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• We have been constructing and explaining the fundamental principles gov-
erning chemical reactor behavior.

• Drawing quantitative conclusions from these principles requires not only the
models, however, but the values of the parameters in the models as well.

• In most practical applications, the model parameters are not known.

• Evaluating the model parameters therefore usually requires something out-
side the scope of the theory: experimental data.
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• In this chapter we consider the issues involved in gathering data and esti-
mating parameters from data with the expressed purpose of identifying a
chemical reactor model.
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Experimental Methods

Please read section 9.1 on your own.
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Data Modeling and Analysis

• We now turn to the issue of how we extract the information contained in the
data.

• The two large questions we must address are: what model structure is ap-
propriate to describe the reacting system of interest

• Having selected a structure, what model parameters best represent the data
we have collected, and how certain are we about these parameter values.

• The first question has occupied us up to this point; it has been the central
focus of Chapters 1–8.
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• In this section, we focus finally on the second question, how to estimate
model parameters from data.
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Some history on parameter estimation

• Parameter estimation has a distinguished place in the history of science and
engineering.

• Accurate prediction of the motions of the planets based on astronomical mea-
surements was one of the early motivating problems of parameter estimation.

• Solving this problem led Gauss to invent the least-squares method in the late
1700s.
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Gauss and least squares

Gauss’s summary of this effort more than 175 years ago remains valid today:

One of the most important problems in the application of mathematics to
the natural sciences is to choose the best of these many combinations, i.e.,
the combination that yields values of the unknowns that are least subject
to errors.

Theory of the Combination of Observations Least Subject to Errors. C. F.
Gauss, 1821 [6].
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Review of the Normal Distribution

• Probability and statistics provide one useful set of tools to model the uncer-
tainty in experimental data.

• It is appropriate to start with a brief review of the normal distribution, which
plays a central role in analyzing data.

• The normal or Gaussian distribution is ubiquitous in applications. It is char-
acterized by its mean, m, and variance, σ 2, and is shown in the following
figure

8



Normal Distribution

The univariate normal with mean zero and unit variance.
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Normal Distribution

p(x) = 1√
2πσ 2

exp

(
−1

2
(x −m)2
σ 2

)
(1)

We adopt the following notation to write Equation 9.6 more compactly

x ∼ N(m,σ 2)

which is read “the random variable x is distributed as a normal with mean m
and variance σ 2.” Equivalently, the probability density p(x) for random variable
x is given by Equation 9.6.
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Multivariate Normal

• For distributions in more than one variable, we let x be an np-vector and the
generalization of the normal is

p(x) = 1

(2π)np/2 |P|1/2 exp
[
−1

2
(x −m)TP−1(x −m)

]

in which the np-vector m is the mean and the np ×np-matrix P is called the
covariance matrix. The notation |P| denotes determinant of P.

• We also write for the random variable x vector

x ∼ N(m,P)
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• The matrix P is a real, symmetric matrix. The next figure displays a multi-
variate normal for

P−1 =
[

3.5 2.5
2.5 4.0

]
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Multivariate normal
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Slices of Constant Probability

• As shown in the figure, lines of constant probability in the multivariate normal
are lines of constant

(x −m)TP−1(x −m)

• To understand the geometry of lines of constant probability (ellipses in two
dimensions, ellipsoids or hyper-ellipsoids in three or more dimensions) we
examine the eigenvalues and eigenvectors of the P matrix.

14



Eigenvalues and Eigenvectors

• An eigenvector of a matrix A is a nonzero vector v such that when multiplied
by A, the resulting vector points in the same direction as v, and only its
magnitude is rescaled.

• The rescaling factor is known as the corresponding eigenvalue λ of A.

• Therefore the eigenvalues and eigenvectors satisfy

Av = λv, v ≠ 0

• We normalize the eigenvectors so

vTv =
∑

i
v2
i = 1
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Eigenvectors of the Covariance Matrix

• The eigenvectors show us the orientation of the ellipse given by the normal
distribution.

• Consider the ellipse in the two-dimensional x coordinates given by the quad-
ratic

xTAx = b

• If we march along a vector x pointing in the eigenvector v direction, we
calculate how far we can go in this direction until we hit the ellipse xTAx = b.

• Substituting αv for x in this expression yields

(αvT)A(αv) = b
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• Using the fact that Av = λv for the eigenvector gives

α2λvTv = b

because the eigenvectors are of unit length, we solve for α and obtain

α =
√
b
λ

which is shown in the next figure
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The Geometry of xTAx = b

Avi = λivi
xTAx = b

x2
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A Bounding Box for the Ellipse

• Each eigenvector of A points along one of the axes of the ellipse. The eigen-
values show us how stretched the ellipse is in each eigenvector direction.

