INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

300 N. Zeeb Road Ann Arbor, MI 48106 -.

8314777

Lin Lewis, Sue Jane

A MATHEMATICAL MODEL AND INTEGRATED SIMULATION FOR URBAN FLOOD AND LAND USE ANALYSIS

.

The University of Oklahoma

- -

Рн.D. 1983

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48306

· .

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages 2. Colored illustrations, paper or print 3. Photographs with dark background _____ 4. Illustrations are poor copy 5. Pages with black marks, not original copy_____ Print shows through as there is text on both sides of page 6. Indistinct, broken or small print on several pages 7. 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine
- 10. Computer printout pages with indistinct print
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms international

.

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

A MATHEMATICAL MODEL AND INTEGRATED SIMULATION FOR URBAN FLOOD AND LAND USE ANALYSIS

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

ΒY

SUE J. LIN LEWIS

. .

Norman, Oklahoma

1983

A MATHEMATICAL MODEL AND INTEGRATED SIMULATION FOR URBAN FLOOD AND LAND USE ANALYSIS

4

APPROVED BY

(, reito ames o

DISSERTATION COMMITTEE

DEDICATION

This work is dedicated to my parents who said: "Continue to learn and grow, wherever you are." Without their unselfish love and encouragement, this goal would have been impossible to reach.

ACKNOWLEDGMENT

The author is indeed grateful to Dr. Jimmy F. Harp for his profound interest and generous efforts in advising this research. My deep appreciation is also extended to Professor George W. Reid, Dr. Leale E. Streebin, Dr. James M. Robertson, and Dr. John T. Minor for their valuable suggestions and constructive criticisms in reviewing this work and serving as my dissertation committee. Special thanks are addressed to Professor Reid for his previous support and continuous challenges in my graduate programs.

I also would like to acknowledge the following people for their kind assistance when I was collecting and processing the data used in this research: Dr. Bob Tortorelli of the U.S. Geological Survey, Dr. Robert L. Lehr of the Regional and City Planning Department of Oklahoma University, James McChampbell of the Soil Conservation Service at Cleveland County, George Daily of the Office of Research and Economic Department of Oklahoma City, and Dale Miller of the Community Development Department of Oklahoma City. Special thanks are sincerely extended to Richard Hayes and Paul Ely of the Hydrologic Engineering Center in Davis, California for their technical information and valuable suggestions regarding the new versions of

iv

HEC programs, and to Tanya Stewart along with the staff of the Computer Service Center of Oklahoma University for their valuable aid in using TSO and SCRIPT to format this manuscript.

I wish to give my highest regards and share my happiness of this achievement with each member of my family, especially PAPA and MAMA, for their continuous encouragement, love, and trust in supporting me during my long journeys of studies and adventures overseas.

Finally, a bundle of credit is owed to my husband, Chuck, for his devotion to the family and valuable help in editing this material, in addition to his unyielding love and understanding even through my "madness" while both of us were "in the same boat" pursuing this academic goal.

V

TABLE OF CONTENTS

.

	F	age		
LIST O	F TABLES	riii		
LIST O	F ILLUSTRATIONS	x		
Chapter				
I.	INTRODUCTION	1		
II.	LITERATURE REVIEW	4		
	Urban Study	4		
	Computation and Simulation Techniques	5		
	Flood Damage Assessment	12		
III.	MODEL DEVELOPMENT AND FORMULATION	15		
	Problem Statement	16		
	Environment and Structure	20		
	Variable/Parameter Identification and Model Formulation	23		
	Methods to Determine Parameters and Variables.	25		
IV.	METHODOLOGY	50		
	Basin Hydrologic Simulation with HEC-1	50		
	Hydraulic Analysis with HEC-2	70		
	Expected Annual Damage Computation	87		
	Summary of the Methodology	96		

.

Ľ,

Chapter Page
V. CASE STUDY 100
Objective of Case Study
Watershed Discription
Data Acquisition and Input Development 104
Analysis and Output Results
VI. SUMMARY AND CONCLUSION 140
BIBLIOGRAPHY 145
APPENDICES
A. Program Input of a Multiflood-Multiplan 150 Analysis for Various Extent of Urbanization
B. Program Input of a Multiflood-Multiplan Analysis for Various Extent of Channel Modification

.

.

LIST OF TABLES

Table	e F	age
1.	Estimation of Residential Property Value	29
2.	Estimation of Industrial Content Value	30
3.	Estimation of Commercial/Industrial Property	31
4.	Results of Depth-Damage Regression Analysis	34
5.	Runoff Curve Number of Hydrologic Soil Cover Complex	57
6.	CN Value Modified with Antecedent Moisture	58
7.	HEC-1 Computer Memory and Time Requirement	70
8.	Encroachment Data Organization	78
9•	Typical HEC-2 Data Organization	83
10.	Control of HEC-2 Program Output	85
11.	HEC-2 Computer Memory and Time Requirement	86
12.	Input Data Organization for EAD Computation	94
13.	An Example of Expected Annual Flood Damage Summary	95
14.	Physical Characteristics of the Cow Creek Basin.	109
15.	Physical Characteristics of Cow Creek Reaches	110
16.	CN Values for Various Extent of Urbanization	113
17.	Unit Hydrograph Parameters of the Cow Creek Basin	114
18.	Basin Leg-Time Modified with the Extent of Urbanization	115
19.	Point Rainfall for Synthetic Storms	117

