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Abstract: Shallow groundwater at a residential property in north-central Oklahoma was 

assessed to determine the extent of NO3
-
 contamination and the effect of nitrate 

attenuation on groundwater chemistry. We hypothesized that denitrification at the site is 

the primary process controlling NO3
-
 attenuation. The objectives of this investigation 

were to identify the potential sources and processes which control NO3
-
 distributions, and 

observe the impact denitrification had on groundwater chemistry. Groundwater was 

sampled quarterly over a three-year period and analyzed for physical, chemical, and 

stable carbon isotopic composition. Persistent high concentrations of NO3
-
 were observed 

with non-uniform distributions both temporally and spatially. The high persistence in 

NO3
-
 contamination was attributed to upgradient application by residents, on-site 

application of fertilizers on flower beds and for lawn care, and contamination from a 

leaky sewer pipe. Variable NO3
-
 concentrations were observed across the 40 m x 60 m 

site over a the study period. Temporal and spatial variations in NO3
-
 concentrations were 

attributed to non-uniform fertilizer application, focused rain recharge with lower NO3
-
 

concentrations and denitrification. Nitrate concentrations were relatively low at a location 

suspected of effluent contamination, indicating NO3
-
 attenuation at that location was 

accelerated. The stable carbon isotope ratios of dissolved inorganic carbon (δ
13

CDIC) 

showed consistent depletion in groundwater at locations where it was suspected 

denitrification was fueled by organic matter. Marked increase in HCO3
-
 and DIC and 

decreases in δ
13

CDIC suggests that weathering of carbonates coupled to organic matter 

mineralization by microbial activity was occurring in groundwater at the site.
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CHAPTER I 

 

INTRODUCTION 

Human activities have exerted increasing influence on the nitrogen cycle at a 

global scale (Burow et al., 2010; Mastrocicco et al., 2011; Stuart et al., 2014). 

Anthropogenic influence of the global nitrogen cycle is primarily attributed to the 

widespread application of nitrogen bearing fertilizers, with up to 60% of the nitrogen lost 

as nitrate (NO3
-
) to groundwater (Burow et al., 2010; Canfield et al., 2010). Application 

of nitrogenous fertilizers has increased to more than ten times the amount applied in the 

1950s (Robertson and Vitousek, 2009). Nitrate concentrations in many agricultural 

watersheds exceed the US EPA maximum contaminant level (MCL) of 10 mg/L of NO3
-
 

(Burow et al., 2010; US-EPA, 1976). The potential for increased leaching and runoff of 

fertilizers from agricultural fields will increase as demand for more food increases as the 

world’s population increases (Trudell et al., 1986). Nitrate in drinking water was first 

recognized  as a problem in the 1970s with health risks such as methahemoglobinemia, 

also known as “Blue Baby Syndrome” and multiple cancers attributed to ingestion of 

NO3
-
 (Kite-Powell and Harding, 2006; Spalding and Exner, 1993; US-EPA, 1976). 

Among the environmental concerns regarding NO3
-
 contamination of groundwater are the 

eutrophication of surface waters and significant changes to groundwater geochemistry 

and water-rock interactions (Böhlke, 2002; Rivett et al., 2008; Seitzinger, 2008).
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Nitrate is rarely the primary form of nitrogen in fertilizers (Canfield et al., 2010; 

Kite-Powell and Harding, 2006; Nascimento et al., 1997; Stuart et al., 2014). The primary 

form of nitrogen in nitrogenous fertilizers is typically either ammonium (NH4
+
) or urea 

(CO(NH2)2) with urea as the dominant form of nitrogen in fertilizers applied at residential 

sites (Canfield et al., 2010; Ross, 1988). Bacteria capable of converting NH4
+
 and 

CO(NH2)2 to NO3
-
 by nitrification carry out this process wherever NH4

+
 and CO(NH2)2 

are available (Brunet et al., 2011; Kuenen and Robertson, 1994). Microbes can further 

degrade nitrogen with a reduction of NO3
-
 to N2O or N2 by denitrification (Delwiche and 

Bryan, 1976; Knowles, 1982; Seitzinger et al., 2006). Denitrification rates are typically 

measured by using changes in the stable isotope of nitrogen (δ
15

N) or ratios of nitrogen 

species (NO3
-
, N2O, N2) supported by comparisons between NO3

-
 and tracers such as Br

-
 

or Cl
-
 (Aravena and Robertson, 1998; Green et al., 2010; Seitzinger et al., 2006; Trudell 

et al., 1986). Aspects of groundwater such as pH, ion concentrations, and carbonate 

speciation are significantly altered by denitrification (Böhlke, 2002; Brunet et al., 2011; 

Nascimento et al., 1997; Trudell et al., 1986). 

Many investigations have been conducted with the goal of quantifying 

nitrification and denitrification rates whereas few have examined the potential effects 

nitrification and denitrification processes have on their environments other than 

eutrophication (Davidson et al., 1990; Green et al., 2010; Rivett et al., 2008; Seitzinger et 

al., 2006). Studies focused on the occurrence and fate of NO3
-
 contamination in 

groundwater have been predominantly conducted in agricultural, rural, or riparian sites 

(Böhlke, 2002; Kite-Powell and Harding, 2006; Spalding and Exner, 1993; Trudell et al., 

1986). Few investigations have been conducted on the occurrence and effect of NO3
-
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contamination on shallow groundwater in residential settings (Burow et al., 2010; 

Spalding and Exner, 1993). The prevailing assumption in many of these studies is that 

nitrification and denitrification are occurring within the groundwater and that they are 

essentially uniform across the study area investigated. New research has begun to identify 

locations or periods of time where denitrification is uniquely active within wetlands 

(Palta, 2012). Additionally, the effects of land use are assumed to be uniform across 

many study sites, which may not apply to small scale residential settings.  Factors unique 

to residential environments such as roof runoff, and spot application of fertilizers may 

impact the spatial contamination and attenuation of NO3
-
. Compared to research in 

agricultural, rural and riparian settings, the fate of NO3
-
 in groundwater in residential 

settings is largely unknown (Seitzinger et al., 2006). There is also a gap in knowledge 

concerning how land use practices specific to residential areas influence NO3
-
 

contamination. To gain greater insights into anthropogenic influence on the nitrogen 

cycle, the occurrence and influence of NO3
-
 within residential properties must be studied.  

Here we report on a study in which we investigated the spatial and temporal NO3
-
 

distributions, as well as the effect of NO3
-
 attenuation on groundwater chemistry in a 

shallow residential aquifer. The site has been previously studied for hydrology and 

groundwater quality (Hagen, 1986; Hoyle, 1989; Ross, 1988). Previous studies have 

determined the the source of calcium in groundwater is likely from calcite nodules in the 

soil (Ross, 1988). Background NO3
-
 concentrations in groundwater across the United 

States are typically estimated to be below 1 mg/L while NO3
-
 concentrations measured in 

groundwater at this site since 1986 were above the US EPA MCL (Hagen, 1986; Panno et 

al., 2006). The persistent NO3
-
 concentration above US EPA MCL within the 
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groundwater makes this study site an ideal location to identify potential sources and sinks 

of NO3
-
, as well as to determine the effects of NO3

-
 attenuation on groundwater 

chemistry.  

We hypothesize that NO3
-
 attenuation is occurring in groundwater at the site and 

that this attenuation is via denitrification. Additionally we hypothesize that denitrification 

alters the chemistry of the groundwater. The objectives of this study were to (1) identify 

the source(s) of NO3
-
; (2) identify the processes which control NO3

-
 distributions; and (3) 

identify rock-water interactions within the shallow aquifer that are linked to 

denitrification. In order to accomplish the objectives of this study, chemical and isotopic 

parameters that could be influenced by the presence of and attenuation of NO3
-
 were 

examined over space and time. The parameters investigated include concentration of 

NO3
-
 and other major ions, pH, water level, and the stable carbon isotopes of dissolved 

inorganic carbon (δ
13

CDIC).
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CHAPTER II 

 

THEORETICAL OVERVIEW 

2.1 Potential sources of NO3
-
 contamination 

The location of this study contains four potential sources for NO3
-
 contamination. 

One potential source is a sewer line which runs north to south along the western border of 

the property and a second potential source is another sewer line which runs west to east 

along the southern border of the property (Fig. 1). Fertilizers applied to properties 

upgradient of the study site and applied at the site make up the third and fourth potential 

sources of NO3
-
 contamination. Nitrate contamination from sewage is usually 

accompanied by an influx of organic matter and Cl
-
 concentrations above background 

concentrations in groundwater (Aravena and Robertson, 1998). Groundwater depth plays 

an important role in NO3
-
 contamination as the depth of the sewer lines is 2.4 m. When 

the groundwater level is below the sewer lines, any break in the piping will result in 

contamination of groundwater. If NO3
-
 contamination was only because of the application 

of fertilizers on properties upgradient of the study site, we would expect that the NO3
-
 

concentration of upgradient groundwater will be above the 1 mg/L considered 

background. Additionally, if there is no on-site NO3
-
 contamination, concentrations of 

NO3
-
 in groundwater that flows through the site will remain unchanged or decrease 

because of attenuation. Since fertilizer applied to flower beds on site is designed for slow 

release, it is unlikely that individual pulses correlating to single applications would be
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evident especially considering the frequency of sampling in this study. If application of 

fertilizers to grass for lawn care is the primary source of NO3
-
 contamination a 

homogenous distribution of NO3
-
 would be observable in the groundwater across the 

study site. Owners of residences in the neighborhood where this study was conducted 

apply fertilizers up to five times a year to achieve “socially acceptable lawns” (Hagen, 

1986). Application of fertilizers typically on-site occurs in April, May, June, August, and 

November (Pettyjohn, personal communication). 

2.2 Hydrogeological considerations 

The spatial distributions of NO3
-
 will in part be controlled by the direction of 

groundwater flow. During periods where the water table is above 2.2 m, groundwater 

flows south-west toward an unnamed intermittent stream. During periods where the water 

table is below 2.2 m groundwater flow direction is south and discharges into a storm 

drain channel south of the property (Pettyjohn, 1989b). Also, within the residential 

setting, recharge of groundwater is influenced by irrigation activities, thus groundwater 

depth may reflect recharge from precipitation and irrigation applications. 

2.3 Chemical evolution of NO3
-
 

There are two main processes that have been identified as the primary controls on 

nitrogen attenuation within groundwater- nitrification and denitrification (Delwiche and 

Bryan, 1976; Knowles, 1982; Palta, 2012; Seitzinger et al., 2006).  The combined 

products of these reactions may have significant effects on groundwater chemistry. 
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2.3.1 Nitrification 

Nitrification is a microbially driven process whereby NH4
+
 and other nitrogen 

species are converted into NO3
-
. Fertilizers used for plant growth commonly contain 

nitrogen in the form of urea, although other forms such as ammonia (NH3) and 

ammonium nitrate (NH4NO3) are not uncommon (Böhlke, 2002). Urea is the dominant 

form of nitrogen in the fertilizers applied at the study site and surrounding residences 

(Ross, 1988). Urea, ammonium, and ammonia either from fertilizer or effluent, undergo 

reactions which convert the nitrogen to a more labile form. After the application of 

ammonia and urea bearing fertilizers, hydrolysis of the urea produces ammonia (Eqn. 1).  

NH2CONH2 + H2O ↔ CO2 + 2NH3       (1) 

The oxidation of ammonia (Eqn. 2) followed by conversion of NO2
-
 to NO3

-
 (Eqn. 3), 

both performed by microorganisms is commonly referred to as nitrification (Ward et al., 

2011). 

2NH3 + 3O2 ↔ 2NO2
-
 + 2H

+
 + 2H2O      (2) 

NO2
-
 + H2O ↔ NO3

-
 +2H

+
        (3) 

If nitrification is occurring in groundwater upgradient and across the site, NO3
-
 

concentrations above background (1 mg/L) would be expected. If NO3
-
 attenuation is not 

denitrification, but instead a lack of nitrification, consistent low NO3
-
 concentrations 

would be observable as groundwater enters and travels across the site. 