• If we want to put simple bounds on the ellipse, then we draw a box around it
as shown in the figure

• Notice the box contains much more area than the corresponding ellipse and
we have lost the correlation between the elements of x. This loss of infor-
mation means we can put different tangent ellipses of quite different shapes
inside the same box.
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• The size of the bounding box is given by

length of ith side =
√
bÃii

in which
Ãii = (i, i) element of A−1
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Summary of the Quadratic Form xTAx = b

• The eigenvectors are aligned with the ellipse axes and the eigenvalues scale
the lengths.

• The lengths of the sides of the box that is tangent to the ellipse are propor-
tional to the square root of the diagonal elements of A−1.
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bÃ11

√
bÃ22
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Least-Squares Estimation

• Consider the problem of fitting a straight line to data

yi =mxi + b

• yi is the measurement at xi, i = 1, . . . nd and nd is the number of data points.

• Using matrix vector notation, we can write the equation for all the data as

y = Xθ

22



Least-Squares Estimation in Matrix Notation

• The parameters to be estimated are placed in the θ vector

θ =
[
m
b

]

• The y vector and X matrix are given by

y =




y1

y2
...
ynd




X =




x1 1
x2 1
... ...
xnd 1




θ =
[
m
b

]

y = Xθ

23

Measurement Error

• We do not expect the best fit line to pass through all the data points, so we
modify the model to account for measurement error

y = Xθ+ e (2)

in which e is a random variable.

• We model the measurement error as a normal distribution with mean 0 and
variance σ 2.

e ∼ N(0, σ 2I) (3)

• The best estimate of θ in a least-squares sense is given by

θ̂ = (XTX)−1XTy (4)
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a formula that you have used often.

• However, we also can examine the distribution of parameter values given the
observed measurements corrupted by the measurement errors.
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Translating Measurement Error to Estimated Parameter Error

• Imagine we create replicate datasets by drawing measurement errors e from
the distribution given in Equation 9.8.

• For each dataset we apply Equation 9.9 and produce a parameter estimate.
The distribution of measurement errors creates a distribution of parameter
estimates.

• In fact, for models linear in the parameters, we can show the parameter esti-
mates also are normally distributed

θ̂ ∼ N(θ,P)
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in which the mean is the true value of the parameters and the covariance is

P = σ 2(XTX)−1
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Confidence Intervals

• We also can calculate the parameter “confidence intervals.” We merely com-
pute the size of the ellipse containing a given probability of the multivariate
normal.

• That can be shown to be the chi-squared probability function [3].

• Given the number of estimated parameters, np, and the confidence level, α,
then

(θ− θ̂)TXTX(θ− θ̂)
σ 2

≤ χ2(np, α) (5)

• The χ2 distribution is tabulated in many statistics handbooks [2] and is avail-
able in many computing environments.
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A Classic Kinetics Example

• To illustrate the ideas we examine a classic problem: how to estimate the
preexponential factor and activation energy of a rate constant.

• Assume a reaction rate has been measured at several different temperatures
in the range 300 K ≤ T ≤ 500 K.

• Estimate the preexponential factor and activation energy of the rate constant,
and quantify your uncertainty in the estimated parameters.
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Solution

• We first model the rate (rate constant) as

k = k0 exp(−E/T) (6)

in which k0 is the preexponential factor and E is the activation energy, scaled
by the gas constant.

• Here is a typical experimental measurement
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Experimental Data
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Logarithmic Transformation

• Notice that the measurement of the rate constant is somewhat noisy, a likely
outcome if we differentiate the concentration data to obtain the rate.

• To make the estimation problem linear, we transform the data by taking the
logarithm of Equation 9.11

lnk = lnk0 − E/T

• The transformed data are shown here
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Least Squares Parameter Estimates

• To generate these data we assume the model is correct and suppress the
units of the parameter values

lnk0 = 1, E = 100

The measurements of lnk are corrupted with normally distributed errors hav-
ing variance 0.001,

e ∼ N(0,0.001)

• We apply Equation 9.9 to estimate the parameter using the transformed
model, so xi = 1/Ti and yi = lnki.

θ̂ = (XTX)−1XTy
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Quantifying the Uncertainty

• To quantify the uncertainty, imagine we replicate the experiment
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Quantifying the Uncertainty

• Each experiment that we perform allows us to estimate the slope and inter-
cept.

• Then we can plot the distribution of parameters.
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The Parameter Estimates Move with the Data

• This figure shows the parameter estimates for 500 replicated experiments.
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Quantifying the Uncertainty

• Notice the points are clustering in an elliptical shape.

• We construct the 95% confidence interval from Equation 9.10.

