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• In a fixed-bed reactor the catalyst pellets are held in place and do not move
with respect to a fixed reference frame.

• Material and energy balances are required for both the fluid, which occupies
the interstitial region between catalyst particles, and the catalyst particles, in
which the reactions occur.

• The following figure presents several views of the fixed-bed reactor. The
species production rates in the bulk fluid are essentially zero. That is the
reason we are using a catalyst.
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Figure 1: Expanded views of a fixed-bed reactor.
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The physical picture

• Essentially all reaction occurs within the catalyst particles. The fluid in contact
with the external surface of the catalyst pellet is denoted with subscript s.

• When we need to discuss both fluid and pellet concentrations and tempera-
tures, we use a tilde on the variables within the catalyst pellet.
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The steps to consider

During any catalytic reaction the following steps occur:

1. transport of reactants and energy from the bulk fluid up to the catalyst pellet
exterior surface,

2. transport of reactants and energy from the external surface into the porous
pellet,

3. adsorption, chemical reaction, and desorption of products at the catalytic
sites,

4. transport of products from the catalyst interior to the external surface of the
pellet, and
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5. transport of products into the bulk fluid.

The coupling of transport processes with chemical reaction can lead to concen-
tration and temperature gradients within the pellet, between the surface and the
bulk, or both.
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Some terminology and rate limiting steps

• Usually one or at most two of the five steps are rate limiting and act to influ-
ence the overall rate of reaction in the pellet. The other steps are inherently
faster than the slow step(s) and can accommodate any change in the rate of
the slow step.

• The system is intraparticle transport controlled if step 2 is the slow process
(sometimes referred to as diffusion limited).

• For kinetic or reaction control, step 3 is the slowest process.

• Finally, if step 1 is the slowest process, the reaction is said to be externally
transport controlled.
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Effective catalyst properties

• In this chapter, we model the system on the scale of Figure 1 C. The problem
is solved for one pellet by averaging the microscopic processes that occur
on the scale of level D over the volume of the pellet or over a solid surface
volume element.

• This procedure requires an effective diffusion coefficient, Dj, to be identi-
fied that contains information about the physical diffusion process and pore
structure.
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Catalyst Properties

• To make a catalytic process commercially viable, the number of sites per unit
reactor volume should be such that the rate of product formation is on the
order of 1 mol/L·hour [12].

• In the case of metal catalysts, the metal is generally dispersed onto a high-
area oxide such as alumina. Metal oxides also can be dispersed on a second
carrier oxide such as vanadia supported on titania, or it can be made into a
high-area oxide.

• These carrier oxides can have surface areas ranging from 0.05 m2/g to greater
than 100 m2/g.

• The carrier oxides generally are pressed into shapes or extruded into pellets.
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Catalyst Properties

• The following shapes are frequently used in applications:

– 20–100 µm diameter spheres for fluidized-bed reactors
– 0.3–0.7 cm diameter spheres for fixed-bed reactors
– 0.3–1.3 cm diameter cylinders with a length-to-diameter ratio of 3–4
– up to 2.5 cm diameter hollow cylinders or rings.

• Table 1 lists some of the important commercial catalysts and their uses [7].
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Catalyst Reaction

Metals (e.g., Ni, Pd, Pt, as powders C C bond hydrogenation, e.g.,
or on supports) or metal oxides olefin + H2 -→ paraffin
(e.g., Cr2O3)

Metals (e.g., Cu, Ni, Pt) C O bond hydrogenation, e.g.,
acetone + H2 -→ isopropanol

Metal (e.g., Pd, Pt) Complete oxidation of hydrocarbons,
oxidation of CO

Fe (supported and promoted with 3H2 + N2 -→ 2NH3
alkali metals)

Ni CO + 3H2 -→ CH4 + H2O (methanation)

Fe or Co (supported and promoted CO + H2 -→ paraffins + olefins + H2O
with alkali metals) + CO2 (+ other oxygen-containing organic

compounds) (Fischer-Tropsch reaction)

Cu (supported on ZnO, with other CO + 2H2 -→ CH3OH
components, e.g., Al2O3)

Re + Pt (supported on η-Al2O3 or Paraffin dehydrogenation, isomerization
γ-Al2O3 promoted with chloride) and dehydrocyclization
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Catalyst Reaction

Solid acids (e.g., SiO2-Al2O3, zeolites) Paraffin cracking and isomerization

γ-Al2O3 Alcohol -→ olefin + H2O

Pd supported on acidic zeolite Paraffin hydrocracking

Metal-oxide-supported complexes of Olefin polymerization,
Cr, Ti or Zr e.g., ethylene -→ polyethylene

Metal-oxide-supported oxides of Olefin metathesis,
W or Re e.g., 2 propylene → ethylene + butene

Ag(on inert support, promoted by Ethylene + 1/2 O2 → ethylene oxide
alkali metals) (with CO2 + H2O)

V2O5 or Pt 2 SO2 + O2 → 2 SO3

V2O5 (on metal oxide support) Naphthalene + 9/2O2 → phthalic anhydride
+ 2CO2 +2H2O

Bismuth molybdate Propylene + 1/2O2 → acrolein

Mixed oxides of Fe and Mo CH3OH + O2 → formaldehyde
(with CO2 + H2O)

Fe3O4 or metal sulfides H2O + CO → H2 + CO2

Table 1: Industrial reactions over heterogeneous catalysts. This material is used
by permission of John Wiley & Sons, Inc., Copyright c©1992 [7].
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Physical properties

• Figure 1 D of shows a schematic representation of the cross section of a single
pellet.

• The solid density is denoted ρs.

• The pellet volume consists of both void and solid. The pellet void fraction (or
porosity) is denoted by ε and

ε = ρpVg
in which ρp is the effective particle or pellet density and Vg is the pore volume.

• The pore structure is a strong function of the preparation method, and cata-
lysts can have pore volumes (Vg) ranging from 0.1–1 cm3/g pellet.
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Pore properties

• The pores can be the same size or there can be a bimodal distribution with
pores of two different sizes, a large size to facilitate transport and a small
size to contain the active catalyst sites.

• Pore sizes can be as small as molecular dimensions (several Ångströms) or
as large as several millimeters.

• Total catalyst area is generally determined using a physically adsorbed
species, such as N2. The procedure was developed in the 1930s by Brunauer,
Emmett and and Teller [5], and the isotherm they developed is referred to as
the BET isotherm.
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Figure 2: Expanded views of a fixed-bed reactor.
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Effective Diffusivity

Catalyst ε τ
100–110µm powder packed into a tube 0.416 1.56
pelletized Cr2O3 supported on Al2O3 0.22 2.5
pelletized boehmite alumina 0.34 2.7
Girdler G-58 Pd on alumina 0.39 2.8
Haldor-Topsøe MeOH synthesis catalyst 0.43 3.3
0.5% Pd on alumina 0.59 3.9
1.0% Pd on alumina 0.5 7.5
pelletized Ag/8.5% Ca alloy 0.3 6.0
pelletized Ag 0.3 10.0

Table 2: Porosity and tortuosity factors for diffusion in catalysts.
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The General Balances in the Catalyst Particle

In this section we consider the mass and energy balances that arise with
diffusion in the solid catalyst particle when considered at the scale of Figure 1
C. e Nj

E cj

Consider the volume element depicted in the figure

16



Balances

Assume a fixed laboratory coordinate system in which the velocities are de-
fined and let vj be the velocity of species j giving rise to molar flux Nj

Nj = cjvj, j = 1,2, . . . , ns

Let E be the total energy within the volume element and e be the flux of total
energy through the bounding surface due to all mechanisms of transport. The
conservation of mass and energy for the volume element implies

∂cj
∂t
= −∇ ·Nj + Rj, j = 1,2, . . . , ns (1)

∂E
∂t
= −∇ · e (2)

in which Rj accounts for the production of species j due to chemical reaction.

17



Fluxes

Next we consider the fluxes. Since we are considering the diffusion of mass
in a stationary, solid particle, we assume the mass flux is well approximated by

Nj = −Dj∇cj, j = 1,2, . . . , ns

in which Dj is an effective diffusivity for species j. We approximate the total
energy flux by

e = −k̂∇T +
∑
j
NjHj

This expression accounts for the transfer of heat by conduction, in which k̂ is
the effective thermal conductivity of the solid, and transport of energy due to
the mass diffusion.
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Steady state

In this chapter, we are concerned mostly with the steady state. Setting the
time derivatives to zero and assuming constant thermodynamic properties pro-
duces

0 = Dj∇2cj + Rj, j = 1,2, . . . , ns (3)

0 = k̂∇2T −
∑
i
∆HRiri (4)

In multiple-reaction, noniosthermal problems, we must solve these equa-
tions numerically, so the assumption of constant transport and thermodynamic
properties is driven by the lack of data, and not analytical convenience.
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Single Reaction in an Isothermal Particle

• We start with the simplest cases and steadily remove restrictions and increase
the generality. We consider in this section a single reaction taking place in
an isothermal particle.

