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NOMENCLATURE 

 

 

DCOD  Delaminated crack opening displacement 

A**
 (k)   Extension and shear extension coupling stiffness of kth sublaminate  

B**
 (k)   Extension and shear extension coupling stiffness of kth sublaminate  

D**
 (k)   Bending torsion coupling stiffness of kth sublaminate   

IDEF  In-situ damage effective factor

εy   Axial strain 

∆T   Temperature difference ( °F ) 

Nm  Mechanical force 

NT  Thermal load 

FLM  Five Layer Model 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 
  

Composites are one of the most advanced materials specialized to achieve the best 

of the properties of constituent materials. They offer a number of advantages over metals 

and other conventional materials in the aerospace and many other applications. For the 

next generation space vehicles, composite materials are ideal for applications such as fuel 

tanks.  For reusable launch vehicles (RLVs) as well as expendable launch vehicles 

(ELVs), composites are used to reduce the payload and increase fatigue life under 

thermal and mechanical loading conditions for various structural parts. Materials with 

high strength-to-weight and stiffness-to-weight ratios are essential and composites 

exactly satisfy the needs. However, due to very high temperature variations in addition to 

structural loads during the operation of space vehicles, composites are susceptible to 

transverse matrix cracks. Difference in coefficient of thermal expansion and mismatch of 

Poisson’s ratio between the adjacent plies can be one of the main reasons for the 
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initiation and propagation of matrix cracks. These cracks in the polymer matrix can lead 

to the permeation of cryogenic fuel in fuel tank, which eventually might become a cause 

of an accident. These matrix cracks typically tend to form and grow in direction parallel 

to fibers through the thickness of ply direction. Along with the transverse cracks, there 

are inter-laminar delaminations originating from the tips of these cracks due to stress 

concentration. 

 

Fig.1.1 Cross-ply laminate subjected to uniaxial loading and resulting damage. 

 

A typical cross section of a cross ply laminate shows fibers and matrix in Fig. 1.1(a) with 

application of uniaxial load in Y direction (along the 0º ply direction). Fig. 1.1(b) depicts 

the cracks formed in middle 90º ply along with delaminations produced at the crack tips.   

Delaminations and cracks may form an intersecting network of leak passages 

through which high pressure cryogenic fuel can permeate. Fig. 1.2 shows how the cracks 

in successive layers of a laminate interact to form a network of passages. As depicted by 

the schematic in Fig.1.2, the crack opening displacements associated with the 

delaminated transverse matrix cracks, when subjected to thermal and/or mechanical 

loading, form a path through the entire thickness of the arbitrarily oriented ply laminate, 

thereby allowing cryogenic fuel to permeate. To study the permeation problem, an 
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analytical solution is necessary to predict the delaminated crack opening displacement 

(DCOD) developed in each of the plies, as later it will be shown that DCOD and crack 

density are the two important factors which decide the permeability of a composite 

laminate. After obtaining the solutions for DCOD, a mathematical model for predicting 

permeability of symmetric cross-ply and arbitrarily oriented ply graphite-epoxy laminates 

can be established. Cracks can exist not only in outermost (top) ply and the middle 

(central/symmetric) ply but also in the intermediate plies. Generally ply laminates with 

different arbitrarily oriented plies are used for optimizing the properties and strength to 

weight ratio of structures and therefore it is necessary to develop a solution for DCOD 

developed in the intermediate plies of such different orientation ply laminate.  

 

 

 

Fig.1.2 Permeation path at overlap of transverse cracks in arbitrary orientation plies  
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 The representative volume element (RVE) of a [45/0/-45/90]s laminate shown in 

Fig.1.2 has cracks in various oriented layers. The ply orientation angles are measured 

with respect to the Y axis. Due to the different orientations of layers in arbitrarily 

orientated ply laminate, the delaminated opening displacement of each ply under thermal 

and mechanical loads is different and therefore has to be predicted individually. The 

shaded region shows the overlap of cracks through which permeation can occur. 

The composite material under consideration here is graphite epoxy IM7/PETI-5. 

The properties of IM7/PETI-5 are as shown in Table 1.1 and are obtained from 

mechanical characterization work performed by Gates et al [7]. 

Table 1.1. Material Properties of IM-7/PETI-5 Room Temperature (75ºF) 
E11         E22      E33 

  (Msi) 
  G12        G13        G23 

 (Msi) 
  ν12        ν 13     ν 23 

 
      α1             α 2 

(X 10-6 ε/ºF) 

24.20    1.28   1.28 0.73      0.73     0.48 0.3      0.3      0.34 -0.722    10.80 

 

1.2 Thesis Outline 
 

In Chapter 1, an introduction to the permeation problem in graphite-epoxy 

laminate system used in cryogenic fuel tanks of reusable launch vehicles is presented 

along with an outline of the thesis. Chapter 2 is comprised of literature review of work 

done previously by other researchers. Chapter 3 gives the problem statement and scope 

and objective of the thesis. Chapter 4 presents a development of solution for finding the 

crack opening displacement associated with delaminations in arbitrarily oriented ply 

laminates using five-layer model. Chapter 5 includes the use of a Three Layer model to 

calculate cracks in the outermost layer. Chapter 6 presents an approach to predict the in 

situ damage effective function (IDEF) and strain energy release rate. Chapter 7 discusses 
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the finite element models used to verify the results obtained from Five Layer and Three 

Layer models. Chapter 8 discusses results obtained from Five Layer and Three Layer 

models. Chapter 9 lists the conclusions based on the current study and the scope for 

future study. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 The problem of high pressure cryogenic fuel permeation through delaminated 

crack opening of composite laminates has been a matter of concern for a while due to 

highly critical and potentially dangerous consequences. If permeation persists, the use of 

composites as fuel tank material would be hazardous. Many researchers have studied the 

phenomenon of permeation of cryogenic fuel through composite laminates. Experimental 

as well as analytical and simulations studies have been performed.  

McManus et al [1,2] observed that the permeability is strongly influenced by 

loading conditions, crack density and ply orientation. They analytically predicted matrix 

cracks in a composite laminate, together with the resulting degradations of laminate 

properties, as functions of temperature or thermal cycles. A simple shear-lag solution for 

the stresses in the vicinity of cracks and a fracture mechanics crack formation criterion 

were used to predict matrix crack initiation and evolution. Experimentally, crack 
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densities were measured in a variety of laminates exposed to decreasing temperatures 

using X-ray radiography and microscopic inspection.    

Varna et al [3] experimentally investigated the transverse cracks in cross-ply 

laminates to reveal the essential characteristics of their opening displacement under 

tensile loads. The average crack opening displacement was studied as a function of the 

longitudinal overall strain and the effects of matrix toughness and transverse ply 

thickness on this parameter were examined. They predicted the average COD based on 

shear-lag model and variational approach and found that the stiffness reduction in the 

uncracked layer influences the COD of the interior layer.  

Hong et al [4,5] used a modified shear lag model taking into account the concept 

of interlaminar shear layer to predict the onset of a transverse crack and multiple 

transverse cracking as well as stiffness reduction due to the effect of transverse cracks on 

the thermomechanical properties of cross-ply laminated composites. They showed the 

dependence of the degradation of thermomechanical properties on the laminate 

configuration.  

Nairn [6,7] used a variational energy approach to determine the two-dimensional 

thermoelastic stress state in cross-ply laminates of type (0m/90n)s and (90m/0n)s. The stress 

analysis was used to calculate the energy release rate due to formation of a new 

microcrack. Further development of same model to include effects of delaminations with 

transverse matrix cracks was used to calculate the energy release rate for the initiation 

and growth of a delamination induced by a matrix microcrack. He concluded that at low 

crack densities, ((S)/90n)s laminates are expected to fail by microcracking and to show 

little or no delaminations whereas after a certain critical value of crack density, which is a 
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function of laminate structure and material properties, the energy release rate for 

delamination exceeds that for microcracking and delamination is predicted to dominate 

over microcracking. 

Roy and Benjamin [8] developed a simple expression for calculating the COD 

based on shear lag analysis. A major limitation of shear lag analysis is that the 

constraining layers are assumed as a homogenous medium without taking into account 

the stacking sequence effects, and shear deformations within a cracked layer are ignored. 

Also, it can be seen from Fig.1.2 that the increase in crack opening displacement due to 

delamination plays an important role in determining the amount of permeation of 

cryogenic fuel, which is not included in the standard shear lag model.  

Berthelot and Corre [9,10] developed a shear lag theory based analytical model 

for transverse cracking with delamination in cross-ply laminates subjected to tensile 

loading to evaluate strain and stress distribution. In the portion of laminate without 

delamination, the analytical model is based on a displacement approach which considers 

that the longitudinal displacement depends on the longitudinal and transverse coordinates 

in each layer. In the delaminated part, the analytical approach is reduced to the usual one-

dimensional analysis. They concluded that complete parabolic shear-lag analysis yields a 

fairly good approximation of the strain and stress distributions obtained by finite element 

analysis. 

Noh and Whitcomb [11,12] developed an expression for calculating the crack 

opening volume (COV) based on changes in the effective moduli of a cracked ply. They 

studied the effect of various parameters such as adjacent ply orientation, material 

properties of adjacent plies, initial properties of the cracked ply and cracks in adjacent ply 
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on COV. They observed that the crack opening could be predicted using two-dimensional 

models when crack-tip delaminations are fully developed, and that interaction effects on 

COD due to matrix cracks in adjacent plies can be ignored.  

Zhang et al [13,14] analytically studied the delaminated transverse matrix 

cracking of CFRP laminates under uniaxial tension. The model was based on first order 

shear deformable laminate theory, applying force, moment and shear stress constitutive 

equations to each sublaminate and analyzing the system using load and displacement 

boundary conditions. They found that a Five Layer model was able to predict the crack 

opening displacement in mid-layers, whereas a Three Layer model was useful for 

prediction of cracks in outermost layers. They also developed the concept of an in situ 

damage effective function (IDEF) for reducing stiffness of laminate as a function of 

damage growth.  

Gates et al [15] studied the effect of cryogenic temperature on materials properties 

of IM7/PETI-5 and found that temperature, loading mode and aging time can all have 

significant influence on residual strength and stiffness of the laminate, and this influence 

is a strong function of laminate stacking sequence. They also observed that certain 

material properties, such as laminate moduli, are not only nonlinear but they may also be 

non-monotonic functions of temperature. 

Bechel et al [16,17] developed an apparatus to experimentally observe the damage 

development in graphite epoxy laminates. IM7/3K, IM7/5250-4 carbon/bismaleimide 

cross-ply ([0/90]2S and [90/0/90/0/90/0/90/0/90]) and quasi-isotropic ([0/45/-45/90]s) 

laminates were submerged in liquid nitrogen (LN2) and returned to room temperature for 

various number of cycles. They observed that samples with ply thickness reduced by 30% 
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had lower surface cracks upto 200 cycles but at 1000 cycles, surface crack densities were 

equal regardless of ply thickness. Fig. 2.1 shows cross section of laminate in which crack 

in 90º layer (middle) is evident [16]. 

 

Fig. 2.1. Micro-crack in 90º ply block of a [0/90]2S specimen [17] 
 

 Roy and Benjamin [18] developed an analytical solution for predicting 

permeation due to crack opening displacement and delaminations in graphite epoxy 

systems IM7/PETI-5 cross ply laminates. This model is based on first-order shear 

laminate theory embodied in a Five Layer and a Three Layer model. Using this approach, 

the DCOD can be calculated for a cross-ply laminate with a given delamination length, 

crack density and loading conditions. Prediction of permeability is achieved by using 

Darcy’s law for isothermal, viscous flow of gases through porous media. The results 

obtained from both five-layer and three-layer model are used as input to the permeability 

model. Using this model, the permeability is calculated for an orthotropic laminate lay-up 

for a given delamination length, crack density and loading conditions. The model is 

restricted to the analysis of orthotropic cross ply laminates and cracks present in middle 

(central) plies and the outermost (top) plies.  

 10



 It is evident that in order to comprehensively study the permeability problem, it is 

necessary to develop a mathematical model to find the opening displacement associated 

with matrix cracks in the presence of delaminations. For any arbitrary ply orientation, 

using the analytical solution for matrix crack opening displacement associated with 

delaminations, an expression for permeability will be derived and verified using 

experimental data. 
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CHAPTER 3 

 

 

OBJECTIVE & APPROACH 

 

 

 

As described in previous sections, in order to be able to develop a mathematical 

model for prediction of permeability in graphite-epoxy laminates it is first necessary to 

predict the crack opening displacement associated with delaminations in every layer of 

arbitrary orientation that forms a path through the entire thickness of the laminate as 

shown in Fig.1.2. Once the crack opening displacement is known for given set of thermal 

and/or mechanical loads, the permeability can be predicted by modifying the model 

previously developed by Roy and Benjamin [18].  