.

viii

Table Fag		age
20.	Recommended Peak Flow at Selected Index Points	118
21.	Estimation of Property Flood Damage Cost	119
22.	Roughness Factors Used for the Cow Creek Basin	121
23.	Estimation of Annual Cost of Land-Use Control	123
24.	Excavation Cost Ratio for Various Channel Modification	126
25.	Peak Discharge Resulting from Multiflood- Multiplan Analysis	129
26.	Total Runoff Resulting from Multiflood-Multiplan Analysis	130
27.	Time of Concentration Varied with the Extent of Urbanization	131
28.	Changes of Water Profiles and Flood Zones due to Urbanization	133
29.	Expected Annual Damage Summary for Various Extent of Urbanization	135
30.	Trade-Off between EAD and ALC Values	136
31.	Expected Annual Damage Summary for Alternatives with Various Extent of Channel Excavation	138
32.	Cost-Benefit Analysis for Alternatives Selection.	139

:

LIST OF ILLUSTRATIONS

IllustrationFag		Fage
1.	Basic Flood Problem	18
2.	Framework of Kodel Development	1 9
3.	A Schematic Model of the Flood Problem Environment	21
4.	River Flood Hydrograph	41
5.	Physical Characteristics of a Watershed	44
6.	Channel and Floodplain Cross-Section Profile	46
7.	Algorithm of Rainfall-Runoff Model Using HEC-1	52
8.	Typical HEC-1 Watershed Nodel Components	54
9.	Percentage of Impervious Areas vs. Composite CN's for Given Pervious Area CN's	59
10.	Illustration of the Derivation of a Unit Hydrograph from an Isolated Storm	61
11.	The HEC-1 Baseflow and Total Hydrograph Simulation	62
12.	Example Input Data Organization for a River Basin	67
13.	HEC-1 Program Operation Overview	68
14.	River Cross-Section and Profile Showing Component of Energy Equation	72
15.	A Floodway Schematic	75
16.	A Schematic of Encroachment Method 4	77
17.	Transition from Subcritical to Supercritical Flow	80
18.	General Flow Chart of HEC-2 Computer Program	84
19.	Damage Frequency Curve	88

Illustration

.

•

20.	Flow Frequency Curve	89
21.	Flow Frequency Curve Modification	90
22.	Flow Damage Reduction Model	92
23.	Flow Diagram of the Proposed Study	100
24.	Topographic Layout of the Cow Creek Basin	1 04
25.	Subbasins and Reaches Layout of the Cow Creek Basin	108
26.	A Schematic Liagram of Stream Network	111
27.	Geometric Elements of Channel Sections	125

Page

ABSTRACT

A MATHEMATICAL MODEL AND INTEGRATED SIMULATION FOR URBAN FLOOD AND LAND USE ANALYSIS

BY: SUE J. LIN LEWIS MAJOR PROFESSOR: JIMMY F. HARP

A new approach for estimating, analyzing, and evaluating urban floods and flood damages was formulated through integrated modeling and simulation.

A mathematical model for estimating potential urban flood damages was developed. Model parameters and variables were determined and verified by statistical analyses. HEC-1 and HEC-2 programs were used to simulate the hydrologic responses and hydraulic characteristics of flooding sources for a test watershed under five propositions, each varied with the degree of urbanization. The economic analysis involved computations of economic criteria and a "trade-off" strategy for selection of the most "promising" plan for future land use. Cost benefit analysis was then applied to evaluate several feasible flood control alternatives for the selected plan. This study indicates that land use control plays a significant role in urban flood management. The scheme of this technique can be applied to other watersheds with modification of basin parameters to form a general guide in evaluating land use proposals and flood alleviation projects.

Chapter I

INTRODUCTION

Flood damage has been one of the major watershed problems since urbanization began. In 1975, the annual nataional flood loss was estimated by the U.S. Water Resources Council to be greater than \$3,500,000,000. Approximately 20,000 U.S. communities were identified to have flood hazards (Leman Powell Associates, Inc., 1980)³⁷ Today, the problem is more intense than ever before.

In general, a flood may be defined as a body of water which overflows the bank of a channel and proceeds to inundate the adjacent floodplain (Ward, 1978)⁶². These high flows are usually caused by natural forces, such as rain or snow, but mankind's activities also compound flooding problems. Nixon (1966)⁴⁵ pointed out that man's invasion of flood plains is the basic cause of flood disasters. Floodplains are generally socially desirable and economically viable areas in which to live (James, 1971)³⁴. The problem we are facing is a dilemma: the desire for occupying flood plains, and the fear of suffering the consequences. Man has attemped enormous efforts to alleviate flood hazards throughout history; on

* superscript after parentheses refers to Bibliography

- 1 -

the other hand, we have continued to occupy floodplains and to place massive life-risking investments on flood-prone areas. However, it is an impossible goal to totally eliminate flood problems by evacuating the floodplains. Man can only adjust to this problem by minimizing the risk of flooding.

