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CHAPTER I

INTRODUCTION II t'c tll 1 ,

With the popularity of computers, text is the main form for storing information. If

the user wants to search for a particular text pattern he wants w~thin a huge text fIle, then

it would be very time consuming ifhe searches from the raw text.

As a result, the string matching problem, which finds ,one or more occurrenoe of

a pattern in a text, is a very important issue in text editing and processing. Efficient

algorithms can improve the effectiveness of text-editing programs greatly. Therefore,

string matching algorithms are basic components of most operating systems [4]. They are

also used widely in the area of searching for particular patterns in DNA sequences [6].

In this study, five important string matching algorithms are presented:

• The naive string matching algorithm [6]

• String matching with finite automata [6]

• The pseudo-Knuth-Morris-Pratt (KMP) algorithm given in one text book [6]

• The true KMP algorithm [4]

• The Boyer-Moore al.gorithm [6]

The most interesting part in this study is that the comparison of these algorithms is

based, not only on theoretical analysis, but also on visualization through algorithm

animation by using Java. By the animated comparison of these algorithms, we can see

how far the text pattern window moves against the text for each character comparison,

and thus get an idea of how effective each algorithm is. In addition, this algorithm

- 1 -



animation system can be posted on the World Wide Web (WWW) so that people who ar

interested in it can share it.

This thesis is composed of ix chapters. The current chapter is the introduction.

The next chapter briefly introduces algorithm animation and the Java programming

language. Chapter ill presents and analyzes in details the five plieviously mentioned tring

matching algorithms. Chapter IV gives the description of how the string matching

algorithm animation system is designed and implemented. The comparisons of these

algorithms are given in Chapter V. Last, Chapter VI summarizes the thesis and gives the

suggested future work.

,, ,.. . ".Il I

.'

- 2 -

..



CHAPTER II

, ~ • T

ALGORITHMANDtfATION AND JAVA

I.

In this chapter, brief introductions of computer animation, algorithm animatiG>n

and the reasons why Java is ,selected to implement this animation system are pre ented.

2.1 COMPUTER ANIMATION

Animation is a technique in which the illusion of movement is created by rapidly

displaying a series of individual drawings that have slightly different changes [13].

Computer animation uses a computers processing power to encompass a variety of

applications that include generation of drawings, m(}vement, and color [13].

There are two major classifications in computer animation. One is computer­

assisted animation (also referred to as key-framed animation) which is used to aid the

traditional two-dimensional animation stages [2]. The other one is computer-generated

animation (also referred to as modeled animation) used to create three-dimen ional

images and thus is more complex [2].

Today, computer animation techniques are· used widely in various applications

such as the visualization of mathematical and scientific data, and most sophisticated

games [2]. Recently, a new domain of animation applications arose in a large public

arena: more and more real-time animations are presented on the WWW [21].

- 3 -



2.2 ALGORITHM VISUALIZTION AiliD ANIMATION \ In

Algorithm visualization consists of using visualization and animation techniques

to help people understand how some sophisticated oftware algbrithm wor [14].

Algorithm animation is the d}'Ilamic form of algorithm visualization. It creat animated

graphical views of the operations of an algorithm step by step f23], Man~ ystem have

been developed for algorithm animation, a large num~r of which are de cribed in the

various taxonomies, [16] [15] [1.8]. Such systems inclupe BALSA, Hal a-D, Zeus,

TANGO, Polka-3D, and ANIM. i".l r W 'Ii.

f, '

2.3 JAVA PROGRAMMING LANGUAGE " I

J ,

Java is an object-oriented programming language that was introduced by Sun

Mjcrosystems in date 1995. "Now Java is poised to take the rest of the programming

world by storm" [7].

r' ,

2.3.1 HOW JAVA WORKS

As in many other programming languages, Java uses a compiler to convert ource

code into executable programs. The difference is, the Java compiler generates

architecture-independent bytecodes, which are the instructions that run on the Java

Virtual Machine (JVM). In order to have Java programs run on a platform, that platform

must have a JVM running on it [22]. JVM is a Java processor chip that is usually

implemented in software rather than hardware [25]. Consequently, JVM can run not only

on many types of computers (such as IBM-compatible PC, Macintosh, Unix workstation

and server, and mainframe), but also on web browsers (such as Netscape Communicator,

- 4 -



Microsoft Explorer), which in tum run on top of varying operating sy terns and hardware

[22].

Wh~n .executing Java bytecode , the NM uses a cIa s loader to fet the

bytecod.es from a disk or from the Internet. The execution unit of the JVM carries out the

instructions specified in the bytecodes. Two kinds of execution units, Java interpreter and
• I

Just-In-Time (JIT) compiler, are provided [9]. The Java interpreter reads the bytecod~s,
j I

interprets the meaning, and then performs the corresponding functions. The drawoack1of
• I

an interpreter is that it is much slower than native code compilers. The JIT compiler

translates the bytecodes into native code instructions on the user's machine immediately

before execution. Program execution with JIT is much faster than it is with interpreter.

I I

2.3.2 JAVA APPLICATIONS AND JAVA APPLETS

Two kinds of Java programs, Java applications and Java applets, are available. A

Java application is a Java program that can be run without the use of a W b br-ow cr. It

can be executed just using the Java interpreter. In contrast, a Java applet i a Java

program that is embedded into an HTML document so that it can be executed using a

Web browser. Java applets are considered to be a type of resources that can be shared

through the Web just like text, graphics, and sound. Therefore, they can be reached

anywhere in the world as long as there is a link to the Web page [12]. To illustrate how

Java applications and Java applets work, the following figure is provided by Lewis and

Loftus [12]:

- 5 -



Local Computer

Web browser

Java
interpreter

Remote Computer

Figure 2-1 The Java translation and execution process

2.3.3 DESCRIPTION OF JAVA

The authors of Java described ,Java as a simple, object-oriented, eli tributed,

robust, secure, architecture neutral, portable, interpreted, high-p rfonnance,

multithreaded, and dynamic language [9].

• Architecture Neutral and Portable

Java programs are compiled to an architecture-neutral bytecode format. A Java

application can run on any system, as long as that system implements the Java Virtual

Machine. A standard bytecode fonnat is defined, therefore Java is portable [9].

- 6 -



• Distributed and Dynamic

Java provides high-level supports for networking such as the URL cIa for

Internet usage, RMI (Remote Method Invocation) in Javal.!. Hence, Java is a distributed

language [9]. Any Java class can be loaded into the interpreter at any time. These

dynamically-loadedclasses can then be instantiated dynamically [7].

• Multithreaded

Since Java provides support for concurrent programming through multiple threads

of execution, so-called lightweight processes, Java can handle different tasks in a very

short interactive time. This feature improves the interactive performance of graphical

applications for users [9].

• Robust and Secure

Java eliminates some types of programming errors such as pointer-r lat d bug .

Also, it allows extensive compile-time checking to prevent potential type-mismatch

problems. All of these make Java more robust than some other programming languages

[9]. In a distributed environment, security is the key issue for any programming language.

