: Known Health States for Gearbox Angular Velocity

The inline prediction error distribution for the system operating in a load alert is

shown in Figure 5.8. The relative entropy for the inline prediction error distribution

against the known fault state distributions is shown in Table 5.2. Based on table,

the system is currently operating in a load alert and the system should be stopped

and examined. It can also be seen from Figure 5.8 that he sampled distribution best

matches the load alert distribution.

77

Figure 5.8: Sampled Prediction Errors vs Known Health States for Gearbox Angular

Velocity

Table 5.2: Health States Relative Entropy vs Sampled Prediction Errors

Health State Healthy Load Warning Load Alert

Relative Entropy 29.6664 0.8590 0.0660

This section showed that the approach presented for statistical testing, using a

single key performance sensor, can be easily expanded from single fault detection to

multiple fault detection. In the next section the statistical testing approach will be

expanded to multiple fault prediction using multiple key performance sensors. The

benefit of using multiple key performance sensors is that the different sensors in the

system will pick-up separate dynamic information about the hydrostatic transmission.

This will be important when predicting the health state of the system for different

kinds of faults.

78

5.4 Multiple Faults and Multiple Sensors

In the previous section a statistical method was presented for classifying the health

state of a hydrostatic transmission using a single key performance sensor. This section

will expand on the techniques in the previous section, but will introduce an approach

for using multiple key performance sensors to determine the health state of the system.

For each key performance sensor there is a prediction error distribution, which can

be compared with known health states for each sensor. This is shown in Figure

5.9, where the input into the system is voltage into the servo-valve and the sensor

measurements of the gearbox angular velocity, gearbox torque, and motor flow rate.

The input into the servo-valve is fed into a dynamic model that predicts ŷ(t|θ) for

each of the sensors, which is subtracted from the measured sensors y(t). Then the

prediction errors are sampled for an interval of time to produce a distribution, which is

compared by statistical testing with known health state distributions for each sensor.

The statistical test is Kullback-Leilber, which was discussed in the previous sections.

With there being multiple sensors, there is a relative entropy calculation for each

sensor, with the relative entropy being the difference between inline prediction error

distributions and known health state distributions for each sensor. A classification

neural network will be used to combine the relative entropies among multiple sensors

to make a prediction of the system’s actual health state.

79

System Inputs

and Sensor

Measurements

NARX Healthy

Reference Models

Statistical

Testing

Kullback

Leilber

Classification

System

Degradation

State

NARX Model

Residual Errors

Between

Key Performance

Sensors and

NARX model

Outputs

Relative Entropy

of Sampled

Residual Errors

aganist

 Known Fault

States

Servo-Valve Input

Voltage

Two Layers

Neural

Network

Gearbox Angular

Velocity

Gearbox Torque

Motor Flow

Healthy

Warning

Alert

Key Performance

Sensors

Figure 5.9: Multiple Load Faults Detection using Multiple Sensors Diagram

This section will begin by showing the location of the key performance sensors

and load faults. Then statistical testing will be demonstrated for multiple faults

and sensors, followed by training and validation of a classification neural network

for combining the information from multiple sensors. This section will demonstrate

fault prediction for a increased load failure, which has health states of healthy, load

warning, and load alert.

5.4.1 Sensors and Faults Location

The key performance sensor locations are shown in Figure 5.10. For this section we

are examining a load fault, the location of a load fault in hydrostatic transmission

is shown in Figure 5.10 and was further discussed in Chapter 2. A load fault was

categorized as a percentage of reduction from the nominal gearbox angular velocity

when operating with a 2 volt input into the servo-valve. For a load warning and alert,

the reduction in angular velocity is 15% and 30% from nominal operation.

80

Figure 5.10: Sensors and Faults Location

5.4.2 Implementation of Statistical Test

To demonstrate the Kullback-Leibler for fault detection, distributions for warning

and alert for a load failure will be used to predict a load fault from inline measured

prediction errors. The health states of healthy, load warning, and load alert for each

key performance is shown in Figures 6.1, 6.2, and 6.3. The fault states are based on

the prediction errors of a dynamic NARX model for each key performance sensor.

81

Figure 5.11: System Load Fault PDFs for Gearbox Angular Velocity

Figure 5.12: System Load Fault PDFs for Gearbox Torque

82

Figure 5.13: System Load Fault PDFs for Motor Flow Rate

To classify a fault state, a set of points are collected over 5 second intervals at a

sampling rate of 200 Hz. An example of the prediction error distributions for 1,000

points sampled inline is shown in Figure 5.14, 5.15, and 5.16. The prediction error

distributions indicate that the system is in a state of alert for a load failure.