A question may arise: "What are the restrictions and what amount of development should be imposed and allowed in order to maximize land use and minimize the increased risk of flooding?" Much work has been devoted to techniques of analyzing the pre-urban hydrological system, which is then taken as a reference situation for comparison of results from studies in urbanized areas. However, little work has been conducted in assessing the existing and potential flood damages due to floodplain developments. The historical records of flood damages are usually not representative for future conditions, especially with changes of land use in Therefore, it is very important to reach time and space. the position that the consequences and the potential flood damage of a planned urban activity can be predicted in a rational manner prior to the implementation of plans.

The purpose of this study is to: (1) develop a mathematical model for assessing potential urban flood damages, (2) formulate an integrated methodology to simulate hydrologic, hydraulic responses, and to assess flood damages on urban floodplains, and (3) provide a quantitative means for evaluating the economic feasibility of a range of urban

-2-

activities and flood alleviation projects. The scheme of this research begins with a literature review, addressed in chapter II, followed by model development in chapter III, continued with the formulation of methodology in chapter IV, demonstrated by the case study in chapter V, and summarized in chapter VI.

Chapter II

LITERATURE REVIEW

A literature survey was conducted for the following areas:

- a) hydrologic impacts of urbanization,
- b) urban runoff computation and simulation models, and
- c) flood damage assessment.

2.1 URBAN STUDY

Many studies have been made to evaluate the effects of urbanization during the last two decades. Leopold (1969)³⁸ summarized the results of several urban studies from Carter and Wiltala (1961)⁶⁷, Wilson (1966)⁶⁶, Espey; (1966)¹⁸, and Anderson (1968)⁴ and generated a series of curves and tables to illustrate the following result: urbanization induces significant increased peak flow and runoff volume. Still, Leopold cautiously stated that those curves and tables should be used with extreme caution for different drainage areas and different flow frequencies.

As many computer programs have become available since the last decade, numerous research work has been devoted to this area based on mathematical models. For example, Dempster $(1974)^{17}$ and McCorkle $(1979)^{41}$ presented an urban study for

- 4 -

Dallas, Texas; Beard and Chang (1979)⁸ studied the urbanization impact for Tulsa, Oklahoma; Amandes and Bedient (1980)³ presented a study for Houston, Texas. The general findings of these studies include the following effects of urbanization:

- a) change in total runoff,
- b) change in distribution of total runoff: higher peak flow rate and less base flow,
- c) change in time of concentration,
- d) change in sediment content of stream.

However, the results of these studies are not likely to be applied to other watersheds because of the heterogeneous characteristics of watersheds and the lack of a good index to measure the degree of urbanization and changes of land use with time.

2.2 <u>COMPUTATION AND SIMULATION TECHNIQUES</u>

Many techniques have been developed throughout the centuries to define the hydrologic process, to assess the hydrologic and meteorologic data, and to quantify the outcome of these complex physical processes. As early as 1851, Mulvaney proposed the well-known Rational method which is still in extensive use (Gregory, 1932)²⁵. Within two decades, the rapid growth of computer technology has offered a "boost" for the development of mathematical methods relating to this subject. Many methods have been devised with increased ca-

-5-

pacity and speed to deal with rising complicated urban flood problems.

In order to select the technique best-suited for this study, several were reviewed. Generally, techniques available for computing urban runoff can be classified into the following catagories (Feldman 1979)²¹

- a) Empirical formulae,
- b) Statistical equations,
- c) Single-event watershed models, and
- d) Continuous watershed models.

The Rational method, as mentioned earlier, represents an empirical formula. This formula is as follows:

$$Q = CIA \qquad (Eq. 2.1)$$

where Q,C,I and A represent peak flow rate, runoff coefficient, rainfall intensity, and drainage area, respectively. This method is still widely used among engineers. However, the major drawback with this method is that it provides only the peak flow rate, not the runoff, and the coefficient "C" cannot account for the effects of flood attenuation or storage on the flood plain, both of which become important for the flood hydrograph in larger basins.

The U.S. Geological Survey "State Regression Equations" demonstrates a statistical technique for computing runoff magnitude. Sauer (1974), Thomas and Corley (1977)⁵⁵ developed this sequence of equations to estimate the flood peak discharges of several recurrent intervals for Oklahoma streams. Peak flow was found to be a function of drainage area (A), channel slope (S), and mean annual precipitation (P). The general equation can be expressed as below (Sauer, 1974):

$$Q_{\mathbf{x}} = \mathbf{k} \cdot \mathbf{A}^{\mathbf{a}} \cdot \mathbf{S}^{\mathbf{b}} \cdot \mathbf{P}^{\mathbf{c}}$$
 (Eq. 2.2)

where Qx represents the peak flow for recurrence interval X years; K, a, b, and c represent regression coefficients, and the other terms are defined as above. The peak flow was then adjusted by using an urban factor, Rf, which was investigated and developed by Leopold (1969)³⁸ to account for the effect of urbanization. Also, the Federal Highway Administration has developed a similar procedure to estimate stream discharges based on the relationships of discharge, drainage area, and elevation differences in the watershed (Trent, 1978)⁵⁶ Most of the statistical techniques are based on regression analysis to relate the peak flow of a known frequency in a hydrologic region to basin characteristics without performing the rainfall-runoff analysis. It is more difficult to apply these relationships in urbanized or urbanizing basins because the rainfall-runoff relationship changes as urbanization occurs. Therefore, additional parameters must be included to account for those variations.