 In this study, an analytical methodology based on first-order shear laminate theory 

[13] is applied to predict opening displacement associated with delaminations in [0/90/0]s 

cross-ply and [45/0/-45/90]s angle-ply laminate systems in a graphite-epoxy laminate 

(IM-7/PETI-5) subject to thermal and mechanical loading conditions. Delamination 

length and crack density are specified as input in the interest of simplicity. The Five 

Layer and Three Layer models presented in this study are developed further from the 
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work originally presented by Zhang et al [13] and Roy and Benjamin [18]. The five-layer 

model is used to predict DCOD in the intermediate layers where as the Three Layer 

model is used to predict DCOD in outermost (top) layer. The DCOD obtained using five-

layer and Three Layer models are verified using two-dimensional and three dimensional 

finite element analysis. A mathematical model to predict permeability in graphite-epoxy 

laminate system [18] is used with the help of Darcy’s law for isothermal, viscous flow of 

gases through porous media. The results obtained from five-layer model are used as input 

to the permeability model. An approach to calculate the stiffness reduction factor is 

presented as in situ damage effective function (IDEF), a function of crack spacing and 

delamination length along with material properties. 
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CHAPTER 4 

 

 

ANALYTICAL SOLUTION FOR DCOD USING  

FIVE LAYER MODEL 

 

 

4.1  Introduction to Five Layer Model 
 

In this chapter, an analytical model has been developed to determine the 

delaminated crack opening displacement (DCOD) in the intermediate plies of a 

symmetric laminate with arbitrarily oriented plies. The model is based on first order shear 

deformation theory. The load conditions considered here are mechanical uniaxial tensile 

loading and thermal loading. Each layer is individually analyzed for crack assuming that 

the other layers are intact. It can be easily understood that plies with fibers perpendicular 

to load direction, i.e. 90º layer, are more susceptible to damage initiation. As the 

transverse matrix cracks are studied in this model, layers with orientations other than 90º 

are analyzed by resolving the applied forces into components parallel and perpendicular 

to the fiber direction. This is done considering the rotation of co-ordinate system 

accordingly to view those layers as having orientation of 90º. Appropriate 
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transformations in loads and properties are applied to full RVE for analysis of the 

particular layer under consideration. 

The damage mode in such 90º plies is transverse matrix cracks. These type of 

cracks increase with increase in axial load. Along with transverse matrix cracks, there are 

delaminations at the crack tips due to stress concentrations. Such matrix cracking with 

delaminations in adjacent plies cause the openings called delaminated crack opening 

displacement (DCOD), which are spaced through out the thickness of the laminate. These 

DCOD are responsible for the permeation of cryogenic fuel through the laminates. A 

representative schematic of such DCOD in a laminate is shown in fig. 4.1. The cracked 

90º layer is shown with transverse crack and delaminations at the ends of the crack. The 

laminate is considered symmetric about Y axis. 

 

Fig. 4.1. Transverse crack and delaminations under uniaxial tensile load in a Five 

Layer Model 
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4.2  Analytical Expression for Five Layer Model 
 

 In this section, the expression for delaminated crack opening displacement in the 

Five Layer Model is developed for a general laminate configuration of [Φ/../θ/90/φ/..ψ]s. 

As shown in Fig. 4.2, the RVE has a uniform crack spacing of ‘2S’ and local 

delamination length of ‘2L’. The layers with arbitrary orientations Φ/../θ and φ/..ψ are not 

damaged, whereas the crack exists in 90º layer.  

 

Fig. 4.2. Crack spacing and delamination length in Five Layer Model 
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Considering symmetry of laminate about Y axis and about crack, as well as symmetry of 

loading, only one-quarter of this Five Layer laminate is modeled as shown in Fig. 4.3. 

The modeled portion of laminate is divided into 6 different parts called sublaminates. 

Sublaminates 1,2 and 3 are in the undamaged region of ‘y’ (S-L) whereas sublaminates 4, 

5 and 6 are in the damaged portion of ‘y’ (L).  

 

 

Fig. 4.3. One-quarter of repeating interval of a Five Layer model case 

 

Assuming that the displacements in y and z directions within each sublaminate 

can be given by, 

( , ) ( ) ( )v y z V y z yβ= +                                                (4.1) 

( )w W y=                                                          (4.2) 

Where, V(y) is the y displacement of mid-surface of the sublaminate. 

  β(y) is the slope of the sublaminate mid-surface in y direction. 

  W(y) is the z displacement of mid-surface of the sublaminate. 
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The force and moment equilibrium equations for each sub-laminate are, 

                   , y t bN T T 0+ − =                                                    (4.3)             

              ( ),
2y t b
hM Q T T 0− + + =                                             (4.4) 

                    , y t bQ P P 0+ − =                                                   (4.5) 

where N, Q and M are axial force, shear force and bending moment resultants, P and T 

denote interlaminar peel and shear stresses with subscripts t and b denoting top and 

bottom surfaces. Combining the strain-displacement relations with Equations (4.1, 4.2) 

and the in-plane stress-strain relationships of a lamina, the force-displacement 

relationships of a sublaminate are,  

      22 22 22, ,
f

ref

T

M y y y
T

N A V B Q h dβ α= + − ∫ T                                   (4.6) 

      22 22 22, ,
f

ref

T

M y y y
T

M B V D Q hZ dTβ= + − ∫ α

)

                              (4.7) 

                 44 ( , yQ A Wβ= +                                            (4.8) 

where, A22, B22, D22 and A44 are components of the A, B and D stiffness matrices from 

classical lamination theory; Tref and Tf are reference and final temperatures; h is the 

thickness of the lamina; Z is centroidal distance of the lamina from laminate midplane; 

 is the coefficient of thermal expansion in y-direction and is given by the nonlinear 

function C

yα

0+C1T+C2T2. In the above equations, non-linear material properties with 

respect to temperature T are used in calculating the thermal forces and moments. The 

components of A, B, D and Q  matrix are assumed to be nonlinear functions of 

temperature T. It should be noted that for a two-dimensional orthotropic model the other 
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stiffness components of the anisotropic sublaminate do not appear in the constitutive 

equations due to the assumption of plane strain with respect to the width of the specimen. 

By modifying the procedure given by Zhang et al [13] for applying it to present case, the 

solutions for displacement in ‘y’ direction of sublaminate 4, 5 and 6 are derived as, 

                                               (4.9) (4) (4) (3) (4)( , ) ( ) ( )v y z V y z yβ= +

                                           (4.10)       

                                    (4.11) 

(5) (5) (2) (5)( , ) ( ) ( )v y z V y z yβ= +

(6) (6) (2) (6)( , ) ( ) ( )v y z V y z yβ= +

Where,                         
(3)

(4) 22
1 2 3(3)

22

( )y yBV e e
A

ω ω
4yψ ψ ψ−= − + + +ψ

4

                                (4.12) 

(5)
3V yθ θ= +                                    (4.13) 

(6)
7V y 8θ θ= +                                    (4.14) 

                      (4)
1 2

ye e yω ωβ ψ ψ −= +                                           (4.15) 

     1(5)
1 2

ye e 1yω ωβ θ θ −= +                                   (4.16) 

     (6)
5 y 6β θ θ= +                                    (4.17) 

The detailed procedure for obtaining laminate constants θi, ψi, ω and ω1 for the case of 

pure mechanical loading is given in Zhang et al [13]. Detailed analytical derivations 

including thermal and mechanical loading are given in Appendix A. 

 From Equations (4.12-4.17), the delaminated crack opening displacement 

(DCOD) calculated at the interface of sublaminate 4 and 5 at y=S for a given 

delamination length L and crack density 1/2S is given by, 

(3) (2)
(6) (5)( , ) ( , )

2 2top
hDCOD v S v S−

= −
h                                      (4.18) 
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(3) (2)
(4) (5)( , ) ( , )

2 2bottom
hDCOD v S v S −

= −
h                                      (4.19) 

 Using Equations (4.15), DCOD for a given delamination length, crack density and 

symmetric loading (mechanical and /or thermal) condition can be obtained for the Case 1 

laminate configuration. 
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CHAPTER 5 

 

 

ANALYTICAL SOLUTION FOR DCOD USING  

THREE LAYER MODEL 

 

 

5.1  Introduction to Three Layer Model 
 

In this chapter, an analytical model is developed to determine the delaminated 

crack opening displacement (DCOD) in the outermost ply of arbitrarily oriented 

symmetric laminate. The model derived depends on first order shear deformation theory. 

The load conditions considered here are mechanical uniaxial tensile loading and thermal 

loading. The top layer is individually analyzed for a matrix crack assuming that the other 

layers are intact. It can be easily understood that plies with fibers perpendicular to load 

direction, i.e. 90º layer, are more susceptible to damage initiation. As the transverse 

matrix cracks are studied in this model, top layers with orientations other than 90º are 

analyzed by resolving the applied forces into components parallel and perpendicular to 

the fiber direction. This is done by considering the rotation of co-ordinate system 
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accordingly to view those layers as having orientation of 90º. Appropriate 

transformations in loads and properties are applied to full RVE for analysis. 

The delaminated crack opening in the top layer is similar to that in intermediate 

layers, except the top surface is traction-free. Matrix cracking with delaminations in 

adjacent plies results in delaminated crack opening displacements (DCOD), which are 

assumed to be equally spaced through out the thickness of the laminate. These DCOD are 

responsible for the permeation of cryogenic fuel through the laminates. Representative 

schematic of such DCOD in a laminate is shown in fig. 5.1. The cracked top 90º layer is 

shown with transverse crack and delaminations at the end of the crack. The laminate is 

considered symmetric about X axis. 

 

 

Fig. 5.1. Transverse crack and delaminations under uniaxial tensile load in a 

Three Layer Model. 
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5.2  Analytical Expression for Three Layer Model 
 

 In this section, the expression for delaminated crack opening displacement in a 

Three Layer model is developed for laminate configuration of [90/θ/…/ Φ]s. As seen in 

Fig. 5.1, the above schematic is developed into RVE with crack spacing of ‘2S’ and local 

delamination length of ‘2L’, the similar to the Five Layer model. The layers with 

arbitrary orientations θ/…/Φ are assumed to be undamaged, whereas the crack exists in 

the 90º layer.  

Considering symmetry of laminate about X axis and about crack, as well as 

symmetry of loading, only one-quarter of this Three Layer laminate is modeled as shown 

in Fig. 5.2. The modeled portion of laminate is divided into 4 different parts called 

sublaminates. Sublaminates 1 and 2 are undamaged region of ‘x’ (S-L) whereas 

sublaminates 3 and 4 are in damaged portion of ‘x’ (L).  

 

Fig. 5.2. One-quarter of repeating interval of a Three Layer model case 
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Assuming that the displacements in x and z directions within each sublaminate 

can be given by, 

                 ( , ) ( ) ( )u x z U x z xβ= +                                                  (5.1) 

                          ( )w W x=                                                           (5.2) 

Where, U(x) is the x displacement of mid-surface of the sublaminate. 

  β(x) is the slope of the sublaminate mid-surface in x direction. 

  W(x) is the z displacement of mid-surface of the sublaminate. 