• First case: the spherical particle, first-order reaction, without external mass-
transfer resistance.

• Next we consider other catalyst shapes, then other reaction orders, and then
other kinetic expressions such as the Hougen-Watson kinetics of Chapter 5.

• We end the section by considering the effects of finite external mass transfer.
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First-Order Reaction in a Spherical Particle

A
k
-→ B, r = kcA (5)

0 = Dj∇2cj + Rj, j = 1,2, . . . , ns

Substituting the production rate into the mass balance, expressing the equa-
tion in spherical coordinates, and assuming pellet symmetry in θ and φ coordi-
nates gives

DA
1
r 2

d
dr

(
r 2dcA
dr

)
− kcA = 0 (6)

in which DA is the effective diffusivity in the pellet for species A.
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Units of rate constant

As written here, the first-order rate constant k has units of inverse time.

Be aware that the units for a heterogeneous reaction rate constant are some-
times expressed per mass or per area of catalyst.

In these cases, the reaction rate expression includes the conversion factors,
catalyst density or catalyst area, as illustrated in Example 7.1.
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Boundary Conditions

• We require two boundary conditions for Equation 6.

• In this section we assume the concentration at the outer boundary of the
pellet, cAs, is known

• The symmetry of the spherical pellet implies the vanishing of the derivative
at the center of the pellet.

• Therefore the two boundary conditions for Equation 6 are

cA = cAs, r = R
dcA
dr

= 0 r = 0
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Dimensionless form

At this point we can obtain better insight by converting the problem into
dimensionless form. Equation 6 has two dimensional quantities, length and
concentration. We might naturally choose the sphere radius R as the length
scale, but we will find that a better choice is to use the pellet’s volume-to-surface
ratio. For the sphere, this characteristic length is

a = Vp
Sp
=

4
3πR

3

4πR2
= R

3
(7)

The only concentration appearing in the problem is the surface concentration
in the boundary condition, so we use that quantity to nondimensionalize the
concentration

r = r
a
, c = cA

cAs
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Dividing through by the various dimensional quantities produces

1

r 2

d
dr

(
r 2dc
dr

)
− Φ2c = 0 (8)

c = 1 r = 3

dc
dr
= 0 r = 0

in which Φ is given by

Φ =
√
ka2

DA
reaction rate
diffusion rate

Thiele modulus (9)
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Thiele Modulus — Φ

The single dimensionless group appearing in the model is referred to as the
Thiele number or Thiele modulus in recognition of Thiele’s pioneering contribu-
tion in this area [11].1 The Thiele modulus quantifies the ratio of the reaction
rate to the diffusion rate in the pellet.

1In his original paper, Thiele used the term modulus to emphasize that this then unnamed dimensionless
group was positive. Later when Thiele’s name was assigned to this dimensionless group, the term modulus was
retained. Thiele number would seem a better choice, but the term Thiele modulus has become entrenched.
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Solving the model

We now wish to solve Equation 8 with the given boundary conditions. Because
the reaction is first order, the model is linear and we can derive an analytical
solution.

It is often convenient in spherical coordinates to consider the variable trans-
formation

c(r) = u(r)
r

(10)

Substituting this relation into Equation 8 provides a simpler differential equa-
tion for u(r),

d2u
dr 2 − Φ

2u = 0 (11)
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with the transformed boundary conditions

u = 3 r = 3

u = 0 r = 0

The boundary condition u = 0 at r = 0 ensures that c is finite at the center
of the pellet.

28



General solution – hyperbolic functions

The solution to Equation 11 is

u(r) = c1 coshΦr + c2 sinhΦr (12)

This solution is analogous to the sine and cosine solutions if one replaces the
negative sign with a positive sign in Equation 11. These functions are shown in
Figure 3.
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Figure 3: Hyperbolic trigonometric functions sinh, cosh and tanh.
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Some of the properties of the hyperbolic functions are

cosh r = e
r + e−r

2
d cosh r
dr

= sinh r

sinh r = e
r − e−r

2
d sinh r
dr

= cosh r

tanh r = sinh r
cosh r
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Evaluating the unknown constants

The constants c1 and c2 are determined by the boundary conditions. Sub-
stituting Equation 12 into the boundary condition at r = 0 gives c1 = 0, and
applying the boundary condition at r = 3 gives c2 = 3/ sinh 3Φ.

Substituting these results into Equations 12 and 10 gives the solution to the
model

c(r) = 3
r

sinhΦr
sinh 3Φ

(13)
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Every picture tells a story

Figure 4 displays this solution for various values of the Thiele modulus.

Note for small values of Thiele modulus, the reaction rate is small compared
to the diffusion rate, and the pellet concentration becomes nearly uniform. For
large values of Thiele modulus, the reaction rate is large compared to the diffu-
sion rate, and the reactant is converted to product before it can penetrate very
far into the pellet.
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Pellet total production rate

We now calculate the pellet’s overall production rate given this concentration
profile. We can perform this calculation in two ways.

The first and more direct method is to integrate the local production rate
over the pellet volume. The second method is to use the fact that, at steady
state, the rate of consumption of reactant within the pellet is equal to the rate
at which material fluxes through the pellet’s exterior surface.

The two expressions are

RAp =
1
Vp

∫ R
0
RA(r)4πr 2dr volume integral (14)

RAp = −
Sp
Vp
DA
dcA
dr

∣∣∣∣
r=R

surface flux
(assumes steady state)

(15)
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in which the local production rate is given by RA(r) = −kcA(r).

We use the direct method here and leave the other method as an exercise.
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Some integration

Substituting the local production rate into Equation 14 and converting the
integral to dimensionless radius gives

RAp = −
kcAs

9

∫ 3

0
c(r)r 2dr (16)

Substituting the concentration profile, Equation 13, and changing the variable
of integration to x = Φr gives

RAp = −
kcAs

3Φ2 sinh 3Φ

∫ 3Φ

0
x sinhxdx (17)

The integral can be found in a table or derived by integration by parts to yield
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finally

RAp = −kcAs
1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(18)
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Effectiveness factor η

It is instructive to compare this actual pellet production rate to the rate in
the absence of diffusional resistance. If the diffusion were arbitrarily fast, the
concentration everywhere in the pellet would be equal to the surface concentra-
tion, corresponding to the limit Φ = 0. The pellet rate for this limiting case is
simply

RAs = −kcAs (19)

We define the effectiveness factor, η, to be the ratio of these two rates

η ≡ RAp
RAs

, effectiveness factor (20)
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Effectiveness factor is the pellet production rate

The effectiveness factor is a dimensionless pellet production rate that mea-
sures how effectively the catalyst is being used.

For η near unity, the entire volume of the pellet is reacting at the same high
rate because the reactant is able to diffuse quickly through the pellet.

For η near zero, the pellet reacts at a low rate. The reactant is unable to
penetrate significantly into the interior of the pellet and the reaction rate is
small in a large portion of the pellet volume.

The pellet’s diffusional resistance is large and this resistance lowers the over-
all reaction rate.
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Effectiveness factor for our problem

We can substitute Equations 18 and 19 into the definition of effectiveness
factor to obtain for the first-order reaction in the spherical pellet

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(21)

Figures 5 and 6 display the effectiveness factor versus Thiele modulus rela-
tionship given in Equation 21.
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The raw picture
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Figure 5: Effectiveness factor versus Thiele modulus for a first-order reaction in
a sphere.
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The usual plot
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Figure 6: Effectiveness factor versus Thiele modulus for a first-order reaction in
a sphere (log-log scale).
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The log-log scale in Figure 6 is particularly useful, and we see the two asymp-
totic limits of Equation 21.

At small Φ, η ≈ 1, and at large Φ, η ≈ 1/Φ.

Figure 6 shows that the asymptote η = 1/Φ is an excellent approximation
for the spherical pellet for Φ ≥ 10.

For large values of the Thiele modulus, the rate of reaction is much greater
than the rate of diffusion, the effectiveness factor is much less than unity, and
we say the pellet is diffusion limited.

Conversely, when the diffusion rate is much larger than the reaction rate, the
effectiveness factor is near unity, and we say the pellet is reaction limited.
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Example — Using the Thiele modulus and effectiveness factor

Example 7.1

The first-order, irreversible reaction (A -→ B) takes place in a 0.3 cm radius
spherical catalyst pellet at T = 450 K.

At 0.7 atm partial pressure of A, the pellet’s production rate is −2.5 ×
10−5 mol/(g s).

Determine the production rate at the same temperature in a 0.15 cm radius
spherical pellet.