83

Figure 5.14: System Load Fault PDFs for Gearbox Angular Velocity

Figure 5.15: System Load Fault PDFs for Gearbox Torque

84

Figure 5.16: System Load Fault PDFs for Motor Flow Rate

The continuous Gaussian Kullback-Leibler Equation 5.3 can be used for the distri-

butions in Figure 5.14, 5.15, and 5.16 to calculate their relative entropy between the

inline prediction error distribution and known fault state distributions. The relative

entropy of the distributions are shown in Table 5.3. It can be seen from the table, that

the system current health state is load alert, since it has the lowest relative entropy

for all key performance sensors.

Table 5.3: Load Fault States Relative Entropy vs Sampled Operational Data

Sensors Healthy Load Warning Load Alert

Gearbox Angular Velocity 29.6664 0.8590 0.0660

Gearbox Torque 72.2791 1.5489 0.1679

Motor Flow Rate 0.3507 0.0324 0.0032

From the results in table, each sensor predicts the health state. A rule system

needs to be developed for choosing between the relative entropy of multiple sensors

85

when the sensors do not all agree. A simple approach would be to use a committee

where each sensor gets one vote and the health state with the most votes is selected as

the most probable health state. For Table 5.3, the selected health state is load alert,

since load alert has the smallest relative entropy for each sensor. There is an issue

with this approach, since each sensor weights its relative entropy the same, but in

reality each sensor should be weighted differently based on ability to observe a fault.

By examining Figures 6.1, 6.2, and 6.3, the gearbox angular velocity and gearbox

torque health state sensors’ distributions are spread out, but the flow rate sensor

distributions are on top of each other. This indicates that the flow rate sensor is not

as useful in showing a load fault and should be weighted less than the other sensors.

To overcome this issue, a classification neural network will be implemented in the

next section to develop rules for combining sensors to make a health state prediction.

5.4.3 Classification Neural Network

In the section above, statistical testing was presented for measuring relative entropy

between known health states and inline measured prediction errors. With there being

multiple key performance sensors, each observing the same known health states, rules

need to be developed for weighting the information between the sensors to determine

the actual health state of the system. Each sensor measures a different property of

the dynamic system, so the rules will factor in the sensors sensitivity to specific sub-

component degradation. The rules can be generated by expert knowledge using fuzzy

logic or degradation data for weighting a neural network. In this paper the rules are

designed by measuring degradation states for training a classification neural network.

This section will discuss the architecture of a classification neural network along with

the algorithm for training the network. After presenting the training algorithm for

the neural network, model validation will be discussed for preventing over-fitting of

the classification neural network. The final part of this section will demonstrate the

86

training of a classification neural network for categorizing a load fault using multiple

sensors.

5.4.4 Classification Neural Network Architecture

The classification neural network implemented for fault detection is shown in Figure

5.17. The first layer uses a log-sigmoid transfer function and the second layer (output

of the neural network) uses a softmax. The softmax outputs can be viewed as the

probability that the system is in a given state. The purpose of a classification neural

network is to map inputs to categories.

p1 a1 a2

1 1

n1 n2
LW2,1

b1

IW1,1

b2

R S1 S2

S1xR

S1x1

S1x1

S1x1

S2x1

S2xS1

S2x1

S2x1Rx1

S2x1

Figure 5.17: Classification Neural Network Architecture

A classification network outputs are calculated using forward propagation based

on the generalized algorithm presented in Chapter 4 (Equation 4.7). The transfer

function (f 1 and f 2) for the log-sigmoid and softmax are shown by Equations 5.4 and

5.5 [13].

sigmoid(ni) = f 1(ni) =
1

1 + e−ni
(5.4)

where:

ni = transfer function input

softmax(ni) = f 2(ni) = exp(ni) +
S∑
j=1

exp(nj) (5.5)

where:

87

S = number of output categories

The classification network is trained using the backproprogation algorithm from

Chapter 4 (Equation 4.13). To implement the backpropagation algorithm for the

classification network shown in Figure 5.17, the derivatives of the transfer functions

(f 1 and f 2) with respect to the transfer function input (n1 and n2) must be calculated

(Ḟ1(n1) and Ḟ2(n2)). The derivative of the log-sigmoid transfer function is shown by

Equations 5.6 and 5.7 [13]. The derivative of the softmax transfer function is shown

by Equation 5.8 [13]. The derivative of the log-sigmoid and softmax (Ḟ1(n1) and

Ḟ2(n2)) allow the layer’s sensitivites (sm) to be calculated for performing stochastic

gradient descent (Equation 4.14).