(θ− θ̂)TXTX(θ− θ̂)
σ 2

≤ χ2(np, α)

• In this problem np = 2 and α = 0.95, and we obtain from a statistics table
χ2(2,0.95) = 5.99, so we plot

(θ− θ̂)TXTX(θ− θ̂)
0.001

≤ 5.99 (7)
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The ellipse of (θ−θ̂)
TXTX(θ−θ̂)
σ2 ≤ χ2(np, α)

• The ellipse is also shown in the figure.
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Verifying our Confidence Intervals by Monte Carlo

• In fact, 24 out of the 500 points, or 4.8% of the estimated parameters, lie
outside the 95% confidence ellipse, which indicates Equation 9.12 is fairly
accurate with this many random experimental trials.

• One often sees parameters reported with plus/minus limits. For this problem,
one might report [

lnk0

E

]
=
[

1
100

]
±
[

0.15
60

]

• Notice these limits are misleading. The rectangle in the figure does not in-
dicate the strong correlation between the parameters. The ellipse is much
more informative in this case.

43

The Box is Misleading

• The box does not show the strong parameter correlation
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Reparameterization of the Rate Constant

• Next we show how a simple reparameterization of the rate constant can re-
duce the parameter correlation.

• Consider the mean of the temperatures at which data were collected, and
reparameterize the rate constant as in Chapter 6

k = km exp(−E(1/T − 1/Tm)) (8)

• We may wish to consider the mean of the temperature or the inverse temper-
ature for Tm. Here we let Tm be the mean temperature

Tm = 300+ 500
2

= 400 K
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• Both Equations 9.11 and 9.13 are two parameter models

k = k0 exp(−E/T) k = km exp(−E(1/T − 1/Tm))

• We can convert between them using

k0 = km exp(E/Tm)

• But in Equation 9.13 we estimate the rate constant at the mean temperature
in contrast to infinite temperature (1/T = 0) in Equation 9.11.
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Reducing Correlation

If we estimate E and km in place of k0 we obtain the results shown in the
figure.
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Reducing Correlation

• Notice that the correlation between km and E is much reduced compared to
k0 and E.

• In fact, reporting confidence limits

[
lnkm
E

]
=
[

0.75
100

]
±
[

0.05
60

]

is an accurate representation of the true 95% confidence interval ellipse.
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Least Squares with Unknown Variance

• In the previous problem, we assumed the variance in the error was known to
us. It is often the case that we do not know the measurement error variance,
but must estimate it also from the data.

• In this case, it can be shown that the distribution of parameter estimates is a
multivariate t-distribution (instead of a normal distribution) using the same
least-squares estimate as before

θ̂ = (XTX)−1XTy (9)
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Unknown Variance — Confidence Intervals

• For the confidence intervals, we merely compute the size of the ellipse con-
taining a given probability of the multivariate t-distribution.

• That can be shown to be an F probability function [3].

• Given the number of estimated parameters, np, the confidence level, α, and
the number of data points, nd,

(θ− θ̂)TXTX(θ− θ̂)
s2

≤ npF(np, nd −np, α) (10)

defines the confidence interval ellipse.
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• The F distribution is also tabulated in statistics handbooks [2] and available
in computing environments.
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The Sample Variance

• The sample variance

s2 = 1
nd −np(y −Xθ̂)

T(y −Xθ̂) (11)

is the estimate of the unknown error variance.

• Notice the number of data points, nd, shows up in the confidence interval
when the error variance is unknown.
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Large Number of Data Points

• In the limit of large nd, the F distribution converges to the χ2

lim
nd→∞

npF(np, nd −np, α) = χ2(np, α)

and the confidence intervals given in Equations 9.10 and 9.15 are the same.

• The sample variance also converges to the error variance in the limit of large
number of data points.
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(θ− θ̂)TXTX(θ− θ̂)
σ 2

≤ χ2(np, α)

(θ− θ̂)TXTX(θ− θ̂)
s2

≤ npF(np, nd −np, α)
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Example with Unknown measurement variance and few data

points

• Consider the data shown in the next figure with two unknown parameters
and only 10 data points.

• The measurement errors are drawn from a normal distributed with zero mean
and variance σ 2 = 10−3.

• Compute the best estimates of activation energy and mean rate constant and
the 95% confidence intervals for the cases of known and unknown measure-
ment variance.
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The Data
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Solution

• We calculate θ̂ from Equation 9.14 and the sample variance from Equa-
tion 9.16 and obtain

θ̂ =
[

0.747
153

]
, s2 = 0.000454

• We construct the 95% confidence interval from Equations 9.10 and 9.15. We
obtain from a statistics table F(2,8,0.95) = 4.46 so the two confidence inter-
vals are given by

(θ− θ̂)TXTX(θ− θ̂) ≤ (0.001)(5.99), known variance

(θ− θ̂)TXTX(θ− θ̂) ≤ (0.000454)(2)(4.46), unknown variance
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• The two 95% confidence ellipses are shown in the next figure.
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Known (solid line) and Unknown (dashed line) error variance
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Contradiction?

• Notice that although npF is 50% larger than χ2, our 95% confidence inter-
val for the unknown measurement variance case is smaller than the known
measurement variance case.