2.3.2 Denitrification 

Denitrification occurs from microbial conversion of NO3
-
 to N2O or N2. This 

conversion requires an electron donor such as organic carbon (Eqn. 4) and is considered 

the primary mechanisim for NO3
-
 loss within aquifers (Böhlke, 2002; Rivett et al., 2008; 
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Knowles, 1982; Nascimento et al., 1997). The availability of organic carbon  is one of the 

most important limiting factors controlling the activity of denitrifying bacteria (Delwiche 

and Bryan, 1976; Knowles, 1982) 

5C + 4NO3
-
 + 4H

+
 ↔ 2N2 + 5CO2(aq) + 2H2O     (4) 

It was considered in the past that denitrification could not compete with oxygen 

reduction and that denitrification could only occur in anaerobic conditions in 

groundwater (Delwiche and Bryan, 1976). However as research on denitrification has 

progressed, it has been recognized that denitrification occurs not only in anaerobic, but 

aerobic environments as well (Delwiche and Bryan, 1976; Knowles, 1982; Lloyd, 1993). 

Explanations for the occurrence of denitrification under aerobic conditions commonly 

cite two plausible situations: (1) the existence of bacteria capable of denitrification in an 

environment with excess oxygen, or (2) the existence of micro-sites where anoxic 

conditions exist and are not represented by the larger water body (Kuenen and Robertson, 

1994; Rivett et al., 2008). 

The rates of nitrification or denitrification were not measured in this study. 

However, if denitrification is taking place several outcomes are possible. First, if NO3
-
 

sources are solely from upgradient contamination NO3
-
 concentrations will be above 

background and exhibit a consistent decrease as groundwater travels downgradient. If 

denitrification is heterogeneous accross the site, the products of denitrification, such as 

CO2, will be elevated at locations where denitrification is active. Additionally the stable 

isotopes of dissolved inorganic carbon (δ
13

CDIC) will be depleted as organic carbon is 

consumed by denitrification is converted to CO2 that enters the groundwater DIC pool. 
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2.3.3 Products and reactions from NO3
-
 evolution 

During denitrification, there is concurrent utilization of organic carbon (Corg) and 

H
+
. The H

+
 produced during nitrification (Eqn. 3) and consumed during denitrification 

(Eqn. 4) causes the pH to decrease and increase, respectively. While rates of 

denitrification are usually positively related to pH, the process of nitrification or 

denitrification cannot be quantified by the change in pH alone, since potential decreases 

in pH may be buffered by the production of HCO3
-
 from carbonate dissolution (Eqn. 5 

and 6) and other reactions during carbonate evolution (Eqn. 7 and 8) (Böhlke, 2002; 

Drever, 1997; Hounslow, 1995).  

H
+
 + CaCO3 ↔ Ca

2+
 + HCO3

-
      (5) 

CO2(aq) + CaCO3 + H2O ↔ Ca
2+

 + 2 HCO3
-
     (6) 

CO2(g) ↔ H2O + CO2(aq) ↔ H2CO3
-
        (7) 

HCO3
-
 + H

+
 ↔ H2CO3

-
       (8) 

One of the by-products of nitrification and denitrification is CO2(aq) which can affect the 

partial pressure of CO2(g) (pCO2) concentrations in groundwater (Eqn. 1 and 4). The 

CO2(aq) can dissociate to H2CO3 or degas, thereby increasing the pCO2 (Eqn. 7). If the 

products of denitrification and nitrification enhance carbonate weathering, a relationship 

should be observable between the products of the denitrification and carbonate 

dissolution. Elevated pCO2 caused by nitrification and denitrification, in conjunction with 

high HCO3
-
, DIC, and Ca

2+
 concentrations can thus be used as evidence that processes 

such as nitrification and denitrification may be the driving mechanisms for carbonate 

weathering within aquifer (Ali and Atekwana, 2011; Langmuir, 1971).
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CHAPTER III 

 

METHODOLOGY 

3.1 Site Description 

The study site is a residential property located in Payne County in north-central 

Oklahoma (36˚8’16” N, 97˚3’16” W) (Fig. 1). The property is situated in the Boomer 

Creek floodplain, underlain by approximately 15.2 m of Quaternary alluvium filling a 

valley formed in the Upper Pennsylvanian Doyle Shale. The alluvium is comprised of 

intermixed sand (50%), silt (25%), and clay (25%) (Hoyle, 1989; Pettyjohn, 1989a). The 

topography at the site exhibits little relief (<25 cm) with a slope of 1%. The soil is an 

Ashport type that is formed in loamy alluvium of Holocene age and associated with good 

drainage because of the presence of macro-pores (Pettyjohn, 1989a; Ross, 1988). The 

transmissivity and hydraulic conductivity of the shallow aquifer average 27.6 m
2
 d

-1
 and 

2 m
 
d

-1
, respectively (Hagen, 1986; Pettyjohn, 1989a; Ross, 1988).  

The study area has a temperate climate and is considered semi-arid. The average 

ambient air temperatures range from 27.5˚C in the summer to 0.88˚C in the winter, with 

annual precipitation averaging 826.7±283 mm for 2008 to 2011 (Fedstats, 9-2-2013; 

Mesonet, 2014). Precipitation generally occurs between the months of March and June as 

short, high intensity showers. The shallow groundwater is recharged by precipitation and
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lawn irrigation. Groundwater generally flows to the south-south west (Fig. 1)(Pettyjohn, 

1989b). 

3.2 Water Sampling 

Groundwater was sampled from monitoring wells (MW) quarterly beginning in 

September 2008 until October 2011. The monitoring wells are constructed of 5-cm 

diameter PVC pipe that are screened and sand packed. The annular space is filled with 

bentonite (Pettyjohn, 1989a). Monitoring wells G, H, B, A, E, C and D (Fig. 1) are 4.2 m 

deep and screened along the lower 1.8 m. Monitoring well F is 12.2 m deep and is 

screened along the lower 9.1 m. 

3.3 Sampling and Analysis 

Prior to sampling, water table depth was recorded using a Solinst electronic water 

level meter. Groundwater was pumped to the surface using a peristaltic pump through a 

flow cell into which a Yellow Springs Instruments (YSI) multi-parameter probe was 

immersed. The temperature and specific conductance were monitored and after the 

readings were stable, physical parameters were recorded and water was collected for 

chemical and isotopic measurements. The temperature, pH, oxidation-reduction potential 

(ORP), dissolved oxygen (DO), specific conductance, and total dissolved solids (TDS) 

were measured in the flow cell using a YSI multi-parameter probe, calibrated to the 

manufacturers’ specifications. After measuring the physical parameters, samples 

collected for chemical were filtered through 0.45 µM filters and collected in 30 mL high-

density polyethylene (HDPE) bottles for anions and in pre-acidified (high-purity HNO3) 

60 mL HDPE bottles for cations. Water for measurement of dissolved inorganic carbon 

(DIC) and stable carbon isotopes of DIC (δ
13

CDIC) were were filtered through 0.45 µM 
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filters and collected in pre-acidified (1 mL of 85% H3PO4) vacutainer tubes (Atekwana 

and Krishnamurthy, 1998).  

Alkalinity was measured during sampling by titration with sulfuric acid using a 

Hach digital titrator (Hach, 2013). Anions (Cl
-
, SO4

2-
 and NO3

-
) were measured using a 

Dionex Ion Chromatography System (ICS 3000). Cations (Ca
2+

, Mg
2+

, Na
+
 and K

+
) were 

measured using the Dionex Ion Chromatography System (ICS 3000) or a Perkin Elmer 

Inductively Coupled Plasma Optical Emissions Spectrometer (Optima 2100 DV). 

Analyses of ions on either the ICS 3000 or Optima 2100 DV were obtained with a 

precision of better than 2% on replicated measurements of standards and duplicate 

samples. CO2(g) for stable carbon isotopic measurement of DIC was extracted from the 

vacutainers tubes as described by Atekwana and Krishnamurthy (1998). Concentrations 

of DIC were calculated from the extracted CO2(g), sealed in Pyrex tubes and subsequently 

analyzed for δ
13

C using a Thermo Finnegan Delta Plus XL isotope ratio mass 

spectrometer. DIC values were measured using a pressure transducer with a precision of 

better than 1%. Carbon isotopes are reported in delta (δ) notation in per mil (‰):  

δ(‰) ( (
 sample

 std

)  1)  1000 

Where R is the ratio 
13

C/
12

C, Rsample is the ratio of 
13

C/
12

C in the sample and Rstd is the 

ratio of 
13

C/
12
C in the standard. The δ

13
C values are reported relative to Vienna Pee Dee 

Belemnite (VPDB). Samples and routine precision checks using in-house carbonate 

standards yield an overall precision of ±0.1‰ or better. 

3.4 Geochemical Modeling 

The partial pressure of CO2 (aq) (log pCO2) in the samples was modeled with 

PHREEQC version 2.18 using corresponding pH, DIC concentration, and temperature 
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(Parkhurst, 1995). The saturation index with respect to calcite (SIcal) was calculated with 

PHREEQC using corresponding pH, alkalinity, Ca
2+

concentration, and temperature 

(Parkhurst, 1995).  

3.5 Statistical Analysis 

Descriptive statistics and correlation coefficients (R) were calculated using the 

data analysis package in Microsoft Excel 2013. Statistical analyses were performed with 

a level of significance of p=0.05. The coefficient of variation (expressed as a percentage), 

also known as the relative standard deviation (RSD) was calculated using averages and 

standard deviations (Schot and Pieber, 2012). The RSD was used to assess the variation 

of individual parameters in each monitoring well over the entire course of this study 

(RSD-t). The spatial relative standard deviation (RSD-s) of an individual parameter was 

calculated for all sampling locations using values from all sampling events.
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CHAPTER IV 

 

RESULTS 

Descriptive statistics of the chemical, physical, and isotopic measurements for 

groundwater at the study site are listed in Table 1. The correlation coefficients of the 

chemical, physical, and isotopic data are listed in Table 2. The complete results are 

presented in supplementary Table S1.  

4.1 Water Level and Temperature 

Groundwater depth averaged 2.9±0.5 m and varied between 1.2 to 3.8 m (Table 

1). Groundwater temperatures average 18.5±3.2 °C and varied between 12.5 and 27.5 °C 

(Table 1). Variations in groundwater level and temperature across the site are plotted in 

Fig. 2. High water periods were observed in the spring seasons, these periods are 

indicated by shading in Fig. 2a. High water periods do not directly reflect recharge from 

only rain water because the recharge of this shallow aquifer can be significantly impacted 

by antecedent moisture conditions (Ross, 1988). Artificial recharge because of irrigation 

systems may also be responsible for elevated groundwater, as high periods in water table 

depth correspond to growing seasons. Groundwater temperatures begin to increase 

towards the end of February and the beginning of March and then begin to decrease in 

November. High periods in groundwater level precede high periods in groundwater 

temperature, this is expected because of summer and winter seasonality. Increased 

precipitation is observed in the spring season.
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4.2 Nitrate Concentrations 

NO3
-
 concentrations in groundwater average 36.8±37.0 mg/L and range from 0.1 

to 214.0 mg/L (Table 1). As groundwater flows to the study site (Fig. 1), NO3
-
 

concentrations in groundwater at MW-G and MW-H average 57.7±18.3 mg/L and 

47.6±11.0 mg/L, respectively. As groundwater travels through the study site, NO3
-
 

concentrations increase at MW-A to an average of 77.8±38.4 mg/L, decrease at MW-B to 

7.0±3.5 mg/L, at MW-E to 4.8±3.3 mg/L, and at MW-F to 20.5±11.3 mg/L. Before 

leaving the site, groundwater in the south west downgradient area at MW-C has average 

NO3
-
 concentrations of 66.8±48.9 mg/L whereas in the south eastern downgradient area at 

MW-D, the average concentration of NO3
-
 is 4.6±2.8 mg/L. 

Temporal variations of the nitrate concentrations across the site are shown in Fig. 

3. Temporal variations are apparent for most monitoring well locations with alternating 

periods of high and low NO3
-
 concentrations observable in MW-G, MW-B, MW-E, MW- 

A, MW-F. The periodic increases or decreases in NO3
-
 concentrations occurred during 

high groundwater for some locations and during low groundwater levels for others (Fig. 

3). Overall, temporal decrease in NO3
-
 was observed in groundwater at MW-H and MW-

C, whereas other locations such as MW-G and MW-A showed persistently high 

concentrations throughout the study (Fig. 3).  