The pellet density is ρp = 0.85 g/cm3. The effective diffusivity of A in the
pellet is DA = 0.007 cm2/s.
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Solution

Solution

We can use the production rate and pellet parameters for the 0.3 cm pellet to
find the value for the rate constant k, and then compute the Thiele modulus,
effectiveness factor and production rate for the smaller pellet.

We have three unknowns, k,Φ, η, and the following three equations

RAp = −ηkcAs (22)

Φ =
√
ka2

DA
(23)

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(24)
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The production rate is given in the problem statement.

Solving Equation 23 for k, and substituting that result and Equation 24
into 22, give one equation in the unknown Φ

Φ
[

1
tanh 3Φ

− 1
3Φ

]
= −RApa

2

DAcAs
(25)

The surface concentration and pellet production rates are given by

cAs =
0.7 atm(

82.06cm3 atm
mol K

)
(450 K)

= 1.90× 10−5mol/cm3

RAp =
(
−2.5× 10−5mol

g s

)(
0.85

g
cm3

)
= −2.125

mol
cm3 s
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Substituting these values into Equation 25 gives

Φ
[

1
tanh 3Φ

− 1
3Φ

]
= 1.60

This equation can be solved numerically yielding the Thiele modulus

Φ = 1.93

Using this result, Equation 23 gives the rate constant

k = 2.61 s−1

The smaller pellet is half the radius of the larger pellet, so the Thiele modulus
is half as large or Φ = 0.964, which gives η = 0.685.
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The production rate is therefore

RAp = −0.685
(

2.6s−1
)(

1.90× 10−5mol/cm3
)
= −3.38× 10−5 mol

cm3 s

We see that decreasing the pellet size increases the production rate by almost
60%. Notice that this type of increase is possible only when the pellet is in the
diffusion-limited regime. �
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Other Catalyst Shapes: Cylinders and Slabs

Here we consider the cylinder and slab geometries in addition to the sphere
covered in the previous section.

To have a simple analytical solution, we must neglect the end effects.

We therefore consider in addition to the sphere of radius Rs, the semi-infinite
cylinder of radius Rc, and the semi-infinite slab of thickness 2L, depicted in
Figure 7.
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Figure 7: Characteristic length a for sphere, semi-infinite cylinder and semi-in-
finite slab.
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We can summarize the reaction-diffusion mass balance for these three ge-
ometries by

DA
1
rq
d
dr

(
rq
dcA
dr

)
− kcA = 0 (26)

in which
q = 2 sphere

q = 1 cylinder

q = 0 slab
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The associated boundary conditions are

cA = cAs


r = Rs sphere
r = Rc cylinder
r = L slab

dcA
dr

= 0 r = 0 all geometries

The characteristic length a is again best defined as the volume-to-surface ratio,
which gives for these geometries

a = Rs
3

sphere

a = Rc
2

cylinder

a = L slab
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The dimensionless form of Equation 26 is

1
rq
d
dr

(
rq
dc
dr

)
− Φ2c = 0 (27)

c = 1 r = q + 1

dc
dr
= 0 r = 0

in which the boundary conditions for all three geometries can be compactly
expressed in terms of q.
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The effectiveness factor for the different geometries can be evaluated us-
ing the integral and flux approaches, Equations 14–15, which lead to the two
expressions

η = 1
(q + 1)q

∫ q+1

0
crqdr (28)

η = 1
Φ2

dc
dr

∣∣∣∣
r=q+1

(29)
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Effectiveness factor — Analytical

We have already solved Equations 27 and 29 for the sphere, q = 2. Ana-
lytical solutions for the slab and cylinder geometries also can be derived. See
Exercise 7.1 for the slab geometry. The results are summarized in the following
table.

Sphere η =
1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(30)

Cylinder η =
1
Φ
I1(2Φ)
I0(2Φ)

(31)

Slab η =
tanhΦ
Φ

(32)
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Effectiveness factor — Graphical

The effectiveness factors versus Thiele modulus for the three geometries are
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Φ

sphere(30)
cylinder(31)

slab(32)
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Use the right Φ and ignore geometry!

Although the functional forms listed in the table appear quite different, we
see in the figure that these solutions are quite similar.

The effectiveness factor for the slab is largest, the cylinder is intermediate,
and the sphere is the smallest at all values of Thiele modulus.

The three curves have identical small Φ and large Φ asymptotes.

The maximum difference between the effectiveness factors of the sphere
and the slab η is about 16%, and occurs at Φ = 1.6. For Φ < 0.5 and Φ > 7, the
difference between all three effectiveness factors is less than 5%.
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Other Reaction Orders

For reactions other than first order, the reaction-diffusion equation is non-
linear and numerical solution is required.

We will see, however, that many of the conclusions from the analysis of the
first-order reaction case still apply for other reaction orders.

We consider nth-order, irreversible reaction kinetics

A
k
-→ B, r = kcnA (33)

The reaction-diffusion equation for this case is

DA
1
rq
d
dr

(
rq
dcA
dr

)
− kcnA = 0 (34)
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Thiele modulus for different reaction orders

The results for various reaction orders have a common asymptote if we in-
stead define

Φ =
√√√n+ 1

2
kcn−1
As a2

DA

Thiele modulus

nth-order reaction

(35)

1
rq
d
dr

(
rq
dc
dr

)
− 2
n+ 1

Φ2cn = 0

c = 1 r = q + 1

dc
dr
= 0 r = 0
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η = 1
(q + 1)q

∫ q+1

0
cnrqdr

η = n+ 1
2

1
Φ2

dc
dr

∣∣∣∣
r=q+1
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Reaction order greater than one

Figure 8 shows the effect of reaction order for n ≥ 1 in a spherical pellet.

As the reaction order increases, the effectiveness factor decreases.

Notice that the definition of Thiele modulus in Equation 35 has achieved the
desired goal of giving all reaction orders a common asymptote at high values of
Φ.
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Reaction order greater than one

0.1

1

0.1 1 10

η

Φ

n = 1
n = 2
n = 5
n = 10

Figure 8: Effectiveness factor versus Thiele modulus in a spherical pellet; reac-
tion orders greater than unity.
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Reaction order less than one

Figure 9 shows the effectiveness factor versus Thiele modulus for reaction
orders less than unity.

Notice the discontinuity in slope of the effectiveness factor versus Thiele
modulus that occurs when the order is less than unity.
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Figure 9: Effectiveness factor versus Thiele modulus in a spherical pellet; reac-
tion orders less than unity.
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Reaction order less than one

Recall from the discussion in Chapter 4 that if the reaction order is less than
unity in a batch reactor, the concentration of A reaches zero in finite time.

In the reaction-diffusion problem in the pellet, the same kinetic effect causes
the discontinuity in η versus Φ.

For large values of Thiele modulus, the diffusion is slow compared to reac-
tion, and the A concentration reaches zero at some nonzero radius inside the
pellet.

For orders less than unity, an inner region of the pellet has identically zero
A concentration.

Figure 10 shows the reactant concentration versus radius for the zero-order
reaction case in a sphere at various values of Thiele modulus.
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Figure 10: Dimensionless concentration versus radius for zero-order reaction
(n = 0) in a spherical pellet (q = 2); for large Φ the inner region of the pellet has
zero A concentration.
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Use the right Φ and ignore reaction order!

Using the Thiele modulus

Φ =
√√√n+ 1

2
kcn−1
As a2

DA

allows us to approximate all orders with the analytical result derived for first
order.

The approximation is fairly accurate and we don’t have to solve the problem
numerically.
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Hougen-Watson Kinetics

Given the discussion in Section 5.6 of adsorption and reactions on catalyst
surfaces, it is reasonable to expect our best catalyst rate expressions may be of
the Hougen-Watson form.

Consider the following reaction and rate expression

A -→ products r = kcm
KAcA

1+KAcA
(36)

This expression arises when gas-phase A adsorbs onto the catalyst surface and
the reaction is first order in the adsorbed A concentration.
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If we consider the slab catalyst geometry, the mass balance is

DA
d2cA
dr 2

− kcm
KAcA

1+KAcA
= 0

and the boundary conditions are

cA = cAs r = L
dcA
dr

= 0 r = 0

We would like to study the effectiveness factor for these kinetics.
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First we define dimensionless concentration and length as before to arrive at
the dimensionless reaction-diffusion model

d2c
dr 2 − Φ̃

2 c
1+φc = 0 (37)

c = 1 r = 1

dc
dr
= 0 r = 0 (38)

in which we now have two dimensionless groups

Φ̃ =
√
kcmKAa2

DA
, φ = KAcAs (39)
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We use the tilde to indicate Φ̃ is a good first guess for a Thiele modulus for
this problem, but we will find a better candidate subsequently.

The new dimensionless groupφ represents a dimensionless adsorption con-
stant.