The force and moment equilibrium equations for each sub-laminate are, 

                   , 0x t bN T T+ − =                                                         (5.3)               

              ( ),
2x t b
hM Q T T 0− + + =                                                  (5.4) 

                    , 0x t bQ P P+ − =                                                        (5.5) 

where N, Q and M are axial force, shear force and bending moment resultants, P and T 

denote interlaminar peel and shear stresses with subscripts t and b denoting top and 

bottom surfaces. Combining the strain-displacement relations with Equations (5.1, 5.2) 

and the in-plane stress-strain relationships of a lamina, the force-displacement 

relationships of a sublaminate are,  

      11 11 11, ,
f

ref

T

M x x
T

N A U B Q h dβ α= + − ∫ x T                                         (5.6) 

      11 11 11, ,
f

ref

T

M x x
T

xM B U D Q hZ dTβ= + − ∫ α

)

                                      (5.7) 

                 44 ( ,xQ A Wβ= +                                                     (5.8) 
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where, as in Case 1, A11, B11, D11 and A44 are components of the A, B and D stiffness 

matrices from classical lamination theory; Tref and Tf are reference and final temperatures 

respectively; h is the thickness of the lamina; Z is centroidal distance of the lamina from 

laminate midplane;  is the coefficient of thermal expansion in x-direction and is given 

by the nonlinear function C

xα

0+C1T+C2T2. In the above equations, non-linear material 

properties with respect to temperature T are used in calculating the thermal forces and 

moments. The components of A, B, D and Q  matrix are assumed to be nonlinear 

functions of temperature T. For the two-dimensional orthotropic model the other stiffness 

components of the anisotropic sublaminate do not appear in the constitutive equations 

due to the assumption of plane strain with respect to the width direction. By modifying 

the procedure given by Zhang et al [13] for the present laminate, the solutions for 

displacement in x direction of sublaminate 3 and 4 are derived as, 

                                                 (5.9) (3) (3) (1) (3)( , ) ( ) ( )u x z U x z xβ= +

                                                (5.10) (4) (4) (2) (4)( , ) ( ) ( )u x z U x z xβ= +

Where,                                  (3)
2U x 3ψ ψ= +                                                   (5.11) 

(4)
3U x 4θ θ= +                                                    (5.12) 

                      (3)
1β ψ=                                                         (5.13) 

     (4)
1 x 2β θ θ= +                                                     (5.14) 

 A detailed analytical derivation including thermal loading is given in Appendix B 

 The DCOD calculated at the interface of sublaminate 3 and 4 at x=S for a given 

delamination length L and crack density 1/2S is given by, 
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(2) (1)

(4) (3)( , ) ( , )
2 2

hDOD u S u S −
= −

h                                        (5.15) 

 Using Equation (5.15), DCOD for a given delamination length, crack density and 

symmetric loading condition (mechanical and/or thermal) can be obtained for the Case 2 

laminate configuration. 
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CHAPTER 6 

 

 

IN-SITU DAMAGE EFFECTIVE FUNCTION 

 

 

 

6.1  Introduction 
 

Composite laminates are macroscopically inhomogeneous materials as they 

consist of layers of different orientations. But the individual layer can be considered as a 

homogeneous anisotropic solid phase with a distribution of micro-cracks. In this section, 

characterization of extension stiffness reduction of the constrained 90˚layers is explicitly 

expressed in terms of delamination length and transverse crack spacing by using the 

obtained stress field in Five Layer and Three Layer models. The reduced stiffness of the 

90˚ ply group normalized by the stiffness of an intact lamina was introduced by Zhang et 

al [13,14] and is termed as IDEF. The model developed by Zhang et al [13,14] has been 

modified to apply the present boundary and load conditions. In-situ damage effective 

function (IDEF) has been defined for considering the changes in in-plane stiffness of 

damaged laminate. Equivalent constrained models (ECM) such as Five Layer Model and 
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Three Layer Model are used for stiffness degradation calculations. The stiffness reduction 

in the laminate due to transverse cracking and its induced delaminations is assumed to be 

attributed to the loss of the load carrying capacity of 90˚ plies. IDEF has been determined 

by assuming that the stiffness of an “equivalent” laminate where the degraded 90˚ plies 

are perfectly bonded is equal to that of the real cracked and delaminated laminate. IDEF 

happens to be a function of transverse crack spacing as well as delamination length and 

the in-situ constraining conditions of 90˚ plies.   

The significance of IDEF is due to the fact that the strain energy release rate can 

be developed as a function of IDEF by calculating the potential energy of damaged 

laminate element with a finite gauge length of crack spacing (2S) and unit width under 

conditions of plain strain in the width direction. Potential energy can be found out by 

subtracting the external work done due to tensile load from total elastic strain energy (U) 

stored in a laminate element. Zhang et al [13,14] calculated total strain energy by 

integrating the strain energy over laminate due to normal stress and strain. The shear 

strains generated in the laminate were not considered. In this derivation, shear strain 

energy is also included in calculating the total strain energy of the laminate.  
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6.2 IDEF calculation 

 

The axial strain εy produced in the laminate can be found out as given by Zhang et al 

[14]. As the rotation of the end-section of constraining layers in both FLM and TLM is 

zero, overall average axial strain in laminate is given as follows. 

 

6.2.1 For Five Layer Model 

 

(6) (4)
3 4 7 8( ( ) ( )) / 2 ( ) /

y
V s V s S S

S S
ψ ψ θ θε + + +

= =
2+     (6.1) 

Therefore the extension stiffness of a damaged laminate in Y direction can be given 

as  

22
d T

y

N NA
ε
+

=        (6.2) 

The IDEF can be found out as given by Zhang et al [13,14] 

22 22
22 (2)

222

dA A
A
−

Λ =              (6.3) 

6.2.2 For Three Layer Model 

 

Using definitions of constants as defined in Three Layer model,  

(4)
3( )

y
U s S

S S
4θ θε +

= =          (6.4) 

 29



 22
d T

y

N NA
ε
+

=             (6.5) 

22 22
22 (1)

222

dA A
A
−

Λ =            (6.6) 

 

6.3 Total strain energy calculation approach 

 

6.3.1 For Five Layer Model 

 

Potential energy (PE) is  

 

2yPE U N Sε= −         (6.7) 

where U is strain energy of the laminate. 

( )
2

2 (6) (6) 2 (4) (4
22 44 ' '

0

1 ( ) ( )
2

S
d d

y yU SA A W W dyε β β= + + + +∫ ) 2
y   (6.8) 

44
dA  has been defined by Zhang et al [13] as stiffness of damaged laminate in shear. By  

substituting the values obtained from FLM (Appendix A), the resulting expression is  

 (2 2 4 2
22 44 1

1 4
2

d d S S
yU SA A e Seω ωε ψ ω

ω
= + − )1−     (6.9) 

6.3.2 For Three Layer Model 

 

Potential energy (PE) is  
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2yPE U N Sε= −         (6.10) 

where U is strain energy of the laminate. 

2
2 (4) (4

22 44 '
0

1 (
2

S
d d

yU SA A W dyε β= + +∫ ) 2)y     (6.11) 

By substituting the values obtained from TLM (Appendix B), the resulting expression is  

 (2 2 4 2
22 44 1

1 4
2

d d S S
yU SA A e Seω ωε θ ω= + − )1−     (6.12) 

 

 

6.4 Strain energy release rate calculation approach 

6.4.1  SERR for Matrix cracking 

Using the potential energy expression obtained in section 6.3.1 for initial crack 

spacing of ‘2S’ and after formation of new cracks with crack spacing of ‘S’, approach 

followed by McManus et al [1,2] was used. By Griffith’s energy approach, first partial 

derivative of potential energy with respect to crack length gives the strain energy release 

rate as    

MCG
a
π∂

=
∂

        (6.13) 

where GMC is the strain energy release rate due to matrix cracking, ‘π’ is total 

potential energy and ‘a’ is the crack length. Substituting and solving equations (6.7, 6.9) 

and combining with the constants derived in Appendix A, we get 

(3) (1)3
(3) (1) (1)22 22

(3) (1)
1 22 22

( ) (sinh( ( ))( )T
j j j j

j

B BPE N N S S L p
A A jα λ γ

=

⎧ ⎡⎪= + − + + +⎨ ⎢
⎪ ⎣⎩

∑ γ  
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(3)
(3) 2 22

(3) (1) (1)
22 22 22 22

1 1( )cosh( ( )) (2 ( )
T

j j
N N AL S L S L L

A A A A
η λ +
+ − − + − + − )SL  

(2) (2) (2)
22(1)

22

( 2
2

f

ref

T
T

y
T

L N N Q h dT
A

α
⎤
⎥+ + −
⎥⎦

∫ )  

4 23

( ) ( ) ( ) ( )
1

( 4 1)sinh( ( ))
( )(2

S S

j j S L S L S S L S L
j

e SeS L
e e e e e

ω ω

ω ω ω ω ω

ωα λ − + − +
=

⎫⎡ ⎤− − ⎪+ − ⎬⎢ ⎥− − − ⎪⎣ ⎦⎭
∑ )

    

(6.14) 

Solving for GMC, we get  

(3) (1)3
(3) (1) (1)22 22

(3) (1)
1 22 22

( ) (sinh( ( ))( )MC T
j j j j

j

B BG N N S L p
A A jα λ γ

=

⎧⎡⎪= + − + + +⎨⎢
⎪⎣⎩
∑ γ   

(3)
(3) 2 22

(3) (1) (1)
22 22 22 22

1 1( )cosh( ( )) (2 ( )
T

j j
N N AL S L S L L

A A A A
η λ +
+ − − + − + − )SL

(2) (2) (2)
22(1)

22

( 2 )
2

f

ref

T
T

y
T

L N N Q h dT
A

α
⎤
⎥+ + −
⎥⎦

∫  

(3) (1)3
(3) (1) (1)22 22

(3) (1)
1 22 22

( cosh( ( ))( )j j j j j j
j

B BS S L p
A A

α λ λ γ γ
=

+ − + +∑ +   

(3)
(3) 22

(3) (1) (1)
22 22 22 22

1 1( ) sinh( ( )) (2 )
T

j j j
N N AS L S L S L

A A A A
η λ λ +

+ − − + −  

( ) ( ) ( ) ( ) 4 2 2 2

( ) ( ) 2 ( ) ( ) 2
( )(2 )(4 8 4

( ) (2 )

S L S L S S L S L S S S

S L S L S S L S L
e e e e e e Se e

e e e e e

ω ω ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω− + − +

− + − +

⎫− − − − −
+ ⎬− − − ⎭

)  

(6.15) 
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6.4.2  SERR for delamination growth 

Using the potential energy expression obtained in section 6.3.1 for initial crack 

spacing of ‘2S’ and after formation of new cracks with crack spacing of ‘S’, approach 

followed by Zhang et al [13,14] was used. First partial derivative of potential energy with 

respect to delamination length gives the strain energy release rate as    

DLG
L
π∂

=
∂

        (6.16) 

where GLDL is the strain energy release rate due to delaminations, ‘π’ is total 

potential energy and ‘L’ is the half delamination length. Substituting and solving 

equations (6.7, 6.9) and combining with the constants derived in Appendix A, we get 

(3) (1)3
(3) (1) (1)22 22

(3) (1)
1 22 22

( ) (sinh( ( ))( )T
j j j j

j

B BPE N N S S L p
A A jα λ γ

=

⎧ ⎡⎪= + − + + +⎨ ⎢
⎪ ⎣⎩

∑ γ  

(3)
(3) 2 22

(3) (1) (1)
22 22 22 22

1 1( )cosh( ( )) (2 ( )
T

j j
N N AL S L S L L

A A A A
η λ +
+ − − + − + − )SL  

(2) (2) (2)
22(1)

22

( 2
2

f

ref

T
T

y
T

L N N Q h dT
A

α
⎤
⎥+ + −
⎥⎦

∫ )  

4 23

( ) ( ) ( ) ( )
1

( 4 1)sinh( ( ))
( )(2

S S

j j S L S L S S L S L
j

e SeS L
e e e e e

ω ω

ω ω ω ω ω

ωα λ − + − +
=

⎫⎡ ⎤− − ⎪+ − ⎬⎢ ⎥− − − ⎪⎣ ⎦⎭
∑ )

    

(6.17) 
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Solving for GDL, we get  

(3) (1)3
(3) (1) (1)22 22

(3) (1)
1 22 22

( ) ( cosh( ( ))(DL T
j j j j j j

j

B BG N N S S L p
A A

)α λ λ γ γ
=

⎧ ⎡⎪= + − − + + +⎨ ⎢
⎪ ⎣⎩

∑   

(3) (3)
(3) (1) (3) (1)
22 22 22 22

1 1 1 1( )cosh( ( )) ( )sinh( ( ))j j j jS L L S L
A A A A
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CHAPTER 7 

 

 

FINITE ELEMENT MODELING 

 

 

 

For the verification of the analytically obtained results, 2-D and 3-D finite 

element models are constructed. A two dimensional model was constructed to compute 

the delaminated crack opening displacement occurring in laminates due to thermal and 

mechanical loadings for given crack spacing and delamination length. Finite element 

analysis was performed using commercial software ABAQUS, versions 6.3 and 6.4. Due 

to symmetry of laminate geometry and loading conditions, only half of the laminate 

representative volume element with single crack is analyzed. A plane strain assumption is 

made in X-Z plane and a two dimensional mesh with 8 node plane strain element is used. 

Two dimensional finite element was done on [0/90/0]s IM7/PETI-5 laminate as 

shown in Fig. 7.1. The delaminated crack opening displacement was calculated from the 

computed displacement of nodes at the delaminated 0º-90º layer interface. The crack 

spacing considered is 4.4 inch and delamination length is 0.16 inch. This is verification of 

Case1 (Five Layer Model). Also, two dimensional analysis was performed on top layer of 
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[0/90/0]s laminate for Case2 (Three Layer Model) as shown in Fig. 7.2 with same crack 

spacing and delamination length as that of Case1.  