4.3. pH, alkalinity, DIC and δ
13

CDIC 

Groundwater pH across the site varied from 4.5 to 7.4 and averaged 6.4±.6 (Table 

1). The pH of groundwater entering the site at MW-G and MW-H averaged 6.5±0.4 and 

6.8±0.4, respectively. As groundwater traveled through the study site, average pH 

remained relatively unchanged with values of 6.3±0.3 at MW-A, 5.9±0.9 at MW-B, 
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6.5±0.7 at MW-E, and 6.3±0.6 at MW-F. Before leaving the site, the average 

groundwater pH in the south west downgradient MW-C was 6.5±0.4, whereas in the 

south eastern downgradient area at MW-D was 6.7±0.3 (Table. 1). 

HCO3
-
 concentrations averaged 375±177 mg/L and ranged between 48 and 793 

mg/L(Table 1). HCO3
-
 concentrations for groundwater entering the site averaged 

448.1±25.2 mg/L for MW-G and 454.7±36.9 mg/L for MW-H. Midgradient monitoring 

wells had lower HCO3
-
 averaging 94.8±32.9 mg/L for MW-B, 133.6±24.1 mg/L for MW-

E, 404.8±30.1 mg/L for MW-A, and 336.1±121.4 mg/L for MW-F. As groundwater 

leaves the study site, average HCO3
-
 concentrations for MW-C were 490.2±121.8 mg/L 

and 605.4±61.9 mg/L for MW-D (Table 1). Midgradient, groundwater at MW-B and 

MW-E show relatively low HCO3
-
, while locations MW-F and MW-A had HCO3

-
 

concentrations slightly lower than upgradient (Fig. 4). Groundwater at the south eastern 

downgradient location MW-D exhibited the highest HCO3
-
 concentrations at the site, 

whereas the south western location MW-C had HCO3
-
 concentrations only slightly higher 

than the initial groundwater entering the site (Fig. 4). Over time, groundwater at MW-G 

and MW-H show little variation in HCO3
-
 concentration while MW- B, MW-E, MW-A, 

and MW-F show periodic increasing and decreasing HCO3
-
 concentrations (Fig. 4). 

Groundwater exiting the study site at MW-C and MW-D show much higher HCO3
-
 

concentrations but with much more variability than groundwater upgradient. HCO3
-
 

distribution was not uniform across the site and can be described as generally increasing 

downgradient except for MW-B and MW-E, which are midgradient at the site (Fig. 4). 

Dissolved inorganic carbon (DIC) concentrations ranged from 3.1 to 171.9 mg 

C/L. As groundwater entered the site, DIC concentrations were 87.0±14.6 mg C/L for 
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MW-G and 85.7±11.3 mg C/L for MW-H. Groundwater midgradient at the site, MW-B, 

MW-E, MW-A, and MW-F, had DIC concentrations of 19.4±6.8, 28.0±36.2, 79.3±14.6 

and 69.7±18.0 mg C/L, respectively. Groundwater in the downgradient locations had DIC 

concentrations of 100.8±34.9 mg C/L for MW-C and 120.4±20.1 mg C/L for MW-D. 

Groundwater decreased in DIC concentrations midgradient relative to upgradient 

monitoring wells, then increased to above the initial DIC concentrations as groundwater 

leaves the site (Table 1).Temporal fluctuations in dissolved inorganic carbon (DIC) for 

each of the sampling locations have been shown in Fig. 5. Except for MW-B and MW-E, 

which both remain relatively constant, DIC concentrations generally decrease over time 

(Fig 6). 

Values for the δ
13

CDIC in groundwater averaged -11.9±2.5 ‰ and ranged from -

16.2‰ to -7.4 ‰ (Table 1). As groundwater enters the site at MW-G and MW-H, the 

δ
13

CDIC values averaged -8.5±1.1 ‰ for MW-G and -8.3±0.4 ‰ for MW-H. By the 

middle of the site, sampling locations separate into two groups: MW-A and MW-F have 

average δ
13

CDIC values of -11.5±0.5 ‰ and -11.4±1.8 ‰, respectively, whereas MW-B 

and MW-E have values of -14.6±1.1 ‰ and -14.5±1.0 ‰, respectively. Monitoring well-

D and MW-C were depleted in δ
13

CDIC with respect to the upgradient monitoring wells, 

with averages of -12.8±0.7 ‰ and -13.7±1.6 ‰, respectively. Temporal variations of 

δ
13

CDIC for each of the sampling locations are shown in Fig 7. Over time, the upgradient 

locations MW-G and MW-H, and midgradient monitoring wells A, B, E, and F remained 

nearly constant (Fig. 6). Groundwater from the south western downgradient location at 

MW-C e hibited a δ
13

CDIC depletion with periods of enrichment and depletion, whereas 
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MW-D is the only monitoring well to show a persistent depletion of δ
13

CDIC overtime 

(Fig. 6). 

4.4. Major anions and cations 

Dominant ions in the groundwater across the site are listed in order of abundance: 

Ca
2+ 

> Na
+ 

> Mg
2+

 > K
+
 and HCO3

-
 > NO3

-
 > Cl

-
 > SO4

2- 
(Table 1 and S1). The cation 

and anion proportions are plotted on Fig. 7. The predominant water type at the site was 

Ca
2+

-Mg
2+

-HCO3
-
. However, groundwater at MW-F shows variation from Ca

2+
 to Na

+
, 

MW-E shows variation from Ca
2+

 to Mg
2+

 and at MW-D the change is from Ca
2+

 to Mg
2+

 

and HCO3
-
 to Cl

-
.
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CHAPTER V 

 

DISCUSSION 

To understand the fate of NO3
-
 and the chemical evolution of groundwater at this 

site, we evaluated the sources of NO3
-
 contamination, the processes that attenuate NO3

-
 in 

groundwater and the consequences of nitrate attenuation on groundwater geochemistry. 

Nitrate concentrations in some groundwater locations (MW-G, MW-H, MW-A, MW-F, 

MW-C) were persistently above the US EPA MCL of 10.0 mg/L (US-EPA, 1976) (Table 

S1). Although the study site is only 60 m x 40 m, the NO3
-
 concentrations are spatially 

variable and show steep gradients (Fig. 9). Nitrate concentrations for all groundwater 

sampling locations show dissimilar temporal variability (Fig. 3). Moreover, the 

differences in the spatial and temporal behavior suggest multiple sources and processes 

that control NO3
-
 concentrations in the shallow groundwater. 

5.1 Sources of nitrate 

One of the objectives of this study was to identify the potential sources for NO3
-
 

contamination. The results indicate that multiple sources are responsible for NO3
-
 

contamination at the site. A previous study at this site by Hagen (1986) recorded NO3
-
 

concentrations that averaged 6.0 ± 4.6 mg/L and ranged between 0.3 to 27.9 mg/L at 

MW-A (Fig. 1) over a nine month period. Compared to the present study, average NO3
-
 

concentrations in groundwater at MW-A have increased up to thirteen times the previous 

average reported by Hagen (1986) (Table 1). 
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One potential source of NO3
-
 is from application and subsequent nitrification of 

fertilizers at upgradient properties in the neighborhood. As seen in Figure 3, groundwater 

entering the site at upgradient lcoations MW-G and MW-H are consistently above 

background concentrations, indicating NO3
-
 contamination from upgradient sources. If 

the sole source of NO3
-
 in groundwater were only from contamination upgradient at the 

study site, there would be a constant concentration or a general decrease in NO3
-
 

concentrations because of attenuation over the course of this study and no NO3
-
 

contamination occurring on-site. If NO3
-
 contamination is because of periodic on-site 

applications of fertilizer, specific locations will exhibit periodic pulses of greater 

magnitude than other locations. Figure 3 shows temporal trends in NO3
-
 concentrations. 

What can be observed in Figure 3 is that the midgradient locations MW-B, MW-E, MW-

A and MW-F all exhibit periodic pulses in NO3
-
 concentrations. Upgradient locations 

MW-G and MW-H show some variability in NO3
-
 concentrations, but not consistent 

pulses that could be associated with seasonality (Fig. 3). Likewise, locations MW-C and 

MW-D show periodic pulses of NO3
-
 which are asynchronous with seasonality (Fig. 3). 

Figure 10 shows the statistical summary of NO3
-
 concentrations across the site. What can 

be observed in Figure 9 is that NO3
-
 does not uniformly decrease downgradient of MW-H 

and MW-G even though initial upgradient concentrations at MW-G and MW-H exhibit 

higher than natural concentrations (Kite-Powell and Harding, 2006). On-site fertilizer 

application would result in increased NO3
-
 concentrations downgradient, while decreased 

NO3
-
 concentrations would indicate processes controlling NO3

-
 attenuation exceed NO3

-
 

contamination. The average NO3
-
 concentrations increase from upgradient to midgradient 

locations (e.g. MW-A; Fig. 9) which indicate NO3
-
 contamination from fertilizers applied 
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to flowerbeds or as lawn care. Average NO3
-
 concentrations then decrease from 

midgradient to downgradient locations (e.g. MW-D), indicating NO3
-
 attenuation (Fig. 9). 

Considering that the concentrations of NO3
-
 have been consistently high in most 

groundwater locations for the three year duration of the study and given the groundwater 

flow rate of  0.3 m/day, it is unlikely that the high NO3
-
 concentrations observed in the 

groundwater are the results of a single contamination pulse (Ross, 1988). 

In addition to fertilizer application, Ross (1988) has suggested that there is 

contamination of groundwater from a leaky sewer line which runs along the southern and 

western edges of the property (Fig. 1). Nitrate contamination from sewage is 

accompanied by Cl
-
 concentrations above background (Aravena and Robertson, 1998). 

The average concentration of Cl
-
 at MW-D is 145±48 mg/L compared to upgradient 

MW-G and H at 29±10 and 20±5 mg/L, respectively. The relationship between Cl
-
 and 

Na
+
 shown in Fig. 10a can be used to argue that the Cl

-
 concentrations at MW-D are 

much higher relative to the other sampling locations. The same conclusion can also be 

obtained from the cation and anion proportions shown in Figure 7. If high concentrations 

of Cl
-
 were the result of winter application of road salt, all locations would likely exhibit 

periodically elevated Cl
-
 concentrations. Additionally, if the source of Cl

-
 were common 

salt, the ratio of Cl
-
/Na

+
 would be 1:1; which, as can be observed in Fig. 10a is not the 

case. Using Cl
-
 as an indicator for groundwater contamination by sewage, it can be 

demonstrated that only location MW-D has the potential for NO3
-
 contamination from 

sewage. Moreover, no salts were applied on the property and on roads in the winter for 

de-icing during the period of study. Persistently high Cl
-
 concentrations in the absence of 

salt application is likely from a leaking sewer line. Effluent contamination is usually 
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observed in conjunction with nitrate contamination; the relatively low concentrations of 

NO3
-
 suggest that NO3

-
 attenuation at location D is particularly active. 

5.2. Nitrate attenuation in groundwater 

The second objective of this study was to identify the processes responsible for 

NO3
-
 attenuation in groundwater. Nitrate attenuation can occur because of dilution from 

rainwater runoff or from denitrification. 

5.2.1. Dilution 

Previous studies have suggested that NO3
-
 concentrations are significantly 

influenced by dilution if individual rain events are not preceded by surficial addition of 

nitrogen (Hagen, 1986; Ross, 1988). Monitoring well-B, MW-F, MW-E, and MW-D 

exhibit groundwater NO3
-
 concentrations that are lower than the upgradient locations 

(Fig. 9). Monitoring well-B, MW-E and MW-D are located within small (2 m x 1 m) 

flower beds whereas MW-F is below a concrete driveway extending 2 m in all directions 

(Fig. 1). No chemical process capable of removing Cl
-
 has been identified at the study 

site, hence Cl
-
 can be used as an indicator of the process of dilution, with the exception of 

locations which are affected by sewage contamination (Goodale et al., 2009; Lovett et al., 

2005). While Cl
-
 generally increases as groundwater travels through the study site, MW-

B and MW-E exhibit Cl
-
 concentrations nearly one tenth the average concentrations of 

groundwater in upgradient locations at MW-G and MW-H, with a similar dilution ratio 

observed in NO3
-
 concentrations. Since Cl

-
 is found in lower concentrations at MW-B and 

MW-E, it is reasonable to conclude the geochemistry of groundwater at these locations 

may be affected by dilution. Therefore we can conclude low concentrations of NO3
-
 and 

other chemical constituents at MW-B and MW-E may be caused in part by dilution. 
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Dilution is likely explained by way of rain discharge from roof drain downspouts within 

0.5 m of the each sampling locations. During rain events, rainwater runoff from the roof 

is channeled to the areas immediately around the downspouts, causing the surface in 

approximately a 1 m radius surrounding the downspouts to become flooded (Pettyjohn, 

1989a). The chemical contribution from rainwater to the ion concentrations at MW-B and 

MW-E is minimal, but will result in much lower average ion concentrations (Table 1, 

Table S1).  