The effectiveness factor is calculated from

η = RAp
RAs

= −(Sp/Vp)DA dcA/dr |r=a−kcmKAcAs/(1+KAcAs)

which becomes upon definition of the dimensionless quantities

η = 1+φ
Φ̃2

dc
dr

∣∣∣∣
r=1

(40)

72



Rescaling the Thiele modulus

Now we wish to define a Thiele modulus so that η has a common asymptote
at large Φ for all values of φ.

This goal was accomplished for the nth-order reaction as shown in Figures 8
and 9 by including the factor (n+1)/2 in the definition of Φ given in Equation 35.

The text shows how to do this analysis, which was developed independently
by four chemical engineers.
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What did ChE professors work on in the 1960s?

This idea appears to have been discovered independently by three chemical
engineers in 1965.

To quote from Aris [2, p. 113]

This is the essential idea in three papers published independently in March,
May and June of 1965; see Bischoff [4], Aris [1] and Petersen [10]. A more
limited form was given as early as 1958 by Stewart in Bird, Stewart and
Lightfoot [3, p. 338].
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Rescaling the Thiele modulus

The rescaling is accomplished by

Φ =
(
φ

1+φ

)
1√

2 (φ− ln(1+φ)) Φ̃

So we have the following two dimensionless groups for this problem

Φ =
(
φ

1+φ

)√
kcmKAa2

2DA (φ− ln(1+φ)) , φ = KAcAs (41)

The payoff for this analysis is shown in Figures 11 and 12.
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The first attempt
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Figure 11: Effectiveness factor versus an inappropriate Thiele modulus in a slab;
Hougen-Watson kinetics.

76



The right rescaling
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Figure 12: Effectiveness factor versus appropriate Thiele modulus in a slab;
Hougen-Watson kinetics.
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Use the right Φ and ignore the reaction form!

If we use our first guess for the Thiele modulus, Equation 39, we obtain
Figure 11 in which the various values of φ have different asymptotes.

Using the Thiele modulus defined in Equation 41, we obtain the results in
Figure 12. Figure 12 displays things more clearly.

Again we see that as long as we choose an appropriate Thiele modulus, we
can approximate the effectiveness factor for all values of φ with the first-order
reaction.

The largest approximation error occurs near Φ = 1, and if Φ > 2 or Φ < 0.2,
the approximation error is negligible.
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External Mass Transfer

If the mass-transfer rate from the bulk fluid to the exterior of the pellet is
not high, then the boundary condition

cA(r = R) = cAf

is not satisfied.

0−R R
r

0−R R
r

cAf
cAs

cAf
cA

cA
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Mass transfer boundary condition

To obtain a simple model of the external mass transfer, we replace the
boundary condition above with a flux boundary condition

DA
dcA
dr

= km
(
cAf − cA

)
, r = R (42)

in which km is the external mass-transfer coefficient.

If we multiply Equation 42 by a/cAfDA, we obtain the dimensionless bound-
ary condition

dc
dr
= B (1− c) , r = 3 (43)

in which

B = kma
DA

(44)

is the Biot number or dimensionless mass-transfer coefficient.
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Mass transfer model

Summarizing, for finite external mass transfer, the dimensionless model and
boundary conditions are

1

r 2

d
dr

(
r 2dc
dr

)
− Φ2c = 0 (45)

dc
dr
= B (1− c) r = 3

dc
dr
= 0 r = 0
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Solution

The solution to the differential equation satisfying the center boundary con-
dition can be derived as in Section to produce

c(r) = c2

r
sinhΦr (46)

in which c2 is the remaining unknown constant. Evaluating this constant using
the external boundary condition gives

c(r) = 3
r

sinhΦr
sinh 3Φ + (Φ cosh 3Φ − (sinh 3Φ)/3) /B

(47)
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Figure 13: Dimensionless concentration versus radius for different values of the
Biot number; first-order reaction in a spherical pellet with Φ = 1.
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Effectiveness Factor

The effectiveness factor can again be derived by integrating the local reaction
rate or computing the surface flux, and the result is

η = 1
Φ

[
1/ tanh 3Φ − 1/(3Φ)

1+ Φ (1/ tanh 3Φ − 1/(3Φ)) /B

]
(48)

in which

η = RAp
RAb

Notice we are comparing the pellet’s reaction rate to the rate that would be
achieved if the pellet reacted at the bulk fluid concentration rather than the
pellet exterior concentration as before.

84



10−5

10−4

10−3

10−2

10−1

1

0.01 0.1 1 10 100

B=∞

2.0

0.5

0.1

η

Φ

Figure 14: Effectiveness factor versus Thiele modulus for different values of the
Biot number; first-order reaction in a spherical pellet.
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Figure 14 shows the effect of the Biot number on the effectiveness factor or
total pellet reaction rate.

Notice that the slope of the log-log plot of η versus Φ has a slope of nega-
tive two rather than negative one as in the case without external mass-transfer
limitations (B = ∞).

Figure 15 shows this effect in more detail.
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Figure 15: Asymptotic behavior of the effectiveness factor versus Thiele modu-
lus; first-order reaction in a spherical pellet.
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Making a sketch of η versus Φ

If B is small, the log-log plot corners with a slope of negative two at Φ =
√
B.

If B is large, the log-log plot first corners with a slope of negative one at
Φ = 1, then it corners again and decreases the slope to negative two at Φ =

√
B.

Both mechanisms of diffusional resistance, the diffusion within the pellet and
the mass transfer from the fluid to the pellet, show their effect on pellet reaction
rate by changing the slope of the effectiveness factor by negative one.

Given the value of the Biot number, one can easily sketch the straight line
asymptotes shown in Figure 15. Then, given the value of the Thiele modulus,
one can determine the approximate concentration profile, and whether internal
diffusion or external mass transfer or both limit the pellet reaction rate.
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Which mechanism controls?

The possible cases are summarized in the table

Biot number Thiele modulus Mechanism controlling

pellet reaction rate

B < 1 Φ < B reaction

B < Φ < 1 external mass transfer

1 < Φ both external mass transfer

and internal diffusion

1 < B Φ < 1 reaction

1 < Φ < B internal diffusion

B < Φ both internal diffusion and

external mass transfer

Table 3: The controlling mechanisms for pellet reaction rate given finite rates
of internal diffusion and external mass transfer.
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Observed versus Intrinsic Kinetic Parameters

• We often need to determine a reaction order and rate constant for some cat-
alytic reaction of interest.

• Assume the following nth-order reaction takes place in a catalyst particle

A -→ B, r1 = kcnA

• We call the values of k and n the intrinsic rate constant and reaction order to
distinguish them from what we may estimate from data.

• The typical experiment is to change the value of cA in the bulk fluid, measure
the rate r1 as a function of cA, and then find the values of the parameters k
and n that best fit the measurements.
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Observed versus Intrinsic Kinetic Parameters

Here we show only that one should exercise caution with this estimation if we
are measuring the rates with a solid catalyst. The effects of reaction, diffusion
and external mass transfer may all manifest themselves in the measured rate.

We express the reaction rate as

r1 = ηkcnAb (49)

We also know that at steady state, the rate is equal to the flux of A into the
catalyst particle

r1 = kmA(cAb − cAs) =
DA
a
dcA
dr

∣∣∣∣
r=R

(50)

We now study what happens to our experiment under different rate-limiting
steps.
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Reaction limited

First assume that both the external mass transfer and internal pellet diffusion
are fast compared to the reaction. Then η = 1, and we would estimate the
intrinsic parameters correctly in Equation 49

kob = k

nob = n

Everything goes according to plan when we are reaction limited.
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Diffusion limited

Next assume that the external mass transfer and reaction are fast, but the
internal diffusion is slow. In this case we have η = 1/Φ, and using the definition
of Thiele modulus and Equation 49

r1 = kobc
(n+1)/2
As (51)

kob =
1
a

√
2

n+ 1
DA

√
k (52)

nob = (n+ 1)/2 (53)
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Diffusion limited

So we see two problems. The rate constant we estimate, kob, varies as the
square root of the intrinsic rate constant, k. The diffusion has affected the
measured rate of the reaction and disguised the rate constant.

We even get an incorrect reaction order: a first-order reaction appears half-
order, a second-order reaction appears first-order, and so on.

r1 = kobc
(n+1)/2
As

kob =
1
a

√
2

n+ 1
DA

√
k

nob = (n+ 1)/2
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Diffusion limited

Also consider what happens if we vary the temperature and try to determine
the reaction’s activation energy.

Let the temperature dependence of the diffusivity, DA, be represented also
in Arrhenius form, with Ediff the activation energy of the diffusion coefficient.

Let Erxn be the intrinsic activation energy of the reaction. The observed acti-
vation energy from Equation 52 is

Eob =
Ediff + Erxn

2

so both activation energies show up in our estimated activation energy.