Java provides several layers of security controls to protect against malicious code. For

example, the Java program is not allowed to run if it fails the bytecodes' check for the

instructions that could make the underlying machine insecure [22].

- 7 -



CHAPTER ill . ,

I •

STRING MATCHING ALGORITHMS

As mentioned above, string matching algorithms are important in a lot of

applications that we use everyday [24]. They are, very useful in tex.t editor and text

retrieval tools. Moreover, string matching algorithms are used as part of a more complex

algorithm, such as the Unix program "diff' that determines the differences between two

similar text files [24].

3.1 DEFINITION

String matching finds one or more occurrences of a string, called the pattern, in a

text [4]. Typically, the text is a document and the pattern is a particular word or phrase

defined by the user [6]. In this study, the pattern is an array denoted by P - P[loom] with

length m; the text is also an array denoted by T ... T[ I ..n] with length n. The alphabet from

which the elements of P and T are drawn is denoted by L.

The String Matching Problem is fonnally defined as follows [24]:

Given a text string T, with I T I = n, and pattern string P, with I PI ... m, where

m, n > 0 and m ::; n, if pattern P occurs as a sub-string of text T, then determine the

position within the text of the first occurrence of pattern, i.e. return the least value of s

such that T[ s+ l ..s + m] = P[ loom]. The problem is extended such that the positions of all

the occurrences of P within T are to be found.

- 8 -



String-matching algorithms (except the Boyer-Moore Algorithm) in this tudy

first align the left ends of the text and pattern, then compare the characters of the text

aligned with the characters of the pattern. After a whole match of the pattern or a

mismatch, they shift the pattern to the right. This procedure is repeated until the right end

of the pattern goes beyond the right end of the text. The pattern P occurs with shift s in

text T if T[s+Ls+m] = P[Lm] and SE [0, n-m]. The shift s is valid if P occurs with bitt

s in T; otherwise, it is invalid.

3.2 NOTATION AND TERMINOLOGY

• CONCATENATION: The concatenation of two strings x and y, denoted by xy,

consists of the characters from x followed by the characters from y.

• PREFIX: A string u is a prefix of a string w if there exists a string v such that w = uv.

• SUFFIX: A string v is a suffix of a string w if there exist a string u such that w - uv.

• EMPTY STRING: The zero-length empty string, denoted by E, is both a suffix and a

prefix of every string.

• Pk denotes the prefix P[I ..k] of the pattern P[ Lm]. Thus, Po- E and Pm - P - P[ l ..m].

• Tk denotes the prefix T[ I ..k] of the text T[ I ..n].

• DETERMINISTIC FINITE STATE AUTOMATON (DFA) M is a 5-tuple (Q, qo, A,

I, 8) where:

• Q is a finite set of states,

• qo E Q is the start state,

• A ~ Q is a set of accepting states,

- 9 -



• L is a finite input alphabet,

• 8 is a function from Q x L into Q, called the tran ition function afM.

3.3 OVERVIEW OF STRING MATCIDNG ALGORITHMS

The intuitive approach to the string matching problem is simply to match the

pattern within the text at successive positions. A successful comparison of the text

character and the pattern character causes both indices to be advanced by one; an

unsuccessful comparison causeS the text cursor to be backed up and the patt.em cursor to

be reset to one. This is the naIve string-matching algorithm. 'Its worst case behavior is

8(mn), although it often takes only a few more than n comparisons in practice.

In early 1970s, Cook derived a theorem about two-way detenninistic pushdown

automata [5]. This led to the result that there exists an algorithm solving the string

matching problem in O(m+n) time in the worst case. Then Aho, Hopcroft, and Ullman

discussed the relation of string matching to the theory of finite automata [I]. The

searching of the pattern within the text takes only 8(n) time after the automaton is built.

In 1970, Knuth derived a string matching algorithm which was modified by Pratt

so that its running time was independent of the size of the alphabet. Almost at the same

time, Morris invented the resulting algorithm independently. They published their work

jointly in 1977. This is known as the KMP algorithm [11]. This algorithm avoids the

backtracking in the text in the event of a mismatch by taking advantage of known

information that is contained in the auxiliary next table. The algorithm perfonns O(n + m)

time in the worst case.

- 10 -



In 1974, Boyer and Moore discovered a much faster tring matching algorithm.

The algorithm was later published in a revi ed form in 1977, taking into account

suggestions from Kuiper, Knuth and Aoyd '[3]. In this method, the character compari on

between pattern and text are performed from right to left for each attempted shift. The

actual pattern shift is detennined by taking the larger of value from two precomputed

auxiliary tables, the last-occurrence function (bad-character heuristic) and good-suffix­

function (good-suffix heuristic) [6]. The worst-case running time is O«n- m + l)m + ILl).

Cormen, Leiserson, Rivest misinterpreted the KMP algorithm in their book

"Introduction to Algorithms", in which they gave another much more complicated and

less efficient string matching algorithm instead [6]. This algorithm is called pseudo-KMP

algorithm in my study, in contrast to the true one. The pseudo-KMP algorithm often

makes the same comparison of a pattern character to a text character more than once, thus

making this method much slower. Also, the pseudo-KMP algorithm can mak an

occasional comparison that the true KMP algorithm never makes at all.

In addition, there are many string matching algorithms derived from the above

mentioned algorithms. For example, Horspool gave a simplified fonn of Boyer-Moore

algorithm, called the Boyer-Moore-Horspool algorithm, in 1980 [8]. Sunday developed

three variations based on the Boyer-Moore algorithm, called the Quick Search algorithm,

Maximal Shift algorithm, and Optimal Mismatch algorithm, in 1990 [19]. In 1987, Karp

and Rabin also put forward an algorithm involving the use of hashing which reduces the

task of comparing two strings to the simpler one of comparing two integers [10].

The string matching algorithms mentioned above can be classified depending on

the order they perform the comparisons between text characters and pattern characters.

- 11 •



The most natural way to perfonn the compar.i ons is from left to rjght, which is the

direction English speaking people read. The automaton method, the p eudo-KMP

algorithm and true KMP algorithm belong to this category. Some algorithms perfonn the

comparisons from right to left, such as the Boyer-Moore algorithm, which leads to a very

efficient algorithm in practice. Finally there exist some algorithms for which the order in

which the comparisons are done is not relevant; an example is the naIve string matching

algorithm.

Takaoka mentioned in his article that most string matching algorithms work

through two phases. First is the preprocessing phase that obtains the shift tables; the

second phase is the main matching process against the text based on the tables [20]. In the

first phase, there are two versions to compute the shift tables: the off-line version and the

on-line version [20]. The off-line version computes the tables after the whole pattern has

been input, while the on-line version computes the tables as the new character of the

pattern is being input. Some algorithms such as KMP compute the shift table from left to

right, and hence are suitable for the on-line version [20].

3.4 DESCRIPTION OF STRING MATCHING ALGORITHMS

In this study, five important algorithms are presented:

(l) The naIve string-matching algorithm;

(2) String matching with finite automata;

(3) The pseudo-Knuth-Morris-Pratt (KMP) algorithm;

(4) The true KMP algorithm;

(5) The Boyer-Moore algorithm.
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The naive algorithm is first introduced, then how th other increa ingly

sophisticated algorithms improve the perfonnance efficiency is di CllS ed.