5.2.2. Denitrification 

In order to confirm denitrification as a means of NO3
-
 attenuation, the products of 

denitrification were monitored. From equations 4, 7, and 8, pCO2 and subsequently 

HCO3
-
 can be shown to be products related to denitrification. CO2(g) may also be 

generated from oxidation of organic matter (Eqn. 9) involving no reduction in NO3
-
 

concentrations in groundwater.   

CH2O + O2 ↔ CO2 + H2O       (9) 

Since Table 1 shows that spatial distributions of DO are relatively uniform, we can 

conclude that no unique conditions promoting or inhibiting oxidation of organic matter 

exist at specific locations. Thus, it follows that if oxidation of organic matter is 

responsible for increased carbon concentrations in groundwater, dissolved inorganic 

carbon (DIC) content would be uniform throughout the site. However, based on Figure 5, 

it can be observed that the DIC concentration in groundwater exhibits steep gradients 

between sampling locations. Additionally fractionation of δ
13

CDIC will occur if oxidation 

of organic matter is microbially mediated, such as denitrification; Figure 6 displays 

δ
13

CDIC values which are relatively enriched at upgradient locations and relatively 
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depleted at downgradient locations. δ
13

CDIC fractionation will be discussed in more detail 

in section 6.3. With oxidation of organic carbon eliminated as a possibility for controlling 

CO2 and NO3
-
 concentrations, denitrification is the most likely process which can 

adequately describe the evolution of NO3
-
 attenuation in groundwater. 

Logically, CO2(g) produced during denitrification will adjust the equilibrium 

between CO2(aq) and HCO3
-
, thus as denitrification occurs, the pCO2 and concentrations 

of HCO3
-
 will increase concurrently.  Groundwater log pCO2 averaged 10

-2.0±0.4
 atm, with 

a range from 10
-3.38

 to 10
-1.46

 atm. Covariance of pCO2 and HCO3
-
 concentrations can be 

demonstrated by a positive correlation coefficient (R) of 0.55. If the absolute value of R 

lies between 0.5 and 0.69, sample sets are considered to have moderately strong 

correlation (Asuero et al., 2006; Schot and Pieber, 2012). If nitrification, and 

denitrification were occurring in an isolated system, it would be expected that the 

correlation coefficient would be near perfect (  ≥ 0.90). However, natural groundwater 

such as in this study is subject to a myriad of other processes which interact with 

inorganic carbon species. Hence it would be highly unlikely that a near perfect 

correlation coefficient could be achieved when monitoring pCO2 and other chemical 

parameters in natural groundwater. A positive correlation between pCO2 and HCO3
-
 

concentration demonstrates that HCO3
-
 in groundwater is related to the processes 

increasing the pCO2 such as denitrification. Higher concentrations of HCO3
-
 were 

observed in downgradient locations (e.g. MW-C, MW-D) compared to upgradient 

locations MW-G and MW-H, indicating denitrification does occur as groundwater travels 

through the site (Fig. 4). Likewise, if denitrification is responsible for carbonate 

dissolution, a correlation will exist between the products of the two processes. A 
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moderately strong correlation is observed between pCO2 and Ca
2+

 with a correlation 

coefficient of 0.51 (Table S2)(Asuero et al., 2006; Langmuir, 1971). Thus, pCO2, HCO3
-
, 

and Ca
2+

 concentrations can be used as proxy indicators of denitrification within aquifers 

containing carbonates. 

As observed in Figure 3, there are periodic increases and decreases in NO3
-
 

concentrations. However, concentrations of NO3
-
 are persistently high at MW-G, MW-H, 

MW-A and MW-C. One way to explain this is the periodic application of NO3
-
 in excess 

of amounts consumed by denitrification. A constant supply of NO3
-
 across the site is 

unlikely since fertilizers are applied periodically. Another way to explain consistent 

elevated NO3
-
 concentrations is that the processes which attenuate NO3

-
 are limited. 

Denitrification is commonly thought to be limited by availability of organic carbon and 

prevailing oxygen concentrations in groundwater. High concentrations of dissolved 

oxygen (DO) in groundwater were thought to inhibit denitrification (Delwiche and Bryan, 

1976). However, recent studies have suggested denitrification in groundwater can occur 

when DO is present in concentrations above 0.5 mg/L (Lloyd, 1993). Denitrification has 

been observed in DO concentrations of up to 4.0 mg/L, albeit at decreasing rates as DO 

concentrations increase (Rivett et al., 2008). Dissolved oxygen concentrations in 

groundwater at the study site average 3.3±1.9 mg/L. If DO were the limiting factor 

controlling denitrification, locations with high DO concentrations would exhibit similarly 

elevated NO3
-
 concentrations, whereas locations with lower DO content would have 

lower NO3
-
 concentrations. If locations MW-G and MW-D are compared, both have 

similar average DO content (3.4±2.8 mg/L and 3.5±1.9 mg/L, respectively), however, 

MW-G has over ten times the average NO3
-
 concentration compared to MW-D 
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(57.7±18.3 mg/L and 4.7±2.8 mg/L, respectively) (Table 1).Thus, it is unlikely that 

dissolved oxygen limits denitrification from occurring within the groundwater. 

Many studies have noted that denitrification is highly dependent on the 

availability of labile organic carbon (Delwiche and Bryan, 1976; Knowles, 1982; Lofton 

et al., 2007; Mastrocicco et al., 2011; Rivett et al., 2008). It is thus reasonable to assume 

that denitrification rates are limited in many cases by organic carbon availabile to the 

bacteria. Such may be the case in this study, where persistently high concentrations of 

NO3
-
 are observed upgradient at MW-G and MW-H, while MW-D shows 

uncharacteristically low concentrations of NO3
-
 (Fig. 9). As groundwater travels 

downgradient, additional influx of NO3
-
 because of application of fertilizers across the 

site is likely to increase groundwater NO3
-
 concentrations. This can be observed when 

comparing groundwater at MW-G, MW-A, and MW-C (Fig. 3). Monitoring well C has 

high NO3
-
 but also high HCO3

-
 and Ca

2+
 concentrations compared to MW-G, and MW-H. 

Downgradient MW-C has lower concentrations of NO3
-
 compared to the midgradient 

location MW-A which demonstrates that some NO3
-
 attenuation occurs but does not with 

all available NO3
-
. However, MW-D is farthest downgradient and subject to no obvious 

sources of dilution, yet exhibits the lowest concentration range of NO3
-
 of groundwater at 

the site (Fig. 9). For such complete attenuation of NO3
-
 to occur at MW-D, this location 

must be subject to unique conditions augmenting denitrification. The almost complete 

attenuation of NO3
-
 can be explained by denitrification fueled by abundant labile organic 

matter. Leaky sewage pipes will supply Cl
-
 and organic carbon, which will alleviate the 

organic carbon limitation. Whereas denitrification at location MW-D may be enhanced 
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by the presence of organic matter, the remaining locations likely rely on a limited supply 

of organic matter in the groundwater. 

Where denitrification is fueled by organic matter oxidation, it will likely affect the 

stable carbon isotopes of DIC. Stable carbon isotope values of groundwater DIC are 

typically influenced by the type of vegetation and native carbonate minerals (Nascimento 

et al., 1997). The δ
13

CDIC for groundwater at the site averaged -11.9±2.5 ‰, however, the 

δ
13

CDIC shows a pattern of depletion as groundwater travels across the site (Fig. 6). The 

δ
13

C of soil carbonates below the groundwater table averaged -4.1±0.7 ‰, while the 

values for vegetation can be expected to average about -25‰ because of dominance of 

C3 type vegetation in temperate regions (Baskaran, 2011). As groundwater enters the site 

the relatively enriched δ
13

CDIC values suggest primary influence from carbonate 

dissolution with average values at MW-G and MW-H of -8.5±1.1 and -8.3±0.4, 

respectively. As groundwater e its the study area, the average δ
13

CDIC values become 

more depleted, indicating increased influence from C3 type organic carbon contribution, 

decreasing average δ
13

CDIC values to -13.7±1.6 for MW-C and -12.8±0.7 for MW-D. 

Upgradient locations MW-G and MW-H and midgradient location MW-A exhibit 

relatively stable δ
13

CDIC compositions over time, whereas MW-B, MW-E, MW-F and 

MW-C show periodic decreases in δ
13

CDIC (Fig. 6) as in nitrate (Fig. 3). These pulses of 

δ
13

CDIC enrichment and depletion may indicate site specific conditions that affect 

denitrification and carbonate weathering. The δ
13

CDIC at MW-C is depleted, suggesting 

high organic matter degradation. Groundwater at location MW-D is the only location 

which δ
13

CDIC values can be observed to consistently decrease, which suggest cumulative 

input of a source depleted in δ
13

C (Fig. 6). This depleted source of δ
13

C is likely related 



28 

 

to the input of organic matter from the leaky sewer that may be degraded to fuel 

denitrification. 

5.3. Effects of nitrification and denitrification on groundwater chemistry  

The degree of spatial variations of the measured parameters can be examined 

using the spatial relative standard deviation (RSD-s) (Fig. 8). A low RSD-s indicates that 

the parameter in question, and the processes which control it, are relatively uniform 

throughout the study site. Whereas a higher RSD-s indicates the parameters vary greatly 

between one sampling location and another. The significance of spatial variations (RSD-

s) can be broken into three groups, low variation, medium variation, and high variation 

(Fig. 8).  Variation classifications were defined by observing variations of the parameters 

relative to the variation of all parameters. Low variability was defined as an RSD-s less 

than 40%, medium variability was classified as RSD-s less than 90% but greater than 

40%, and high variability was defined as RSD-s greater 90%.  

The highest spatial variability occurs for NO3
-
 and Cl

-
 concentrations, while pH, 

pCO2, and δ
13

CDIC are associated with the lowest variability (Fig. 8). The high RSD-s of 

NO3
-
 shows that the NO3

-
 contamination in groundwater exhibits steep spatial gradients. 

High spatial variability in Cl
-
 can be explained by the influx of Cl

-
 at location MW-D and 

at no other location. If location MW-D is not considered, the RSD-s of Cl
-
 decreases to 

medium variability; the remaining spatial variability is likely because of dilution 

occurring at midgradient locations MW-B and MW-E. The low RSD-t and RSD-s of pH 

indicates that the aquifer is well buffered, whereas the low RSD-s of pCO2 and δ
13

CDIC 

indicate that the processes which control these parameters are ubiquitous across the site. 

If denitrification is active, the microbial degradation of organic matter will add lighter 
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isotopes of carbon to groundwater DIC. If only oxidation of organic matter, with no 

effects from denitrification, affected δ
13

CDIC and pCO2, we would expect to observe 

decrease in δ
13

CDIC and increase in pCO2.  

If processes which control NO3
-
 distribution affects carbonate dissolution, the 

products and reactants will co-vary (Schot and Pieber, 2012).Thus, if DIC, Ca
2+

, Mg
2+

 

and HCO3
-
 are related to denitrification and nitrification, it would be expected that the 

spatial variability of nitrification and denitrification would increase the RSD of the 

products of carbonate dissolution. Dissolved inorganic carbon, Ca
2+

, Mg
2+

 and HCO3
-
 

exhibit medium variability, confirming that processes which alter their concentrations are 

not uniform within the groundwater across the sampling locations (Fig. 8). 