Three dimensional analysis was performed on [0/90/0]s and [45/0/-45/90]s 

laminates using a model as shown in Fig. 7.3. A three dimensional quadratic 20 node 

brick element was used to create the mesh. Crack was modeled by creating extra nodes as 

per the requirement in corresponding elements and thus, connectivity was also changed 

for those elements. A crack spacing of 0.5 inches was used with delamination length of 

0.01 inches. A considerably wide model (1 inch in Z direction and 0.5 inches in X 

direction) was created to avoid the edge effects, for considering plain strain equivalence 

in analytical model for X direction. Thickness of the full laminate is 0.048 inches (in Y 

direction). 
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Fig. 7.1. 2-D FEA model of Case1 (Five Layer Model) for [0/90/0]s 
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Fig. 7.2. 2-D FEA model of Case2 (Three Layer Model) for [0/90/0]s 

 

 

Fig. 7.3. 3-D FEA model mesh with quadratic 3-D 20 node brick elements, length 

X=0.5 inches, width Z=1 inch, thickness of half laminate Y=0.024 inches 
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CHAPTER 8 

 

 

RESULTS AND DISCUSSION 

 

 

 

 From the analytical solutions of Three and Five Layer models for various 

configurations of IM-7/PETI-5 graphite epoxy laminates, following results are observed. 

8.1 FLM – FEM comparison 

 The results from the Five Layer Model were compared to Finite Element model 

results as discussed in Chapter 7. It can be seen from the Fig.8.1 through Fig.8.9 that the 

analytical model shows reasonable agreement with the 2D and 3D FEA results for 

arbitrarily oriented ply laminates. Laminate configurations of [0/90/0]s and [45/0/-45/90]s 

are used for comparison. 

 First [0/90/0]s laminate is compared with 2D FEA solutions. The error observed is 

as low as 1%. Fig.8.32 shows that the lines representing FLM and FEA solutions almost 

match exactly. 
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[0/90/0]s FLM-2D FEA comparison
S=2.2", L=0.08" 
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Fig.8.1 [0/90/0]s laminate, crack in 90˚ layer FLM-FEA comparison, mechanical load 

 For 3D FEA benchmark comparison, [45/0/-45/90]s laminate configuration is 

used. The analytical model results are in reasonable agreement with the finite element 

solutions with error ranging from 4% to 7% in various damaged layers for mechanical 

and thermal load conditions. 

[45/0/-45/90]s DCOD (top) Comparison for FLM-FEA
S=0.25", L=0.01", Crack in 0˚
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Fig.8.2 [45/0/-45/90]s laminate crack in 0˚ layer FLM-FEA comparison 

DCOD (TOP) mechanical load 
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[45/0/-45/90]s DCOD (bottom) Comparison for FLM-FEA
S=0.25", L=0.01", Crack in 0˚
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Fig.8.3 [45/0/-45/90]s laminate with crack in 0˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (BOTTOM) mechanical load 

 

[45/0/-45/90]s Thermal DCOD (top) FLM-FEA comparison
S=0.25", L=0.01", Crack in 0˚
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Fig.8.4 [45/0/-45/90]s laminate with crack in 0˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (TOP) thermal load 
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[45/0/-45/90]s Thermal DCOD (bottom) FLM-FEA 
comparison

S=0.25", L=0.01", Crack in 0˚
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Fig.8.5 [45/0/-45/90]s laminate with crack in 0˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (BOTTOM) thermal load 

 

[45/0/-45/90]s DCOD (top) Comparison for FLM-FEA
S=0.25", L=0.01", Crack in -45˚
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Fig.8.6 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (TOP) mechanical load 
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[45/0/-45/90]s DCOD (bottom) Comparison for FLM-FEA 
S?=0.25", L=0.01", Crack in -45
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Fig.8.7 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (BOTTOM) mechanical load 

 

 

Fig.8.8 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (TOP) thermal load 
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[45/0/-45/90]s Thermal DCOD (bottom) FLM-FEA 
comparison, S=0.25", L=0.01", Crack in -45˚
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Fig.8.9 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA comparison 

S=0.25”and L=0.01”, DCOD (BOTTOM) thermal load 

  

The crack shapes obtained from FLM and FEA are also compared. It can be seen 

from Fig.8.10 through Fig.8.17 that FEA predicts a “V” shape  DCOD while FLM/TLM 

give a straight line for crack shape as FLM/TLM models are based on first order shear 

deformation theory where only linear variation of displacement is considered through 

each layer. 
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Fig.8.10 [45/0/-45/90]s laminate with crack in 0˚ layer FLM-FEA crack shape 

comparison, S=0.25”and L=0.01” ∆T = -495˚F  

 

Fig.8.11 [45/0/-45/90]s laminate with crack in 0˚ layer FLM-FEA crack shape 

comparison, S=0.25”and L=0.01” Nm=1000 lb/in 
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Fig.8.12 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA crack shape 

comparison, S=0.25”and L=0.01” ∆T = -495˚F  

 

 

Fig.8.13 [45/0/-45/90]s laminate with crack in -45˚ layer FLM-FEA crack shape 

comparison, S=0.25”and L=0.01”, Nm=1000 lb/in 
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Fig.8.14 [45/0/-45/90]s laminate with crack in 45˚ layer TLM-FEA crack profile 

comparison, S=0.25”and L=0.01”, Nm=1000 lb/in 

 

 

Fig.8.15 [45/0/-45/90]s laminate with crack in 45˚ layer TLM-FEA crack profile 

comparison, S=0.25”and L=0.01”, ∆T = -495˚F  
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Fig.8.16 [45/0/-45/90]s laminate with crack in 90˚ layer TLM-FEA crack profile 

comparison, S=0.25”and L=0.01”, Nm=1000 lb/in 

  

Fig.8.17 [45/0/-45/90]s laminate with crack in 90˚ layer TLM-FEA crack profile 

comparison, S=0.25”and L=0.01”, ∆T = -495˚F 
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Fig. 8.18 and Fig. 8.19 give the comparison between FLM/TLM and FEA results 

in form of % error for mechanical and thermal loads. 

 

Fig.8.18 [45/0/-45/90]s laminate with crack in layers FLM-FEA DCOD comparison, 

S=0.25”and L=0.01”, Nm=1000 lb/in 

 

Fig.8.19 [45/0/-45/90]s laminate with crack in layers FLM-FEA DCOD comparison, 

S=0.25”and L=0.01”, ∆T = -495˚F 
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8.2 Effect of crack density on DCOD 

 A [0/90/0]s configuration is considered using delamination length as 0.01 inch and 

crack spacing S (or crack density CD) is varied as CD=1/2S, under a thermal load of -

495˚F. Keeping the same delamination length, various load conditions are also applied as 

mechanical force of 1000 lb/in. Also, another laminate configuration [45/0/-45/90]s is 

observed under similar load conditions for different cases of cracks in 0˚, -45˚ and 45˚ 

layers separately. Results in Fig.8.20 through Fig.8.27 show that up to crack density of 5 

cracks per inch, the DCOD remains constant and then decreases with increasing crack 

density. The higher the value for half crack spacing, the lower the crack density. 

Therefore, the effect of delaminated crack opening remains constant for lower crack 

density values. This can be attributed to the fact that as number of cracks per inch 

increases, maximum normal tensile stress in the cracked layer decreases because the 

crack spacing is less than the critical length necessary for complete load transfer from the 

undamaged plies. This is observed in FLM as well as TLM solutions. 

[0/90/0]s  (FLM), dT=-495˚F, L=0.01" 
DCOD vs Crack Density
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Fig.8.20 [0/90/0]s laminate with crack in 90˚ layer (FLM) for ∆T = -495˚F, L=0.01” 
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[0/90/0]s  (FLM), Nm=1000 lb/in, L=0.01"
DCOD  vs Crack Density
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Fig.8.21 [0/90/0]s laminate with crack in 90˚ layer (FLM) for Nm = 1000 lb/in, L=0.01” 

[45/0/-45/90]s  (FLM), dT=-495˚F, L=0.01" 
DCOD vs Crack Density in -45˚ layer
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Fig.8.22 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

∆T = -495˚F  and L=0.01” 
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[45/0/-45/90]s  (FLM), Nm=1000 lb/in, L=0.01" 
DCOD vs Crack Density in -45˚ layer
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 Fig.8.23 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

Nm = 1000 lb/in and L=0.01” 

[45/0/-45/90]s  (FLM), dT=-495 ˚F, L=0.01" 
DCOD vs Crack Density in 0˚ layer

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 5 10 15 20 25 30

Crack Density (/inch)

D
C

O
D

 x
 E

-0
4 

(in
ch

)

DCOD (TOP)

DCOD (BOT)

  

Fig.8.24 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

∆T = -495˚F and L=0.01” 
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[45/0/-45/90]s  (FLM), Nm=1000 lb/in, L=0.01" 
DCOD vs Crack Density in 0˚ layer
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Fig.8.25 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

Nm = 1000 lb/in and L=0.01” 

[45/0/-45/90]s  (TLM), dT=-495 ˚F, L=0.01" 
DCOD vs Crack Density in 45˚ layer
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Fig.8.26 [45/0/-45/90]s laminate with crack in top 45˚ layer (TLM) for  

∆T = -495˚F and L=0.01” 
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[45/0/-45/90]s  (TLM), Nm=1000 lb/in, L=0.01" 
DCOD vs Crack Density in 45˚ layer
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Fig.8.27 [45/0/-45/90]s laminate with crack in top 45˚ layer (TLM) for  

Nm = 1000 lb/in and L=0.01” 

8.3 Effect of delamination length on DCOD 

 Similar to the cases in first part, a [0/90/0]s configuration is considered using two 

different sets of crack spacing as S=0.25” and S=2.2” for various delamination lengths L, 

under a thermal load of -495˚F and mechanical force of 1000 lb/in. Also, another 

laminate configuration [45/0/-45/90]s is observed under similar load conditions for 

different cases of cracks in the 0˚, -45˚ and 45˚ layers separately. Results from Fig.8.28 

through Fig.8.41 show that DCOD increases linearly with the increase in delamination 

length for a given value of crack density and load. This is observed in FLM as well as 

TLM solutions. 
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[0/90/0]s  (FLM), dT=-495˚F, S=0.25" 
DCOD vs Delamination Length
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Fig.8.28 [0/90/0]s laminate with crack in 90˚ layer (FLM) for  

∆T = -495˚F and S=0.25” 

[0/90/0]s  (FLM), Nm=1000 lb/in, S=0.25" 
DCOD vs Delamination Length 

0

1

2

3

4

5

6

7

8

9

0 0.05 0.1 0.15 0.2 0.25

L (inch)

D
C

O
D

 x
 E

-0
4 

(in
ch

)

DCOD (TOP)
DCOD (BOT)

 

Fig.8.29 [0/90/0]s laminate with crack in 90˚ layer (FLM) for  

Nm = 1000 lb/in and S=0.25” 
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[0/90/0]s  (FLM), dT=-495˚F, S=2.2" 
DCOD vs Delamination Length
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Fig.8.30 [0/90/0]s laminate with crack in 90˚ layer (FLM) for  

∆T = -495˚F and S=2.2”  
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DCOD vs Delamination Length 

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2

L (inch)

DC
O

D 
x 

E-
04

 (i
nc

h)

DCOD (TOP)
DCOD (BOT)

 

Fig.8.31 [0/90/0]s laminate with crack in 90˚ layer (FLM) for  

Nm = 1000 lb/in and S=2.2” 
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[45/0/-45/90]s  (FLM), dT=-495˚F, S=0.25" 
DCOD vs Delamination Length in -45˚ layer
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 Fig.8.32 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

∆T = -495˚F and S=0.25”  

[45/0/-45/90]s  (FLM), Nm=1000 lb/in, S=0.25" 
DCOD vs Delamination Length in -45˚ layer
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Fig.8.33 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

Nm = 1000 lb/in and S=0.25” 

 

 57



[45/0/-45/90]s  (FLM), dT=-495˚F, S=2.2" 
DCOD vs Delamination Length in -45˚ layer
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Fig.8.34 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

∆T = -495˚F and S=2.2” 

[45/0/-45/90]s  (FLM), Nm=1000 lb/in, S=2.2" 
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Fig.8.35 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

Nm = 1000 lb/in and S=2.2” 
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[45/0/-45/90]s  (FLM), dT=-495˚F, S=0.25" 
DCOD vs Delamination Length in 0˚ layer
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Fig.8.36 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

∆T = -495˚F and S=0.25” 

 

[45/0/-45/90]s  (FLM), Nm=1000 lb/in, S=0.25" 
DCOD vs Delamination Length in 0˚ layer
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Fig.8.37 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

Nm = 1000 lb/in and S=0.25” 
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[45/0/-45/90]s  (FLM), dT=-495˚F, S=2.2" 
DCOD vs Delamination Length in 0˚ layer
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Fig.8.38 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

∆T = -495˚F and S=2.2” 

 

[45/0/-45/90]s  (FLM), Nm=1000 lb/in, S=2.2" 
DCOD vs Delamination Length in 0˚ layer
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Fig.8.39 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

Nm = 1000 lb/in and S=2.2” 
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[45/0/-45/90]s  (TLM), dT=-495˚F, S=0.25" 
DCOD vs Delamination Length in 45˚ layer
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Fig.8.40 [45/0/-45/90]s laminate with crack in 45˚ layer (TLM) for  

∆T = -495˚F and S=0.25” 

 

[45/0/-45/90]s  (TLM), Nm=1000 lb/in, S=0.25" 
DCOD vs Delamination Length in 45˚ layer
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Fig.8.41 [45/0/-45/90]s laminate with crack in 45˚ layer (TLM) for  

Nm = 1000 lb/in and S=0.25” 
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8.4 Effect of mechanical force on DCOD 

 A [45/0/-45/90]s configuration is considered using a set of crack spacing and 

delamination length as S=0.25” and L=0.01”. A mechanical force of 1000 lb/in is applied 

on the laminate for different cases of cracks in 0˚, -45˚ and 45˚ layers respectively. 