3.4.1 NAIVE STRING MATCHING ALGORITHM

The naIve algorithm is the brute-force algorithm that finds all valid shifts by

checking the condition P[ Lm] = T [s+ l..s+m] for each of the n-m+1 possible values of s

(0 ~ s ~ n-m). It shifts the pattern exactly one position to the right after a mismatch or a

full match, and the next pattern character compared is always P[ l]. The algorithm is

shown as follows [6]:

NAIVE-STRING-MATCHER (T, P)

1 n ~ length [T];

2 m ~ length [P];

3 for S f- 0 to n-m do

4 if (P[ Lm] = T [s+1 ..s+m])

5 then print "Pattern occurs with shift"

Obviously, the time complexity of NAIVE-STRING-MATCHER is B«n-m+l)m)

in the worst case (when searching for am in an for instance). When m - LnJ2J, the worst

case running time is 8(n2
). The reason that the naIve string-matcher is inefficient is

because infonnation gained about the text for one value of s is ignored totally in

considering other values of s. The advantages of this algorithm, however, are that no

preprocessing phase and no extra space are needed. Also, the comparisons can be done in

any order.

- 13 -



The following is a typical example that is examined by every algorithm de cribed

in this study. It gives the number of comparisons by each algorithm so that they can be

compared.

Algorithm: NaIve String Matching Algorithm
Text: b cat c b cab a b a b tat a cab t a c b
Pattern: b cab a b a b

123456789012345678901234
b cat c b cab a b a b tat a cab t a c b

b cab
b

b
b

b
b cab a b a b

b
b

b c
b

b c
b

b c
b

b
b

h (C'. ::I h ::I h ::l h\

Number of matched string found: 1
Number of comparisons: 30
*Note: The characters in 0 do not perfonn the comparisons.

Figure 3-1 Trace of naIve string matching algorithm

3.4.2 STRING MATCHING WITH FINITE AUTOMATA

In this algorithm, it is necessary to build a string-matching automaton for the

pattern P in a preprocessing step before it can be used to search the text string. In order to

construct the string-matching automaton, three functions are needed [6J.

- 14-



• The transition function, 0, is the mapping from Q x L to Q uch that when the

automaton is in state q and reads input character a, it moves from state q to state

o(g, a).

• Thefinal-statefunction, cj>, is the mapping from L* to Q such that cj>(w) is the state the

automaton M finishes scanning the string w. Therefore, the automata M accepts a

string w if and only if cj>(w) E A.

• The suffix function, 0, is a mapping from L* to {a, 1, ... , m} such that o(x) is the

length of the longest prefIX of P that is a suffix of x. This means we need to find out

the longest suffix of x that is also a prefix of P.

Based on these functions, the string-matching automaton of a given pattern

P[ Lm] is constructed as follows [6]:

(1) The Q is the set {O, 1, .. 0' m} with m+1 states. The start state go is state 0, and the

only accepting state is state m.

(2) For any state g and character a, the transition function 0 is defined as: o(g, a) - o(Pqa).

For every finite automaton, we can construct a two-dimen ional table to repre ent

the transition function O. The following is the procedure that computes the transition

function 0 for a given pattern P[ I ..m] [6]:

COMPUTE-TRANSITION-FUNCTION (P, L)

1 m t- length[P]

2 for g t- °to m do

3 for each character a E L do

4 k t- min(m+1, g+2)

- 15 -



until Pk is the suffix of Pqa

5

6

7

repeat k f- k-l

o(q, a) f- k

Ilfind the large t k

Ilo(q, a) - o(pqa)

8 return 0

Since the outer loops of line 2 and 3 takes time mlII, the inner loop of line 5 runs

m+ I times in the worst case, and the test on line 6 must compare up to m characters, the

time complexity of this procedure is 0(m31:LD. This means it would take a lot of time to

build the automaton if I is large. On the other hand, it needs S«m+I)I:LD extra space for

the storage of the transition table.

Once the automaton is built, searching for the pattern in a text consists in parsing

the text with the automaton beginning with the initial state. Each time the final state is

encountered, an occurrence of the pattern has been found. So each character in the text is

examined only once. Therefore, the searching phase takes only Sen) time. The algorithm

is shown as follows [6]:

FINITE-AUTOMATON-MATCHER(T, 0, m)

Iluse T[i] as an index into transition table

lifind one occurrence

I

2

3

4

5

6

7

n f- length[T]

qf-O

for i f-l to n do

q f- 0 (q, T[i))

ifq = m

Sf- i-m

print "Pattern occurs with shift" s

- 16 -



The following is automaton based on the exampl mention d above:

L={a,b,c,t}

Q = {O (E). ] (b), 2 (be), 3 (bca), 4 (bcab), 5(bcaba), 6 (bcabab), 7(bcababa),

8 (beababab)}

C

Missing transitions are leading to the initial state

Figure 3-2 String-matching automaton for "bcababab"

Having the above automaton at hand, it is very easy to search within the text. The

Figure 3-3 is the trace of the operation on the text T- "bcatcbcabababtatacabtacb",

Algorithm: String matching with finite automata
Text: bcatebcabababtatacabtacb
Pattern: b cab a b a b

I 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4

Text: b c a t 9b c a b a b a b ~ t a t a c a b t a c b

state: I 2 300 I 2 3 4 5 6 7 8 0 0 0 0 0 0 I 0 0 0 I

Number of matched string found: 1
Number of comparisons: 24

Figure 3-3 Trace of string matching with finite automata

- 17 -



3.4.3 THE PSEUDO-KNUTH-MORRIS-PRAIT (KMP) ALGORITHM

The brute force algorithm shifts only one po ition after each comparison of the

pattern and text. Actually, it is possible to improve the length of shift by remembering

some portions of the text that match the pattern. This can save comparisons between

characters of the text and characters of the pattern, and thus increases the speed of the

search.

The pseudo-KMP algorithm uses an auxiliary function 1t[I ..m) precomputed from

the pattern to gain the infonnation about how the pattern matches against shifts of itself.

This auxiliary function is called the prefix function. The prefix function for the pattern P

is the 1t function that maps {I, 2, ... , m} to {O, 1, ... , m-I} such that 1t[q] is the length of

the longest prefix of P that is a proper suffix of Pq. For example, for the pattern P ...

bcababab, the 1t function is computed as follows:

1 1 2 3 4 5 6 7 8

P[i] b c a
i

b a b a b

1t[i] 0 0 0 1 0 1 a 1

Table 3-1 Th.e prefix function for P - bcababab

The following procedure is used to obtain the prefix function [6]:

COMPUTE-PREFIX-FUNCTION(P)

m ~ length[P]

2 1t[1] ~ 0

3 k~O

- 18 -



4 for q t-- 2 to m do

5 while k > 0 and P[k+l] ;t: P[q] do

6 k t- 1t[k]

7 if P[k+1] = P[q]

8 then k t-- k+1

9 1t[q] t-- k

10 return 1t

From this procedure, we can see that the function 1t is an one-dimensional array

that has only m entries, which means it needs SCm) extra space. The running time of this

procedure is Oem).