Many watershed simulation techniques with various complexities have been developed. The application of simulation techniques depends greatly upon the purpose, scope, and

-7-

constraints of the studies. The following discussion will emphasize some of the practical state- of-the-art methods for single-event and continuous models.

In general, a single-event model simulates a single individual storm event without consideration of infiltration loss-rate recovery during periods of zero precipitation (Abbott,1977)¹. Some of the most widely used single-event models include:

- a) HEC-1 : Flood Hydrograph Package,
- b) TR-20: Computer Program for Project Formulation Hydrology,
- c) SWMM: Storm Water Management,
- d) MITCAT: MIT Catchment Model.

The HEC-1 program was originally developed by Leo R. Beard by assembling several earlier separate hydrologic com-1967. After several revisions ponent models in (1969,1970,1973, and 1981), the present up-to- date version has been equipped with many powerful options and additional capabilities (HEC-1 users manual, 1981)³¹. The major functions of HEC-1 include the simulation of rainfall-runoff relationships, the generation of flood hydrographs, routing and combining operations of stream networks, the evaluation for multiflood-multiplan events, flood damage analysis, automatic calibration for model parameters and alternative sizing optimization and other additional capabilities as described in the HEC-1 manual. Simulations of infiltration and routing of basins and channels are based on hydrologic and/or hydraulic concepts with several computational options. This program requires a minimum of data with easy application for computation routines.

The TR-20 program was designed by the Soil Conservation Service for storm runoff computation primarily for agricultural basins (S.C.S., 1965)⁵¹. Similar to HEC-1, it has the capability of developing runoff hydrographs, routing and combining separate hydrographs in a watershed, and evaluating various alternatives. It uses SCS curve numbers to account for the infiltration process. Basin and channel routings are computed on a hydraulic basis which requires geometric information of the studied basin and channel. This program also requires a relatively small amount of input data. However, it does not have the option to compute flood damage which is necessary for this study.

The SWMM model was designed by the Federal Environmental Protection Agency (EPA, 1975)⁶¹ to simulate storm events on the basis of rainfall and basin characteristics. This program was formulated to predict the storm runoff, water quality, and treatment of the receiving stream. The infiltration process is based on Holtan's equation. Routing routines are computed based on kinematic wave theory. This program represents a highly comprehensive and complicated model with the requirements of detailed data on subbasin, channel and water qualities (Abbott, 1978)¹.

-9-

The MIT model is a relatively complex model. It concentrates primarily on the routing process for urban systems (Resource Analysis, Inc., 1975)⁴⁸. The bases, functions, and requirement of data are similar to those of the SWMM model, but it has no capability to compute runoff quality. In general, those single-event models differ in complexity and capability. However, they share a general character; that is, these models generate a storm event without accounting for antecedent soil moisture.

On the contrary, continuous event models simulate a continuous series of storm events and account for the antecedent soil moisture. Some of the more widely-used continuous models are: the Stanford Watershed Model, HSP model, SSARR model, USGS G-824, and the STORM model which will be described briefly as follows.

The Stanford Watershed Model (Crawford, 1966)¹⁶ may be regarded as the "pioneer" among the continuous models. It is a digital program to simulate all hydrologic processes in watersheds with a total of 21 parameters. Contemporaneously, the SSARR model was designed for the Corps of Engineers with less complexity compared to the Stanford model (Rockwood, 1964)⁴⁹. It uses relatively simple concepts for infiltration and the routing process to compute runoff. The HSP model (Hydrocomp, 1976)²⁷ represents the most advanced modification of the Stanford model with improved data handling and a channel routing process. The G-824 program, developed by the U.S.G.S., uses 7 parameters to calibrate a rainfall-runoff model with a relatively simple concept for basin and channel routing (Carrigan, 1977)¹¹. The STORM program represents the simplest and most economical continuous model. It has the capacity to evaluate storm runoff and treatment required for receiving streams (HEC, 1976)³⁰.

Comparisons among some of the single event models and continuous models have been made by Brandstetter (1976), Abbott (1978), and Williams (1979). In general, the continuous models require an enormous amount of rainfall and stream flow data to simulate a sequence of continuous storms. Usually, such data is limited and inadequate in time and The extensive cost and time consumption to assemble space. the required data by the continuous model usually make it unjustified for its major advantage: accounting for antecedent soil moisture. Therefore, the single-event model appears more practical than the continous model. Also. the Rational and Statistical Equations methods are ruled out for this study since these methods lack mathematical foundations and the capacity to evaluate the rainfall-runoff relationship, which is an important segment in urban floods.