ḟ 1
ni

= sigmoid(ni) · (1− sigmoid(ni)) (5.6)

Ḟ1(n1) =



ḟ 1(n1
1) 0 · · · 0

0 ḟ 1(n1
2) · · · 0

...
...

. . .
...

0 0 · · · ḟ 1(n1
S1)


(5.7)

Ḟ2(n2) =



a21

(∑S2

i=1 a
2
i − a21

)
−a21a22 · · · −a21a2S2

−a22a21 a22

(∑S2

i=1 a
2
i − a22

)
· · · −a22a2S2

...
...

. . .
...

−a2S2a21 −a2S2a22 · · · a2S2

(∑S2

i=1 a
2
i − a2S2

)


(5.8)

88

5.4.5 Classification Neural Network Validation

For validation of a classification neural network, and to prevent over-fitting, the data

set is divided into a training, validation and test set. The validation set is used

for early stoppage to prevent over-fitting, while the test set is used for checking the

accuracy of the network after training. This section will present early stopping using

the validation set and classification accuracy using a confusion matrix.

The data set is typically divided into a training, validation, and test set. With

70% of the data set being used for training, while the remaining 30% of the data set

being split between the validation and test set. Early stopping is based on ending

the training of the neural network when the validation accuracy begins to decrease

over a set number of iterations. The idea is that when the validation set accuracy

decreases the classification neural network is over-fitting on the training data set and

extrapolating on the validation data set. This is due to the validation data set not

being used for tuning of the network weights, but for checking the accuracy of the

network during training. After the network has been trained using early stopping, the

test data set can be used to measure the final accuracy of the network. The test set

is only used after the network has been trained and cannot be used during training.

After the classification network has been trained, a confusion matrix can be cre-

ated for the test set. The confusion matrix is used to determine misclassification

between categories.

To illustrate the use of a confusion matrix, an example is shown in Figure 5.18

[14]. This confusion matrix is for a problem with 3 categories. The output from the

network is displayed on the y-axis and the targets for the network on the x-axis. From

Figure 5.18 we can see that in 2 cases the network assigned a test input to class 2

when it actually belonged to class 3. This gave the network a classification accuracy

of 91.3% on the test set. Based on this result, the misclassified inputs should be

checked to determine if there is a similarity in inputs of class 2 and 3. This would

89

indicate that there are inputs from class 2 that overlap with inputs from class 3.

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Training Confusion Matrix

34
32.7%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

33
31.7%

1
1.0%

97.1%
2.9%

0
0.0%

0
0.0%

36
34.6%

100%
0.0%

100%
0.0%

100%
0.0%

97.3%
2.7%

99.0%
1.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Validation Confusion Matrix

9
39.1%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

8
34.8%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

6
26.1%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Test Confusion Matrix

7
30.4%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

8
34.8%

0
0.0%

100%
0.0%

0
0.0%

2
8.7%

6
26.1%

75.0%
25.0%

100%
0.0%

80.0%
20.0%

100%
0.0%

91.3%
8.7%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

All Confusion Matrix

50
33.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

49
32.7%

1
0.7%

98.0%
2.0%

0
0.0%

2
1.3%

48
32.0%

96.0%
4.0%

100%
0.0%

96.1%
3.9%

98.0%
2.0%

98.0%
2.0%

Figure 5.18: Example Confusion Matrix

5.4.6 Implementation of Classification Neural Network

To illustrate the application of the classification neural network in Figure 5.17 for

fault detection, a neural network will be trained for classifying a load fault (warning

and alert). The input into the network is the relative entropy for each known fault

state (Figure 6.1, 6.2, and 6.3) against inline measured prediction error distribution.

In this example, each input has 9 elements, because there are 3 fault states and 3

sensors.

The classification neural network weights are tuned using a data set of 597 inputs

and targets. The input has a dimension of 9, as shown by Table 5.3, where there are

3 fault states (healthy, load warning, and load alert) and 3 sensors (Gearbox Angular

90

Velocity, Gearbox Torque, and Motor Flow Rate). The output from the network is

3 fault states (healthy, load warning, and load alert), the neural network uses the

information from multiple sensors to develop rules for deciding the actual fault state.