• Can you resolve this apparent contradiction?

• What experiment can you propose in which we would find the confidence
interval with estimated measurement variance to be about 50% larger than
known measurement variance in agreement with the notion that we lose in-
formation by estimating the variance as well as parameters.
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Nonlinear Least Squares

• In the previous two examples we transformed the model by taking logarithms
to obtain a linear estimation problem.

• In many situations we do not want to make such a transformation, or such
transformations simply do not exist.

• If we decide to treat the estimation problem using the nonlinear model, the
problem becomes more challenging.

• As we will see, the parameter estimation becomes a nonlinear optimization
that must be solved numerically instead of a linear matrix inversion that can
be solved analytically
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• Moreover, the confidence intervals become more difficult to compute, and
they lose their strict probabilistic interpretation asα-level confidence regions.

• As we will see, however, the “approximate” confidence intervals remain very
useful in nonlinear problems.
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Nonlinear Least Squares and Optimization

• Consider the nonlinear model

yi = h(xi,θ), i = 1, . . . nd (12)

and the least-squares objective

Φ(θ) =
nd∑

i=1

(
ỹi − h(xi,θ)

)2

• We obtain the parameter estimates by solving the optimization problem

min
θ
Φ(θ)
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subject to Equation 9.17.

• Call the solution to this problem θ̂. We now consider the function Φ(θ) near
the optimum.
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Taylor Series at the Optimum

• Expanding in a second-order multivariable Taylor series gives

Φ(θ) ≈ Φ(θ̂)+ (∇Φ)T
∣∣∣
θ=θ̂ (θ− θ̂)+

1
2
(θ− θ̂)TH

∣∣∣
θ=θ̂ (θ− θ̂) (13)

• The gradient of the objective function is the vector of first derivatives of Φ
with respect to the model parameters

(∇Φ)j = ∂Φ∂θj
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• The Hessian of the objective function is the matrix of second derivatives

Hkj = ∂2Φ
∂θk∂θj
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Quadratic Approximation at the Optimum

• The gradient is zero at the optimum, which allows us to rearrange Equa-
tion 9.18 to give

Φ(θ)− Φ(θ̂) ≈ 1
2
(θ− θ̂)′H

∣∣∣
θ=θ̂ (θ− θ̂) (14)

• Lines of constant objective function are approximately ellipses in which we
use H as the A matrix.
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Quadratic Approximation

Use H for A

Avi = λivi
xTAx = b

x2

√
b
λ2
v2

√
b
λ1
v1

x1

√
bÃ11

√
bÃ22
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Approximate Confidence Intervals

• We also can obtain order-of-magnitude confidence intervals using the relation

(θ− θ̂)TH
∣∣∣
θ=θ̂ (θ− θ̂) ≤ 2s2npF(np, nd −np, α) (15)

• s2 is again the sample variance

s2 = 1
nd −np

nd∑

i=1

(
ỹi − h(xi, θ̂)

)2 = Φ(θ̂)
nd −np (16)

• These confidence intervals are correct only if the model is linear, in which
case H = 2XTX.
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• The intervals should be checked occasionally with Monte Carlo simulations
when the model is nonlinear. We illustrate this check next.
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Fitting single and multiple adsorption experiments

• To illustrate the use of nonlinear models, we study an adsorption experiment.

• The system studied was the adsorption of H2 on a Pd catalyst with SiO2 sup-
port [8, 7].
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Adsorption model

• The adsorption is assumed dissociative.

• Both the catalyst and the support adsorb H2 so the adsorption isotherm model
is

H2 + 2XP -⇀↽- 2H · XP

H2 + 2XS -⇀↽- 2H · XS

in which XP represents a Pd vacant site and XS represents a SiO2 vacant site.

• We can apply the methods of Section 5.6 to derive the surface coverage of H
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atoms

cH =
cmP

√
KP
√cH2

1+ √KP√cH2

+ cmS
√
KS
√cH2

1+ √KS√cH2

(17)
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Parameter estimation

• It is known that the adsorption constant on the Pd is large, so we may reduce
the model to

cH = cmP +
cmS

√
KS
√cH2

1+ √KS√cH2

(18)

• We have three parameters to estimate from data,

θT =
[ √

KS cmS cmP
]

(19)

• As the measure of fit to the data we choose a least-squares objective,

Φ =
∑

i

(
c̃Hi − cHi

)2
(20)
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• The parameter estimation problem

min
θ
Φ(θ) (21)

77

Solution

This figure shows the data and the best fit for a single adsorption experiment.
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Parameter estimates and confidence intervals

• The parameters and the 95% confidence intervals are given by

θ̂ =




√
KS
cmS
cmP


 =




0.127
26.1
32.4


±




0.048
1.5
2.4


 (22)

• We can see that the model fit to the data is excellent, and the parameters are
determined with fairly tight confidence intervals.
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Multiple adsorption experiments

• For this catalyst sample, additional adsorption experiments are available.