Normally the temperature dependence of the diffusivity is much smaller than
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the temperature dependence of the reaction, Ediff � Erxn, so we would estimate
an activation energy that is one-half the intrinsic value.
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Mass transfer limited

Finally, assume the reaction and diffusion are fast compared to the external
mass transfer. Then we have cAb� cAs and Equation 50 gives

r1 = kmAcAb (54)

If we vary cAb and measure r1, we would find the mass transfer coefficient
instead of the rate constant, and a first-order reaction instead of the true reaction
order

kob = kmA
nob = 1
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Normally, mass-transfer coefficients also have fairly small temperature de-
pendence compared to reaction rates, so the observed activation energy would
be almost zero, independent of the true reaction’s activation energy.
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Moral to the story

Mass transfer and diffusion resistances disguise the reaction kinetics.

We can solve this problem in two ways. First, we can arrange the experiment
so that mass transfer and diffusion are fast and do not affect the estimates of
the kinetic parameters. How?

If this approach is impractical or too expensive, we can alternatively model
the effects of the mass transfer and diffusion, and estimate the parameters DA
and kmA simultaneously with k and n. We develop techniques in Chapter 9 to
handle this more complex estimation problem.
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Nonisothermal Particle Considerations

• We now consider situations in which the catalyst particle is not isothermal.

• Given an exothermic reaction, for example, if the particle’s thermal conductiv-
ity is not large compared to the rate of heat release due to chemical reaction,
the temperature rises inside the particle.

• We wish to explore the effects of this temperature rise on the catalyst perfor-
mance.
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Single, first-order reaction

• We have already written the general mass and energy balances for the catalyst
particle in Section .

0 = Dj∇2cj + Rj, j = 1,2, . . . , ns

0 = k̂∇2T −
∑
i
∆HRiri

• Consider the single-reaction case, in which we have RA = −r and Equations 3
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and 4 reduce to

DA∇2cA = r

k̂∇2T = ∆HRr
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Reduce to one equation

• We can eliminate the reaction term between the mass and energy balances to
produce

∇2T = ∆HRDA
k̂

∇2cA

which relates the conversion of the reactant to the rise (or fall) in temperature.

• Because we have assumed constant properties, we can integrate this equation
twice to give the relationship between temperature and A concentration

T − Ts =
−∆HRDA

k̂
(cAs − cA) (55)
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Rate constant variation inside particle

We now consider a first-order reaction and assume the rate constant has an
Arrhenius form,

k(T) = ks exp
[
−E

(
1
T
− 1
Ts

)]
in which Ts is the pellet exterior temperature, and we assume fast external mass
transfer.

Substituting Equation 55 into the rate constant expression gives

k(T) = ks exp

[
E
Ts

(
1− Ts

Ts +∆HRDA(cA − cAs)/k̂

)]
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Dimensionless parameters α, β, γ

We can simplify matters by defining three dimensionless variables

γ = E
Ts
, β = −∆HRDAcAs

k̂Ts
, Φ̃2 = k(Ts)

DA
a2

in which γ is a dimensionless activation energy, β is a dimensionless heat of
reaction, and Φ̃ is the usual Thiele modulus. Again we use the tilde to indicate
we will find a better Thiele modulus subsequently.

With these variables, we can express the rate constant as

k(T) = ks exp

[
γβ(1− c)

1+ β(1− c)

]
(56)
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Nonisothermal model — Weisz-Hicks problem

We then substitute the rate constant into the mass balance, and assume a
spherical particle to obtain the final dimensionless model

1

r 2

d
dr

(
r 2dc
dr

)
= Φ̃2c exp

(
γβ(1− c)

1+ β(1− c)

)
dc
dr
= 0 r = 3

c = 1 r = 0 (57)

Equation 57 is sometimes called the Weisz-Hicks problem in honor of Weisz and
Hicks’s outstanding paper in which they computed accurate numerical solutions
to this problem [13].
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Effectiveness factor for nonisothermal problem

Given the solution to Equation 57, we can compute the effectiveness factor
for the nonisothermal pellet using the usual relationship

η = 1
Φ̃2

dc
dr

∣∣∣∣
r=3

(58)

If we perform the same asymptotic analysis of Section on the Weisz-Hicks
problem, we find, however, that the appropriate Thiele modulus for this problem
is

Φ = Φ̃/I(γ, β), I(γ, β) =
[

2
∫ 1

0
c exp

(
γβ(1− c)

1+ β(1− c)

)
dc
]1/2

(59)

The normalizing integral I(γ, β) can be expressed as a sum of exponential in-
tegrals [2] or evaluated by quadrature.
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Figure 16: Effectiveness factor versus normalized Thiele modulus for a
first-order reaction in a nonisothermal spherical pellet.

108



• Note that Φ is well chosen in Equation 59 because the large Φ asymptotes are
the same for all values of γ and β.

• The first interesting feature of Figure 16 is that the effectiveness factor is
greater than unity for some values of the parameters.

• Notice that feature is more pronounced as we increase the exothermic heat
of reaction.

• For the highly exothermic case, the pellet’s interior temperature is signifi-
cantly higher than the exterior temperature Ts. The rate constant inside the
pellet is therefore much larger than the value at the exterior, ks. This leads
to η greater than unity.
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• A second striking feature of the nonisothermal pellet is that multiple steady
states are possible.

• Consider the case Φ = 0.01, β = 0.4 and γ = 30 shown in Figure 16.

• The effectiveness factor has three possible values for this case.

• We show in the next two figures the solution to Equation 57 for this case.
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The concentration profile
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And the temperature profile
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MSS in nonisothermal pellet

• The three temperature and concentration profiles correspond to an ignited
steady state (C), an extinguished steady state (A), and an unstable interme-
diate steady state (B).

• As we showed in Chapter 6, whether we achieve the ignited or extinguished
steady state in the pellet depends on how the reactor is started.

• For realistic values of the catalyst thermal conductivity, however, the pel-
let can often be considered isothermal and the energy balance can be ne-
glected [9].

• Multiple steady-state solutions in the particle may still occur in practice, how-
ever, if there is a large external heat transfer resistance.
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Multiple Reactions

• As the next step up in complexity, we consider the case of multiple reactions.

• Even numerical solution of some of these problems is challenging for two
reasons.

• First, steep concentration profiles often occur for realistic parameter values,
and we wish to compute these profiles accurately. It is not unusual for species
concentrations to change by 10 orders of magnitude within the pellet for
realistic reaction and diffusion rates.

• Second, we are solving boundary-value problems because the boundary con-
ditions are provided at the center and exterior surface of the pellet.
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• We use the collocation method, which is described in more detail in Ap-
pendix A.
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Multiple reaction example — Catalytic converter

The next example involves five species, two reactions with Hougen-Watson
kinetics, and both diffusion and external mass-transfer limitations.

Consider the oxidation of CO and a representative volatile organic such as
propylene in a automobile catalytic converter containing spherical catalyst pel-
lets with particle radius 0.175 cm.

The particle is surrounded by a fluid at 1.0 atm pressure and 550 K containing
2% CO, 3% O2 and 0.05% (500 ppm) C3H6. The reactions of interest are

CO+ 1
2

O2 -→ CO2 (60)

C3H6 +
9
2

O2 -→ 3CO2 + 3H2O (61)
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with rate expressions given by Oh et al. [8]

r1 =
k1cCOcO2

(1+KCOcCO +KC3H6cC3H6)2
(62)

r2 =
k2cC3H6cO2

(1+KCOcCO +KC3H6cC3H6)2
(63)
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Catalytic converter

The rate constants and the adsorption constants are assumed to have Arrhe-
nius form.

The parameter values are given in Table 4 [8].

The pellet may be assumed to be isothermal.

Calculate the steady-state pellet concentration profiles of all reactants and
products.
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Data
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Parameter Value Units Parameter Value Units

P 1.013× 105 N/m2 k10 7.07× 1019 mol/cm3· s

T 550 K k20 1.47× 1021 mol/cm3· s

R 0.175 cm KCO0 8.099× 106 cm3/mol

E1 13,108 K KC3H60 2.579× 108 cm3/mol

E2 15,109 K DCO 0.0487 cm2/s

ECO −409 K DO2 0.0469 cm2/s

EC3H6 191 K DC3H6 0.0487 cm2/s

cCOf 2.0 % kmCO 3.90 cm/s

cO2f 3.0 % kmO2 4.07 cm/s

cC3H6f 0.05 % kmC3H6 3.90 cm/s

Table 4: Kinetic and mass-transfer parameters for the catalytic converter exam-
ple.
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Solution

We solve the steady-state mass balances for the three reactant species,

Dj
1
r 2

d
dr

(
r 2dcj
dr

)
= −Rj (64)

with the boundary conditions

dcj
dr
= 0 r = 0 (65)

Dj
dcj
dr
= kmj

(
cjf − cj

)
r = R (66)

j = {CO,O2,C3H6}. The model is solved using the collocation method. The
reactant concentration profiles are shown in Figures 17 and 18.
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Figure 17: Concentration profiles of reactants; fluid concentration of O2 (×), CO
(+), C3H6 (∗).
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Figure 18: Concentration profiles of reactants (log scale); fluid concentration of
O2 (×), CO (+), C3H6 (∗).
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Results

Notice that O2 is in excess and both CO and C3H6 reach very low values within
the pellet.