Similarly, the temporal relative standard deviation (RSD-t) of the measured 

parameters can be used to determine how the processes which affect those parameters 

vary over time (Fig. 8). Nitrate and Cl
-
 also exhibit the highest variation in regards to 

time. The high RSD-t of NO3
-
 is likely because of the periodic pulses from on-site 

application of fertilizers. High RSD-t of Cl
-
 indicates that the contamination from sewage 

occurs periodically. Temporal variability of Cl
-
 may be explained by short periods where 

the water table is above the sewer depth, thus reducing the influx of sewage into the 

groundwater (Table S1). The temporal variability of Cl
-
 would also be affected by 

individual rain events causing dilution at locations MW-B and MW-E. The chemical 

parameters which are directly affected by denitrification (pH and pCO2) show the least 

temporal variability (Fig. 8). Low temporal variability of denitrification indicates that the 

process is relatively constant where it occurs. Products of carbonate dissolution, DIC, 

Ca
2+

, Mg
2+

 and HCO3
-
 exhibit low to medium temporal variability, which indicates that 
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the processes controlling these parameters increases and decreases over time. If periodic 

pulses of NO3
-
 contamination affect the activity of denitrification and subsequently 

carbonate dissolution, it would be expected that the products of carbonate dissolution 

would show temporal variation. 

In order to compare spatial and temporal variability of the groundwater chemistry, 

RSD-s and RSD-t were compared directly in Fig. 8. RSD-s exhibits approximately 

twofold higher magnitude than RSD-t, suggesting a greater variability between 

monitoring wells than variations for each monitoring well over time. The relationship 

between RSD-s and RSD-t for select geochemical parameters shows a positive 

correlation with an R
2
 of 0.85 using the least squares regression (Fig. 8). The high 

correlation between the spatial and temporal RSD indicates that as parameters vary 

spatially across the site, within those specific locations the concentrations are not 

constant. This leads to the observation that the major ions, HCO3
-
 and DIC all exhibit 

steep spatial gradients because of factors affecting the processes occurring at specific 

sampling locations.  

The major anion in the groundwater was HCO3
-
 (Fig. 7) which suggests that the 

groundwater at the site is dominated by processes controlled by carbonate chemistry. 

Concentrations of HCO3
-
 were highest in the groundwater at downgradient locations 

MW-C and MW-D. Since HCO3
-
 is a byproduct of carbonate weathering and 

denitrification, it is likely that denitrification has increasing influence on groundwater 

chemistry as groundwater travels downgradient. If denitrification was occurring but 

limited, high concentrations of NO3
-
 would persist, with concurrent production of CO2 

and HCO3
-
. Such is the case at locations MW-D and MW-C where NO3

-
 concentrations at 
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MW-D are much lower than MW-C, because of the limited availability of organic carbon 

as an electron donor at MW-C. However, MW-C exhibits higher concentrations of HCO3
-
 

and depleted δ
13

CDIC values compared to upgradient locations, suggesting denitrification 

does affect the groundwater at this location. The δ
13

C from organic carbon degraded and 

carbonate weathering can be estimated by assuming equal δ
13

C contribution from 

carbonates (-4‰) and the C3 vegetation being consumed during denitrification (-25‰) 

which would result in a -14.5‰ shift. It can be observed that the downgradient locations, 

which would most be affected by denitrification the δ
13

CDIC shift towards -14.5‰. 

Weathering of calcite as the primary form of carbonate dissolution can be 

confirmed by the use of the saturation index with respect to calcite (SICa). Across the 

study site, the average value for SIcal is -0.9±0.9. Monitoring well-G, MW-H and MW-D 

show instances where the groundwater is saturated with respect to calcite, but on average, 

all groundwater is slightly undersaturated with respect to calcite with no spatial or 

temporal trend. The correlation coefficient (R) between pCO2 and DIC is 0.65, and the 

correlation between DIC with HCO3
-
 and DIC with Ca

2+
 are 0.93 and 0.81, respectively 

(Table 2). Weathering of carbonates can be shown through the positive relationship 

between Ca
2+

 and HCO3
-
 in Figure 10c. These relationships indicates that processes 

which increase CO2(aq), such as nitrification and denitrification, in turn fuel carbonate 

dissolution in groundwater at this site.
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CHAPTER VI 

 

CONCLUSION 

In this study, we investigated the spatial and temporal variability of NO3
-
 

distributions in shallow groundwater at a residential site. The physical, chemical, and 

isotopic composition of groundwater was used to characterize the processes occurring 

within the aquifer. 

We used observations of the spatial differences between groundwater entering the 

site, midway at the site, and as it exited the site to attribute NO3
-
 contamination to three 

sources. There was NO3
-
 contamination from upgradient application of fertilizers at 

residences, from application of fertilizers on-site, and from a leaky sewer line. Our results 

show that denitrification is not occurring uniformly in groundwater across the site, 

instead, steep NO3
-
 gradients exist across the site. Denitrification was found to have 

varying degrees of activity, most active at the sewage leak and least active in the 

upgradient groundwater. Factors affecting NO3
-
 distributions were runoff from 

downspouts which resulted in dilution, application of fertilizer at specific locations, and 

denitrification occurring at different magnitudes. Availability of organic matter appeared 

to play a key role in the attenuation of NO3
-
 by denitrification at some locations. 

The processes of nitrification and denitrification had substantial impact on aquifer 

chemistry through the production of CO2(aq) and subsequent weathering of carbonates.
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The relationship between the CO2(g) produced during nitrification and denitrification and 

the concentrations of HCO3
-
 and Ca

2+
 indicates a connection between processes 

controlling nitrogen and the weathering of carbonates within the aquifer. Groundwater 

values for the δ
13

CDIC indicate DIC is dominated by the dissolution of carbonates and the 

input of organic matter from C3 type vegetation. 

We conclude that denitrification is the dominant method of NO3
-
 attenuation 

occurring at the site and that the CO2(aq) by-product of denitrification enhances carbonate 

weathering within the aquifer. This work provides valuable insight into the effects 

residential land use may have on NO3
-
 contamination.
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CHAPTER VII 

 

FUTURE WORK 

This research site has been the subject of previous hydrogeological and 

geochemical studies (Hagen, 1986; Hoyle, 1989; Pettyjohn, 1989a; Pettyjohn, 1989b). 

However, it retains potential for use in further elucidating the fate of nitrate in a shallow 

aquifer. One major shortcoming of this study was the frequency of the sampling. By 

performing a higher frequency sampling regime, short and long term effects from 

individual precipitation events on NO3
-
 contamination can be investigated. This project 

can also be converted into a long term study of nitrate contamination and attenuation. 

This would in turn enhance our understanding and augment our ability to minimize 

impacts from agricultural and residential contamination in shallow groundwater. Some 

studies have suggested soil moisture plays an important role in denitrification (Rivett et 

al., 2008). Continuous measurements of chemical and isotopic parameters during and 

following a high intensity rain event should provide insights into the process of 

denitrification as soil moisture changes. In addition to higher frequency and extended 

sampling, future studies could quantify the rate of nitrification and denitrification through 

laboratory incubations and in-situ measurements of N2 and N2O and stable nitrogen 

isotopes (
15

N).
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 Water 

Level 
Temp SPC DO pH HCO3

- Ca2+ Mg2+ Na+ K+ Cl- SO4
- NO3

- DIC δ13C pCO2 SICa Ca2+/Mg2+ 

 (m) (°C) (µS/cm) (mg/l) 
 

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg C/L) (‰) (atm) 
  

All Wells 
                  

Mean 2.9 18.6 830.9 3.3 6.4 376.0 62.0 32.5 58.9 0.6 35.4 33.2 36.8 73.3 -11.9 -2.0 -0.9 2.5 

St Dev 0.5 3.2 439.7 1.9 0.6 177.1 27.8 18.2 45.4 0.6 47.9 23.3 37.0 37.9 2.5 0.4 0.9 1.4 

Range 2.6 15.0 1938.0 7.8 2.9 745.2 114.7 71.3 161.6 3.6 223.2 105.1 213.9 168.8 8.8 1.9 4.7 5.1 

Min 1.2 12.5 74.0 0.5 4.5 48.0 11.9 2.5 1.3 0.1 0.6 2.4 0.1 3.1 -16.3 -3.4 -4.2 1.1 

Max 3.8 27.5 2012.0 8.3 7.5 793.2 126.6 73.8 162.9 3.6 223.8 107.5 214.0 171.9 -7.5 -1.5 0.6 6.2 

MW-G                   

Mean 2.5 20.6 943.0 3.4 6.5 448.1 81.0 43.4 49.4 1.6 29.4 29.0 57.7 87.0 -8.5 -1.8 -0.6 1.9 

St Dev 0.6 3.2 57.9 2.8 0.4 25.2 11.3 4.0 2.7 1.1 10.3 5.6 18.3 14.6 1.1 0.2 0.4 0.1 

Range 2.1 10.0 236.0 7.8 1.4 92.4 38.6 13.4 9.5 3.3 39.3 23.6 75.7 52.0 4.7 0.8 1.5 0.4 

Min 1.2 15.6 793.0 0.5 5.7 399.6 69.8 39.2 45.5 0.4 13.9 22.6 29.4 52.8 -12.1 -2.4 -1.4 1.7 

Max 3.2 25.6 1029.0 8.3 7.1 492.0 108.4 52.6 55.0 3.6 53.2 46.2 105.1 104.8 -7.5 -1.5 0.2 2.1 

MW-H                                     

Mean 2.6 20.4 965.3 3.1 6.8 454.7 61.7 50.3 61.1 0.6 20.0 61.5 47.6 85.7 -8.3 -2.1 -0.4 1.2 

St Dev 0.5 3.3 46.4 1.2 0.4 36.9 7.3 5.2 4.1 0.4 5.1 8.6 11.0 11.3 0.4 0.3 0.5 0.1 

Range 1.9 11.8 165.0 5.2 1.7 153.6 22.8 17.2 12.3 1.3 15.3 27.1 39.2 42.8 1.6 1.1 2.0 0.5 

Min 1.6 15.7 877.0 1.6 5.8 349.2 52.8 41.8 56.6 0.2 11.5 49.8 21.7 56.8 -9.0 -2.7 -1.6 1.1 

Max 3.4 27.5 1042.0 6.8 7.5 502.8 75.6 59.0 68.9 1.5 26.8 76.9 60.9 99.6 -7.5 -1.6 0.4 1.6 

 

Table 1. Summary statistics of the chemical, physical and isotopic data. 
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MW-F                                     

Mean 3.1 18.9 729.6 2.3 6.3 336.1 46.7 20.5 86.5 1.0 23.7 41.3 20.5 69.7 -11.4 -1.9 -2.2 2.4 

St Dev 0.5 1.7 304.7 1.2 0.6 121.4 15.1 7.5 47.5 0.2 16.1 22.8 11.3 18.0 1.8 0.2 1.1 0.4 

Range 1.6 5.4 938.0 4.5 1.9 382.8 65.7 28.0 147.7 0.6 59.7 66.5 42.9 58.9 5.1 0.8 3.4 1.3 

Min 2.2 16.0 223.0 0.5 5.2 99.6 20.0 8.0 5.8 0.6 0.7 3.8 2.6 41.7 -14.4 -2.3 -4.2 1.8 

Max 3.8 21.4 1161.0 5.0 7.1 482.4 85.7 36.0 153.5 1.3 60.4 70.3 45.5 100.6 -9.3 -1.5 -0.8 3.2 

MW-A                                     

Mean 3.0 18.7 878.1 2.9 6.3 404.8 78.0 33.1 42.8 0.2 16.2 21.8 77.9 79.3 -11.5 -1.8 -1.2 2.3 

St Dev 0.5 2.4 89.2 1.5 0.3 30.1 12.7 4.6 9.4 0.0 11.6 5.8 38.4 14.6 0.5 0.2 0.8 0.1 

Range 1.5 6.6 292.0 4.4 1.2 106.8 47.2 18.0 24.6 0.2 35.7 20.5 151.8 53.7 2.0 0.6 2.7 0.6 

Min 2.2 15.2 740.0 1.1 5.6 346.8 50.5 21.7 32.7 0.2 5.1 13.9 36.5 44.9 -12.2 -2.2 -2.8 2.0 

Max 3.7 21.8 1032.0 5.4 6.8 453.6 97.7 39.8 57.2 0.3 40.8 34.4 188.3 98.6 -10.2 -1.6 -0.1 2.6 