• After the first adsorption experiment, reaction studies were performed with
the catalyst sample. Then the catalyst was regenerated with heat treatment,
and a second adsorption experiment was performed, followed by an addi-
tional reaction study, and so on.

• The additional adsorption data are shown in the next figure.
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Multiple adsorption experiments
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Parameter estimates for all runs

• Notice these are not replicate experiments, because the adsorption experi-
ments are performed after different reaction studies have been performed,
and the catalyst regeneration step does not necessarily return the catalyst to
exactly the same condition.

• Estimating the parameters by fitting all of these data simultaneously pro-
duces the solid line in Figure 9.16 and the following parameter values and
confidence intervals

θ̂ =




√
KS
cmS
cmP


 =




0.0895
30.4
30.1


±




0.081
4.7
5.4


 (23)
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• The total coverage estimated here, 60.5 µmol/g, compares favorably to the
apparent saturation limit or total uptake value of 55 µmol/g reported by
Natal-Santiago et al. [7, p.157].
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Interpretation

• Notice because the reaction studies have introduced significant variability in
the data, the confidence intervals for the parameter values are significantly
larger than those for the single adsorption experiment.

• Both sets of estimated parameters are valid, but they have different meanings.

• If the model is intended to represent the catalyst in its native state, one might
use the estimated values from a single adsorption experiment on a freshly
prepared sample.

• If the model is intended to represent the “average behavior” of the catalyst
during the period it is used and regenerated, one would naturally use the
estimated values from the many adsorption experiments.
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Design of Experiments

Please read section 9.2.6 on your own.
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Replicate experiments

• We next take a quick look at the impact of replicating experiments.

• The main reason one replicates an experiment is to obtain a direct measure
of the experimental reproducibility.

• By replication we are confronted with the simple experimental fact that no
matter how much care we take and how much effort we exert, the results of
two experiments are never exactly the same.
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Replicate experiments

• The differences among replicated experiments give us a direct quantitative
measure of the experimental error or noise.

• These errors are partly due to our inability to measure accurately the outputs
of interest, but they are also due to our inability to control completely the
experimental environment.

• The irreproducibility of the experiment is one of the key motivations for the
random variable description of e in Equation 9.7.

y = Xθ+ e
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Replication and Confidence

• But replicating an experiment has another interesting and expected benefit.
It increases our confidence in our conclusions.

• To see this benefit, we examine again the least-squares problem for estimat-
ing km, E.

• Assume for one experiment, we simply make measurements at 10 evenly
spaced temperatures as shown in the next figure.
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Replication and Confidence

• If we perform one set of 10 measurements we achieve the confidence intervals
we have shown previously
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Replication and Confidence

• What happens if we simply repeat the experiment and perform two sets of
10 measurements? The confidence region becomes smaller, as shown in the
next figure.

• We also show the result of using 5 and 100 replicates of the experiment. The
confidence intervals continue to shrink as we replicate the experiments.

• So replicating experiments provides another general avenue for increasing
the confidence in the parameter estimates.

• Be aware, however, as discussed further in Exercise 9.8, that this “brute force”
approach may be time consuming and expensive.
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Replication and Confidence
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Parameter Estimation with Differential Equation Models

• Now we turn to the single most important parameter estimation problem
in chemical reactor modeling: determining reaction-rate constants given
dynamic concentration measurements.

• We devote the rest of the chapter to developing methods for this problem.
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Single State and Measurement

• To get started, we consider a simple reactor model consisting of a single
differential equation with a single experimentally measured quantity

dx
dt
= f(x;θ) (24)

x(0) = g(x0;θ) (25)

y = h(x) (26)

in which x is the single material balance of interest, θ are the unknown model
parameters, x0 is the initial condition, and y is the experimentally measur-
able quantity.

• For simplicity let us assume here that x itself is measured, in which case
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h(x) = x.

• As we see in several of the examples, it may be necessary to include some of
the initial conditions also as unknown parameters.

• Often t is time, but in steady-state tubular PFRs, reactor volume or length
can take the place of time without changing the structure of the parameter
estimation problem.
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Least Squares Problem

• As before, we define a least-squares objective to measure our fit to the data

Φ(θ) =
∑

i
(x̃i − xi)2 (27)

• x̃i is the experimental measurement at time ti,

• xi is the solution to the model at time ti, xi = x(ti;θ). Note xi is the only
part of the objective function that depends on the model parameters.

• Again, we minimize this objective function to obtain our parameter estimates

min
θ
Φ(θ) (28)
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subject to Equations 9.21–9.23.
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Model “Constraints” are Differential Equations

• The major change is that the model constraint consists of nonlinear differ-
ential equations rather than linear or nonlinear algebraic equations as in the
previous sections.