The log scale in Figure 18 shows that the concentrations of these reactants
change by seven orders of magnitude.

Obviously the consumption rate is large compared to the diffusion rate for
these species.

The external mass-transfer effect is noticeable, but not dramatic.
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Product Concentrations

The product concentrations could simply be calculated by solving their mass
balances along with those of the reactants.

Because we have only two reactions, however, the products concentrations
are also computable from the stoichiometry and the mass balances.

The text shows this step in detail.

The results of the calculation are shown in the next figure.
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Figure 19: Concentration profiles of the products; fluid concentration of CO2

(×), H2O (+).
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Product Profiles

Notice from Figure 19 that CO2 is the main product.

Notice also that the products flow out of the pellet, unlike the reactants,
which are flowing into the pellet.
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Fixed-Bed Reactor Design

• Given our detailed understanding of the behavior of a single catalyst particle,
we now are prepared to pack a tube with a bed of these particles and solve
the fixed-bed reactor design problem.

• In the fixed-bed reactor, we keep track of two phases. The fluid-phase
streams through the bed and transports the reactants and products through
the reactor.

• The reaction-diffusion processes take place in the solid-phase catalyst parti-
cles.

• The two phases communicate to each other by exchanging mass and energy
at the catalyst particle exterior surfaces.
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• We have constructed a detailed understanding of all these events, and now
we assemble them together.
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Coupling the Catalyst and Fluid

We make the following assumptions:

1. Uniform catalyst pellet exterior. Particles are small compared to the length
of the reactor.

2. Plug flow in the bed, no radial profiles.

3. Neglect axial diffusion in the bed.

4. Steady state.
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Fluid phase

In the fluid phase, we track the molar flows of all species, the temperature
and the pressure.

We can no longer neglect the pressure drop in the tube because of the catalyst
bed. We use an empirical correlation to describe the pressure drop in a packed
tube, the well-known Ergun equation [6].
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dNj
dV

= Rj (67)

QρĈp
dT
dV
= −

∑
i
∆HRiri +

2
R
Uo(Ta − T) (68)

dP
dV
= −(1− εB)

Dpε3
B

Q
A2
c

[
150

(1− εB)µf
Dp

+ 7
4
ρQ
Ac

]
(69)

The fluid-phase boundary conditions are provided by the known feed condi-
tions at the tube entrance

Nj = Njf , z = 0 (70)

T = Tf , z = 0 (71)

P = Pf , z = 0 (72)
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Catalyst particle

Inside the catalyst particle, we track the concentrations of all species and the
temperature.

Dj
1
r 2

d
dr

(
r 2dc̃j
dr

)
= −R̃j (73)

k̂
1
r 2

d
dr

(
r 2dT̃
dr

)
=
∑
i
∆HRir̃ i (74)

The boundary conditions are provided by the mass-transfer and heat-transfer
rates at the pellet exterior surface, and the zero slope conditions at the pellet
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center

dc̃j
dr

= 0 r = 0 (75)

Dj
dc̃j
dr

= kmj(cj − c̃j) r = R (76)

dT̃
dr
= 0 r = 0 (77)

k̂
dT̃
dr
= kT(T − T̃ ) r = R (78)
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Coupling equations

Finally, we equate the production rate Rj experienced by the fluid phase to
the production rate inside the particles, which is where the reaction takes place.

Analogously, we equate the enthalpy change on reaction experienced by the
fluid phase to the enthalpy change on reaction taking place inside the particles.

Rj︸︷︷︸
rate j / vol

= − (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp
Vp
Dj
dc̃j
dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate j / vol cat

(79)

∑
i
∆HRiri︸ ︷︷ ︸

rate heat / vol

= (1− εB)︸ ︷︷ ︸
vol cat / vol

Sp
Vp
k̂
dT̃
dr

∣∣∣∣∣
r=R︸ ︷︷ ︸

rate heat / vol cat

(80)
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Bed porosity, εB

We require the bed porosity (Not particle porosity!) to convert from the rate
per volume of particle to the rate per volume of reactor.

The bed porosity or void fraction, εB, is defined as the volume of voids per
volume of reactor.

The volume of catalyst per volume of reactor is therefore 1− εB.

This information can be presented in a number of equivalent ways. We can
easily measure the density of the pellet, ρp, and the density of the bed, ρB.

From the definition of bed porosity, we have the relation

ρB = (1− εB)ρp
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or if we solve for the volume fraction of catalyst

1− εB = ρB/ρp
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In pictures
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Rj

r̃ i
R̃j

ri

Mass

Rj = (1− εB)R̃jp

R̃jp = −
Sp
Vp
Dj
dc̃j
dr

∣∣∣∣∣
r=R

Energy

∑
i
∆HRiri = (1− εB)

∑
i
∆HRir̃ ip

∑
i
∆HRir̃ ip =

Sp
Vp
k̂
dT̃
dr

∣∣∣∣∣
r=R

Figure 20: Fixed-bed reactor volume element containing fluid and catalyst par-
ticles; the equations show the coupling between the catalyst particle balances
and the overall reactor balances.
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Summary

Equations 67–80 provide the full packed-bed reactor model given our as-
sumptions.

We next examine several packed-bed reactor problems that can be solved
without solving this full set of equations.

Finally, we present an example that requires numerical solution of the full
set of equations.
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First-order, isothermal fixed-bed reactor

Use the rate data presented in Example 7.1 to find the fixed-bed reactor
volume and the catalyst mass needed to convert 97% of A. The feed to the reactor
is pure A at 1.5 atm at a rate of 12 mol/s. The 0.3 cm pellets are to be used,
which leads to a bed density ρB = 0.6 g/cm3. Assume the reactor operates
isothermally at 450 K and that external mass-transfer limitations are negligible.
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Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− εB)ηkcA

between the limits NAf and 0.03NAf , in which cA is the A concentration in the
fluid. For the first-order, isothermal reaction, the Thiele modulus is independent
of A concentration, and is therefore independent of axial position in the bed

Φ = R
3

√
k
DA
= 0.3cm

3

√
2.6s−1

0.007cm2/s
= 1.93

The effectiveness factor is also therefore a constant

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
= 1

1.93

[
1− 1

5.78

]
= 0.429
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We express the concentration of A in terms of molar flows for an ideal-gas mix-
ture

cA =
P
RT

(
NA

NA +NB

)
The total molar flow is constant due to the reaction stoichiometry so NA+NB =
NAf and we have

cA =
P
RT

NA
NAf

Substituting these values into the material balance, rearranging and integrating
over the volume gives

VR = −(1− εB)
(
RTNAf
ηkP

)∫ 0.03NAf

NAf

dNA
NA

VR = −
(

0.6
0.85

)
(82.06)(450)(12)
(0.429)(2.6)(1.5)

ln(0.03) = 1.32× 106cm3
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and

Wc = ρBVR =
0.6

1000

(
1.32× 106

)
= 789 kg

We see from this example that if the Thiele modulus and effectiveness factors
are constant, finding the size of a fixed-bed reactor is no more difficult than
finding the size of a plug-flow reactor.
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Mass-transfer limitations in a fixed-bed reactor

Reconsider Example given the following two values of the mass-transfer
coefficient

km1 = 0.07 cm/s

km2 = 1.4 cm/s
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Solution

First we calculate the Biot numbers from Equation 44 and obtain

B1 =
(0.07)(0.1)
(0.007)

= 1

B2 =
(1.4)(0.1)
(0.007)

= 20

Inspection of Figure 14 indicates that we expect a significant reduction in the
effectiveness factor due to mass-transfer resistance in the first case, and little
effect in the second case. Evaluating the effectiveness factors with Equation 48
indeed shows

η1 = 0.165

η2 = 0.397
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which we can compare to η = 0.429 from the previous example with no mass-
transfer resistance. We can then easily calculate the required catalyst mass from
the solution of the previous example without mass-transfer limitations, and the
new values of the effectiveness factors

VR1 =
(

0.429
0.165

)
(789) = 2051 kg

VR2 =
(

0.429
0.397

)
(789) = 852 kg

As we can see, the first mass-transfer coefficient is so small that more than twice
as much catalyst is required to achieve the desired conversion compared to the
case without mass-transfer limitations. The second mass-transfer coefficient is
large enough that only 8% more catalyst is required.
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Second-order, isothermal fixed-bed reactor

Estimate the mass of catalyst required in an isothermal fixed-bed reactor for
the second-order, heterogeneous reaction.