Assume in a shift s, the first q characters in the pattern match the text characters

(P[ l..q) = T[s+ l..s+q]). We can use the 1t function to Jook up the value of 1t[q]. Since

1t[q] is the length of the longest prefix of P that is a proper suffix of Pq, the next potential

valid shift s' should be s+(q-1t[qJ). At the new shift s', there is no need to compare the

first 1t[q] characters of P with the corresponding characters of T since they are guaranteed

to be equal by the 1t function. The following is the PSEUDO-KMP-MATCHER [6]:

PSEUDO-KMP-MATCHER (T, P)

n t-- length[T]

2 m t-- length[P]

3 1t t-- COMPUTE-PREFIX-FUNCTION(P)

4 q t- a
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5 for if-I to n do

6 while q > 0 and P[q+1]' :t: T[i] do

7 q f- 7t[q]

8 ifP[q+l]=T[i]

9 then q f- q+I

10 ifq = m

11 then print "Pattern occurs with shift" i -m

12 q f- 7t[q]

The searching phase can be performed. in O(n+m) in the worst case.

Algorithm: The pseudo-KMP algorithm
Text: bcatcbcabababtatacabtach
Pattern: b cab a b a b

1 2 3 4 .5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

b c a t c b c a b a b a b t a t a c a b t a c b

b ~ b
b

b
b c a b a b a b

(b) c
b

b
b

b (c a b a b a b)

Number of matched string found: 1
I

Number of comparisons: 28
*Note: The underscored characters perform comparison twice.

The characters in 0 do not perform the comparison.

Figure 3-4 Trace of pseudo-KMP algorithm
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3.4.4 THE TRUE KMP ALGORITHM

The true KMP algorithm improves the perfonnance of PSEUDO-KMP-

MATCHER by avoiding making the same comparison of a pattern character to a text

character more than once. In PSEUOD-KMP-MATCHER, if the fIrst q characters in the

pattern match the text characters (P[l..q] = T[s+l..s+q] = u), then we shift by q-1t[q] for

the next potential match. Now, we know that the first mismatch occurs between the

character A = T[s+q+1] and the character B = P[q+ 1]. It is possible to avoid another

immediate mismatch by checking whether the character C, which follows the longest

prefix of P that is also a proper suffix of Pq (denoted by v), is the same as the character B.

If C = B, it means C does not match A either. Therefore, it is unnecessary to compare

these two characters (A and C). Such prefix v is called the border of u since it occurs at

both ends of u. The above can be illustrated in Figure 3-5.

T

5+1

u

p

p

I 9 "#

I__u _I_B--'-----_

Figure 3-5 Shift in the KMP algorithm (v border of u and C "# B)

Therefore, we introduce a next function of which next[q] is the length of the

longest border of P[1..q] followed by a character different from P[q+l]. Then, after a

shift, the comparisons can resume between characters T[s+q+ 1] and P[q+ I-next[q+1]]
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without missing any occurrence of pattern in the text, and avoiding a backtrack on the

text. Table 3-2 is the next function for P - bcababab.

1 1 2 3 4 5 6 7 8 9

P[i] b c a b a b a b

next[i] 0 1 1 0 2 0 2 0 2
I
I

Table 3-2 The next function for P = bcababab

If the text is T = b cat c b cab a b a b tat a cab t a c b, then

First try:
T=b cat c b cab a b a b tat a cab t a c b

"#

P=bcababab
Shift by q+l-next [q+l] = 3 + 1 - 0 = 4

Second try:
T=b cat c b cab a b a b tat a cab t a c b

1:-

P= bcababab
Shift by q+l-next [q+1] = 0 + 1 - 0 ... 1

Third try:
T=b cat c b cab a b a b tat a cab t a c b
p= bcababab
Shift by q+l-next [q+l] = 8 + 1 - 2 = 7, and so on.

The following is the algorithm that computes the next function [24]:

COMPUTE-NEXT (P, next)

m (-- length[P]

2 j (-- 1

3 t(--O

4 next[l] (-- 0
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5 whilej < m do

6 while t >0 and P[j] :;t:. P[t] do

7 t ~ next[t]

8 t ~ HI

9 j ~ j+1

10 if pm = P[t]

11 then next[j] ~ next[t]

12 else

13 next[j] ~ t

14 return next

The table next can be computed in Oem) time. The following algorithm is used for

the searching phase [24]:

TRUE·KMP ( T, P)

n ~ length [T]

2 m ~ length [P]

3 i ~ 0

4 j~O

5 while k:5 n do

6 while j > 0 and P[jl :;t:. t[k] do

7 j ~ next[j]

8 k++

9 j++
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10 if j ~ m then

11 OUTPUT(k-j)

12 j = next[jJ

Algorithm: The true KMP algorithm
Text: bcatcbcabababtatacabtacb
Pattern: b cab a b a b

I 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 I 2 3 4

b c a t c b c a b a b a b t a t a c a b t a c b

b c a b
b

b c a b a b a b
(b) c

b
b

b
b (c a b a b a b)

I

I

Number of matched string found: 1
Number of comparisons: 18
*Note: The characters in 0 do not perfonn the compari ons.

Figure 3-6 Trace of true KMP algorithm

Notice that the comparison P[lJ and T[4] is made by the pseudo-KMP algorithm

while it is not made by the true KMP. This is because after true KMP checks P[4J :f:. T[4],

it knows P[ 1] = P[4]. So it is unnecessary to compare P[ I] and T[4] since they are

guaranteed to be unequal.
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3.4.5 THE BOYER-MOORE ALGORITHM

By using the Boyer-Moore algorithm, the pattern i scanned across the text from

left to right, but the actual comparisons between the pattern character and the text

characters are performed from right to left. In case of a mismatch or a full match, it uses

two heuristics to shift the pattern to the right, allowing it to avoid many examinations of

the text characters. These two heuristics are called the bad-character heuristic and the

good-suffix heuristic. When a mismatch occurs, the Boyer-Moore algorithm chooses the

larger value from the shift amounts proposed by these two heuristics without missing any

occurrence of pattern in the text.

3.4.5.1 The bad-character heuristic

Assume that a mismatch occurs between the character T[s + j ] == a of the text and

the character PU] = b of the pattern at the shift s. This means T[s + j +1.. s + m]~ P[j + 1..

m] = u and T[s + j] *" Pul for some j, where 1 ~ j ~ m. Then T[s + j] is the bad character.

Let k be the largest index in the pattern such that P[k] is the rightmost occurrence of the

bad character T[s + j] in the pattern, if any such k exists. Otherwise, k - O. Then the bad

character heuristic proposes to shift the pattern to right by j-k. There are three cases we

need to consider [6].