• The differential equations make it much more expensive to evaluate the con-
straints while solving the optimization problem.

• We can increase the efficiency of the optimizer if we provide an accurate
gradient of the objective function.
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Gradient and Hessian of the Parameter Estimation Problem

Φ(θ) =
∑

i
(x̃i − xi)2

• Recall the gradient of the objective function is the vector of first derivatives of Φ with respect

to the model parameters.

Differentiating this equation gives

∂Φ
∂θj

= −2
∑

i
(x̃i − xi) ∂xi∂θj

(29)

• Differentiating a second time gives the Hessian of the objective function, which we again

use to construct approximate confidence intervals

∂2Φ
∂θk∂θj

= 2
∑

i

[
∂xi
∂θk

∂xi
∂θj

− (x̃i − xi) ∂
2xi

∂θkθj

]
(30)
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Gauss-Newton approximation and sensitivities.

• In the Gauss-Newton approximation of the Hessian, we neglect the second
term in Equation 9.27 to yield,

∂2Φ
∂θk∂θj

≈ 2
∑

i

∂xi
∂θk

∂xi
∂θj

(31)

• Two arguments support the Gauss-Newton approximation. If the model fits
the data well at the optimal value of parameters, the residuals are small in
magnitude and of different signs. The sum in the second term is then small.

• Alternatively, the second derivative of the model may be small compared to
the first derivative.
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• If the model is linear in the parameters, for example, the second derivatives
are identically zero and the Gauss-Newton approximation is exact.
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Some restrictions on using Gauss-Newton

• The Gauss-Newton approximation is not valid if the model solution is a highly
nonlinear function of the parameters, or if the residuals are large and not
randomly distributed about zero at the optimal value of parameters.

• In the latter case one should question the model structure because the model
does not well represent the data.

• For the highly nonlinear case, one may try numerical finite difference formulas
to compute the Hessian.

• Computing a reliable finite difference approximation for a second derivative
is not a trivial matter either, however, and the step size should be carefully
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chosen to avoid amplifying the errors introduced by the finite numerical pre-
cision.
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Sensitivities

• The first derivatives of the model solution with respect to the model param-
eters are known as the model sensitivities,

Sij = ∂xi∂θj
(32)

• The sensitivities also can be described as the solution to a set of differential
equations (see also Appendix A).
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Sensitivities — Evolution Equation

dx
dt
= f (x,θ) x(0) = g0(θ)

∂
∂θT

dx
dt
= ∂
∂θT

f (x,θ)

d
dt

(
∂x
∂θT

)
= ∂f
∂xT

(
∂x
∂θT

)
+ ∂f
∂θT

dS
dt
= fxS + fθ S(0) = gθ
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Sensitivities

• This fact allows us to solve the model and sensitivity equations simultane-
ously with an ODE solver, rather than use finite difference formulas to obtain
the sensitivities.

• Bard provides a readable account for further study on these issues [1].

• Caracotsios, Stewart and Sørensen developed this approach and produced
an influential software code (GREG) for parameter estimation problems in
chemical reaction engineering [4, 9, 5].
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From Sensitivities to Gradients and Hessians

• From the sensitivities and model solution, we can then calculate the gradient
of the objective function and the Gauss-Newton approximation of the Hessian
matrix.

• Reliable and robust numerical optimization programs are available to find the
optimal values of the parameters.

• These programs are generally more efficient if we provide the gradient in
addition to the objective function.

• The Hessian is normally needed only to calculate the confidence intervals
after the optimal parameters are determined.
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Gradient and Hessian

• If we define e to be the residual vector

ei = x̃i − xi

We can express the gradient in matrix notation as

∂Φ
∂θj

= −2
∑

i
(x̃i − xi) ∂xi∂θj

∇Φ = −2STe (33)

109

Gradient and Hessian

• In terms of the sensitivities, we can express the Gauss-Newton approximation
of the Hessian as

∂2Φ
∂θk∂θj

≈ 2
∑

i

∂xi
∂θk

∂xi
∂θj

Hkj = 2
∑

i
SikSij

H = 2STS (34)

• Given these expressions for the gradient and Hessian, we can construct a
fairly efficient parameter estimation method for differential equation mod-
els using standard software for solving nonlinear optimization and solving
differential equations with sensitivities.
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Parameter estimation algorithm:

À Guess initial parameter values.

Á Using an appropriate ODE solver, solve the model and sensitivity equations
simultaneously given the current parameter values. Compute xi and Sij.

Â Evaluate Φ and ∇Φ using Equations 9.24 and 9.29.

Ã Update parameter values to minimize Φ. This step and the next are usually
controlled by an optimization package.

Ä Check convergence criteria. If not converged, go to Á.
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Å On convergence, set θ̂ to current parameter values. Calculate H using Equa-
tion 9.30. Calculate confidence intervals using Equation 9.19.
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Example: Fitting reaction-rate constant and order

• We illustrate these methods on a classic reactor modeling problem: finding
the rate constant and reaction order from isothermal concentration measure-
ments in a batch reactor.