A
k
-→ B

r = kc2
A k = 2.25× 105cm3/mol s

The gas feed consists of A and an inert, each with molar flowrate of 10 mol/s, the
total pressure is 4.0 atm and the temperature is 550 K. The desired conversion
of A is 75%. The catalyst is a spherical pellet with a radius of 0.45 cm. The
pellet density is ρp = 0.68 g/cm3 and the bed density is ρB = 0.60 g/cm3. The
effective diffusivity of A is 0.008 cm2/s and may be assumed constant. You may
assume the fluid and pellet surface concentrations are equal.
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Solution

We solve the fixed-bed design equation

dNA
dV

= RA = −(1− εB)ηkc2
A

NA(0) = NAf (81)

between the limits NAf and 0.25NAf . We again express the concentration of A
in terms of the molar flows

cA =
P
RT

(
NA

NA +NB +NI

)

As in the previous example, the total molar flow is constant and we know its
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value at the entrance to the reactor

NT = NAf +NBf +NIf = 2NAf

Therefore,

cA =
P
RT

NA
2NAf

(82)

Next we use the definition of Φ for nth-order reactions given in Equation 35

Φ = R
3

[
(n+ 1)kcn−1

A
2De

]1/2

= R
3

(n+ 1)k
2De

(
P
RT

NA
2NAf

)n−1
1/2

(83)

Substituting in the parameter values gives

Φ = 9.17

(
NA

2NAf

)1/2

(84)

150



For the second-order reaction, Equation 84 shows that Φ varies with the molar
flow, which means Φ and η vary along the length of the reactor as NA decreases.
We are asked to estimate the catalyst mass needed to achieve a conversion of A
equal to 75%. So for this particular example, Φ decreases from 6.49 to 3.24. As
shown in Figure 8, we can approximate the effectiveness factor for the second-
order reaction using the analytical result for the first-order reaction, Equation 30,

η = 1
Φ

[
1

tanh 3Φ
− 1

3Φ

]
(85)

Summarizing so far, to compute NA versus VR, we solve one differential equa-
tion, Equation 81, in which we use Equation 82 for cA, and Equations 84 and 85
for Φ and η. We march in VR until NA = 0.25NAf . The solution to the differential
equation is shown in Figure 21.
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Figure 21: Molar flow of A versus reactor volume for second-order, isothermal
reaction in a fixed-bed reactor.

The required reactor volume and mass of catalyst are:

VR = 361 L, Wc = ρBVR = 216 kg
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As a final exercise, given that Φ ranges from 6.49 to 3.24, we can make the
large Φ approximation

η = 1
Φ

(86)

to obtain a closed-form solution. If we substitute this approximation for η, and
Equation 83 into Equation 81 and rearrange we obtain

dNA
dV

= −(1− εB)
√
k (P/RT)3/2

(R/3)
√

3/DA(2NAf)3/2
N3/2
A

Separating and integrating this differential equation gives

VR =
4
[
(1− xA)−1/2 − 1

]
NAf(R/3)

√
3/DA

(1− εB)
√
k (P/RT)3/2

(87)

Large Φ approximation

The results for the large Φ approximation also are shown in Figure 21. Notice
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from Figure 8 that we are slightly overestimating the value of η using Equa-
tion 86, so we underestimate the required reactor volume. The reactor size and
the percent change in reactor size are

VR = 333 L, ∆ = −7.7%

Given that we have a result valid for all Φ that requires solving only a single differ-
ential equation, one might question the value of this closed-form solution. One
advantage is purely practical. We may not have a computer available. Instruc-
tors are usually thinking about in-class examination problems at this juncture.
The other important advantage is insight. It is not readily apparent from the dif-
ferential equation what would happen to the reactor size if we double the pellet
size, or halve the rate constant, for example. Equation 87, on the other hand,
provides the solution’s dependence on all parameters. As shown in Figure 21
the approximation error is small. Remember to check that the Thiele modulus
is large for the entire tube length, however, before using Equation 87.
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Hougen-Watson kinetics in a fixed-bed reactor

The following reaction converting CO to CO2 takes place in a catalytic, fixed-
bed reactor operating isothermally at 838 K and 1.0 atm

CO+ 1
2

O2 -→ CO2 (88)

The following rate expression and parameters are adapted from a different
model given by Oh et al. [8]. The rate expression is assumed to be of the
Hougen-Watson form

r = kcCOcO2

1+KcCO
mol/s cm3 pellet
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The constants are provided below

k = 8.73× 1012 exp(−13,500/T) cm3/mol s

K = 8.099× 106 exp(409/T) cm3/mol

DCO = 0.0487 cm2/s

in which T is in Kelvin. The catalyst pellet radius is 0.1 cm. The feed to the
reactor consists of 2 mol% CO, 10 mol% O2, zero CO2 and the remainder inerts.
Find the reactor volume required to achieve 95% conversion of the CO.
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Solution

Given the reaction stoichiometry and the excess of O2, we can neglect the
change in cO2 and approximate the reaction as pseudo-first order in CO

r = k′cCO

1+KcCO
mol/s cm3 pellet

k′ = kcO2f

which is of the form analyzed in Section . We can write the mass balance for the
molar flow of CO,

dNCO

dV
= −(1− εB)ηr(cCO)

in which cCO is the fluid CO concentration. From the reaction stoichiometry, we
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can express the remaining molar flows in terms of NCO

NO2 = NO2f + 1/2(NCO −NCOf)

NCO2 = NCOf −NCO

N = NO2f + 1/2(NCO +NCOf)

The concentrations follow from the molar flows assuming an ideal-gas mixture

cj =
P
RT
Nj
N
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Figure 22: Molar concentrations versus reactor volume.
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Figure 23: Dimensionless equilibrium constant and Thiele modulus versus reac-
tor volume. Values indicate η = 1/Φ is a good approximation for entire reactor.

To decide how to approximate the effectiveness factor shown in Figure 12,
we evaluate φ = KC0cC0, at the entrance and exit of the fixed-bed reactor. With
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φ evaluated, we compute the Thiele modulus given in Equation 41 and obtain

φ = 32.0 Φ= 79.8, entrance

φ = 1.74 Φ = 326, exit

It is clear from these values and Figure 12 that η = 1/Φ is an excellent approx-
imation for this reactor. Substituting this equation for η into the mass balance
and solving the differential equation produces the results shown in Figure 22.
The concentration of O2 is nearly constant, which justifies the pseudo-first-order
rate expression. Reactor volume

VR = 233 L

is required to achieve 95% conversion of the CO. Recall that the volumetric flow-
rate varies in this reactor so conversion is based on molar flow, not molar con-
centration. Figure 23 shows how Φ and φ vary with position in the reactor.
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In the previous examples, we have exploited the idea of an effectiveness fac-
tor to reduce fixed-bed reactor models to the same form as plug-flow reactor
models. This approach is useful and solves several important cases, but this
approach is also limited and can take us only so far. In the general case, we
must contend with multiple reactions that are not first order, nonconstant ther-
mochemical properties, and nonisothermal behavior in the pellet and the fluid.
For these cases, we have no alternative but to solve numerically for the temper-
ature and species concentrations profiles in both the pellet and the bed. As a
final example, we compute the numerical solution to a problem of this type.

We use the collocation method to solve the next example, which involves five
species, two reactions with Hougen-Watson kinetics, both diffusion and exter-
nal mass-transfer limitations, and nonconstant fluid temperature, pressure and
volumetric flowrate.
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Multiple-reaction, nonisothermal fixed-bed reactor

Evaluate the performance of the catalytic converter in converting CO and
propylene.

Determine the amount of catalyst required to convert 99.6% of the CO and
propylene.

The reaction chemistry and pellet mass-transfer parameters are given in Ta-
ble 4.

The feed conditions and heat-transfer parameters are given in Table 5.
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Feed conditions and heat-transfer parameters
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Parameter Value Units

Pf 2.02× 105 N/m2

Tf 550 K

Rt 5.0 cm

uf 75 cm/s

Ta 325 K

Uo 5.5× 10−3 cal/(cm2 Ks)

∆HR1 −67.63× 103 cal/(mol CO K)

∆HR2 −460.4× 103 cal/(mol C3H6 K)

Ĉp 0.25 cal/(g K)

µf 0.028× 10−2 g/(cm s)

ρb 0.51 g/cm3

ρp 0.68 g/cm3

Table 5: Feed flowrate and heat-transfer parameters for the fixed-bed catalytic
converter.
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Solution

• The fluid balances govern the change in the fluid concentrations, temperature
and pressure.

• The pellet concentration profiles are solved with the collocation approach.

• The pellet and fluid concentrations are coupled through the mass-transfer
boundary condition.