• k=O

If k is equal to 0, this means the bad character T[s + jJ= a doesn't occur in the

pattern at all, as shown in Figure 3-7. So the next shift increases the current shift s by j

without missing any valid shifts.
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s+1 s+m

T U
I

1 J rn
s

~ b Ip u

p Next shift s'= s+ i
--I Contains no a

Figure 3-7 Bad character a does not appear in pattern P

• k <j

If the rightmost occurrence of the bad character T[s + j]=- a in the pattern is to the

left of position j, then the value j - k is positive U-k > 0) and the pattern advances j - k

positions to the right before the bad character matches any pattern character. This

situation is shown as Figure 3-8.

8+1

T u

s+m

p

1 I m
_--=s----,~ b U ,

p s'= s + j -k ~'-_
k

a I c_o_n_t_al_'n_$_n_o_a_--,

Figure 3-8 Bad-character a appears to the left of j in pattern P

• k > j

If the rightmost occurrence of the bad character T[s + j]= a in the pattern is at

position k > j, then j -k < 0, which means the bad-character heuristic proposes to decrease
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s. Then the Boyer-Moore algorithm will chao e the shift valu propo ed by the gaod­

suffix heuristic that proposes a shift to the right. So this situation is ignored.

Fonnally the function from the bad character heuristic, the last-occurrence

function (A), is defined as follows. For each a E 2:, A(a) is the index of the rightmost

position in the pattern at which character a occurs. If Q does not occur in the pattern, then

A(a) is equal to O. The following algorithm is used to compute the last-occurrence

function [6]:

COMPUTE·LAST·OCCURRENCE-FUNCTION (P, m, S)

for each character a E 2:

2 A[a] = a

3 for j = 1 to m

4 A[PUl] = j

5 return A

The A function needs space of size 12:1 and the running time for this procedur is

obviously O(ILI + m). Notice that this function requires that each character be available as

a numerical value for indexing into the A table. The methods previously discussed never

required this, only needing a verdict of "equal" or "not equal" for each pair of characters

compared.

3.5.4.2 The good-suffix heuristic

Similarly, suppose a mismatch occurs between the character T[s + j] = a of the

text and the character P[ j ] = b of the pattern at the shift s. where j < m. This means
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T[s+j+1.. s + m] = PU + 1.. m] = u and T[s + j] ~ P[j]. Th function ~ r the good-suffix

heuristic, the good-suffix function ("I), is defined as follows:

l1j] = m - max ({rt [m]} U {k: rt [m] < k < m and P[j+1 .. m] is a suffix of Pk

and j - (m - k) > 0 implies P[j] -:;:. P[j - (m - k)] }).

The good-suffix heuristic proposes to increase the current shift s by 'YU]. The

above fonnula is constructed based on two situations described as follows.

• No string u reappears in the pattern

If the string u does not reappear anywhere in the pattern, then we can use the

prefix function rt mentioned in the pseudo-KMP algorithm to compute the next shift. In

Figure 3-9, string v is the longest suffix of Pm that is also a prefix of the pattern. The

length of string v is rt[m] by the definition of n:. For the next shift, it aligns the longest

suffix v of string u in the text with a matching prefix of the pattern. Thi amount of the

next shift is increased by'YU] = m - rt[m], which is the largest value that we can advance

the current shift s safely. (This means 'Yfj] $; m - rt[mJ.)

s+l s+m

T u

I I j+l m
s

~I b I Ip u

I

:
rml m

p s'= s + m -1t[m] ~I I

Figure 3-9 Good-suffix shift that no u reappears anywhere in pattern P
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• String u reappears in the pattern preceded by a character different from b

As shown in Figure 3-10, if the string u reappears in the pattern preceded by a

character different from b, then the next potential match will occur by aligning the string

u in the text with its rightmost occurrence in the pattern. Since P[j+ 1 ..m] =0 u is the suffix

of Pk, this implies that k > 1t[m]. The increased amount of the next shift proposed by the

good-suffix function is 'Yfj] = m - k.

s+l s+j s+j+1 s+m

T I a I u I
1 I j+1 m

s
~I I b I Ip u

1 i-(m-k) k m

p s'= s + m -k ~I I c I u I I

Figure 3-10 Good-suffix shift that string u reappears in pattern P

The following procedure is to compute the good-suffix function, whose running

time is Oem) [4].

COMPUTE-GOOD-SUFFIX-FUNCTION (P, m)

1 for q = 0 to m

2 y(q] = 0

3 f [m] = m + 1

4 j=m+l

5 for (i = m; i > 0; i--)

6 while ( j ~ m and P[i] :t P[j] {
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7 if ('YO] = 0) then I'm = j - i

8 j = f[j] }

9 j=j-l

10 f [i - 1] = j

11 t = f [0]

12 for U= 0; j ~ m; j++)

13 if ('YO] = 0) then 'YO] = t

14 if U= t) then t = f [t]

15 return 'Y

3.5.4.3 The Boyer-Moore m~llcher

After computing two functions, the last-occurrence function and the good-suffix

function, for the pattern, it is very efficient to search the text by using the proc dure

Boyer-Moore Matcher [6].

BOYER·MOORE·MATCHER (T, P, S)

n = length[T]

2 m = length[P]

3 A = COMPUTE-LAST-OCCURRENCE-FUNCTION CP, m, 1:)

4 'Y = COMPUTE-GOOD-SUFFIX-FUNCTION (P, m)

5 s = 0

6 while s ~ n - m

7 j =m
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T
8

9

10

11

12

13

14

while j > 0 and pm = T [s + j]

j = j - 1

if j = 0

print "Pattern occurs at shift" s

s = s + y[0]

else

s = s + max (y[j], j - A[T[s + j]])

Apparently, the Boyer-Moore algorithm runs O(nm) in the worst case when

searching for all of the occurrences of a pattern. However, when searching for am in bn
,

the algorithm makes only O(nlm) comparisons, since each text character examined yields

a mismatch, thus causing each shift increased by m. Therefore, the best case behavior of

the Boyer-Moore algorithm is sub-linear.

We should not be too disappointed in the worst case behavior of the Boyer-Moore

algorithm, since Rivest demonstrated that, in the worst case, any string matching

algorithm must examine at least n - m + 1 symbols for the text string [17]. This shows

that no solution to the string matching problem may have sub-linear behavior in n in the

worst case.

The followings are the illustrations of how the Boyer-Moore algorithm works

based on the example for T = bcatcbcabababtatacabtacb and P .. bcababab. Table 3-3 is

the last-occurrence function (A.) and Table 3-4 is the good-suffix function ("{) for the

pattern. Figure 3-11 is the trace of the operation of the algorithm based on the two pre­

computed functions A. and 'Y.
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Table 3-3 The last-occurrence function Afor P = bcababab

j 0 1 2 3 4 5 6 7 8

P[j] b c a b a b a b

'Y [j] 7 7 7 7 2 7 4 7 I

Table 3-4 The good-suffix function 'Y for P = bcababab

Algorithm: The Boyer-Moore algorithm
Text: bcatcbcabababtatacabtacb
Pattern: b cab a b a b

1 2 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9 0 I 2 3 4

b c a t c b c a b a b a b t a t a c a b t a c b

(b c a b a b a) b
(b c a b a) b a b

b c a b a b a b
(b c a b a) b a b

(b c a b a b) a b

Number of matched string found: 1
Number of comparisons: 17
*Note: The characters in () do not perfonn the comparisons.