The network architecture is shown in Table 5.4.

Table 5.4: Load Fault Classification Neural Network Architecture

Data Set Size Number of Inputs Number of Outputs Number of Neurons

597 9 3 10

The neural network for classifying a load fault is shown in Figure 5.19. The

classification neural network is a small network, which is sufficient for classifying

between 3 possible fault states using 9 inputs. The amount of training data limits

the complexity of the network.

Figure 5.19: Matlab Classification Neural Network for Fault Detection

Using the backproprogation algorithm discussed in the previous section, the classi-

fication network shown in Figure 5.19 can be trained using the Matlab Neural Network

Toolbox [14]. The confusion matrix is shown in Figure 5.20.

91

1 2 3

Target Class

1

2

3
O

u
tp

u
t

C
la

ss

Training Confusion Matrix

145
34.8%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

129
30.9%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

143
34.3%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Validation Confusion Matrix

33
36.7%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

27
30.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

30
33.3%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3

Target Class

1

2

3

O
u

tp
u

t
C

la
ss

Test Confusion Matrix

21
23.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

43
47.8%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

26
28.9%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3

Target Class

1

2

3
O

u
tp

u
t

C
la

ss

All Confusion Matrix

199
33.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

199
33.3%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

199
33.3%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

Figure 5.20: Load Fault Classification Network Confusion Matrix

From the confusion matrix, the classification neural network was able to achieve

100% accuracy on the test set. In the next chapter a classification neural network

will be used for classifying between fault states for motor leakage, pump leakage, and

load increases, which is more complex than classifying just the load fault states.

92

CHAPTER 6

RESULTS FOR HEALTH MONITORING

6.1 Introduction

In the Chapter 5, fault detection was presented and demonstrated for classifying

single and multiple health states. This section will use the techniques presented in

the previous chapter, but will expand the number of health states to include leakage

in the pump and hydraulic motor. The classification neural network will be used to

combine multiple sensors as shown in Chapter 5. The health state prediction error

distributions are shown in Figures 6.1, 6.2, and 6.3 for healthy, load warning, load

alert, pump leakage warning, pump leakage alert, motor leakage warning, and motor

leakage alert. It can be seen from the figures that there is a significant amount of

overlap between health state distributions, and a simple statistical test will not be

sufficient to classify a fault.

93

Figure 6.1: Fault PDFs for Gearbox Angular Velocity

Figure 6.2: Fault PDFs for Gearbox Torque

94

Figure 6.3: Fault PDFs for Motor Flow Rate

Even through there is overlap between fault distributions, there are some notice-

able differences between health states. One difference, through inspection of Figure

6.8, is that the gearbox torque health state distribution will shift right when going

from warning to alert. This correlates with the first order dynamic equation for a

load in Chapter 2. As the load increases, the torque on the system will also increase.

Pump and motor leakage health states show the opposite change, since loss in pres-

sure from the pump will decrease the torque. Another observation is that an increase

in load will decrease flow rate into the motor. The opposite is true for motor leakage,

since when there is an increase in leakage there is less resistance to flow across the

motor, which results in a decrease in pressure across the motor and in gearbox angu-

lar velocity. This correlates with the first order equations for the motor in Chapter

2. These noticeable differences in health state distributions give us motivation in

implementing a classification neural network for distinguishing between health.

The technique for measuring the health state for a dynamic system is shown in

Figure 6.4, which was discussed in Chapter 5. We will quickly re-introduce this

95

approach to insure the technique is understood before preceding. For each sensor

there is a prediction error distribution, which is compared with the known health

state distributions for each sensor. (The known health state distributions are shown

in Figures 6.1, 6.2, and 6.3.) This is shown in Figure 6.4, where the prediction error

for each sensor is based on the servo-valve input into a dynamic model that predicts

ŷ(t|θ), which is subtracted from the measured sensors y(t). Then the prediction errors

are sampled for an interval of time to produce a distribution, which is compared by

statistical testing with known health state prediction error distributions for each

sensor. The statistical test is Kullback-Leibler, which measures the relative entropy

between two distributions. This produces multiple relative entropies for each sensor,

which are combined using a classification neural network to make a prediction of the

system’s actual health state.