Results depicted in Fig.8.42 through Fig.8.44 show that DCOD increases linearly with 

the increase in mechanical force. This can be seen in FLM as well as TLM solutions. The 

force is varied from 600 lb/in to 1500 lb/in and is biaxial in nature. The thermal load in 

this case is zero. 

[45/0/-45/90]s  (FLM), dT=0˚F, S=0.25", L=0.01" 
DCOD vs Mechanical Force, Crack in -45˚ layer 
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Fig.8.42 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

S=0.25”and L=0.01”, no thermal load 
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[45/0/-45/90]s  (FLM), dT=0˚F, S=0.25", L=0.01" 
DCOD vs Mechanical Force, Crack in 0˚ 
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Fig.8.43 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

S=0.25”and L=0.01”, no thermal load 

[45/0/-45/90]s (TLM), dT=0˚F,
DCOD vs Mechanical Force
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Fig.8.44 [45/0/-45/90]s laminate with crack in 45˚ layer (TLM) for  

S=0.25”and L=0.01”, no thermal load 
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8.5 Effect of temperature difference on DCOD 

 A [45/0/-45/90]s configuration is considered using a set of crack spacing and 

delamination length as S=0.25” and L=0.01”. A thermal load of ∆T = -495˚F is applied 

on the laminate for different cases of cracks in 0˚, -45˚ and 45˚ layers respectively. 

Results depicted in Fig.8.45 through Fig.8.47 show that DCOD increases linearly with 

the increase in temperature difference. This can be seen in FLM as well as TLM 

solutions. The ∆T is varied from -495˚F to 0˚F. No mechanical force is considered in this 

case.  

[45/0/-45/90]s (FLM), Nm=0 lb/in,
DCOD vs Temperature difference
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Fig.8.45 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

S=0.25”and L=0.01”, no mechanical load 
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[45/0/-45/90]s (FLM), Nm=0 lb/in,
DCOD vs Temperature difference
 S=0.25",L=0.01", Crack in 0˚ layer
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Fig.8.46 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

S=0.25”and L=0.01”, no mechanical load 

[45/0/-45/90]s (TLM), Nm=0 lb/in,
DCOD vs Temperature difference

 S=0.25",L=0.01", Crack in 45˚ layer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-600 -500 -400 -300 -200 -100 0

∆T ˚F

D
C

O
D

 x
 E

-0
4 

(in
ch

)

DCOD

 

Fig.8.47 [45/0/-45/90]s laminate with crack in 45˚ layer (TLM) for  

S=0.25”and L=0.01”, no mechanical load 
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8.6 Combined effect of mechanical and thermal load on DCOD 

 A [45/0/-45/90]s configuration is considered using a set of crack spacing and 

delamination length as S=0.25” and L=0.01”. A varying thermal load and a mechanical 

force of 1000 lb/in are applied on the laminate for different cases of cracks in the 0˚, -45˚ 

and 45˚ layers separately. Results depicted in Fig.8.48 through Fig.8.50 show that DCOD 

increases linearly with the increase in temperature difference. This can be seen in FLM as 

well as TLM solutions. The ∆T is varied from -495˚F to 0˚F.  

[45/0/-45/90]s (FLM), Nm=1000 lb/in,
DCOD vs Temperature difference
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Fig.8.48 [45/0/-45/90]s laminate with crack in -45˚ layer (FLM) for  

S=0.25”and L=0.01”, mechanical load Nm=1000 lb/in 
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[45/0/-45/90]s (FLM), Nm=1000 lb/in,
DCOD vs Temperature difference
 S=0.25",L=0.01", Crack in 0˚ layer
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Fig.8.49 [45/0/-45/90]s laminate with crack in 0˚ layer (FLM) for  

S=0.25”and L=0.01”, mechanical load Nm=1000 lb/in 

 

[45/0/-45/90]s (TLM), Nm=1000 lb/in,
DCOD vs Temperature difference
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

-600 -500 -400 -300 -200 -100 0

∆T ˚F

D
CO

D 
x 

E-
04

 (i
nc

h)

DCOD

 

Fig.8.50 [45/0/-45/90]s laminate with crack in 45˚ layer (TLM) for  

S=0.25”and L=0.01”, mechanical load Nm=1000 lb/in 
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8.7 Permeability model results  

 Using expressions derived by Roy and Benjamin [18] for permeability of 

composite laminates, permeability of complete laminate can be calculated. A 

configuration [45/0/-45/90]s is considered for finding out the permeability under different 

mechanical and thermal loads and crack spacing values. Results from Fig.8.51 through 

Fig.8.56 show permeability variation depending upon mechanical load, thermal load, 

crack spacing, crack opening volume  and delamination length.  

 The effect of adjacent ply cracks is considered negligible in order to superimpose 

the DCOD values of adjacent layers for calculating normalized permeability, as per Roy 

and Benjamin [18].  

 

[45/0/-45/90]s Effect of mechanical load on normalized 
permeability, S=0.25", L=0.01"
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Fig.8.51 [45/0/-45/90]s laminate S=0.25”and L=0.01”  

Effect of mechanical load on normalized permeability 
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Fig.8.51 shows a parabolic increase in normalized permeability through laminate 

as the mechanical force increases, due to more delaminated crack opening displacement. 

Thus, it is clear that increasing DCOD causes higher permeation. 

 

[45/0/-45/90]s Effect of temperature difference on normalized 
permeability, S=0.25", L=0.01"
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Fig.8.52 [45/0/-45/90]s laminate S=0.25”and L=0.01”  

Effect of thermal load on normalized permeability 

 

Similarly, with more thermal load due to temperature difference, there is more 

DCOD and thus, increased permeation. This can be seen from Fig.8.52. These trends 

match with those presented by Roy and Benjamin [18]. 
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[45/0/-45/90]s Effect of crack density on normalized 
permeability, Nm=1000 lb/in, L=0.01"
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Fig.8.53 [45/0/-45/90]s laminate L=0.01”, Nm=1000 lb/in 

Effect of crack spacing on normalized permeability  

  

Fig.8.53 shows that initially, the normalized permeability increases rapidly with 

increase in crack density. After a certain value of crack density, the rate of increase in 

normalized permeability is reduced. This can be attributed to the reduction in peak tensile 

stress in cracked layers which in turn reduce the DCOD values. The same reasoning can 

be applied to explain the nature of the variation of normalized permeability with an 

increase in delamination length. Fig.8.55 depicts the variation in normalized permeability 

due to increase in delamination length. As L increases, normalized permeability also 

increases initially and rate of increase reduces as delamination length is further increased.   

However the normalized permeability still increases, albeit at a slower rate due to 

the fact that it directly depends on the total crack opening volume, which increases as the 

crack density increases in a laminate. This can be seen from Fig.8.54. 
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[45/0/-45/90]s Crack Opening Volume variation with 
increase in crack density 
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Fig.8.54 [45/0/-45/90]s laminate L=0.01”, Nm=1000 lb/in 

Effect of crack density on crack opening volume COV 

 

[45/0/-45/90]s Effect of delamination length on normalized 
permeability
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Fig.8.55 [45/0/-45/90]s laminate S=0.25”  

Effect of delamination length on normalized permeability  
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The reduction in the peak tensile stress values in damaged layers with increase in 

crack density is depicted in Fig.8.56 for mechanical load of 1000 lb/in. 

Maximum normal stress in undamaged layers
for Nm=1000 lb/in, L=0.01" 
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Fig.8.56 [45/0/-45/90]s laminate L=0.01”, Nm=1000 lb/in  

Effect of crack density on maximum tensile stress in cracked layer  

8.8  Damage growth prediction  

 Damage growth was also predicted using the model developed. Effect of load on 

crack density as well as delamination length was observed as shown in Fig. 8.57 through 

Fig. 8.60. It was observed that as load increases beyond a certain value, crack density 

increase slows down due to reduction in maximum tensile stress in cracked layer. 

Delamination length increases almost linearly with increasing load. 
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Effect of mechanical tensile load on 
crack density
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Fig.8.57 Effect of mechanical tensile load on crack density 

 

Effect of thermal load on crack density
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Fig.8.58 Effect of thermal load on crack density 

 73



Effect of mechanical tensile load on 
delamination length
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Fig.8.59 Effect of mechanical tensile load on delamination length 
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Fig.8.60 Effect of thermal load on delamination length 
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CHAPTER 9 

 

 

CONCLUSION 

 

 

 

• An analytical model has been developed to find the delaminated crack opening 

displacement for IM-7/PETI5 graphite epoxy laminates with arbitrary ply 

orientations. The DCOD solutions are in reasonable agreement with the finite 

element results and therefore can be used to predict the normalized permeability 

of any given laminate configuration under given conditions of mechanical biaxial 

tensile and thermal loads and the state of damage. These observations are limited 

to IM-7/PETI5 graphite epoxy laminate system.  

• Delaminated crack opening displacement of any intermediate layer can be 

determined using the Five Layer Model solution obtained in this study. The 

analytical model shows better agreement with 2D FEA results for cross ply 

laminates. The maximum error observed for [45/0/-45/90]s laminate is 

approximately 7%. 

• Using this analytical model, delaminated crack opening displacement in an 

individual layer anywhere in the thickness of the laminate can be determined. The 
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resulting DCOD for all layers then can be used to calculate the normalized 

permeability of full laminate with arbitrarily oriented plies. This was not possible 

with the previous model [18], which could be applied to only cross ply laminates. 

• Trends in normalized permeability and DCOD are found to be in agreement with 

those observed by Roy and Benjamin [18]. Normalized permeability is found to 

increase initially as the crack density and delamination length increase, and then 

the rate of increase is slow as saturation crack density is approached in laminates. 

Permeability is seen to increase parabolically with an increase in biaxial tensile 

mechanical force and thermal loads.  

• The model presented here can be applied to predict evolution of matrix cracks and 

delaminations with increasing load; however, the initial state of damage must be 

specified as input to the model 
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APPENDIX A 

 

 

FIVE LAYER MODEL LAMINATE ANALYSIS 

 

 

A.1 Introduction 
 

 In this section, an expression for Delaminated Crack Opening Displacement 

(DCOD) derived based on a two-dimensional first-order shear laminate theory is applied 

to the five-layer model (FLM) laminate of ply orientation [θ1/θ2/90n]s shown in Fig.A.1. 

Assuming symmetry of geometry and loading, only one quarter of the five-layer laminate 

is modeled as shown in Fig.A.2, corresponding to case 1 as discussed earlier. The 

sublaminates (other than the cracked one) are not considered to be symmetric about their 

midplanes, due to more than one orientations resulting in the presence of bending 

extension stiffnesses B22. Transverse matrix cracks are assumed to exist in the 90º plies 

with uniform crack spacing of 2S. Local delaminations of length 2L are assumed to 

initiate and grow in a symmetric manner from the tips of each transverse matrix crack 
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and span the entire width of the laminate. The modeled portion of length S is divided into 

six sublaminates, three sublaminates in the laminated portion and three sublaminates in 

the delaminated portion, numbered as shown in Fig.A.2. Plane strain condition is 

assumed in the width direction (X-direction) of the model. Three local coordinates are 

used for the model as shown in Fig.A.2. 

 

Fig.A.1 Five Layer model for the cracked and delaminated laminates (Case 1) 
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Fig.A.2 Quarter of the repeating interval of the Five Layer model laminate (Case 1) 

 

 Assuming that the displacements in y and z directions within each sublaminate 

can be given by, 

                 ( , ) ( ) ( )v y z V y z yβ= +                                                  (A.1a) 

                          ( )w W y=                                                           (A.1b) 

Where,  

V(y) is the y displacement of mid-surface of the sublaminate. 