Figure 3-11 Trace of Boyer-Moore algorithm
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CHAPTER IV

ALGORITHM ANIMATION DESIGN AND IMPLEMENTAnON

The Java Programming Language provides many powerful functions that greatly

benefit the implementation of this string matching animation system. Because of the

capability of platform independence, this animation system can run on any machine and

Internet browser that has a Java byte-code interpreter. Therefore, the end users would

never worry about those annoying problems which always occur in compiling and system

configuration any more. The easily implemented Java thread mechanism enhances the

power of this animation system to demonstrate multiple algorithms in parallel. At the

beginning of this chapter, a diagram of functionality is given, which describes the

implementation by the function areas. The enumerated classes diagram i given to

overview the hierarchy of this Object-Oriented design. Then everal major clas es and

their methods, as well as the relationship among them, are presented. Some

implementation details are also discussed. The exception check is also mentioned briefly.

4.1 THE OVERVIEW OF FUNCTION AREAS

This system consists of six components/modules based on their functionality. The

system functionality diagram overviews the entire system in Figure 4 -1. When a user

clicks a button or types to input a string on the GUJ, the event is captured by module

StringMatcher Applet and is transferred to module ThreadRunner. The ThreadRunner

determines which corresponding method in the module AnimationThread should be used
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to process this event. The AnimationThread provides several animation methods and

thread control methods, which make animation execute imultaneously. In the

AnimationThread, some actions related to the animation stage are sent to moduL

Canvas/Scribble, which sets up and refreshes the animation background. The module

Algorithm controls the algorithms' animation in the Gill directly, by invoking its own

methods or calling the methods in AnimationThread.

Event
StringMatcher Applet

Capture Events

ThreadRunner

Detennine Event

Logic Control

Logical Control

Control the animation

Figure 4 -1 The diagram of function areas
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---l.. --- Inherits

4.2 SYSTEM CLASS HIERARCHY

Based upon the Object Oriented Design methodology, there is one ba e cIa e in

the system, GenericMatch, as well as five single clas es, ExceptionCheck, Scribble,

AnimationTread, StringMatcher and ThreadRunner, with no child class. The hierarchy of

classes is shown in Figure 4 -2.

--- Implemented class

c=J --- Java built-in class

Figure 4 -2 Diagram of classes
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The largest part in this diagram is cIa s GenericMatch and its ub 1a e. The

purpose of GenericMatch is to defme several prototype methods for its subcla . The

basic string-matching behavior can be considered as matching every character between

text and pattern, moving the pattern to the next position, counting how many characters

match for each pattern movement. Therefore, three methods --- MatchCharacter(),

PattemNextPostionO and CountMatchesO --- are employed to implement the above steps.

These three methods also throw exceptions for different kind of situations, like index of

pattern or text-out-of-bounds.

The class Algorithm provides the extended string matching animation control

interface. It extends the GenericMatch, whjch provides the basic string-matching

functionality as mentioned before. The methods MatchCharaterO, CountMatchesO and

PatternNextPostionO, are overloaded based on the their super class GenericMateh. The

method MatchCharaterO highlights each character when a comparison occurs, then it

clears the highlight color and moves the comparison to the next character. The method

CountMatchesO determines whether the entire pattern is exactly matched. If it is matched,

this method would highlight the pattern inside the text, and then adds one to the match

counter. The method PatternNextPositionO clears the previous pattern and displays the

pattern in the current position; the current position is passed in as a parameter. The

constructor defines and initializes the data related to color, font and stage setting. The

InitDraw method, which is not inherited from its super class, triggers the built-in class

Canvas to draw the initial text and pattern string in each animation area. The method

ClearAreaO is responsible for cleaning everything up in the animation area for the next

animation.
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Five algorithms are implemented in this animation sy tern. Every algorithm is a

class that is derived from its super class Algorithm. Each algorithm calls CountMatche 0,

MatchCharaterO or PattemNextPositionO in its logical path to animate the mov,ement of

every string matching step and action.

The design approach of this animation system is very clear in that it encapsulate

the animation control methods as perfectly as possible. As a result, the animated

algorithms do not have to know how the animation control methods work, just what the

animation control methods do. The animation control methods look like puppets and the

algorithms can be considered as a puppet master.

The animation stage, or so-called animation background, needs some methods to

manipulate. There are several methods in class Scribble. The Scribble class creates a

panel and two scrollbars, and lays them out on the panel. The method BorderLayout

flushes the right and bottom sides of the panel. When the panel grows, the scrollbars of

the panel also grows appropriately. The method Paint redraws everything in the panel

when the window containing the panel loses focus or is resized. Otherwise, everything

will disappear.

In order to demonstrate different algorithms simultaneously, the class

AnimationThread is employed to create several threads for different algorithms. Then it

manipulates the start and end of threads by using methods RunO and FinishO. Since the

algorithms in the threads run in parallel, users can get a vivid comparison in the speed

and behavior of algorithm comparison, and this greatly enhances the power of this

animation system.
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The class ThreadRunner provides several methods connected to the Gill; that is,

when users click the button, the corresponding method is triggered. For example, when

the user pushes the "Go" button, the method PlayO is triggered and its threads start to run.

Like the mainO function in C/C++, the StringMatcher extends the built-in class

Applet and perfonlls similarly as a main function. First, the method InitializeO call

several methods to draw animation control buttons on the panel and initializes several

parameters, such as the positions and colors. Then the method ActionO is waiting for any

event such as a click on button or pushdown list. When a click event occurs, the method

ListClick or ButtonClick is invoked and detennines what method should be called to

process such a click. The StringMatcher applet is an event-driven program waiting to

react to any event.

- 38 -



CHAPTER V

COMPARlSON OF STRING MATClllNG ALGORITHMS

The following is the empirical evaluation of five string matching algorithms under

three circumstances: searching within a random string file, English text file and binary

string file. In the first category, the impact of the alphabet size and pattern length on the

number of comparisons for each algorithm is examined. For the latter two categories,

since their alphabet sets are relatively fixed, only the impact of the pattern length on the

number of comparisons for each algorithm is analyzed. In order to obtain the correct

result, the text length is chosen to be about 10,000 so that these algorithms can be fully

examined. Each data point shown on the plot is the result of the average number of

running the program 100 times.

As mentioned above, with the finite automaton method, once the automaton is

built, the time used to search the text is only e(n), because with the automaton, each text

character needs to be examined exactly once to determine the state it reaches. So, if the

text length is 10,000, the number of comparisons of this method during the searching

phase is fixed --- exactly 10,000 comparisons in the searching phase. Therefore, neither

the pattern length nor the alphabet size will have any impact on its performance during

the searching phase (although these two factors play key roles during its preprocessing

phase). For this reason, the automaton method is ignored in this chapter. But in the next

chapter of conclusions, where the preprocessing phase is also taken into account, this

method is reevaluated.
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5.1 RANDOM TEXT AND PATTERN

For the texts and patterns whose characters are chosen independently from the

alphabet with an uniform probability distribution, the algorithms may have different

performances. In order to analyze the impact of the size of alphabet set on the number of

comparisons, the length of pattern used to search the text should be the same. Here, four

pattern lengths are chosen to show the typical performance of these five algorithms: IPI ...