System Inputs

and Sensor

Measurements

NARX Healthy

Reference Models

Statistical

Testing

Kullback

Leilber

Classification

System

Degradation

State

NARX Model

Residual Errors

Between

Key Performance

Sensors and

NARX model

Outputs

Relative Entropy

of Sampled

Residual Errors

aganist

 Known Fault

States

Servo-Valve Input

Voltage

Two Layers

Neural

Network

Gearbox Angular

Velocity

Gearbox Torque

Motor Flow

Healthy

Warning

Alert

Key Performance

Sensors

Figure 6.4: Multiple Load Faults Detection using Multiple Sensors Diagram

This chapter will present sensor and fault locations, along with the data set for

creating the dynamic model, base heath state prediction error distributions, and clas-

sification neural network. Then Kullback-Leibler will be demonstrated for the health

96

states shown in Figures 6.1, 6.2, and 6.3, followed by training of the classification

neural network. After the network is trained, the final results will be presented.

6.2 Sensor and Fault Locations

The key performance sensor locations are shown in Figure 6.5. For this chapter we

are examining the health states of healthy, load fault warning, load fault alert, pump

leakage warning, pump leakage alert, hydraulic motor leakage warning, and hydraulic

motor leakage alert. The health states locations are shown in Figure 6.5. These

health states were discussed in-depth in Chapter 2. A fault state of warning and

alert for each sub-component is based on a percentage of reduction from the nominal

gearbox angular velocity when operating with a 2 volt input into the servo-valve. For

a warning and alert for each sub-component, the reduction in angular velocity is 15%

and 30% from nominal operation.

Figure 6.5: Hydrostatic Transmission Key Performance Sensors and Faults Locations

The dynamic model sampling rate and time interval will be the same as presented

in Chapter 4, which is 200Hz and 5 seconds for 1,000 points. These 1,000 points will

97

be used to classify the health state of the hydrostatic transmission in real-time.

6.3 Data Collection

The process for fault detection is shown in Figure 6.4, which was discussed in-depth

in Chapter 5. There are three parts to the fault detection process: train the dynamic

healthy state NARX model, develop the base health state prediction error distribu-

tions, and train the classification neural network. This section will discuss the data

used for creating the dynamic NARX model, base health state distributions, and clas-

sification neural network. A diagram of the data used is shown in Figure 6.6. There

are 250,000 points for each of the health states shown in Figure 6.5, which are split

between the following three parts.

1. Dynamic Model (NARX): The dynamic model for the health reference state is

trained on 10,000 points, while the system was operated in a healthy state.

2. Base Prediction Error Distributions for Statistical Testing: The base health

state prediction error distributions are created using 40,000 points.

3. Sensor Fusion (Classification Neural Network): The classification neural net-

work is trained using 1,400 inputs, composed of 200 inputs from each health

state. Each input into the network is the relative entropy of an inline predic-

tion error distribution against the base health state distributions for each sensor.

There are 3 sensors and 7 health state distributions, which creates an input with

a dimension of 7 x 3 = 21. An inline distribution is created from 1,000 points

sampled at 200 Hz for 5 seconds. For each health state 200,000 points are used

for generating 200 inline distributions. The network target dimension is 7 for

the health states. The color of the data sets in Figure 6.6 correlate with the

color of the distributions in Figures 6.1, 6.2, and 6.3.

98

Figure 6.6: Data Diagram

99

6.4 Implementing the Statistical Test

To predict the health state for the hydrostatic transmission, the relative entropy of

the inline prediction error will be compared with each of the health state distributions.

An example of a sampled prediction error distribution against the known health state

distributions are shown in Figures 6.7, 6.8, and 6.9. (The sampled distribution was

obtained from 1,000 points when the system operating under the conditions fro a load

alert.)

Figure 6.7: Fault PDFs for Gearbox Angular Velocity

100

Figure 6.8: Fault PDFs for Gearbox Torque

Figure 6.9: Fault PDFs for Motor Flow Rate

The continuous Gaussian Kullback-Leilber test, Equation 5.3, can be used for the

distributions in Figure 6.7, 6.8, and 6.9 to calculate the relative entropy between the

101

inline prediction error distribution and known health state distributions. The relative

entropy of the distributions are shown in Table 6.1. It can be seen from the table,

that the system’s current health is load alert, since load alert has the lowest entropy

for gearbox torque and motor flow rate. An issue, though, is that the gearbox angular

velocity’s entropy indicates a motor leakage alert. In the next section a classification

neural network will be trained to generate rules for combining the information from

multiple sensors to make a single health state prediction. This will improve predic-

tion accuracy, since each sensor recognizes different dynamic information about the

system.