• The fluid concentrations are shown in Figure 24.

• A bed volume of 1098 cm3 is required to convert the CO and C3H6. Figure 24
also shows that oxygen is in slight excess.
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Figure 24: Fluid molar concentrations versus reactor volume.
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Solution (cont.)

• The reactor temperature and pressure are shown in Figure 25.

The feed enters at 550 K, and the reactor experiences about a 130 K tem-
perature rise while the reaction essentially completes; the heat losses then
reduce the temperature to less than 500 K by the exit.

• The pressure drops from the feed value of 2.0 atm to 1.55 atm at the exit.
Notice the catalytic converter exit pressure of 1.55 atm must be large enough
to account for the remaining pressure drops in the tail pipe and muffler.
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Solution (cont.)

• In Figures 26 and 27, the pellet CO concentration profile at several reactor
positions is displayed.

• We see that as the reactor heats up, the reaction rates become large and the
CO is rapidly converted inside the pellet.

• By 490 cm3 in the reactor, the pellet exterior CO concentration has dropped
by two orders of magnitude, and the profile inside the pellet has become very
steep.

• As the reactions go to completion and the heat losses cool the reactor, the
reaction rates drop. At 890 cm3, the CO begins to diffuse back into the pellet.
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• Finally, the profiles become much flatter near the exit of the reactor.
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• It can be numerically challenging to calculate rapid changes and steep profiles
inside the pellet.

• The good news, however, is that accurate pellet profiles are generally not
required for an accurate calculation of the overall pellet reaction rate. The
reason is that when steep profiles are present, essentially all of the reaction
occurs in a thin shell near the pellet exterior.

• We can calculate accurately down to concentrations on the order of 10−15 as
shown in Figure 27, and by that point, essentially zero reaction is occurring,
and we can calculate an accurate overall pellet reaction rate.

• It is always a good idea to vary the numerical approximation in the pellet
profile, by changing the number of collocation points, to ensure convergence
in the fluid profiles.
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• Congratulations, we have finished the most difficult example in the text.
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Summary

• This chapter treated the fixed-bed reactor, a tubular reactor packed with cat-
alyst pellets.

• We started with a general overview of the transport and reaction events that
take place in the fixed-bed reactor: transport by convection in the fluid; dif-
fusion inside the catalyst pores; and adsorption, reaction and desorption on
the catalyst surface.

• In order to simplify the model, we assumed an effective diffusivity could be
used to describe diffusion in the catalyst particles.

• We next presented the general mass and energy balances for the catalyst
particle.
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Summary

• Next we solved a series of reaction-diffusion problems in a single catalyst
particle. These included:

– Single reaction in an isothermal pellet. This case was further divided into
a number of special cases.
∗ First-order, irreversible reaction in a spherical particle.
∗ Reaction in a semi-infinite slab and cylindrical particle.
∗ nth order, irreversible reaction.
∗ Hougen-Watson rate expressions.
∗ Particle with significant external mass-transfer resistance.

– Single reaction in a nonisothermal pellet.
– Multiple reactions.

177



Summary

• For the single-reaction cases, we found a dimensionless number, the Thiele
modulus (Φ), which measures the rate of production divided by the rate of
diffusion of some component.

• We summarized the production rate using the effectiveness factor (η), the
ratio of actual rate to rate evaluated at the pellet exterior surface conditions.

• For the single-reaction, nonisothermal problem, we solved the so-called
Weisz-Hicks problem, and determined the temperature and concentration
profiles within the pellet. We showed the effectiveness factor can be greater
than unity for this case. Multiple steady-state solutions also are possible for
this problem.
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• For complex reactions involving many species, we must solve numerically
the complete reaction-diffusion problem. These problems are challenging
because of the steep pellet profiles that are possible.
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Summary

• Finally, we showed several ways to couple the mass and energy balances over
the fluid flowing through a fixed-bed reactor to the balances within the pellet.

• For simple reaction mechanisms, we were still able to use the effectiveness
factor approach to solve the fixed-bed reactor problem.

• For complex mechanisms, we solved numerically the full problem given in
Equations 67–80.

• We solved the reaction-diffusion problem in the pellet coupled to the mass
and energy balances for the fluid, and we used the Ergun equation to calculate
the pressure in the fluid.
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Notation

a characteristic pellet length, Vp/Sp
Ac reactor cross-sectional area

B Biot number for external mass transfer

c constant for the BET isotherm

cj concentration of species j
cjs concentration of species j at the catalyst surface

c dimensionless pellet concentration

cm total number of active surface sites

DAB binary diffusion coefficient

Dj effective diffusion coefficient for species j
DjK Knudsen diffusion coefficient for species j
Djm diffusion coefficient for species j in the mixture

Dp pellet diameter
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Ediff activation energy for diffusion

Eobs experimental activation energy

Erxn intrinsic activation energy for the reaction

∆HRi heat of reaction i
Ij rate of transport of species j into a pellet

I0 modified Bessel function of the first kind, zero order

I1 modified Bessel function of the first kind, first order

ke effective thermal conductivity of the pellet

kmj mass-transfer coefficient for species j
kn nth-order reaction rate constant

L pore length

Mj molecular weight of species j
nr number of reactions in the reaction network

N total molar flow,
∑
jNj

Nj molar flow of species j
P pressure

Q volumetric flowrate
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r radial coordinate in catalyst particle

ra average pore radius

ri rate of reaction i per unit reactor volume

robs observed (or experimental) rate of reaction in the pellet

rip total rate of reaction i per unit catalyst volume

r dimensionless radial coordinate

R spherical pellet radius

R gas constant

Rj production rate of species j
Rjf production rate of species j at bulk fluid conditions

Rjp total production rate of species j per unit catalyst volume

Rjs production rate of species j at the pellet surface conditions

Sg BET area per gram of catalyst

Sp external surface area of the catalyst pellet

T temperature

Tf bulk fluid temperature

Ts pellet surface temperature
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Uo overall heat-transfer coefficient

v volume of gas adsorbed in the BET isotherm

vm volume of gas corresponding to an adsorbed monolayer

V reactor volume coordinate

Vg pellet void volume per gram of catalyst

Vp volume of the catalyst pellet

VR reactor volume

Wc total mass of catalyst in the reactor

yj mole fraction of species j
z position coordinate in a slab

ε porosity of the catalyst pellet

εB fixed-bed porosity or void fraction

η effectiveness factor

λ mean free path

µf bulk fluid density

νij stoichiometric number for the jth species in the ith reaction

ξ integral of a diffusing species over a bounding surface
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ρ bulk fluid density

ρB reactor bed density

ρp overall catalyst pellet density

ρs catalyst solid-phase density

σ hard sphere collision radius

τ tortuosity factor

Φ Thiele modulus

ΩD,AB dimensionless function of temperature and the intermolecular potential field for

one molecule of A and one molecule of B

185



References

[1] R. Aris. A normalization for the Thiele modulus. Ind. Eng. Chem. Fundam.,
4:227, 1965.

[2] R. Aris. The Mathematical Theory of Diffusion and Reaction in Permeable
Catalysts. Volume I: The Theory of the Steady State. Clarendon Press, Ox-
ford, 1975.

[3] R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Notes on Transport Phenom-
ena. John Wiley & Sons, New York, 1958.

[4] K. B. Bischoff. Effectiveness factors for general reaction rate forms. AIChE
J., 11:351, 1965.

[5] S. Brunauer, P. H. Emmett, and E. Teller. Adsorption of gases in multimolec-
ular layers. J. Am. Chem. Soc., 60:309–319, 1938.

186



[6] S. Ergun. Fluid flow through packed columns. Chem. Eng. Prog., 48(2):89–
94, 1952.

[7] B. C. Gates. Catalytic Chemistry. John Wiley & Sons, New York, 1992.

[8] S. H. Oh, J. C. Cavendish, and L. L. Hegedus. Mathematical modeling of
catalytic converter lightoff: Single-pellet studies. AIChE J., 26(6):935–943,
1980.

[9] C. J. Pereira, J. B. Wang, and A. Varma. A justification of the internal iso-
thermal model for gas-solid catalytic reactions. AIChE J., 25(6):1036–1043,
1979.

[10] E. E. Petersen. A general criterion for diffusion influenced chemical reac-
tions in porous solids. Chem. Eng. Sci., 20:587–591, 1965.

187



[11] E. W. Thiele. Relation between catalytic activity and size of particle. Ind.
Eng. Chem., 31(7):916–920, 1939.

[12] P. B. Weisz. Zeolites - new horizons in catalysts. Chem. Tech., 3:498, 1973.

[13] P. B. Weisz and J. S. Hicks. The behaviour of porous catalyst particles in view
of internal mass and heat diffusion effects. Chem. Eng. Sci., 17:265–275,
1962.

188