Among the single event models, the HEC-1 program is selected to be used in this study based on the following reasons:

-11-

- a) minimum data requirement, high flexibility, and easy application for computation routines,
- b) algorithms accepted widely and being extensively used by the profession,
- automatic calibration capability for parameters and sizing optimizations,
- d) ability to generate runoff hydrographs, stream networks, and flood damage computations for multifloods and multiplans in a single computer run with very economical costs.

2.3 FLOOD DAMAGE ASSESSMENT

The importance of flood damage assissment has increased since the implementation of the Flood Insurance Act (1968)²³ and the Flood Disaster Protection Act (1973)²⁴. It is a vital segment in the following areas: (1) operations of flood emergency plans, (2) design criteria for engineering feasibility tests, (3) guidelines for land planning and development policy.

Surprisingly, little research has been done in this field compared to other aspects of flooding (Ackermann, 1968). The state-of-the-art is still in a crude stage involving a lot of "guess work". The seriousness of the lack in urban flood damage data sets was described by Ackermann (1968)²

".... The contemporary absence of a satisfactory body of economic field data on urban floods constitutes a liability of monumental proportions in the assessment of these floods and their associated damages....."

White (1964)⁶⁴ was one of the first to relate the stage with flood damages; he developed several depth-damage curves for eight different establishments at La Follette, Tennesse. James and Lee (1971)³⁴ established a generalized depth-damage function for residential flood damage estimation. The formula can be expressed as:

$$C_{d} = K_{d} \cdot M_{s} \cdot d$$
 (Eq. 2.3)

where Cd represents the flood damage in dollars, Ms is the market value of the inundated structure, d is the depth of flooding, and Kd is a damage factor dependent upon the structure. The Federal Insurance Administration (FIA) has been active in collecting depth-damage data. A series of depth-damage curves were derived for residential and small business structures (FIA, 1975)¹⁹. Flood damage was estimated according to depth of flooding and type of structure. However, besides depth of flooding , there are several other factors, such as magnitude of flow, flood frequency, velocity, and duration of flooding that may influence the outcome of flood damages. Still, the state-of-the-art in flood damage estimation lacks a more consistent method to quantify To predict the future potential flood the above factors. damage due to urbanization, the changes in land use and the resulting flood characteristics, and the variation of costs with time must be considered and included in flood damage

-13-

estimation. Therefore, the efforts of this study are directed to develop a mathematical model for estimating potential flood damages due to urbanization and a methodology for demonstrating the application of this information to future land planning and development in a watershed.

Chapter III

MODEL DEVELOPMENT AND FORMULATION

The purpose of this chapter is to evaluate urban flood problems, identify the constraints which directly affect flood damages, formulate a mathematical model for estimating the potential urban flood damage, and provide methods to determine and verify variables and parameters for the model.

According to Grigg (1975)²⁶, flood damages can be classified into five categories:

- a) Direct damages, which affect floodplain properties and their contents, infrastructures, such as roads and public utilities, and agricultural lands and spoil crops,
- b) Indirect damages, which include the economic loss of business and service, the cost of safeguarding health, rerouting traffic, delays, etc.,
- c) Secondary damages, which may occur when the economic loss by flooding extends further than the immediate area of flooding,
- d) Intangible damages, which include the loss of life, the reduction in environmental quality and aesthetic values, and

- 15 -

 e) Uncertainty damages, which describe hardships on floodplain occupants because of the uncertainties of flooding.

The scope of flood damage analyses in this study is limited to the category of direct damages since indirect damages are usually taken as percentages of direct damages (Kates, 1965)³⁶; secondary and uncertainty damages tend to be offset by secondary benefits (Grigg, 1975)²⁶, and intangible damages are not feasibly measured in monetary terms though they should be included for project justification. Also, the main emphasis will be focused on floods generated by climatological events in river basins.

3.1 PROBLEM STATEMENT

Some flood damages occur when man makes use of floodplains which are susceptible to inundation. The reasons for using floodplains are well remarked by James et al. (1975):

"...Historically, development on the floodplains along major rivers has held locational advantages for many types of industry and commerce and the constraints of low incomes and slow transportation have caused people to live near their jobs. The use of rivers for transportation and power and their attractiveness to industry and commerce as sources of water and as depositories for wastes are the important factors which made industrial and commercial development least expensive near rivers, job opportunities migrated toward riverfront cities, and residential development followed on nearby flood plains..." Therefore, it may be concluded that flood plain invasion is the primary cause of the flood problem as shown in Figure 1. However, this problem has been compounded by the increasing rate of urbanization, and the over-reliance on some of ineffective corrective measures which may induce a false sense of security and encourage unwise new development and economic investment on floodplains.

In fact, the flood problem must be reviewed from an interdisiplinary background so that the problem and its environment can be recognized clearly, and the constraints which effect the consequences of flood damages may be identified. Figure 2 demonstrates the logic and framework which will be addressed in this chapter. By using the systematic approach as shown in this diagram, the flood problem and its environment will be treated as a whole because of their interactive aspects rather than deal with some fragmented aspect in an isolated context.