  β(y) is the slope of the sublaminate mid-surface in y direction. 

  W(y) is the z displacement of mid-surface of the sublaminate. 

The force and moment equilibrium equations for each sub-laminate are, 

                   , 0y t bN T T+ − =                                                         (A.2a)        

              ( ),
2y t b
hM Q T T 0− + + =                                                 (A.2b) 

                    , 0y t bQ P P+ − =                                                      (A.2c) 
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 Where N, Q and M are axial force, shear force and bending moment resultants, P 

and T denote interlaminar peel and shear stresses with subscripts t and b denoting top and 

bottom surfaces. Combining the strain-displacement relations with Equations (A.1a, 

A.1b) and the in-plane stress-strain relationships of a lamina, the force-moment 

relationships of a sublaminate are, 

      22 22 22, ,
f

ref

T

M y y
T

N A V B Q h dβ α= + − ∫ y T                                           (A.3a) 

      22 22 22, ,
f

ref

T

M y y
T

yM B V D Q hZ dTβ= + − ∫ α

)

                                      (A.3b) 

                 44 ( , yQ A Wβ= +                                                     (A.3c) 

 Where, A22, B22, D22 and A44 are components of the A, B and D matrix from 

classical lamination theory. For the two-dimensional orthotropic model the other stiffness 

components of the anisotropic sublaminate do not appear in the constitutive equations 

due to the assumption of plane strain with respect to the width of the specimen. h is the 

thickness of the lamina; Z is centroidal distance of the lamina from laminate midplane; 

 is the coefficient of thermal expansion in y-direction and is given by the nonlinear 

function C

yα

0+C1Tf+C2Tf
2. In the above equations, non-linear material properties with 

respect to temperature Tf are used in calculating the thermal forces and moments. The 

components of A, B, D and Q  matrix are assumed to be nonlinear functions of 

temperature Tf. Substitution of Equations (A.3a-A.3c) into Equations (A.2a-A.2c) gives, 

                              22 22, ,yy yy t bA V B T T 0β+ + − =                                               (A.4a)                        

( )
2

22 22 22
22 44

22 22 22

, ,
2 2yy y t b

B h B hD A W T
A A

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0B T
A

=              (A.4b)                       
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                              ( )44 , ,y yy t bA W P Pβ 0+ + − =                                                (A.4c) 

 

A.2 Laminated Portion: Sublaminates 1, 2 and 3 

 

 Modifying the derivation procedure given by Zhang et al [13] and including 

thermal loading according to Roy and Benjamin [18], the solutions for force, moment, 

and displacement for sublaminates 1 ,2 and 3  are derived as, 

3
( ) ( )

1

sinh( )i i
j j j

j

P yβ α
=

= ∑ λ                                           (A.5a) 

Where, i=1, 2 , 3 denotes sublaminates 1, 2 & 3 and constants  (j=1, 2, 3) are given 

as, 

( )i
jP

(1) (2)
13 44 22 13 12 23

(1) (2) 2 2(2) (1)
11 44 22 44 12 23 44 11 23 12 13

( )*
( * )( * ) * ( )

j jj

j j jj j

P a A

a A a A aP a A

λλ
λ λ λ λ

⎧ ⎫ ⎧ − −⎪ ⎪ ⎪=⎨ ⎬ ⎨− − − − −⎪ ⎪ ⎪⎩ ⎭ ⎩

*

*

a a a a

a a a a

⎫⎪
⎬
⎪⎭

 

(A.5b) 

(3) 1jP =                                                                               (A.5c) 

 Where are functions of the elastic constants of the lamina and given in Zhang 

[13], 

ija

*j jλ λ= and *jλ (j=1, 2, 3) are roots of the equation given below, 

2 2 2 3
11 22 33 12 13 23 33 12 11 23 22 13

(3) (1) (2) 2 (3) 2 (1) 2 (2) 2
11 22 44 33 22 44 33 11 44 12 44 23 44 13 44

(2) (3) (1) (3) (2) (1) (1) (2) (3)
11 44 44 22 44 44 33 44 44 44 44 44

( 2 ) *

( )

( ) *

a a a a a a a a a a a a

a a A a a A a a A a A a A a A

a A A a A A a A A A A A

λ

*

0

λ

λ

+ − − −

− + + − − −

+ + + − =

 

(A.5d) 

The displacements of the mid-plane of the sublaminates are,   
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                                                          (A.6)    
3

( ) ( )
3

1

sinh( )i i
j j j i

j

V α γ λ α +
=

= ∑ y y+

The force and moment resultants are, 

       
3

( ) ( ) ( ) ( ) ( ) ( )
22 3 22

1
cosh( )

f

ref

T
i i i i i

M j j j i y
j T

N y A Q hα η λ α α+
=

= + −∑ ∫ i dT                (A.7)                   

3
( ) ( ) ( ) ( ) ( ) ( ) ( )

22 3 22
1

cosh( )
f

ref

T
i i i i i i

M j j j i y
j T

iM y B Q h Z dTα ξ λ α α+
=

= + −∑ ∫             (A.8) 

     Where αi (i=1, 2…4) are undetermined constants and the remaining constants are 

given in Zhang et al [13] and Roy and Benjamin [18]. 

 

A.3 Delaminated Portion 
 

A.3.1 Sublaminate 4 

 The peel and shear stresses at top and bottom surface of the sublaminate 4 are 

given as, 

                                           (4) 0bT =        (4) 0tT =                                      (A.9a, b) 

                                                   (4) 0tP =                                       (A.9c) 

The symmetry of the laminate implies, 

 (4) ( ) 0W y =                                                (A.9d) 

Substituting Equations (A.9a-e) into Equations (A.4a-c) 

                                                  (3) (4) (3) (4)
22 22, ,yy yyA V B β 0+ =                                     (A.10a) 

                                   
(3) 2

(3) (4) (3) (4)22
22 44(3)

22

( ) , yy
BD A
A

β β
⎛ ⎞

0− −⎜ ⎟
⎝ ⎠

=                                (A.10b) 
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                                                                                         (A.10c)   (3) (4) (4)
44 ,y bA β = P

The mid-plane displacement of sublaminate 4 can be given by 

(4) (4) (3) (4)( , ) ( ) ( )v y z V y z yβ= +                             (A.11)   

 

(4)
1 2

y ye eω ωβ ψ ψ −= +                                     (A.12a)   

 

Where 

(3)
44

(3) 2
(3) 22

22 (3)
22

( )
A

BD
A

ω =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

       

From Equations (A.10a, c) 

                                                  
(3)

(4) 22
1 2 3(3)

22

( )y yBV e e
A

ω ω
4yψ ψ ψ− ψ= − + + +                (A.12b) 

Substitution of Equations (A.12a, b) into Equations (A.3a, b) results in, 

                                 (4) (3) (3) (3) (3)
22 3 22

f

ref

T

M
T

N A Q h dψ α= − ∫ y T                           (A.13a) 

(3) 2
(4) (3) (3) (3) (3) (3) (3)22

22 1 2 22 3 22(3)
22

( ) ( )
f

ref

T
y y

M y
T

BM D e e B Q h Z
A

ω ωω ψ ψ ψ α−⎛ ⎞
= − − + −⎜ ⎟
⎝ ⎠

∫ dT  

(A.13b) 

Where ψ k (k=1, 2, 3 & 4) are undetermined constants derived in further section. 
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A.3.2 Sublaminate 5 

 The peel and shear stresses at top and bottom surface of the sublaminate 5 are 

given as, 

                                           (5) 0bT =        (5) 0tT =                                      (A.14a, b) 

                                                   (5) 0tP =  (5) 0bP =                                 (A.14c, d) 

The crack in sublaminate 5 implies, 

 (5) ( ) 0W y =                                                (A.14e) 

Substituting Equations (A.14a-e) into Equations (A.4a-c) 

                                                  (2) (5)
22 ,yyA V 0=                                     (A.15a) 

                                   (2) (5) (2) (5)
22 44,yyD Aβ β 0− =                                (A.15b) 

                                             (2) (5)
44 , yA β 0=                                             (A.15c) 

The midplane displacement of sublaminate 5 can be given by 

(5) (5) (2) (5)( , ) ( ) ( )v y z V y z yβ= +                                (A.16) 

1(5)
1 2

ye e 1yω ωβ θ θ −= +                                       (A.17a) 

Where 

(2)
44

(3)
22

A
D

ω =                                            

From Equations (A.15a, c) 

                                                  (5)
3 4V yθ θ= +                  (A.17b) 

Substitution of Equations (A.17a, b) into Equations (A.3a, b) results in, 

                                 (5) (2) (2) (2) (2)
22 3 22

f

ref

T

M
T

N A Q h dθ α= − ∫ y T                           (A.18a) 
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                               1 1(5) (2) (2) (2) (2) (2)
22 1 1 2 22( )

f

ref

T
y y

M y
T

M D e e Q h Zω ωω θ θ α−= − − ∫ dT          (A.18b) 

Where θ k (k=1, 2, 3 & 4) are undetermined constants derived in next section. 

 

A.3.3 Sublaminate 6 

 The peel and shear stresses at top and bottom surface of the sublaminate 6 are 

given as, 

                                           (6) 0bT =        (6) 0tT =                                      (A.19a, b) 

                                                   (6) 0tP =    (6) 0bP =                                   (A.19c) 

Substituting Equations (A.13a-e) into Equations (A.4a-c) 

                                                  (1) (6) (1) (6)
22 22, ,yy yyA V B β 0+ =                                     (A.20a) 

                                   
(1) 2

(1) (6) (1) (6) (6)22
22 44 '(1)

22

( ) , (yy y
BD A
A

β β
⎛ ⎞

) 0W− − +⎜ ⎟
⎝ ⎠

=             (A.20b) 

                                             (1) (6) (6)
44 '( , ) 0y yyA Wβ + =                                             (A.20c) 

The midplane displacement of sublaminate 6 can be given by 

(6) (6) (1) (6)( , ) ( ) ( )v y z V y z yβ= +    (A.21) 

Integrating Equation (A.20c),  

(1) (6) (6)
44 '( yA Wβ )+ = constant    (A.22a) 

At y=S,      

(1) (6) (6) (6)
44 '( )yA W Qβ + =       

Also, at y=S, due to symmetry about S, shear stress  

     (6) (4) 0Q Q+ =         
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so at y=S, =  and as (4(6)Q (4)Q− ) ( ) 0sβ =                 

   constant = - (3) (4)
44 ( ( ))A sβ 0=      

So,     (1) (6) (6)
44 '( )yA Wβ 0+ =               (A.22b) 

which gives     (6) (6)
' yW β= −                (A.22c) 

Therefore from Equation (20b) 

(1) 2
(1) (6)22

22 (1)
22

( ) , yy
BD
A

β
⎛ ⎞

0− =⎜ ⎟
⎝ ⎠

     (A.22d) 

(6)
5 y 6β θ θ= +                 (A.23a) 

2
(6) 5

62
yW yθ

9θ θ= − − +                (A.23b) 

And  

(6)
7V y 8θ θ= +                 (A.23c) 

Substitution of Equations (A.23 a-c) into Equations (A.3a, b) results in, 

                                 (6) (1) (1) (1) (1) (1)
22 7 22 5 22

f

ref

T

M y
T

N A B Q h dθ θ α= + − ∫ T                           (A.24a) 

                      (6) (1) (1) (1) (1) (1) (1)
22 7 22 5 22

f

ref

T

M y
T

M B D Q h Z dθ θ α= + − ∫ T   (A.24b) 

Where θ k (k=5, 6, 7, 8 & 9) are undetermined constants derived in next section. 