• Consider an irreversible, nth order reaction

A+ B -→ products, r = kcnA

taking place in a liquid-phase batch reactor containing a large excess of re-
actant B.

• Given the measured concentration of component A shown in Figure 9.21,
determine the best values of the model parameters.
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Experimental Measurements
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Solution

• The material balance for species A is

dcA
dt
= −kcnA (35)

cA(0) = cA0 (36)

• Given the experimental data, it does not seem reasonable to assume we know
cA0 any more accurately than the other measurements, so we include it as a
parameter to be estimated.

• The model therefore contains three unknown parameters

θT =
[
k cA0 n

]
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Solution

• We can generate a reasonable initial parameter set by guessing values and
solving the model until the model simulation is at least on the same scale as
the measurements.

• We provide this as the starting point, and then solve the nonlinear optimiza-
tion problem in Equation 9.25 using the least-squares objective as shown in
Equation 9.24.

• We then compute the approximate confidence intervals using Equation 9.19
with Equation 9.30 for H. The solution to the optimization problem and the
approximate confidence intervals are given in Equation 9.33.
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Results

θ0 =



k
cA0

n


 =




0.5
2.0
2.5


 θ̂ =




0.47
1.89
2.50


±




0.052
0.18
0.42


 (37)

• The parameters that we used to generate the data also are given in Equa-
tion 9.33.

• Notice the estimates are close to the correct values, and we have fairly tight
approximate confidence intervals.

117

Model Fit
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Validating the Confidence Intervals

• Next we examine the quality of these approximate confidence intervals for
this problem.

• In this study we generate 500 datasets by adding zero-mean measurement
noise with variance σ 2 = 0.01 to the model solution with the correct param-
eters.

• For each of these 500 datasets, we solve the optimization problem to obtain
the parameter estimates.

• We also produce a value for the Hessian for each dataset, and we use the
mean of these for H.
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• Finally we calculate what fraction of these 500 estimates fall within each α-
confidence region as defined by Equation 9.19 as we vary α.

• This result is plotted as the points in the next figure. Notice for all α val-
ues, approximately the correct number of parameter estimates fall within the
corresponding ellipse, which indicates the approximate confidence intervals
given in Equation 9.19 are fairly reliable for this problem.
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Monte Carlo Results
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Validating the Confidence Intervals

• Be aware that this conclusion may not be true for other nonlinear problems,
and should be checked. This computational check is fairly expensive; note
that we had to solve 500 optimization problems to produce the figure.

• But given the dramatic increase in computational speed, a few Monte Carlo
simulations in the final stages of a modeling study are well justified.
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Breaking a Bad Habit

• In your undergraduate training, did any of you learn the following method for
estimating reaction orders and rate constants?

• Differentiate the concentration c(t) data and obtain the rate directly from the
data

A+ B -→ products, r = kcnA

r(ti) ≈ −cA(ti+1)− cA(ti)
ti+1 − ti

• Transform variables by taking the logarithm of the rate expression

ln(ri) = ln(k)+n ln(cAi), i = 1, . . . , nd
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• Set up the least squares problem

y =




ln(r1)
ln(r2)

...
ln(rnd)




X =




1 ln(cA1)
1 ln(cA2)
... ...
1 ln(cAnd)




θ =
[

ln(k)
n

]

y = Xθ
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Why is this approach a bad idea? No noise.
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So far so good. Small noise.
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Hmmm... not even large noise and...
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Note. Some of the rates are negative, and the logarithm is complex valued! I deleted those
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points (39/100) so the least squares estimate would not be complex valued.
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And the results again without differentiation
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Summary

• If you have noise in your data, do not differentiate the data. Differentiation greatly amplifies

noise.

• Rather than first smoothing the data and then differentiating, it is simpler to just optimize

over the rate constants to fit the concentration measurement directly.

• The instantaneous rate is not needed to estimate the parameters, only the concentration

measurement is needed. In fact, one good estimate of the instantaneous rate comes from

solving the model with the best parameters. That produces an estimate of the rate without

differentiating the data.

• If you have a complicated model with many species and many reactions with many rate

constants, parameter estimation with optimization is a general approach. Transformations

are not necessary and straight lines are not necessary.
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Differential equation models with multiple measurements

• Most reactor models of interest contain balances for several species and
therefore consist of several differential equations.

• To determine the parameters in such models, usually the concentrations of
several species are measured as well.
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Differential equation models with multiple measurements

• To treat this case, we consider the general differential equation model

dx
dt
= f (x;θ) (38)

x(0) = g(x0;θ) (39)

y = h(x) (40)

in which x is the vector of states that defines the reactor model, θ are the
unknown model parameters, x0 are the initial conditions, and y are the ex-
perimentally measurable quantities.
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Weighted Least Squares

• In this case, we again define a scalar objective function that measures our fit to the data.