MW-B                                     

Mean 2.9 19.8 185.0 4.5 5.9 94.8 26.8 4.8 2.6 0.7 2.0 4.1 7.0 19.4 -14.6 -2.4 -1.5 5.5 

St Dev 0.5 3.8 66.5 2.3 0.9 32.9 9.1 1.5 0.6 0.2 1.3 1.2 3.5 6.8 1.1 0.3 0.7 0.4 

Range 1.4 11.2 227.0 7.3 2.6 111.6 30.3 4.9 2.0 0.8 4.1 3.8 11.7 24.5 3.3 1.0 2.2 1.7 

Min 2.1 13.4 74.0 0.7 4.5 48.0 11.9 2.5 1.9 0.4 0.8 2.4 2.3 10.6 -15.9 -3.0 -2.7 4.5 

Max 3.6 24.5 301.0 8.0 7.2 159.6 42.2 7.4 3.9 1.2 5.0 6.2 14.0 35.1 -12.6 -1.9 -0.5 6.2 
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MW-E                                     

Mean 2.8 17.6 216.4 3.5 6.5 133.6 27.3 11.1 2.0 0.2 2.6 6.3 4.8 28.0 -14.5 -2.7 -0.8 2.6 

St Dev 0.5 3.3 59.4 1.9 0.7 24.1 4.2 3.2 0.7 0.1 1.6 2.2 3.3 36.2 1.0 0.5 0.3 0.5 

Range 1.6 11.3 209.0 5.5 2.1 69.6 13.6 10.7 1.8 0.2 4.8 6.6 9.8 133.9 3.0 1.4 1.2 1.6 

Min 1.9 13.5 79.0 1.1 5.3 96.0 20.0 6.4 1.3 0.1 0.6 3.2 0.2 3.1 -16.3 -3.4 -1.4 1.9 

Max 3.5 24.9 288.0 6.6 7.4 165.6 33.6 17.1 3.1 0.3 5.4 9.8 10.0 137.0 -13.2 -2.0 -0.3 3.5 

MW-D                                     

Mean 3.0 16.6 1523.4 3.5 6.7 605.4 104.4 46.9 134.0 0.3 145.4 60.1 4.7 120.4 -12.8 -1.9 -0.2 2.4 

St Dev 0.5 2.4 183.1 1.9 0.3 61.9 15.0 11.2 16.9 0.1 48.7 17.7 2.8 20.1 0.7 0.2 0.4 1.1 

Range 1.8 6.9 801.0 6.7 1.3 223.2 52.3 36.2 48.5 0.3 150.8 80.3 8.8 68.1 2.2 0.9 1.4 3.9 

Min 1.9 12.9 1211.0 0.9 6.2 450.0 74.3 24.3 114.4 0.1 73.0 27.2 0.1 78.8 -14.1 -2.4 -0.8 1.3 

Max 3.7 19.7 2012.0 7.6 7.4 673.2 126.6 60.5 162.9 0.5 223.8 107.5 8.9 146.9 -11.9 -1.5 0.6 5.2 

MW-C                                     

Mean 2.9 16.1 1095.6 3.2 6.5 490.2 64.4 47.5 79.6 0.4 38.2 38.1 66.8 100.8 -13.7 -1.9 -0.7 1.4 

St Dev 0.5 2.1 210.4 1.7 0.4 121.8 17.8 13.3 20.1 0.1 17.1 11.8 48.9 34.9 1.6 0.2 0.4 0.1 

Range 1.6 6.9 756.0 6.0 1.5 436.8 70.4 47.7 83.8 0.4 66.9 42.9 194.6 112.7 5.0 0.7 1.6 0.6 

Min 2.0 12.5 825.0 1.2 5.6 356.4 33.6 26.1 41.2 0.2 14.3 19.9 19.4 59.2 -16.1 -2.2 -1.7 1.1 

Max 3.6 19.4 1581.0 7.1 7.0 793.2 104.0 73.8 125.0 0.7 81.3 62.8 214.0 171.9 -11.1 -1.5 -0.1 1.7 

                   

                   

DO = dissolved oxygen, Temp = temperature, ORP = oxidation reduction potential, DIC = dissolved inorganic carbon, pCO2  = partial pressure of CO2 

calculated using DIC, SiCa = the saturation index with respect to calcite, δ
13

C from DIC, St Dev is standard deviation. 
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 Water 
Level 

Temp SPC DO pH ORP Ca
2+

 Mg
2+

 Na
+
 K

+
 HCO3

-
 Cl

-
 SO4

-
 NO3

-
 DIC δ

13
CDIC Log 

pCO2 
SICa Ca

2+
/Mg

2+
 

 (m) (°C) (µS/cm) (mg/L)  (mV) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg C/L) (‰)    

Water Level 1.00                   

Temp 0.36 1.00                  

SPC -0.03 -0.21 1.00                 

DO 0.07 0.06 -0.17 1.00                

pH 0.05 -0.07 0.37 -0.24 1.00               

ORP 0.01 -0.03 0.17 0.15 -0.10 1.00              

Ca
2+

 -0.03 -0.12 0.88 -0.08 0.34 0.22 1.00             

Mg
2+

 -0.18 -0.11 0.86 -0.10 0.37 0.03 0.76 1.00            

Na
+
 0.05 -0.25 0.88 -0.18 0.30 0.09 0.69 0.66 1.00           

K
+
 0.02 0.35 -0.08 -0.02 -0.09 -0.22 -0.04 -0.03 -0.02 1.00          

HCO3
-
 -0.09 -0.22 0.95 -0.17 0.42 0.05 0.85 0.87 0.83 -0.03 1.00         

Cl
-
 0.02 -0.27 0.78 -0.05 0.24 0.27 0.71 0.49 0.76 -0.18 0.63 1.00        

SO4
-
 -0.11 -0.17 0.80 -0.18 0.37 0.03 0.60 0.74 0.84 0.00 0.79 0.60 1.00       

NO3
-
 0.00 0.06 0.26 -0.06 0.06 0.05 0.32 0.41 0.01 0.03 0.25 -0.14 0.05 1.00      

DIC -0.12 -0.25 0.90 -0.14 0.33 0.11 0.81 0.81 0.77 -0.04 0.93 0.62 0.71 0.23 1.00     

δ
13

CDIC -0.20 0.24 0.35 -0.23 0.25 -0.10 0.33 0.46 0.22 0.40 0.42 -0.03 0.43 0.37 0.37 1.00    

Log pCO2 -0.02 0.03 0.56 -0.07 -0.35 0.11 0.51 0.52 0.48 0.14 0.55 0.29 0.38 0.32 0.65 0.33 1.00   

SICa 0.04 -0.05 0.70 -0.27 0.89 -0.03 0.68 0.67 0.57 -0.03 0.75 0.43 0.60 0.24 0.65 0.43 0.06 1.00  

Ca
2+

/Mg
2+

 0.14 0.09 -0.58 0.21 -0.32 0.09 -0.39 -0.76 -0.48 0.02 -0.64 -0.16 -0.58 -0.41 -0.57 -0.51 -0.41 -0.53 1.00 

Table 2 correlation coefficient of the chemical physical and isotopic data. 

DO = dissolved oxygen, ORP = oxidation reduction potential, DIC = dissolved inorganic carbon, δ
13

C from dissolved inorganic carbon, pCO2
 
 = partial 

pressure of CO2, SICa = the saturation index with respect to calcite. Underlined areas indicate moderately strong correlation. 
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Fig. 1. Study site located in north central Oklahoma, USA. Stars denote monitoring wells 

(MW). Dashed lines indicate property boundary. Groundwater flow is indicated by the arrow. 

Shaded rectangles indicate flower beds and the dash-dot line indicates a sewer line. 
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Fig. 2. Plot of the temporal variations in (a) water table depths and mean weekly precipitation and (b) 

water temperature. Precipitation data is from www.mesonet.org (accessed 12-15-2013). Blue shaded 

regions indicate high water periods. 
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Fig. 3. Plot of the temporal variations in the nitrate concentrations in groundwater. Shaded regions 

indicate high water periods defined in Fig 2a. 
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Fig. 4. Plot of the temporal variations of pH in groundwater. Shaded regions indicate high water 

periods defined in Fig 2a. 

Fig. 4. Plot of the temporal variations in the HCO3
-
 (mg/L) concentrations in groundwater. Shaded 

regions indicate high water periods defined in Fig 2a. 
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Fig. 5. Plot of the temporal variations in the dissolved inorganic carbon (DIC) concentrations in 

groundwater. Shaded regions indicate high water periods defined in Fig 2a. 
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Fig. 6. Plot of the temporal variations in the stable isotopes of dissolved inorganic carbon (δ
13

CDIC)
 
 of 

groundwater. Shaded regions indicate high water periods defined in Fig 2a. 
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Fig. 7. Piper diagram for major ions in groundwater.  
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Fig. 8. Linear regression between the spatial relative standard deviation (RSD-s) and temporal relative 

standard deviation (RSD-t) variations in pH, partial pressure of CO2(g) (pCO2), stable carbon isotopes 

of dissolved inorganic carbon (DIC) (δ
13

CDIC), Ca
2+

, HCO3
-
, DIC, Mg

2+
, SO4

2-
, K

+
, Na

+
, Cl

- and NO3
-
. 
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Date 
Water 

Level 
Temp SPC DO pH ORP Ca

2+
 Mg

2+
 Na

+
 K

+
 HCO3

-
 Cl

-
 SO4

-
 NO3

-
 DIC δ

13
CDIC 

Log 
pCO2 

SICa Ca
2+

/Mg
2+

 

 (m)  (°C) (µS/cm) (mg/L)  (mV) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 
(mg 
C/L)  

(‰)   
 

MW-G                    

9/30/2008 3.1 24.4 1029 8.3 7.1 69.6 94.9 49.6 47.4 0.4 439.2 53.2 26.8 55.2 87.4 -12.1 -2.2 0.2 1.91 

1/19/2009 2.8 17.6 1017 2.0 6.5 77.0 108.4 52.6 55.0 0.6 456.0 46.4 30.5 55.9 103.7 -9.1 -1.8 -0.4 2.06 

2/27/2009 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

4/24/2009 1.2 17.5 1014 2.0 6.3 41.2 90.0 48.6 49.7 0.4 462.0 41.9 46.2 40.9 88.3 -8.5 -1.7 -0.8 1.85 

7/31/2009 2.9 22.8 971 7.9 6.1 23.0 91.6 44.5 45.5 1.5 434.4 29.0 25.7 56.0 86.6 -8.5 -1.6 -0.8 2.06 

10/9/2009 2.4 22.9 944 6.8 6.8 -14.8 77.9 44.7 49.7 1.4 468.0 26.0 23.6 48.2 93.3 -8.1 -1.9 -0.2 1.74 

11/1/2009 2.2 22.7 975 0.5 6.7 29.2 77.5 44.0 49.8 1.0 399.6 23.8 22.6 47.1 97.1 -7.9 -1.9 -0.4 1.76 

12/22/2009 2.3 18.5 943 1.9 6.8 111.1 74.7 41.9 48.0 1.7 468.0 27.1 30.9 105.1 100.0 -8.3 -2.0 -0.3 1.78 

2/18/2010 1.9 16.3 908 1.2 6.6 -70.9 72.5 41.4 46.8 0.6 492.0 25.5 25.3 49.9 87.4 -8.1 -1.9 -0.5 1.75 

4/3/2010 1.8 15.6 905 1.5 6.3 -4.8 72.2 41.2 46.8 0.8 457.2 23.5 25.9 48.5 104.8 -7.7 -1.7 -0.9 1.75 

7/2/2010 3.0 19.6 914 1.2 6.6 -106.5 69.8 39.2 48.3 3.6 411.6 30.1 27.7 78.2 91.1 -7.7 -1.8 -0.6 1.78 

7/12/2010 2.7 20.3 950 1.3 7.0 4.7 71.3 40.6 49.8 0.9 414.0 31.0 28.4 79.4 52.8 ns -2.4 -0.1 1.76 

10/2/2010 3.2 24.8 942 3.7 6.6 31.6 70.9 40.0 52.0 3.0 446.4 26.0 28.1 64.2 57.4 -7.8 -2.0 -0.4 1.77 