 

A.3.4 Determination of the Constants αi, θj and ψk

 In order to determine the eighteen constants, the same number of independent 

boundary and continuity conditions has to be described. Assuming the laminate is 
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subjected to tension force N and thermal load ∆T, the interfacial continuity conditions 

and boundary conditions are enforced as, 

(5) ( ) 0MN S =                                              (A.25a) 

(4) ( ) 0Sβ =                                                (A.25b) 

(6) ( ) 0Sβ =                                                (A.25c) 

(2) (1)
(5) (6)( , ) ( ,

2 2
hv S L v S L− = − − )h                                           (A.25d) 

(2) (3)
(5) (4)( , ) ( ,

2 2
hv S L v S L− − = − )h     (A.25e) 

(4) (6) 1( ) ( )
2M MN S N S+ = N                                       (A.25f) 

(1) (2) (3) 1(0) (0) (0)
2M M MN N N+ + = N

)

                              (A.25g)                         

(1) (6)( ) (V S L V S L− = −                                      (A.25h) 

(2) (5)( ) (V S L V S L)− = −                                     (A.25i) 

(3) (4)( ) (V S L V S L)− = −                                     (A.25j) 

(1) (6)( ) (S L S Lβ β )− = −                                     (A.25k) 

(2) (5)( ) (S L S Lβ β )− = −                                      (A.25l) 

(3) (4)( ) (S L S Lβ β )− = −                                      (A.25m) 

(6) ( )W S L 0− =                                          (A.25n) 

(2) (5)( ) (M MN S L N S L)− = −                                   (A.25o) 

(3) (4)( ) (M MN S L N S L)− = −

)

                                  (A.25p) 

(2) (5)( ) (M MM S L M S L− = −                                 (A.25q) 
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(3) (4)( ) (M M )M S L M S L− = −                                  (A.25r) 

Substituting Equations (A.17a-q) into Equations (A.5a-A.16b) and solving for the 

unknowns, the solutions for αi, θj and ψk can be derived. 

The values of (i=1, 2….6) are derived as,  iα

4 5 6
22

TN N
A

α α α +
= = =                                                 (A.26a) 

Where, 

(1) (1) (1) (2) (2) (2) (3) (3) (3)
22 22 222

f f f

ref ref ref

T T T

T y y
T T T

N Q h dT Q h dT Q h dα α
⎡ ⎤
⎢ ⎥= + +
⎢ ⎥⎣ ⎦

∫ ∫ ∫ y Tα  

(A.26b) 

 By solving the three equations given below, the values of , and 1α 2α 3α can be 

derived. 

(3) (3)3
22

(3) (3)
1 22 22

cosh( ( )) j
j j j

j

B
S L

A D
η

α λ λ
=

⎧ ⎡ ⎤⎪ − −⎨ ⎢ ⎥
⎪ ⎣ ⎦⎩

∑                

( ) ( ) (3) 2
(3) 22
22(3) ( ) ( ) (3)

22 22

( ) ( )sinh( ( )) 0
( )

S L S L

j S L S L
e e BS L D

D e e A

ω ω

ω ω

ωλ
− +

− +

⎫⎡ ⎤⎛ ⎞+ ⎪− − − ⎬⎢ ⎥⎜ ⎟− ⎝ ⎠ ⎪⎣ ⎦⎭
=     (A.27a)        

(2)3
(3) (2) (2) (2)22

22
1 22

( )cosh( ( ))
f

ref

T
T

j j j y
j T

A N NS L Q h dT
A

α η λ α
=

⎡ ⎤+⎡ ⎤ ⎢ ⎥− = − −⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∫                       (A.27b) 

(2) (1)3
(1) (2) (2) (1)

1

sinh( ( )) 0
2 2j j j j j j

j

h hS L P Pα λ γ γ
=

⎛ ⎞
− − − −⎜

⎝ ⎠
∑ =⎟                                        (A.27c) 

The values of kψ (k=1, 2, 3) are derived as, 

3

1
1 ( ) ( )

sinh( ( ))

( )

j j
j

S L S L

S L

e eω ω

α λ
ψ =

− +

−
=

−

∑
                                    (A.28a) 
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2
2 1

Se ωψ ψ= −                                                 (A.28b) 

3
(3)

1
3 (3)

22 22

cosh( ( ))j j j T
j

S L
N N

A A

α η λ
ψ =

−
+

=
∑

+

3

               (A.28c)  

3
(3)

4
1

sinh( ( )) ( )j j j
j

S L S Lψ α γ λ ψ
=

= − −∑ −        

(3)
( ) ( )22

1(3)
22 22

( ) (
T

S L S LB Ne e S
A A

ω ωψ − + + )N L+ − + −                (A.28c) 

The values of (k=1, 2…9) are derived as, jθ

1

1

3
(2)

1 2 ( )
1 ( )

sinh( ( ))j j j
j S L

S L

P S L
e

e
ω

ω

α λ
θ =

2θ
− −

−

−
= −
∑

        (A.28a) 

1

3
2 ( )(2)

1
1

2

sinh( ( )) cosh( ( )) ( )

2

S L
j j j j j

j

P S L S L e ωα ω λ λ λ
θ

− −

=

⎡ ⎤− − −⎣ ⎦
=
∑

                  (A.28b) 

(2) (2)
(2)22

3 (2)
22

f

ref

T

y
T

Q h dT
A

θ α
⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

∫           (A.28c) 

(2) (2)3
(2) (2)22

4 (2)
1 22 22

sinh( ( )) ( )
f

ref

T
T

j j j y
j T

N N Q hS L dT S L
A A

θ α γ λ α
=

⎡ ⎤+
⎢ ⎥= − + −
⎢ ⎥⎣ ⎦

∑ ∫ −         (A.28d) 

3
(1)

1
5

sinh( ( ))j j j
j

P S

L

α λ
θ =

−
=

−

∑ L
                        (A.28e) 

6 5Sθ θ= −                             (A.28f)    

(1) (3) (2) (2) (2)
22 5 22 3 22

7 (1)
22

2 2 2

2

f

ref

T

T y
T

B A N N Q h d

A

θ ψ α

θ

− − + + −

=
∫ T

       (A.28g)  
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(3) (1)3
(1) 22 22

8 3(1) (1)
1 22 22

sinh( ( )) ( ) ( )j j j
j

A BS L S L S L
A A

θ α γ λ ψ θ
=

= − + − +∑ 5 −  

 

(2) (2) (2)
22

(1)
22 22

2

( )
2

f

ref

T

T y
T T

N N Q h dT
N NS L

A A

α
⎡ ⎤

+ −⎢ ⎥
⎢ ⎥+

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∫
      (A.28h)             

2 2
9 5

1 ( )
2

S Lθ θ= − −                      (A.28i) 

 All the 18 constants, namely αi, θj and ψk (i=1, 2…6; j=1, 2…9; k=1, 2, 3) were 

solved above and used in the solutions for force, displacement and moment equations. 

The remaining constants used in the various expressions are given in Zhang [13] and Roy 

and Benjamin [18]. 

 

A.3.5 Delaminated Crack Opening Displacement (DCOD) 

 The delaminated crack opening displacement (DCOD) calculated at the interface 

of sublaminate 4 and 5 at y=S for a given delamination length L and crack density 1/2S is 

given by, 

(1) (2)
(6) (5)( , ) ( , )

2 2top
hDCOD v S v S= − −

h     (A.29a) 

  
(3) (2)

(4) (5)( , ) ( , )
2 2bottom

hDCOD v S v S −
= −

h                                            (A.29b) 
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 Using the above equations, DCOD for any given delamination length, crack 

density and loading condition (mechanical and/or thermal) can be obtained at any 

intermediate position of a sublaminate. 
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APPENDIX B 

 

 

THREE LAYER MODEL LAMINATE ANALYSIS 

 

 

B.1 Introduction 
 

 In this section, an expression for DCOD derived based on a two-dimensional first-

order shear laminate theory is applied to the three-layer model (TLM) laminate shown in 

Fig.B.1. Assuming symmetry of geometry and loading, only one quarter of the three-

layer laminate is modeled as shown in Fig.B.2, corresponding to case 2 as discussed 

earlier. Transverse matrix cracks are assumed to exist in the 90º plies with uniform crack 

spacing of 2S. Local delaminations of length 2L are assumed to initiate and grow in a 

symmetric manner from tips of each transverse matrix crack and span the entire width of 

the laminate.  The modeled portion of length S is divided into four sublaminates as shown 

numbered in Fig.B.2. Plain strain condition is assumed in the width direction of the 

model. Two local coordinates are used for the model as shown in Fig.B.2. 
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Fig.B.1 Three-layer model for the cracked and delaminated laminates (case 2) 

  

 

Fig.B.2 one quarter of the repeating interval of the three-layer model laminate (case 2) 
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 Assuming that the displacements in x and z directions within each sublaminate 

can be given by, 

                 ( , ) ( ) ( )u x z U x z xβ= +                                                  (B.1a) 

                          ( )w W x=                                                           (B.1b) 

Where,  

U(x) is the x displacement of mid-surface of the sublaminate. 

  β(x) is the slope of the sublaminate mid-surface in x direction. 

  W(x) is the z displacement of mid-surface of the sublaminate. 

The force and moment equilibrium equations for each sub-laminate are, 

                   , 0x t bN T T+ − =                                                         (B.2a)        

              ( ),
2x t b
hM Q T T 0− + + =                                                 (B.2b) 

                    , 0x t bQ P P+ − =                                                      (B.2c) 

 where N, Q and M are the axial force, shear force and bending moment resultants 

respectively. P and T denote interlaminar peel and shear stresses with subscripts t and b 

denoting top and bottom surfaces. Combining the strain-displacement relations with 

Equations (B.1a, B.1b) and the in-plane stress-strain relationships of a lamina, the force-

displacement relationships of a sublaminate are, 

      11 11 11, ,
f

ref

T

M x x
T

N A U B Q h dβ α= + − ∫ x T                                           (B.3a) 

      11 11 11, ,
f

ref

T

M x x
T

xM B U D Q hZ dTβ= + − ∫ α

)

                                      (B.3b) 

                 44 ( ,xQ A Wβ= +                                                       (B.3c) 
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 Where, A11, B11, D11 and A44 are components of the A, B and D matrix from 

classical lamination theory. For the two-dimensional orthotropic model the other stiffness 

components of the anisotropic sublaminate do not appear in the constitutive equations 

due to the assumption of plane strain with respect to the width of the specimen. h is the 

thickness of the lamina; Z is centroidal distance of the lamina from laminate midplane; 

 is the coefficient of thermal expansion in x-direction and is given by the nonlinear 

function C

xα

0+C1Tf+C2Tf
2. In the above equations, non-linear material properties with 

respect to temperature Tf are used in calculating the thermal forces and moments. The 

components of A, B, D and Q  matrix are assumed to be nonlinear functions of 

temperature Tf. Substitution of Equations (B.3a-B.3c) into Equations (B.2a-B.2c) gives, 

11 11, ,xx xx t bA U B T T 0β+ + − =                                                (B.4a) 

( )
2

11 11 11
11 44

11 11 11

, ,
2 2xx x t b

B h B hD A W T
A A

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0B T
A

=             (B.4b) 

                              ( )44 , ,x xx t bA W P Pβ 0+ + − =                                                (B.4c) 

 

B.2 Laminated Portion: Sublaminates 1 and 2 

 Following the derivation procedure given by Zhang [13] and Roy and Benjamin 

[18] with modifications for asymmetric sublaminates 2 and 4 resulting in existence of B22 

for these sublaminates, the solutions for force, moment, and displacement for sublaminate 

1 and 2  are given as, 

                               (1)
1 1 1 2 2 2sinh( ) sinh( )P x P xβ α λ α λ= +                                (B.5a)    

                                  (2)
1 1 2 2sinh( ) sinh( )x xβ α λ α λ= +                                   (B.5b)   
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The displacements of the mid plane of the sublaminates are,   

                     (1) (1) (1)
1 1 1 2 2 2 3sinh( ) sinh( )U x x xα γ λ α γ λ= + α+

x x

                          (B.6a)    

                    (2) (2) (2)
1 1 1 2 2 2 4sinh( ) sinh( )U xα γ λ α γ λ= + α+                          (B.6b)       

The force and moment resultants are, 

       (1) (1) (1) (1) (1) (1) (1)
1 1 1 2 2 2 11 3 11cosh( ) cosh( )

f

ref

T

M x
T

N x x A Q hαη λ α η λ α α= + + − ∫ dT      (B.7a)                   

   (2) (2) (2) (2) (2) (2) (2)
1 1 1 2 2 2 11 4 11cosh( ) cosh( )

f

ref

T

M x
T

N x x A Q hαη λ α η λ α α= + + − ∫ dT      (B.7b)  

(1) (1) (1) (1) (1) (1) (1)
1 1 1 2 2 2 11cosh( ) cosh( )

f

ref

T

M x
T

M x x Q h Zα ξ λ α ξ λ α= + − ∫ dT            (B.8a) 

(2) (2) (2) (2) (2) (2) (2) (2)
1 1 1 2 2 2 11 4 11cosh( ) cosh( )

f

ref

T

M x
T

M x x B Q h Zα ξ λ α ξ λ α α= + + − ∫ dT  

(B.8b) 

 Where αi (i=1, 2…4) are undetermined constants and the remaining constants are 

given in appendix C, which are not exactly same as given by Zhang [13] due to existence 

of . (2)
11B

 