-17-

Figure 1. <u>BASIC FLOOD PROBLEM</u> After: Nixon, 1966

.. -

FIGURE 2: FRAMEWORK OF MODEL DEVELOPMENT

-20-

3.2 ENVIRONMENT AND STRUCTURE

As mentioned earlier, the flood problem has been compounded by urbanization and other aspects; it needs a system to describe the environment and simulate the problem as closely as possible. Figure 3 is a structural model of a urban environment including five components that affect the flood problem. These components are described as below:

- a) the <u>physical component</u>, which involves the physical characteristics of basin, channel, and network, including the aspects of soil, geology, topography, and land cover.
- b) the <u>engineering component</u>, which represents the engineering works that modify the nature of basin, channel, and drainage; such as changes in surface storage, channel alteration, etc..
- c) the <u>economic component</u>, which comprises the resources, capital investment, structures, and their contents located on floodplains.
- d) the <u>social component</u>, which contains the human dimensions, such as population distribution on flood plains, the health and safety of flood plain occupants, and the social behaviours toward flood problems.
- e) the <u>political component</u>, which involves the legal and administrative aspects, such as land regulations and development policies on a specific flood plain.

INPUT (Stimulus) .Climatological event .Time, etc. OUTPUT (Response) .Runoff .Overflow

.Flood Damage

Three things are noteworthy in Figure 3. First, the INPUT represents the external parameters, such as precipitation, storm, and time, which are beyond the control of the environment. Secondly, the OUTPUT represents the flood runoff and flood damages which are affected by the input and the status of those five components. Thirdly, these five components, which include a group of factors individually, are all interrelated, interactive, and contain conflicts implicit in the problem environment. This depicts the problem that exists in reality.

In the system, each component responds to a stimulus (input) according to its intrinsic nature, but the actural stimulation it receives and its subsequent actual impact to the system is conditioned by the interaction of other compo-For example, the behaviours and impacts from social nents. and political components are influenced by the combination effects of economic, engineering and physical aspects. Similarly, the responses of economic, engineering, and physical components in the system are significantly affected and accomodated by other components. Therefore, the output (flood damage) is a dynamic, composite result from all the ingredients comprised in the environment as shown in Figure 3.

As urbanization continues on floodplains, more and more properties are placed on inundated areas with risk. It is very important that the consequences and potential flood

-22-

damage can be predicted and analyzed prior to the implementation of future urban activities in order to provide a sound base for land planning and quantitative information for flood control alternative evaluation. Normally, historical damage data is applied to inundated areas where land use remains unchanged. However, as urbanization continues, the changes in land pattern and intensity with time prevent the direct use of historical damage records. Therefore, a need exists to develop a mathematical model to simulate the outcome of future potential flood damage.

3.3 <u>VARIABLE/PARAMETER IDENTIFICATION AND MODEL</u> FORMULATION

Recognizing the complexity of the flood problem, it is extremely difficult to measure flood damages, particularly the intangible and uncertainty damages, in a accurate and comprehensive manner. However, the scope of this study is limited to the measurement of direct flood damages. These losses are further classified into residential, commercial /industrial, amd agricultural losses according to the pattern of land-use. After carefully examining the flood problem, exploring the environment, and analyzing the inter-relationships among these five components, six factors are identified and extracted from this complex system as the constraints which have direct and significant impacts on future flood damages. These include:

- a) <u>Property value(Pv</u>), which comprises the economic value measured in dollars per acre of land, structures, and their contents located on flood plains.
- b) <u>Damage cost factor(Kc</u>), which represents the damage cost in percentages of property cost per foot of depth of flooding.
- c) <u>Intensity of urbanization(Iu)</u>, which represents the percentages of area used by urban activities on flood plains.
- d) <u>Cost index (Ci)</u>, which represents the changes in percentages of flood damages cost according to inflation.
- e) Flood severity (Fs), which represent the severity of flooding measured by the difference of total runoff volume (Vt) and the volume of channel conveyance (Vc) in acre-feet.
- f) <u>Ratio of inundated land</u> (<u>Ri</u>), which represents the fraction of area on floodplains that are inundated by excess flood waters.

Based on equation 2.2, developed by James and Lee $(1971)^{34}$, these six factors described above are assumed to have a linear relationship with the direct potential flood damage (FD). This can be expressed as:

$$FD = P_{\mathbf{v}} \cdot K_{\mathbf{c}} \cdot C_{\mathbf{i}} \cdot I_{\mathbf{u}} \cdot (V_{\mathbf{t}} - V_{\mathbf{c}}) \cdot R_{\mathbf{i}}$$
(Eq. 3.1)

where all the terms are as defined previously. The dimensions of each term are listed as :

FD = direct potential flood damage in dollars,

-25-

Pv = property value in dollars per acre,

KC = damage cost factor in % of property cost per foot
 of flooding water,

Ci = cost index in percentage (%), unitless,

Iu = intensity of urbanization in percentage (%),

unitless,

Vt-Vc = excess volume of floodwater in acre-foot, Ri = ratio of inundated land, unitless.