11/24/2010 2.7 25.6 928 1.4 6.4 -15.4 73.4 40.6 54.2 2.7 444.0 23.7 28.5 58.0 82.9 -9.0 -1.7 -0.6 1.81 

1/29/2011 3.0 18.5 912 4.3 5.7 21.2 81.1 40.1 48.5 1.8 456.0 19.5 31.2 49.9 87.7 -8.8 -1.5 -1.4 2.02 

4/10/2011 2.6 21.3 793 7.3 5.7 14.8 88.6 41.4 49.4 3.3 472.8 13.9 33.3 29.4 83.9 -7.5 -1.5 -1.3 2.14 

10/20/2011 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

MW-H                    

9/30/2008 3.3 27.5 1042 1.8 7.1 26.9 72.2 56.5 62.2 0.3 502.8 26.8 70.6 54.6 98.7 -8.4 -2.1 0.1 1.28 

1/20/2009 3.0 18.9 1013 2.4 7.4 -33.0 71.6 58.0 68.1 0.3 477.6 25.6 76.9 54.2 94.2 -8.8 -2.4 0.2 1.24 

2/27/2009 2.8 16.2 1009 1.6 7.1 73.1 67.6 54.3 56.6 0.2 488.4 25.7 76.7 53.5 99.6 -9.0 -2.2 -0.1 1.25 

4/26/2009 2.0 17.6 1006 2.5 6.8 126.7 75.6 59.0 60.6 0.8 469.2 24.3 72.5 55.2 81.2 -8.4 -2.0 -0.3 1.28 

7/31/2009 3.1 22.5 1008 6.8 6.2 49.0 57.9 51.1 57.1 0.2 453.6 21.8 57.2 49.2 87.6 -8.0 -1.6 -1.0 1.13 

10/9/2009 2.6 22.2 977 3.1 6.8 41.8 55.8 47.6 56.8 0.3 436.8 21.4 54.7 57.9 87.9 -8.4 -1.9 -0.4 1.17 

11/1/2009 2.3 23.2 975 3.4 6.6 54.6 59.5 52.5 63.2 0.3 452.4 19.7 53.0 57.0 90.3 -8.3 -1.8 -0.5 1.13 

12/22/2009 2.3 18.7 946 4.0 7.1 96.8 56.8 49.9 58.6 0.4 439.2 21.3 61.5 60.9 90.9 -8.3 -2.2 -0.2 1.14 

2/18/2010 1.9 15.7 877 3.0 6.6 -90.4 55.2 49.4 57.1 0.8 452.4 21.6 57.4 53.4 78.8 -8.2 -2.0 -0.7 1.12 

4/3/2010 1.6 16.3 921 2.4 5.8 6.3 55.0 48.8 60.5 0.4 349.2 23.1 55.3 46.1 89.5 -7.9 -1.6 -1.6 1.13 

7/2/2010 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

7/13/2010 2.4 21.5 953 2.6 7.1 -4.7 52.8 46.9 67.1 0.8 444.0 18.0 49.8 41.0 56.8 -7.5 -2.4 -0.1 1.13 

10/2/2010 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

11/24/2010 3.4 21.5 918 2.8 6.9 -4.8 54.8 49.3 68.9 0.7 478.8 13.6 55.7 37.6 84.9 -8.2 -2.1 -0.3 1.11 

1/29/2011 3.2 21.5 985 2.9 7.0 66.8 62.0 47.1 59.1 1.5 420.0 13.8 61.0 35.1 87.2 -9.0 -2.1 -0.2 1.31 

4/10/2011 2.9 19.0 934 3.4 6.5 24.1 66.4 41.8 60.2 1.1 486.0 11.9 60.8 36.1 90.5 -8.4 -1.8 -0.6 1.59 

10/20/2011 2.3 23.7 916 3.3 7.5 -102.8 62.4 41.8 60.2 1.1 470.4 11.5 59.2 21.7 67.1 -7.7 -2.7 0.4 1.49 

MW-B                    

9/30/2008 3.5 23.5 198 3.2 6.3 17.0 31.7 5.5 3.9 0.8 102.0 1.0 3.9 10.7 21.6 -15.3 -2.3 -1.6 5.74 

1/19/2009 3.2 15.8 159 6.4 7.2 6.8 25.5 4.6 2.2 0.8 85.2 1.6 5.0 5.5 19.9 -14.6 -3.0 -1.0 5.53 

2/27/2009 3.0 13.7 174 4.0 6.1 79.7 31.1 5.3 3.4 0.8 67.2 5.0 5.4 5.6 20.4 -15.6 -2.3 -2.1 5.83 

4/24/2009 2.3 20.8 102 8.0 5.3 115.2 15.5 2.8 1.9 0.5 48.0 1.1 2.6 2.3 11.0 -15.9 -2.4 -3.2 5.59 

7/31/2009 3.3 23.1 263 4.1 5.0 68.0 42.2 7.3 3.3 0.8 130.8 1.7 4.2 10.4 27.4 -13.6 -1.9 -2.7 5.76 

10/9/2009 2.9 23.0 116 6.4 5.0 38.8 14.9 3.3 2.2 0.6 61.4 0.9 3.0 8.8 17.3 -14.4 -2.1 -3.4 4.53 

11/1/2009 2.7 21.5 136 5.1 5.2 147.5 18.6 3.8 2.3 0.6 64.8 0.8 2.6 5.3 24.0 -14.0 -2.0 -3.1 4.86 

12/22/2009 2.7 17.8 301 4.2 6.9 9.0 41.2 7.4 3.0 0.7 157.2 1.5 4.9 2.9 35.1 -14.0 -2.5 -0.8 5.60 

Table S1 Compilation of the chemical physical and isotopic data. 
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2/18/2010 2.3 13.4 91 7.8 5.7 30.9 17.3 3.1 2.0 0.4 70.8 0.8 2.9 3.6 15.7 -13.2 -2.3 -2.8 5.48 

4/3/2010 2.1 13.4 74 6.5 4.5 -16.9 11.9 2.5 2.1 0.6 52.8 1.8 3.1 7.7 10.6 -15.3 -2.4 -4.2 4.75 

7/2/2010 2.6 21.3 288 1.0 6.9 -27.1 34.0 6.3 2.9 1.0 159.6 1.0 2.4 3.0 29.6 -12.6 -2.5 -0.8 5.41 

7/12/2010 2.5 22.8 188 0.8 6.7 -0.7 25.5 4.6 2.5 0.7 100.8 4.3 3.6 5.7 11.2 -12.7 -2.8 -1.3 5.53 

10/2/2010 3.3 24.5 205 0.7 5.6 77.1 24.4 4.4 2.3 1.0 97.2 1.4 4.2 6.1 11.6 -15.6 -2.3 -2.4 5.53 

11/24/2010 3.4 21.5 187 3.2 4.8 25.3 25.3 4.7 2.2 0.7 98.4 4.1 4.3 5.2 18.7 -15.5 -2.1 -3.3 5.38 

1/29/2011 3.4 16.9 214 5.8 5.4 10.1 30.8 5.0 2.1 0.6 97.2 2.1 5.5 10.1 19.1 -15.0 -2.2 -2.6 6.22 

4/10/2011 3.1 20.6 233 5.1 6.5 23.4 28.8 5.0 2.3 0.5 108.0 2.7 5.3 14.0 20.7 -15.4 -2.4 -1.5 5.78 

10/20/2011 3.6 23.1 216 4.4 6.9 -107.2 36.6 6.3 2.9 1.2 110.4 3.1 6.2 12.3 16.2 -15.6 -2.8 -0.9 5.83 

MW-F                    

9/30/2008 3.6 20.5 1161 1.8 6.7 -53.4 85.7 36.0 127.3 1.0 423.6 60.4 41.0 27.9 91.7 -10.0 -1.9 -0.4 2.38 

1/19/2009 3.3 17.5 950 2.6 7.1 60.7 59.1 25.7 120.6 1.1 422.4 33.3 61.5 27.8 82.2 -9.9 -2.3 -0.1 2.30 

2/27/2009 3.1 16.7 859 2.0 7.0 75.6 54.2 22.7 112.0 1.1 428.4 26.6 54.7 18.6 87.2 -10.1 -2.2 -0.3 2.39 

4/24/2009 2.6 17.6 755 3.6 5.5 84.0 55.7 24.5 113.5 1.1 352.8 39.0 61.3 45.5 76.5 -14.2 -1.6 -1.8 2.27 

7/31/2009 3.6 20.3 384 1.9 5.6 37.7 36.3 11.4 9.7 1.1 169.2 3.1 6.2 12.3 47.6 -13.7 -1.8 -2.1 3.19 

10/9/2009 3.1 21.4 223 5.0 5.2 225.3 26.0 8.7 6.1 1.0 99.6 0.9 4.7 5.6 47.4 -13.8 -1.7 -2.8 3.00 

11/1/2009 2.8 20.3 262 2.4 6.2 116.6 25.4 8.0 5.8 1.2 108.0 0.7 3.8 2.6 41.7 -14.4 -2.0 -1.8 3.17 

12/22/2009 2.8 18.2 657 3.4 6.9 120.5 42.6 19.2 79.7 0.9 386.4 16.5 37.6 12.2 70.0 -10.7 -2.2 -0.4 2.22 

2/18/2010 2.4 16.6 906 1.3 6.4 -86.5 45.8 23.1 119.7 1.2 406.8 31.7 53.3 24.2 90.3 -9.8 -1.8 -1.0 1.98 

4/3/2010 2.2 16.0 1049 1.1 6.2 -26.7 48.9 26.5 143.5 1.3 482.4 40.8 70.3 27.9 100.6 -9.4 -1.6 -1.1 1.85 

7/2/2010 2.7 19.5 416 1.0 6.6 3.2 44.3 18.6 48.5 1.0 289.2 11.4 25.6 10.4 61.6 -13.5 -2.0 -0.9 2.38 

7/12/2010 2.6 19.6 630 0.8 6.4 8.8 43.5 19.2 70.6 1.1 319.2 17.2 35.5 18.8 44.5 -11.1 -2.0 -1.0 2.27 

10/2/2010 3.8 19.9 1137 0.5 6.9 59.6 49.6 25.1 153.5 1.3 463.2 34.9 68.7 21.9 59.4 -9.3 -2.3 -0.3 1.98 

11/24/2010 3.5 20.5 983 2.2 5.2 15.5 55.9 27.6 122.5 1.0 397.2 31.8 51.1 37.3 81.3 -10.9 -1.5 -2.0 2.03 

1/29/2011 3.5 17.7 857 2.9 6.0 10.0 50.3 22.1 98.9 0.9 376.8 24.7 55.2 22.6 70.3 -10.3 -1.7 -1.3 2.28 

4/10/2011 3.2 18.9 816 2.4 6.4 22.9 50.0 19.9 84.3 0.6 393.6 19.9 58.3 7.9 72.7 -10.8 -1.8 -0.9 2.51 

10/20/2011 3.7 21.0 358 3.6 6.3 -118.6 20.0 9.9 54.3 0.6 195.6 9.5 13.6 24.3 59.0 -11.7 -1.9 -1.6 2.01 

MW-E                    

9/30/2008 3.5 24.9 220 1.1 6.9 -6.0 29.8 13.8 3.0 0.3 145.2 2.1 7.0 4.4 26.0 -13.6 -2.5 -0.9 2.15 

1/20/2009 3.2 15.2 260 2.5 7.3 3.9 30.8 14.8 3.1 0.2 165.6 3.5 9.8 9.6 29.7 -13.5 -2.9 -0.5 2.09 

2/27/2009 3.0 14.5 262 1.8 7.4 29.8 29.4 12.2 2.1 0.1 150.0 2.7 8.8 5.9 29.6 -16.3 -3.0 -0.5 2.42 

4/26/2009 2.3 15.1 196 5.9 6.6 141.7 27.7 10.8 1.9 0.1 140.4 1.1 6.6 6.8 3.1 -14.4 -3.3 -1.4 2.56 

7/31/2009 3.4 19.5 288 5.2 5.9 13.8 31.9 17.1 3.1 0.2 147.6 4.3 7.5 6.5 31.5 -13.2 -2.0 -2.0 1.87 

10/9/2009 2.9 19.5 176 3.6 5.9 3.2 20.0 9.0 1.7 0.1 102.0 0.6 3.9 2.3 20.3 -15.9 -2.2 -2.3 2.22 