2, IPI = 4, IPI = 8, IPI = 16.

Figure 5-1 shows that with the pattern length = 2, the number of comparisons of

all these algorithms (except the automata method) decreases when the alphabet size

becomes larger. When the alphabet size reaches about 25, it has no obvious impact on the

number of comparisons of any algorithm. Among these algorithms, Boyer-Moore is the

best. Actually, the pseudo-KMP algorithm decreases to the naive algorithm as the

alphabet becomes larger. The Boyer-Moore approach works much better than the true

KMP with a larger alphabet size. The true KMP, however, has better performance than

Boyer-Moore when the alphabet size is small. In order to examine the impact of small

alphabet size on the performance, it is necessary to amplify the portion of the plot with

small alphabet size, as shown in Figure 5- 1b. From this experiment, it can be seen that

only when the alphabet size is larger than about 3, the Boyer-Moore method outperforms

the true KMP algorithm. When the alphabet size gets larger, the non-backtracking KMP

algorithm provides no significant speed advantage over the naive method.
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Random Text and Pattern (IPI=2, ITI=104
)

0' 200 - -
10

~

to.. -.-Na'We
III 150 , Ic: "

I
__ Autorraton

~ ~."'UL _"·4' ..il.. fi. -,1'0, h .n.
.

~ 100 i. Pseudo KM=>III

~
Q.

E
~ I

~TrueKM>
0
(,) 50 - ~ - -ilE- Boyer-MJore-0
ci 0 I
Z

0 50 100 150

Alphabet Size (a)

Note: The sequence of lines from top to bottom: Pseudo KMP, NaIve, True KMP.
Automaton and Boyer-Moore. Pseudo KMP, NaNe, True KMP and Automaton are close.

Random Text and Pattern (IPI=2,ITI=104
)

8" 200 !.... tto.. I -.-Na·iVe
C/) 150 "c: "

,
__ Autorreton0 X P ~~ ~~ ~ - .i'} .-() r

C/) 0
~ 100 1:0 '- - '-l Pseudo KWPIII -~ - - - - -Q. iE ~- True KfIIP
0

,...

I(,) 50
-ilE- Boyer-M>ore'0

0 0 i
Z

0 2 4 6 8 10 12

Alphabet Size (b)

Note: Na·'ve and Pseudo KMP are close.

Figure 5-1 Impact of alphabet size on random string file with IPI - 2
(a) LarQe alohabet set (b) Small alohabet set

When the pattern length is equal to 4, the impact of alphabet size on the random

string file has a similar result as that of pattern length ... 2, as shown in Figure 5-2. But

from this figure, we can see the impact of pattern length on the perfonnance on these

algorithms. As the pattern length increases, the number of comparisons of the naIve
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method and pseudo-KMP method increa e. On the other hand, th number of

comparisons of the Boyer-Moore algorithm decreases as the pattern length gets larger.

RandomText and Pattern (IPI=4,ITI=104
)

s 250 ---- -- -

l0

~ 200 ~ -+-Na'lve

0 A --.- Autormton
~ 150

\..
I

[ I
Pseudo K~~- ,,,---,,~, " " "

I
E 100

----4(- True KtwP0
(,)

50 ~'0 ~ ~ ~ I
--.- Boyer-Mlore

0
0z

0 50 100 150

Alphabet Size (a)

Note: Na'lve and Pseudo KMP are overlapping; True KMP and Automaton are close.

Random Text and Pattern (IPI=4,ITI=104
)

s 250 I0,..
t".. 200

~v
-+-Na'lve

ellc
--.- Autormton0 150 Iell

"t: 1\ A I Pseudo KMPIII
Q. 100 - "-;.; ;.; , ...

E
~--

I -* TrueK~0
(,)

50 --.- Boyer-Mlore
'0 .... j
ci 0z

0 2 4 6 B 10 12

Alphabet Size (b)

Note: Na'lve and Pseudo KMP are close.

Figure 5-2 Impact of alphabet size on random string file with IPI =0 4
(a) Large alphabet set (b) Small alphabet set
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When the pattern length increases to 8, no significant change happ n . The trend

is still that as the pattern length gets larger, the number of comparison of the nai've

method and the pseudo-KMP method increases linearly. But the pattern length does not

have too much impact on the true KMP algorithm. One thing that should be pointed out is

that as the pattern length gets larger, the pseudo-KMP algorithm has a slightly better

performance than the naive method. The following is the corresponding plot, Figure 5-3.

Random Text and Pattern (IPI=8,ITI=104
)

6' 250 ------- I

[. 200 ~
I --+-Na'Ne

j 150~ _ Autorraton

" " " " Pseudo KMPCu -~~ ..

I~ 100 rc ~ True KMP

o 50 ,~
I

-IE- Boyer-Mlore'0 .~

c:i 0z
0 50 100 150

Alphabet Size (a)

Note: Narve and Pseudo KMP are overlapping: True KMP and Automaton are close.

Random Text and Pattern (IPI=8,ITI=104
)

s 250 - -

I
0...
t- 200 --+-NaA/e
1/1c:

A:~ ~
_ Autorraton0 1501/1

1-.: Pseudo KMPco
--~ ~ ._~a. 100E -

~-=
- I

--~- True KrvP
0 I()

50 -IE- Boyer-Mlore
'0 '" '"
c:i 0z

0 2 4 6 8 10 12

Alphabet Size (b)

Note: Narve and Pseudo KMP are close.

Figure 5-3 Impact of alphabet size on random string file with IPI - 8
(a) Large alphabet set (b) Small alphabet set
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Random Text and Pattern (IPI=16,ITI=104
)

Random Text and Pattern (IPI=16,ITI=104
)

s 300 --- - - - -----l0

[. 250 -+-Na'fI!e
til

~ 200

~
___ Autormton

III I-.:: 150 Pseudo KtvPl1:l ,
" 1\ 1\ 1\

C. f-.-,E 100 - ~TrueK~
0 I<.) f- 50 \.~

-iIE- Boyer-M:>ore
0

ci 0
~

z
0 50 100 150

Alphabet Size (a)

Note: Na'jve and Pseudo KMP are overlapping; True KMP and Automaton are close,

, I

-+-Na'r,re

___ Autormton

Pseudo KMP

" True KMP

-iIE- Boyer-Waora

12108642

8' 300,------·- ._-

[. 250
IIIa 200
til

'~ 150
c.
E 100oo
'0 50

o 0 +------.-----.---....-------.-----.-------,Z
o

Alphabet Size (b)

Figure 5-4 hnpact of alphabet size on random string file with IPI - 16
(a) Large alphabet set (b) Small alphabet set

When the pattern length reaches 16, the perfonnances of these algorithms are

shown as Figure 5-4. From this one and the above figures, we can conclude:

• When searching within the random text file, the number of comparisons of the

nai've method and the pseudo-KMP method increases as the pattern length becomes
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larger. In contrast, the perfonnance of the Boyer-Moore approach improves with longer

patterns. The pattern length has no obvious impact on the perfonnance of the true KMP

algorithm.