Table 6.1: Load Fault States Relative Entropy vs Sampled Operational Data

Sensors Healthy
Load

Warning

Load

Alert

Pump

Leakage

Warning

Pump

Leakage

Alert

Motor

Leakage

Warning

Motor

Leakage

Alert

Gearbox

Angular

Velocity

29.6664 0.8590 0.0660 1.1565 0.1091 4.0347 0.0059

Gearbox

Torque
72.2791 1.5489 0.1679 63.0359 43.6429 37.2744 22.5967

Motor

Flow Rate
0.3507 0.0324 0.0032 05757 0.8717 0.0218 0.5819

6.5 Neural Network for Classification

The classification neural network is trained using the backproprogration algorithm,

which was presented in Chapter 5. The inputs and targets for training the network

are shown in Figure 6.6. The network architecture for fault detection is shown in

Figure 5.17, with the network design parameters (hidden neurons) being shown in

102

Table 6.2. The network was trained using 15 hidden neurons, since the training data

set is relatively small and too many neurons will lead to over fitting issues.

Table 6.2: Fault Detection Classification Neural Network Architecture

Data Set Size Number of Inputs Number of Outputs Number of Neurons

1,400 21 7 15

The classification network is trained using the Matlab Neural Network Toolbox

[14]. The input data set is split between training, validation and test percentages

shown in Table 6.3.

Table 6.3: Fault Detection Data Set Split Between Training, Validation, and Test

Training Validation Test

70% 15% 15%

The confusion matrix after training the classification neural network is shown in

Figure 6.10. Based on this figure, the classification neural network is able to perfectly

categorize a fault in the system for the original training, test, and validation sets.

In the next section a separate test set will be used to validate the fault detection

performance. This separate test set was collected within the same operational ranges,

but at a different operational time.

103

1 2 3 4 5 6 7

Target Class

1

2

3

4

5

6

7

O
u

tp
u

t
C

la
ss

Training Confusion Matrix
137

14.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

149
15.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

128
13.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

140
14.4%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

144
14.8%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

139
14.3%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

138
14.2%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3 4 5 6 7

Target Class

1

2

3

4

5

6

7

O
u

tp
u

t
C

la
ss

Validation Confusion Matrix
30

14.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

28
13.4%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

34
16.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

30
14.4%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

25
12.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

29
13.9%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

33
15.8%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3 4 5 6 7

Target Class

1

2

3

4

5

6

7

O
u

tp
u

t
C

la
ss

Test Confusion Matrix
32

15.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

22
10.5%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

37
17.7%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

29
13.9%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

30
14.4%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

31
14.8%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

28
13.4%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 2 3 4 5 6 7

Target Class

1

2

3

4

5

6

7

O
u

tp
u

t
C

la
ss

All Confusion Matrix
199

14.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

Figure 6.10: Trained Network Confusion Matrix

6.6 Results

To validate the accuracy of the fault detection approach shown in Figure 6.4, a sep-

arate test set that was collected at a different operational time will be tested using

the trained fault prediction models shown in Figure 6.4. The confusion matrix for

the separate test set is shown in Figure 6.11. The classes in the confusion matrix

correlate with the health states shown in Table 6.4. Based on the confusion matrix,

the fault detection system was able to achieve an accuracy of 96.7%. The misclassi-

fications occur between warning and alert within the categorizes of load, pump, and

104

motor fault. This indicates that the fault detection system is properly categorizing

the degradation, but is misclassifying the severity of the degradation. The number

of misclassifications is reasonably small, with misclassification error rate of 14.7%

for motor leakage warning and 7% for pump leakage warning. The accuracy can be

improved by increasing the data set for training the neural network by collecting

more data, but based on the performance of the fault detection model a reasonable

prediction of the current health state can be made in real-time.