11/1/2009 2.6 19.2 179 6.6 6.8 62.3 25.0 7.6 1.3 0.1 103.2 0.8 3.2 3.6 3.7 -15.6 -3.4 -1.2 3.30 

12/22/2009 2.7 16.6 283 1.8 6.9 80.1 33.6 10.1 1.6 0.1 162.0 0.8 4.4 0.2 5.6 -13.9 -3.3 -0.8 3.33 

2/18/2010 2.2 13.5 181 4.9 5.9 -53.2 22.1 7.6 1.4 0.1 111.6 3.0 5.4 10.0 3.5 -15.0 -3.0 -2.2 2.91 

4/3/2010 1.9 13.9 216 4.0 5.3 45.7 28.2 11.3 1.8 0.1 139.2 2.7 8.8 5.9 25.1 -13.2 -2.1 -2.7 2.49 

7/2/2010 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

7/13/2010 2.4 19.8 79 1.1 6.1 27.5 22.0 6.4 1.3 0.2 96.0 4.3 3.9 0.2 14.6 -14.2 -2.4 -2.0 3.47 

10/2/2010 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

11/24/2010 3.3 19.0 257 3.1 6.7 -11.7 27.2 12.4 2.2 0.1 140.4 5.4 5.8 1.9 26.3 -14.7 -2.5 -1.2 2.19 

1/29/2011 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

4/10/2011 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

10/20/2011 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

MW-A                    

9/30/2008 3.5 21.8 955 5.4 6.5 101.4 89.4 35.4 52.0 0.3 453.6 24.0 24.2 67.2 98.6 -11.6 -1.7 -0.5 2.52 

1/19/2009 3.2 16.4 849 1.7 6.8 -72.0 85.2 33.5 52.6 0.2 450.0 7.9 23.4 46.8 97.7 -11.1 -2.0 -0.3 2.55 

2/27/2009 3.0 15.6 887 4.6 6.7 89.1 67.7 29.7 32.7 0.2 397.2 6.7 22.2 66.1 98.3 -12.2 -1.9 -0.5 2.28 

4/24/2009 2.4 16.7 827 3.3 6.3 60.3 88.8 35.7 40.3 0.2 404.4 19.5 20.7 101.1 76.0 -11.1 -1.8 -0.8 2.49 

7/31/2009 3.3 20.3 916 2.4 6.3 47.8 96.1 39.8 45.7 0.2 430.8 22.3 21.9 66.2 82.4 -10.9 -1.7 -0.7 2.42 

10/9/2009 3.0 21.4 888 3.0 6.2 192.4 81.5 35.3 35.2 0.2 350.4 8.5 16.8 107.3 90.0 -11.3 -1.6 -0.9 2.31 

11/1/2009 2.7 20.8 1032 4.9 5.6 196.7 97.7 39.7 33.5 0.3 372.0 9.4 15.7 188.3 73.1 -11.9 -1.6 -1.4 2.46 
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12/22/2009 2.7 17.2 740 3.0 6.8 124.9 66.1 28.9 35.3 0.2 394.8 5.1 13.9 60.9 83.0 -11.5 -2.0 -0.4 2.28 

2/18/2010 2.4 15.4 763 1.7 6.2 -74.6 62.6 30.8 37.4 0.2 411.6 13.0 19.6 42.1 87.4 -12.0 -1.7 -1.0 2.03 

4/3/2010 2.2 15.2 898 1.2 6.1 31.1 76.7 33.8 36.0 0.2 346.8 40.8 20.3 117.3 72.5 -11.4 -1.7 -1.2 2.27 

7/2/2010 2.6 18.2 1032 1.3 6.7 3.6 85.2 37.8 54.7 0.2 408.0 36.8 34.4 107.1 76.9 -11.7 -2.0 -0.4 2.26 

7/12/2010 2.5 19.0 1006 1.1 6.6 10.5 88.0 37.4 55.3 0.2 411.6 33.7 31.4 95.7 44.9 -10.2 -2.2 -0.5 2.35 

10/2/2010 3.7 21.1 886 1.5 6.2 83.7 74.9 33.3 57.2 0.2 432.0 16.8 27.3 57.3 60.3 -10.9 -1.8 -0.9 2.25 

11/24/2010 3.4 21.2 838 3.4 5.9 12.2 74.0 32.8 54.5 0.3 422.4 9.8 24.0 45.2 84.9 -12.2 -1.6 -1.2 2.26 

1/29/2011 3.4 21.7 818 5.3 6.3 6.0 50.5 21.7 32.7 0.3 396.0 7.9 25.2 36.5 86.9 -11.8 -1.7 -1.0 2.33 

4/10/2011 3.1 16.8 823 3.7 6.3 25.5 74.8 28.9 37.9 0.2 416.4 6.3 14.9 44.5 75.7 -12.0 -1.8 -0.8 2.59 

10/20/2011 3.7 19.9 770 2.5 6.6 49.9 66.1 28.9 35.3 0.2 384.0 6.3 14.9 74.5 59.4 -11.9 -2.0 -0.6 2.28 

MW-D                    

9/30/2008 3.4 19.7 1634 0.9 6.8 127.2 126.1 28.9 119.1 0.2 657.6 198.3 49.7 2.2 146.9 -12.0 -1.8 0.1 4.37 

1/20/2009 3.2 14.4 1609 2.9 7.4 140.1 110.8 27.4 114.4 0.2 673.2 180.9 48.5 7.6 132.7 -12.4 -2.4 0.6 4.04 

2/27/2009 3.0 12.9 1605 3.1 7.2 166.6 126.6 24.3 125.1 0.1 663.6 169.4 48.1 5.3 143.6 -12.5 -2.1 0.4 5.22 

4/26/2009 2.5 15.0 1589 2.4 6.7 177.1 84.7 60.5 122.4 0.2 518.4 163.6 47.6 5.2 114.6 -11.9 -1.9 -0.4 1.40 

7/31/2009 3.3 18.1 1617 3.2 6.4 142.2 74.3 55.7 127.6 0.2 450.0 188.2 50.6 5.2 112.4 -12.3 -1.6 -0.8 1.33 

10/9/2009 3.0 17.4 1456 1.3 6.2 161.9 100.3 48.0 123.0 0.2 633.6 73.0 27.2 6.4 130.2 -12.5 -1.5 -0.7 2.09 

11/1/2009 2.7 19.7 1318 6.1 6.7 173.6 96.1 46.2 121.7 0.2 644.4 84.4 58.7 7.5 130.0 -12.3 -1.8 -0.2 2.08 

12/22/2009 2.6 15.5 1211 5.5 7.1 -43.9 92.7 44.5 122.3 0.2 655.2 75.0 49.1 8.9 110.3 -12.7 -2.2 0.2 2.08 

2/18/2010 2.2 12.9 1326 4.0 6.6 24.4 93.9 45.6 117.7 0.2 644.4 84.4 58.7 7.5 138.7 -12.5 -1.7 -0.4 2.06 

4/3/2010 1.9 12.9 2012 2.2 6.4 148.6 123.3 59.3 152.4 0.2 624.0 223.8 107.5 5.9 140.9 -12.6 -1.6 -0.5 2.08 

7/2/2010 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 

7/13/2010 2.4 17.4 1602 1.1 6.6 -17.7 103.2 50.0 152.0 0.2 546.0 184.7 74.3 0.1 ns -13.1 ns -0.4 2.06 

10/2/2010 3.6 18.7 1544 2.9 6.4 49.2 100.9 48.6 152.7 0.3 584.4 162.9 67.7 0.3 78.8 -13.3 -1.8 -0.5 2.08 

11/24/2010 3.3 18.8 1512 4.4 6.6 -39.1 103.1 49.6 154.3 0.3 576.0 150.9 61.0 1.2 114.1 -13.8 -1.8 -0.3 2.08 

1/29/2011 3.3 15.9 1499 5.2 6.7 125.8 119.9 57.4 162.9 0.5 556.8 147.7 71.8 2.0 87.4 -13.5 -2.0 -0.2 2.09 

4/10/2011 3.1 18.0 1501 7.6 6.6 131.1 114.2 57.1 153.7 0.5 622.8 149.1 73.5 3.1 120.9 -14.1 -1.8 -0.2 2.00 

10/20/2011 3.7 18.1 1339 3.6 6.8 48.0 100.3 48.0 123.0 0.2 636.0 90.2 67.4 6.8 104.9 -13.9 -1.9 -0.1 2.09 

MW-C                    

9/30/2008 3.5 19.4 1344 7.1 6.4 78.6 104.0 62.9 87.5 0.5 427.2 81.3 31.8 214.0 92.4 -13.2 -1.7 -0.6 1.65 

1/19/2009 3.2 13.8 1116 2.2 6.9 74.9 76.3 49.3 84.6 0.3 439.2 37.3 36.5 128.0 85.2 -11.6 -2.1 -0.3 1.55 

2/27/2009 3.0 13.6 1052 1.7 7.0 79.8 49.2 36.9 71.3 0.3 454.8 28.0 36.4 104.7 84.9 -11.8 -2.2 -0.4 1.33 

4/24/2009 2.3 15.5 1133 3.6 6.6 -10.9 75.9 59.8 88.9 0.5 542.4 49.3 59.6 25.9 96.1 -15.1 -1.9 -0.4 1.27 

7/31/2009 3.3 18.0 1016 4.3 6.5 50.2 55.8 41.3 78.8 0.3 414.0 30.6 31.3 76.7 80.4 -12.7 -1.9 -0.8 1.35 

10/9/2009 3.0 17.9 843 1.6 7.0 12.0 55.4 38.3 70.3 0.3 356.4 14.3 19.9 49.9 84.8 -11.1 -2.2 -0.3 1.45 

11/1/2009 2.7 18.1 1174 4.8 6.7 76.6 63.3 45.6 78.1 0.4 500.4 29.5 30.8 23.1 113.2 -14.5 -1.9 -0.4 1.39 

12/22/2009 2.6 14.4 1581 4.3 6.9 -131.3 80.9 73.8 125.0 0.4 793.2 68.6 62.8 27.1 170.7 -16.1 -1.8 -0.1 1.10 

2/18/2010 2.3 13.4 1424 2.2 6.3 83.3 82.0 63.5 100.6 0.3 728.4 48.5 45.2 32.8 171.9 -15.7 -1.5 -0.7 1.29 

4/3/2010 2.0 12.5 1153 2.3 6.1 -28.5 76.2 58.7 92.0 0.4 592.8 33.4 45.6 19.4 157.7 ns -1.5 -0.9 1.30 

7/2/2010 2.6 15.9 1154 1.3 6.7 1.7 71.6 52.0 90.2 0.3 554.4 48.5 49.9 39.5 97.8 -15.8 -1.9 -0.4 1.38 

7/12/2010 2.5 16.5 1136 1.2 6.7 13.2 68.5 52.9 90.5 0.3 514.8 44.0 45.7 40.5 88.2 -14.5 -1.9 -0.5 1.30 

10/2/2010 3.6 18.0 1009 1.4 5.6 29.1 53.5 41.2 76.8 0.3 408.0 27.7 27.5 87.4 59.2 -13.6 -1.7 -1.7 1.30 

11/27/2010 3.4 18.6 931 3.4 6.2 10.7 53.6 40.9 76.6 0.4 411.6 24.4 26.1 80.4 74.5 -12.9 -1.7 -1.1 1.31 

1/29/2011 3.3 16.2 901 2.8 6.1 11.8 35.2 26.4 44.1 0.3 378.0 23.4 31.2 66.9 ns ns ns -1.4 1.33 

4/10/2011 3.1 15.0 825 4.2 6.3 29.4 33.6 26.1 41.2 0.2 398.4 24.9 28.5 48.3 81.9 -12.4 -1.8 -1.2 1.29 

10/20/2011 3.5 17.3 833 5.4 6.7 -107.1 60.2 37.4 57.1 0.7 418.8 34.9 38.5 71.4 74.1 -14.0 -2.0 -0.5 1.61 

DO = dissolved oxygen, ORP = oxidation reduction potential, DIC = dissolved inorganic carbon, δ
13

C from dissolved inorganic carbon, pCO2
 
 = partial 

pressure of CO2, SiCa = the saturation index with respect to calcite. 
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