B.3 Delaminated Portion  

B.3.1 Sublaminate 3 

 The symmetry of the laminate and condition of traction-freedom at the upper 

surface of the sublaminate 3 implies, 

       (3) ( ) 0W x = (3) 0bT =        (3) 0tT =        (3) 0bP =                       (B.9a-e) (3) 0tP =
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Applying Equations (B.4a-c) to Equations (B.9a-e), 

      (1) (3)
11 ,xxA U 0=                                       (B.10a) 

                                (1) (3) (1) (3)
11 44,xxD Aβ β 0− =                           (B.10b) 

                                                      (1) (3)
44 ,xA β 0=                                           (B.10c) 

From Equation (B.10c) and Equation (B.10a) 

                                                        (3)
1β ψ=                                                (B.11a)  

                                                   (3)
2U x 3ψ ψ= +                                           (B.11b) 

Substitution of Equations (B.11a, b) into Equations (B.3a, b) results in, 

                                  (3) (1) (1) (1) (1)
11 2 11

f

ref

T

M
T

N A Q h dψ α= − ∫ x T                              (B.12a) 

                                   (3) (1) (1) (1) (1)
11

f

ref

T

M
T

xM Q h Z dTα= − ∫                        (B.12b) 

 

B.3.2 Sublaminate 4 

 The peel and shear stresses at top and bottom surface of the sublaminate 4 are 

given as, 

                                           (4) 0bT =        (4) 0tT =                                      (B.13a, b) 

                                                   (4) 0tP =                                      (B.13c) 

Due to symmetry of laminate,  

(4) ( ) 0W x =      (B.13d) 

Substituting Equations (B.13a-d) into Equations (B.4a-c) 

                                                  (2) (4) (2) (4)
11 11 ',xx xxA U B β 0− =                                        (B.14a) 
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(2) 2

(2) (4) (2) (4)11
11 44(2)

11

( ) ,xx
BD A
A

β β
⎛ ⎞

0− −⎜ ⎟
⎝ ⎠

=                            (B.14b) 

                                             (2) (4) (4)
44 ,x bA Pβ =                                     (B.14c)                       

From Equations (B.14a-c) 

     2(4)
1 2

xe e 2xω ωβ θ θ −= +                                             (B.15a) 

where,      
(2)
44

2 (2) 2
(2) 11
11 (2)

11

( )
A

BD
A

ω =
⎛ ⎞

−⎜ ⎟
⎝ ⎠

     

                2 2

(2)
(4) 11

1 2 3(2)
11

( )x xBU e e
A

ω ω
4xθ θ θ− θ= − + + +                 (B.15b) 

Substitution of Equations (B.15a, b) into Equations (B.3a, b) results in, 

                                 (4) (2) (2) (2) (2)
11 3 11

f

ref

T

M
T

N A Q h dθ α= − ∫ x T                              (B.16a) 

2 2

(2) 2
(4) (2) (2) (2) (2) (2) (2)11

1 2 11 2 11 3 11(2)
11

( )( )
f

ref

T
x x

M x
T

BM e e D B Q h Z
A

ω ωθ θ ω θ α− ⎛ ⎞
= − − + −⎜ ⎟

⎝ ⎠
∫ dT       

(B.16b) 

B.4 Determining Constants αi, θj and ψk 

 In order to determine the eleven constants the same number of independent 

boundary and continuity conditions has to be described. Assuming the laminate is 

subjected to tension force N and thermal load ∆T, the interfacial continuity conditions 

and boundary conditions are enforced as, 

(4) ( ) 0Sβ =                                                (B.17a) 

(4) 1( )
2MN S = N                                              (B.17b) 
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(1) (2) 1(0) (0)
2M MN N+ = N                                      (B.17c) 

(3) ( ) 0MN S =                                              (B.17d) 

(1) (2)
(3) (4)( , ) ( ,

2 2
hu S L u S L− − = − )h

)

                                  (B.17e) 

(1) (3)( ) (U S L U S L− = −                                      (B.17f) 

(2) (4)( ) (U S L U S L)− = −                                     (B.17g) 

(1) (3)( ) (S L S Lβ β )− = −                                     (B.17h) 

(2) (4)( ) (S L S Lβ β )− = −                                      (B.17i) 

(2) (4)( ) (M MN S L N S L)− = −                                   (B.17j) 

(1) (3)( ) (M M )M S L M S L− = −

)

                                (B.17k) 

(2) (4)( ) (M MM S L M S L− = −                                  (B.17l) 

Substituting Equations (B.17a-l) into Equations (B.5a-B.16c) gives, 

2 2
1 2 0S Se eω ωθ θ −+ =                                                 (B.18a) 

(2) (2) (2) (2)
11 3 11

1
2

f

ref

T

x
T

A Q h dTθ α− ∫ N=                                 (B.18b) 

         (1) (2)
11 3 11 4

1 1
2 2 TA A Nα α+ = + N                                   (B.18c) 

Where,                 (1) (1) (1) (2) (2) (2)
11 112

f f

ref ref

T T

T x
T T

N Q h dT Q h dα
⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∫ ∫ x Tα      

(1) (1) (1) (1)
11 2 11 0

f

ref

T

x
T

A Q h dTψ α− =∫                                 (B.18d) 

(1) (1)
1 1 1 2 2 2 3 2 3sinh( ( )) sinh( ( )) ( ) ( )S L S L S L S Lα γ λ α γ λ α ψ− + − + − = − +ψ             (B.18e)        
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(2) (2)
1 1 1 2 2 2 4sinh( ( )) sinh( ( )) ( )S L S L S Lα γ λ α γ λ α− + − + −  

2 2

(1)
( ) ( )22

1 2 3(1)
22

( ) (S L S LB e e S L
A

ω ω
4)θ θ θ− − −= − + + − +θ     (B.18f) 

1 1 1 2 2 2 1sinh( ( )) sinh( ( ))P S L P S Lα λ α λ ψ− + − =                     (B.18g) 

2 2( ) ( )
1 1 2 2 1 2sinh( ( )) sinh( ( )) ( )S L S LS L S L e eω ωα λ α λ θ θ− − −− + − = +                (B.18h)  

(2) (2) (2) (2)
1 1 1 2 2 2 11 4 11 3cosh( ( )) cosh( ( ))S L S L A Aαη λ α η λ α− − − − + = θ         (B.18i)    

(1) (1)
1 1 1 2 2 2cosh( ( )) cosh( ( )) 0S L S Lα ξ λ α ξ λ− + − =         (B.18j)  

(2) (2) (2)
1 1 1 2 2 2 11 4cosh( ( )) cosh( ( ))S L S L Bα ξ λ α ξ λ− + − + α  

2 2

(2) 2
( ) ( ) (2) (2)11

1 2 11 2 1(2)
11

( )( )S L S L Be e D B
A

ω ω
1 3θ θ− − − ⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠

ω θ             (B.18K)    

From Equation (B.18a) 

22
2 1

Se ωθ θ= −                                    (B.19a) 

From Equation (B.18b) 

(2) (2) (2)
11

3 (2)
11

2

2

f

ref

T

x
T

N Q h dT

A

α

θ

−

=
∫

                                  (B.19b) 

 

From Equation (B.18c) 

3 4
11

TN N
A

α α +
= =                                        (B.19c) 

From Equation (B.18d) 

(1) (1) (1)
11

2 (1)
11

f

ref

T

x
T

Q h dT

A

α

ψ =
∫

                                        (B.19d) 
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Substituting Equation (B.19a) in Equation (B.18h) gives, 

[ ]
2 2

1 1 2 2
1 ( ) ( )

sinh( ( )) sinh( ( ))
( )S L S L

S L S L
e eω ω

α λ α λ
θ − +

− + −
=

−
               (B.19e) 

 

 

 

Substituting Equation (B.19e) in Equation (B.18k) gives, 

(2) (1)
(2) (1)

1 1 1 1sinh( ( ))
2 2

h hS L Pα λ γ γ
⎡ ⎤

− + − +⎢ ⎥
⎣ ⎦

1  

(2) (1)
(2) (1)

2 2 2 2 2sinh( ( )) 0
2 2

h hS L Pα λ γ γ
⎡ ⎤

+ − + − +⎢ ⎥
⎣ ⎦

=             (B.19f) 

Equation (B.18i) can be modified as, 

(2) (2) (2)
1 1 1 2 2 2 11 3 4cosh( ( )) cosh( ( )) ( )S L S L Aαη λ α η λ θ− + − = −α         (B.19g) 

Equation (B.19f) and Equation (B.19g) can be solved for 1α  and 2α as shown below, 

              2
1

Q
P
αα −

=                                                    (B.19h)   

    
(2)

11 3 4
2

(PA
RQ PS

)θ αα − −
=

−
                                        (B.19i)   

Where,                 
(2) (1)

(2) (1)
1 1 1sinh( ( ))

2 2
h hP S Lλ γ γ 1P

⎡ ⎤
= − + − +⎢ ⎥

⎣ ⎦
 

     
(2) (1)

(2) (1)
2 2 2sinh( ( ))

2 2
h hQ S Lλ γ γ 2P

⎡ ⎤
= − + − +⎢ ⎥

⎣ ⎦
 

(2)
1 1cosh( ( ))R S Lη λ= −  
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(2)
2 2cosh( ( ))S Sη λ= − L

L

 

From Equation (B.18g) 

1 1 1 1 2 2 2sinh( ( )) sinh( ( ))P S L P Sψ α λ α λ= − + −                     (B.19k) 

From Equation (B.18e) 

(1) (1)
3 1 1 1 2 2 2 3 2sinh( ( )) sinh( ( )) ( )( )S L S L S Lψ α γ λ α γ λ α ψ= − + − + − −

−

    (B.19l) 

 

 

From Equation (B.18f) 

(2) (2)
4 1 1 1 2 2 2 4 3sinh( ( )) sinh( ( )) ( )( )S L S L S Lθ α γ λ α γ λ α θ= − + − + −  

2 2

(1)
( ) ( )22

1 2(1)
22

( )S L S LB e e
A

ω ωθ θ− − −+ +     (B.19m) 

 All the 11 constants, namely αi, θj and ψk (i=1, 2…4; j=1, 2…4; k=1, 2, 3) were 

solved above and used in the solutions for force, displacement and moment equations. 

 

B.5 Delaminated Crack Opening Displacement (DCOD) 

 The delaminated crack opening displacement (DCOD) calculated at the interface 

of sublaminate 3 and 4 at y=S for a given delamination length L and crack density 1/2S is 

given by, 

  
(2) (1)

(4) (3)( , ) ( , )
2 2

hDCOD u S u S −
= −

h                                        (B.20a) 

 Using the above equations, DCOD for any given delamination length, crack 

density and loading condition (mechanical and/or thermal) can be found. 
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APPENDIX C 

 

 

CONSTANTS IN THREE LAYER MODEL LAMINATE 

ANALYSIS 

 

 

C.1  List of Constants in Three-Layer Model Laminate Analysis 
 
 

                                        (C.1) (1) (2)
11 11 112( )A A A= +

(2)
11

(1)
11

A
A

χ =                                                 (C.2) 

2

2

(2) (2) (2) (2) (1)
(2) 11 11 11 11

22 11 (2) (1)
11 11 11

( 2 )
2

B B h Aa D
A A A

− +
= − +

A                 (C.3) 

(1) (1) (2) (2) (1)
11 11 11

12 21
11

( 2 )
2

h h A B Aa a
A
−

= =                         (C.4) 

(1)2 (2) (1)
(1) 11 11

11 11
112

h A Aa D
A

= +                                  (C.5) 

2
2 2

1 2
4,

2
b b ac

a
λ λ − ± −

=                                     (C.6) 

Where, 
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2
11 22 12a a a a= −  

(2) (1)
11 44 22 44( )b a A a A= − +  

(1) (2)
44 44 )c A A=  

 

For j=1 and 2, the constants are, 

2
12
2 (

11 44

j
j

j

a
P

a A
λ

λ
= −

− 1)                                      (C.7) 

(1) (2) (2) (2) (1)
11 11 11(1)

11

( 2j
j

P h A h A B
A

γ
+ −

=
)

                        (C.8) 

(1) (1) (1) (2) (1)
11 11 11(2)

11

( ) 2j
j

P h A B h A
A

γ
+ +

= −                        (C.9) 

(1) (1) (1)
1 11 1(A 1)η γ λ=                                                 (C.10) 

(1) (1) (1)
2 11 2( )A 2η γ λ=                         (C.11) 

(2) (2) (2) (2)
1 11 11 1(B A 1)η γ λ= +                                       (C.12) 

(2) (2) (2) (2)
2 11 11 2(B A 2)η γ λ= +                          (C.13) 

(1) (1) (1) (1)
11 11(j j jD P B ) jξ γ λ= +                                     (C.14) 

(2) (2)
11j D jξ λ=                                                    (C.15) 
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