Table 6.4: Classes Number and Health State

Sensors Healthy
Load

Warning

Load

Alert

Pump

Leakage

Warning

Pump

Leakage

Alert

Motor

Leakage

Warning

Motor

Leakage

Alert

Classes 1 2 3 4 5 6 7

1 2 3 4 5 6 7

Target Class

1

2

3

4

5

6

7

O
u

tp
u

t
C

la
ss

 Confusion Matrix

199
14.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

3
0.2%

196
14.1%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

98.5%
1.5%

0
0.0%

0
0.0%

0
0.0%

185
13.3%

14
1.0%

0
0.0%

0
0.0%

93.0%
7.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

170
12.2%

29
2.1%

85.4%
14.6%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

199
14.3%

100%
0.0%

100%
0.0%

98.5%
1.5%

100%
0.0%

100%
0.0%

93.4%
6.6%

100%
0.0%

87.3%
12.7%

96.7%
3.3%

Figure 6.11: Trained Network Confusion Matrix

105

Using a prediction of the current health state of the hydrostatic transmission,

a plan can be developed by the maintenance group to decide whether the parts in

system need to be further tested or replaced. In a real application this approach

to fault detection will be implemented online, while it is operating with changing

inputs. If a warning or alert is indicated, the maintenance group can use the fault

prediction model to determine the most probable defective part, which reduces the

time of performing maintenance, since finding the location of a fault in dynamic

system can be difficult.

106

CHAPTER 7

CONCLUSIONS

This thesis presented an approach for predicting faults in a hydrostatic transmission.

This approach was designed for in-line fault detection, where the inputs into the

system are allowed to vary.

The thesis began by discussing the mechanical system and the differential equa-

tions for the sub-components, which were used to illustrate how wear in the sub-

components effects system performance. To measure the level of wear, we needed a

health reference model that accounts for changing inputs into the system. This could

be achieved by the differential equations, but the coefficients are difficult to directly

measure. It would require special test equipment and the disassembly of the sub-

components for measuring part tolerances, which is labor intensive. To overcome this

issue, system identification approaches were presented for the modeling the system.

We began the discussion of system identification by presenting the Box-Jenkins

linear modeling approach, which has been used in a large number of industrial ap-

plications. The Box-Jenkins model strength is that the dynamics and disturbance

for the system can be separated by two difference equations. The Box-Jenkins model

is trained on a set of healthy inputs and outputs, which was demonstrated for the

gearbox angular velocity. The steps for system identification are: preliminary iden-

tification, parameter estimation, and model validation. Each of these steps were

discussed in detail, with the final trained Box-Jenkins model being a good fit to the

actual system. The Box-Jenkins model is linear and cannot be fitted over the entire

operational range of the system. To overcome this issue, a non-linear model, known

107

as the non-linear autoregressive exogenous (NARX) model, was presented for creating

a health reference state.

The NARX model is a black box model, where the coefficients of the model have

no direct correlation to the system’s differential equations and do not provide any

information about how well the model fits the physical system. The benefit of the

NARX model is that it can be fitted over the entire operational range of the sys-

tem. With the NARX model being a black box approach, there are no preliminary

identification techniques. Instead, a trial and error approach is used for tuning the

weights using parameter estimation and model validation. After the NARX model

was trained, it was shown that it provided a good fit to the physical system for the

entire operational space. This was shown to be beneficial, since it improves accuracy

and reduces the need for multiple models.

With a health reference model developed for the system, statistical testing and

classification techniques were presented for detecting a fault. This was demonstrated

by discussing how the prediction error of the healthy reference model increases with

wear of the physical system. The healthy reference model is a good fit to the healthy

system, but as sub-components in the system degrade, the dynamics of the system

change and the prediction error changes with degradation. It was shown that by

statistical testing and classification techniques, a sub-component fault state can be

classified by the prediction errors of multiple health reference models, while the system

is being operated on-line. Chapter 6 showed that the failures in a hydraulic system

can be accurately predicted in real-time.

The ability to predict the current health state of the system allows a maintenance

plan to be developed. By being able to predict a health state, the cost and time

required for maintenance can be improved, since knowledge of the system’s health

condition will improve the repair time and prevent unnecessary removal of healthy

sub-components. Fault detection is an important issue for hydraulic systems, where

108

degradation of sub-components is a common problem that is difficult to measure. The

method presented in this thesis, in which the distributions of NARX prediction errors

are used to automatically determine the health state of the system, shows promise

for on-line fault detection.

7.0.1 Future Work

The approach presented for fault detection was shown to be beneficial, but there are

some improvements and further testing that can be done to improve this technique.

An issue with the approach presented was that it was assumed there were no envi-

ronmental effects on the system. This can be a safe assumption, when the hydraulic

system is being used for manufacturing applications, but for aerospace and construc-

tion equipment the environmental effects play a large role on the dynamics of the

system. Environmental effects can be treated as an input into the dynamic model,

which increases the complexity of the model. In aerospace applications a common

environmental effect is temperature changes during take off. This results in a temper-

ature change of 25C to -40C in under 15 minutes. Temperature can be included in the

non-linear NARX model presented in Chapter 5, but due to the temperature being

a stiff input into the system, the dynamic model will be difficult to train. Instead,

multiple NARX models can be trained at different temperature ranges. This would

require switching between dynamic models based on environmental conditions.