Check the consistency of units applied in equation 3.1 as follows:

(\$) = (\$/acre)(\$/ft)(unitless)(unitless)(acre-ft)(unitless) This proves that the dimensions on the left side are the same as that on the right side which indicates that this equation holds logically and consistently with related subjects. The individual parameters and variables in this equation will be further elaborated and verified in the next section.

3.4 <u>METHODS TO DETERMINE PARAMETERS AND VARIABLES</u>

This section describes the effects of the factors, parameters or variables, included in the model developed previously, and the procedures used to determine and verify those factors.

3.4.1 Property Value (Pv)

The total property value of a urban lot or tract varies with the size, type of structure, content of structure, and location of the lot. In general, Pv can be estimated as:

$$P_{..} = L + S + C$$
 (Eq 3.2)

where L, S, and C represent the market value for land, its structure and contents of the structure, respectively. The land value is normally computed on a front-foot basis for urban area or on acreage basis in open country (Chapin, 1965). Since urban activities are the main concern, the land value is estimated in order to combine the structure value on a square-foot basis.

Types of structures are classified into two major categories: residential and commercial/industrial. The residential catagory is further divided into four groups: (1) single family, (2) duplex, (3) multi-family unit, and (4) mobile home, whereas commercial/industrial category includes four major types of structures as classified according to the construction permits authorized by the Community Development Department of Oklahoma City. These types are shopping centers, offices, and other commercial and industrial structures. The maket values of the major type structures as mentioned above can be estimated by conducting a survey through the following sources: Census of Population and Housing, Research and Economic Development Division, urban

-26-

construction contractors, and realtors. Then, the average total structure value for both categories is estimated based on the square-foot price by multipling the number of structures of each type per acre by the market value of each type surveyed from samples and summing up the different types of structures by using a weight factor. This relationship is shown as:

$$S_{t} = \Sigma W_{i} \cdot S_{i} \cdot N_{i} / \Sigma W_{i}$$
 (Eq. 3.3)

where, St = the average total structure value in dollars per acre,

- Wi = the relative weight for structure type i
 in percentages,
- Si = the average structure value of type i in dollars
 per unit,
- Ni = the maximum dwelling units of structure type i per acre of urban land.

For the building content value, it is usually taken as a percentage of the structure value. For example, a Federal agency used an assumption of 32% of the structure value to compute the content value in conducting a flood study (Grigg, 1975)²⁶. Herein, 30% of the structure value is assumed to compute the content value for residential, commercial, and office buildings. However, the content value of industrial buildings may vary significantly with types of industry. A survey census was conducted for manufacturing

and industries, and county business patterns (U.S. Department of Commerce, 1972, 1977, 1980) to identify the major groups of industry. Then, the total content value was calculated as the weighted average of measurements of the major industrial groups surveyed from samples. This can be computed as:

$$CI_{t} = \Sigma W_{i} I_{i} / \Sigma W_{i}$$
 (Eq. 3.4)

where, CI = the average total industrial content value.

Ii = the content value of industry type i.

Wi' = the relative weight for industry type i.

Tables 1, 2, and 3 represent the estimated results for residential and industrial/commercial market values surveyed in the Oklahoma County area.

9-

<u>Table</u> 1.

ESTIMATION	OF	RESIDENTIAL	PROPERTY	VALUE
-------------------	----	-------------	----------	-------

.

Type of Structure	Ni (unit/acre)	Si (\$/unit)	Wi (%)	
Single Family Duplex Multi-Family Mobile Home	4 10 15 10	60,000 46,000 40,000 32,000	70 15 10 5	
<pre>++++++</pre>				
Note: Ni, Si, Wi, and St were defined in eq 3.3				

<u>Table</u> 2,

.

ESTIMATION OF INDUSTRIAL CONTENT VALUE

Type of Industry	Ii (k \$/unit)	Wi (%)	
+=====================================			
General Service	300	31	
Retail	260	26	
Whole Sale Trade	500	10	
Contract Construction	400	10	
Manufacturing	1540	6	
Machinery	500	5	
Transportation	2000	3	
Furniture Stores	300	5	
Mining	1500	5	
Resulting Estimations: CIt = 548,000 \$/unit industry * CIt'= 27,400/acre			
* averaging of 15314 industry units established in Oklahoma County			
Note: Ii, Wi, and CIt were defined in eq 3.4			

-	3	1	-

<u>Table</u> 3.

،				
Type of Structure	Ni	Si	Wi	Ci
	(#/acre)	(K \$/#)	(%)	(vary)
Shopping Center	0.50	805	15	30% of Si
Office	1.00	420	37	30% of Si
Other Commertials	1.00	189	28	30% of Si
Industry	0.20	241	20	table 2
Resulting Estimation: Pv = 386,000 \$/acre Note: Ni, Si, Wi, and Ci were defined in eq 3.3 & 3.4				

ESTIMATION OF COMMERCIAL/INDUSTRIAL PROPERTY VALUE

3.4.2 Damage Cost Factor

Several federal agencies have proposed a series of depth vs. damage curves (TVA, 1969; USACE, 1970; FIA, 1970; USDA, 1970). These results are scattered due to diverse sources of data. However, the revised depth-damage relationship developed by the Federal Insurance Administration (FIA) appears to be most resonable because the results have been based on a substantial data base (Grigg, 1975)²⁶ As a result, damage is exhibited as percentages of market value according to the classification of structure type. Damage increases as the depth of flooding increases for each type of structure. In order to find the relationship between percentages of damage and depth of flooding, a proposed linear model is:

$$Y = a + K_{c} \cdot X$$
 (Eq. 3.5)

where, Y = damage in percentages of structure value,

X = depth of flooding in feet,

a = interceptor,

Kc= percentages of damage per foot of flooding.