When we have different measured quantities, however, it often does not make sense to sum

the squares of the residuals.

• The measured variables may differ in size from each other by orders of magnitude. The

influence a measurement has on the objective also would be influenced by the arbitrary

choice of the units of the measurement, which is obviously undesirable.

• The simplest way to address this issue is to employ weighted least squares. The reader

should be aware that more general procedures are available for the multiple measurement

case, including the maximum likelihood method [9, 10, 11].

• For simplicity of presentation, we focus here on weighted least squares.
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Weighted Least Squares

• In weighted least squares, we combine the different measurements by form-
ing the weighted sum of the residuals.

• Let ei be the residual vector at the ith sample time

ei = ỹi − h(x(ti;θ)) (41)

The objective function is then

Φ(θ) =
∑

i
eTiWei (42)

in which W is a symmetric, positive-definite weighting matrix.
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Weighted Least Squares

• Usually W is chosen to be a diagonal matrix. The elements on the diagonal
are the weights assigned to each measurement type.

• To estimate the parameters we now solve

min
θ
Φ(θ) (43)

subject to Equations 9.34–9.36.
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Gradient and Hessian Approximation

• The sensitivities are now a time-varying matrix,

Sjk(ti) =
∂xj(ti;θ)
∂θk

• We can compute the gradient as before

∇Φ = −2
∑

i
STi
∂hTi
∂xi

Wei

• The Gauss-Newton approximation of the Hessian is

H = 2
∑

i
STi
∂hTi
∂xi

W
∂hi
∂xTi

Si (44)

in which Si = S(ti), xi = x(ti), and hi = h(x(ti)).
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Fitting Rate Constants in Hepatitis B Virus Model

Please read Example 9.5 on your own.

This example illustrates the following issues.

• The model consists of six reactions and six unknown rate constants. We
assume three species concentrations can be measured.

• The six parameters cannot be identified from the three measurements with-
out very large confidence intervals.

• We show how to reduce the model to a four parameter model whose four
parameters can be determined accurately from the measurements.
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• This model reduction step is usually necessary with complex models and
limited measurements (the usual industrial situation).
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An Industrial Case Study

Please read Section 9.2.6, an industrial case study, on your own.

In this case study we illustrate the following steps:

• Proposing an initial model given a rough idea of the reaction chemistry.

• Estimating the parameters for the full model given composition measure-
ments.

• Reducing the model based on the parameter confidence intervals.

• Designing new experiments based on the reduced model’s confidence inter-
vals.
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• Using the final model to find new operating policies to double the production
rate.
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Chapter Summary

• In analyzing data, we used probability and random variables to model the
irreproducible part of the experiment.

• For models that are linear in the parameters with normally distributed mea-
surement error, we can perform parameter estimation and construct exact
confidence intervals analytically. Thank you, Messrs. Gauss and Laplace.

• For models that are nonlinear in the parameters, we compute parameter es-
timates and construct approximate confidence intervals using nonlinear op-
timization methods.

• We then covered the important topic of estimating parameters for differential-
equation models.
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• We employed computational methods for solving differential equations and
sensitivities, and solving nonlinear optimization problems in order to tackle
this challenging problem.

• The linear, elliptical confidence intervals are approximate, but we can check
their validity with Monte Carlo sampling.
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Closing

• I hope the examples and methods in this chapter serve to inspire students and
practicing engineers to build models as part of understanding new processes
and chemistries of interest.

• The modeling experience often leads to deeper process understanding and
produces a compact summary of current knowledge that is easily and effi-
ciently communicated to other colleagues and team members.

• Process understanding coupled with creativity often leads to process improve-
ment and new discovery.
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Notation

A absorbance

b path length for the absorbance measurement

c concentration of absorbing species

cj concentration of component j
ĉj(ti) measured concentration of component j at sampling time ti
Dp catalyst particle diameter

Dt fixed-bed reactor tube diameter

e residual vector

e measurement error vector

Hkj Hessian matrix, Hkj = ∂2Φ/∂θk∂θj
L fixed-bed reactor tube length

m mass velocity

nd number of data points
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np number of model parameters

Nj molar flow of component j
p(x) probability density function of random variable x
Q volumetric flowrate

Qf feed volumetric flowrate

r reaction rate of (single) reaction

ri reaction rate for ith reaction

r reaction-rate vector

Rj production rate for jth species

R production-rate vector

S open tube area for flow

Sjk sensitivity of state xj with respect to parameter θk
ti sampling time

VR reactor volume

x state vector

y vector of measured responses

ε molar absorptivity
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εB bed porosity

θ parameter vector

µ fluid viscosity

νij stoichiometric number for the jth species in the ith reaction

φ transformed parameter vector

Φ objective function
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