Another improvement, would be demonstrating how to develop a classification

model, presented in Chapters 5 and 6, that can be trained as fault data becomes

available. In a real world applications not all data are available for failure states and

have to be added during operation of the system. A technique that can be used is

adaptive fuzzy logic, where the initial rules are based on expert knowledge from a

maintenance group, but as faults occur and are measured, the fuzzy logic model can

be updated. This would allow the classification model presented in Chapter 5 and 6

109

to be continually developed over the entire operational life of the system.

The last improvement is implementing Gaussian mixtures for statistical testing,

instead of fitting the prediction errors with a single Gaussian (Chapter 5 and 6). It can

be seen from Figure 5.3 that the histogram is skewed, which results in the Gaussian

being unable to accurately fit the prediction errors. A Gaussian mixture would better

fit the prediction errors and would improve fault state classification accuracy.

110

BIBLIOGRAPHY

[1] M. Dong, C. Liu, and G. Li, “Robust fault diagnosis based on nonlinear model of

hydraulic gauge control system on rolling mill,” IEEE Transactions on Control

Systems Technology, vol. 18, no. 2, pp. 510–515, 2010.

[2] P. Garimella and B. Yao, “Model based fault detection of an electro-hydraulic

cylinder,” in American Control Conference, 2005. Proceedings of the 2005,

pp. 484–489, IEEE, 2005.

[3] M. Khoshzaban-Zavarehi, On-line condition monitoring and fault diagnosis in

hydraulic system components using parameter estimation and pattern classifica-

tion. PhD thesis, University of British Columbia, 1997.

[4] L. Hongmei, W. Shaoping, and O. Pingchao, “Fault diagnosis based on improved

elman neural network for a hydraulic servo system,” in Robotics, Automation and

Mechatronics, 2006 IEEE Conference on, pp. 1–6, IEEE, 2006.

[5] K. Mollazade, H. Ahmadi, M. Omid, and R. Alimardani, “An intelligent com-

bined method based on power spectral density, decision trees and fuzzy logic for

hydraulic pumps fault diagnosis,” International Journal of Intelligent Systems

and Technologies, vol. 3, no. 4, pp. 251–263, 2008.

[6] M. Demetgul, I. N. Tansel, and S. Taskin, “Fault diagnosis of pneumatic systems

with artificial neural network algorithms,” Expert Systems with Applications,

vol. 36, no. 7, pp. 10512–10519, 2009.

[7] H. E. Merritt, Hydraulic control systems. John Wiley & Sons, 1967.

111

[8] E. Fitch and I. Hong, “Hydraulic component design and selection: Bardyne,”

2004.

[9] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting

and control. John Wiley & Sons, 2008.

[10] L. Ljung, “System identification: Theory for the user, ptr prentice hall informa-

tion and system sciences series,” ed: Prentice Hall, New Jersey, 1999.

[11] W. A. Woodward and H. L. Gray, “On the relationship between the s array and

the box-jenkins method of arma model identification,” Journal of the American

Statistical Association, vol. 76, no. 375, pp. 579–587, 1981.

[12] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear pa-

rameters,” Journal of the society for Industrial and Applied Mathematics, vol. 11,

no. 2, pp. 431–441, 1963.

[13] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesus, Neural network

design. Martin Hagan, 2014.

[14] H. B. Demuth, M. H. Beale, and M. T. Hagan, “Matlab neural network toolbox,”

9.1.0.441655 (R2016b). The MathWorks, Natick, MA, USA.

[15] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge

university press, 2003.

112

VITA

Joseph Kelley

Candidate for the Degree of

Master of Science

Dissertation: HYDRAULIC SYSTEMS DEGRADATION DETECTION USING
SPARSE SENSORS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Raytown, Missouri, United States on June 21, 1989.

Education:
Received the B.S. degree from University of Missouri Kansas City, Kansas
City, Missouri, United States, 2012, Mechanical Engineering
Completed the requirements for the degree of Master of Science with a
major in Electrical Engineering from Oklahoma State University in May,
2018.

Experience:
Mechanical Engineer II at Hallmark from February 2013 - February 2014
R&D Engineer at FES, Inc from February 2015 to Current