• When the alphabet reaches a reasonable size (e.g. 25), the alphabet size has no

direct impact on the perfonnance of these algorithms.

• To search within a random text, the Boyer-Moore is the best algorithm to be used

when the alphabet size is large (>3). When the alphabet size is small ($3), however, the

true KMP algorithm is the best choice.

5.2 ENGLISH TEXT AND PATTERN

For most nonnal English text files, the alphabet size is fixed because they use the

ASCII character set that contains 128 characters. These characters are non-unifonnly

distributed because some characters are used more frequently.

English Text and Pattern (ITI=11Sn)

8 140
.... 120:.... ~Na'liIe
111 100c
0 __ Autorraton
III 80.;:;

Pseudo KM'tV
Q. 60
E ~TrueKM'
0 400 ___ Boyer-MJore
'0 20
0 0z

0 5 10 15 20

Pattern Length

Note: NaIve. Pseudo KMP, True KMP and Automaton are overlapping.

Figure 5-5 Impact of pattern length on English text file
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Figure 5-5 shows the perfonnanoe of these algorithms when searching within

normal English text files. From this chart, we can see that the naIve method, the

automaton method, the pseudo-KMP algorithm, and the true KMP algorithm have no

obvious advantages over each other. Although the naIve method ha the O(orn) worst

case running time, it is essentially linear when searching the English text file. This is

because, in typical English text, a match of the first character of the pattern occurs

infrequently, and the chances of the second character matching are even smaller, and so

on. So the inner loop in the algorithm isn't likely to execute very often or for very long.

Therefore, other methods do not have too much advantage over it when searching within

an English text file.

The Boyer-Moore does very significantly better than others. Its performance is

sub-linear, which requires about n/m comparisons on average from the observations on

Figure 5-5. Therefore, the Boyer-Moore method should be the best algorithm to be used

in actual applications.

5.3 BINARY STRING TEXT AND PATTERN

For binary string files, the size of the alphabet set is fixed, that is :E-{O,l}. Figure

5-6 shows the perfonnance of these algorithms when searching within a binary string file.

Because of the small alphabet set, the true KMP algorithm gives the best performance,

even much better than Boyer-Moore. The reason is that the text and the pattern are highly

repeated with the small alphabet size, and the pattern may occur frequently in the text.

Also because of this reason, the O(nrn) worst case running of the na"ive method occurs.
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Although tbe pseudo-KMP method degrades to the naive method in previous ca es, it

greatly outperforms the naive method when searching within a binary file.

Binary Text and Pattern (T=104
)

6' 300
0

[. 250 :=: : : -+-Na'lVe
III

~
5 200 -.- Automaton
III

I;: 150 Pseudo K~Ill,
Q.

E 100 --)(- True KtvfJ
0 -
0 I ___ Boyer-tv'oora- 50
0

0 0z
0 5 10 15 20

Pattern Length

Figure 5-6 Impact of pattern length on binary string file
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CHAPTER VI

SUMMARY, CONCLUSION AND SUGGESSTED FUTURE WORK

6.1 SUMMARY

The naIve string matching algorithm is simple and straightforward. It has no

preprocessing phase and needs no extra space. The comparisons between the text and

pattern can be done in any order. The disadvantage of this method, however, is that it

blindly tries each position of the text as the start of the pattern, even if it has already

examined some of the characters in prior match attempts., Therefore, it requires

backtracking in the text in the event of an unsuccessful match. Besides, its worst case

running time is OCnm), which occurs in highly repetitive text and patterns. However, such

cases do not occur very often in practical applications, such as searching English text, as

analyzed in the previous chapter.

Searching the pattern with an automaton requires first building the string

matching automaton to recognize the language L*P. The time complexity needed to build

this automaton is O(m3ILI) and the space complexity needed is O(ml:EI). So if the alphabet

size is large and the pattern is long, this method is very inefficient. Although the

searching phase can be performed in 8(n) time, this method is rarely used in practical

applications. But studying this method can appreciably increase the understanding of

other more sophisticated string matching algorithms.
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The pseudo-KMP method uses the 1t function that stores the information about

how the pattern matches against shifts of itself to improve the length of shifts. The time

complexity and the space complexity for computing this function are both Oem), which

means it can be computed independently from the alphabet size. Although th pseudo-

KMP algorithm runs in time Oem + n), it is almost as inefficient as the naive method. The

reason is that it makes the same comparison of a pattern character to a text character more

than once during the searching phase. Therefore, this method should be avoided.

Compared to the pseudo-KMP algorithm, the true KMP algorithm is simple and

efficient. It computes the next function in Oem) time during the preprocessing phase,

which takes also Oem) extra space. Although the algorithm runs in time OCm + n), it

avoids many unnecessary comparisons between the text and pattern. One outstanding

advantage of this algorithm is that it never backs up in the text, thus making it a good

example of an on-line algorithm. It works fast when the text and pattern is highly

repetitive, such as in a binary string file.

The Boyer-Moore algorithm is the most efficient among the e algorithms for most

applications. Two functions, A and "I, can be pre-computed in time OCm + lEI) before the

search phase and require an extra space in Oem + lEI). Although it has the O(nm) worst

case time complexity, for large alphabets, the expected performance is sub-linear,

requiring about wrn symbol comparisons on average. But with small alphabet size, it

performs worse than the true KMP algorithm. If it is used as the on-line algorithm, it

requires the text to be buffered, with a size equal to the length of the pattern.
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6.2 CONCLUSION

Based on the above studies, the overall conclusions are as follows:

• If the pattern is small (i.e. 1 ~ m ~ 3) and the alphabet is reasonably sizable,

then the overhead of the preprocessing by the more sophisticated algorithms makes them

less efficient than the naIve method. In this case, the na"ive method may be preferable.

• If the alphabet size is small (i.e. 1 ~ I~I $ 3), the true KMP algorithm may

perform significantly better than the Boyer-Moore algorithm.

• If the pattern is not too sman and the alphabet size is reasonably large, the

Boyer-Moore is obviously the best available algorithm among those studied in this paper.

Finally, the animated comparison of string-matching algorithms visualizes the

actual performance of these algorithms, which provides a vivid and convenient studying

tool to experience the comparisons.

6.3 SUGGESTED FUTRUE WORK

The results of comparison of these string matching algorithms may vary from

different data sets. In the study, only the impact of pattern length and alphabet ize is

taken into consideration. Further study may be extended to the impact of the text length

and the repetition factor of the pattern.

Finally, the animation system can be connected to a database system so that

historical comparison resu]ts may be stored into the database. Thus, the animation system

can generate the reports and the diagrams based on the comparison statistics, so that the

end-user can be more knowledgeable about the average performances of these algorithms.
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