A regression analysis was performed by using the statistical analysis system program $(Barr, 1976)^5$. The results are shown in Table 4. Except for curve 10, which represents mobile homes, the other types of structures exhibit high values of R-square (R^2) , and very low values of the significance probability for Model F (PR > F). This indicates a very good fit for the model proposed by equation 3.5. Kc values are fairly consistent among all types of structures except for mobile home. Therefore, a general model is attempted for all types of structures excluding mobile homes. The results from regression analysis yield:

 $R^2 = 0.857$, PR>F = 0.0001, and Kc = 2.91

Statistically, R^2 ranges from 0 to 1. The higher the R^2 value, the better the fit of the model. A value of 0.857 indicates a fairly good fit for the proposed model. Also, the F value and PR>F value from SAS output are equivalent to the results of a t-test for testing the hypothesis that the regression parameter equals zero. A very small value of PR>F, such as 0.0001 in this case, implies that the parameter (Kc) is not likely to be zero, and the independent variable (X, depth of flooding) contributes significantly to the model. Therefore, the Kc value resulting from the general linear model is again verified to be acceptable for all types of structures except for the moble home which was determined separately as shown in Table 4.

4			L	
 Structure 	R ²	F value	PR > F	Kc (%)
curve #1 curve #3 curve #5 curve #13 curve #18 curve #23 curve #10	0.873 0.969 0.911 0.967 0.949 0.961 0.750	89.80 539.85 143.62 380.29 321.36 364.91 74.96	0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	3.14 2.55 3.03 3.66 2.86 3.30 11.07
 average except #10 	0.857	591.57	0.0001	2.91

RESULTS OF DEPTH-DAMAGE REGRESSION ANALYSIS

where: curve #1 = one story, no basement curve #3 = two or more stories, no basement curve #5 = split level, no basement curve #10 = mobile home with foundation curve #13 = one story with basement curve #18 = two or more stories with basement curve #23 = split level with basement

-34-

<u>Table</u> 4.

R² = ratio of the sum of squares fit the model divided by the sum of corrected squares

F = ratio of the mean square of model divided
 by the mean square of error

PR>F = the significance probability when the parameter equals zero

Kc = damage cost factor

3.4.3 Cost Index (Ci)

Inflation occurs when the dollar value shrinks with The question may be raised as to how inflation aftime. fects potential direct flood damages. It is anticipated that the changes of land-use pattern and intensity with time may change the values of land and structures. It is not a straight forward issue because it involves several variables and complex interactions between variables. In general, the land value intends to appreciate as time goes on, while the structure value intends to depreciate with time. If these two effects are assumed to be offset by each other, the changes in service costs with time, such as repairment for flood damages, will still rise as a result of inflation. In order to account for the effect of inflation with time, the cost index (Ci) is included in the flood damage model (Eq. 3.1) to accomodate the changes of cost for potential flood damages.

The consumer price index (CPI) for 1967 to 1982 was selected as the data base to compute Ci, since the CPI was surveyed and compiled based on diverse sources and substantial data. The CPI has been revised and converted to the reference base for the year 1967 equivalent to 100 in compliance with recommendations of U.S. office of Management and Budget (Bureau of Labor Statistics, 1982)¹⁰. For the purpose of finding the correlation between the cost index with time, several hypotheses were proposed, and the regression analysis was performed. Finally, a geometrical progression relationship between CPI and time (in years) was tested as:

$$CPI = b \cdot (1+r)^{4t}$$
 (Eq 3.6)

This can be converted to a linear relation through a logarithmic transformation as:

$$Log(CPI) = Log b + (^{t}) \cdot Log(1+r)$$
(Eq 3.7)

where, $\triangle t =$ year difference from 1967

r = inflation rate per year

b = a correlation constant

The regression analysis yields the following results:

r = 0.08, b = 0.980, and PR>F = 0.0001

These features strongly support that the cost index increases as a geometrical progression rate with time, and the inflation rate yearly has been computed to be around 8%. These findings can be used to project the future cost index as:

$$CI_{t12} = \frac{CPI_{t2}}{CPI_{t1}} = (1+r)^{t2-t1}$$
 (Eq 3.8)

where subscripts 1 & 2 represent the current year t1 and future year t2; CI_{t2} is the cost index for future year t2 based on current year t1 price. For example, the cost index for year 2000 can be projected as:

$$CI_{2000-1983} = (1+r)^{2000-1983} = 19.6$$

Therefore, the future potential flood damage can be estimated to account for the effect of inflation with time.

3.4.4 Intensity of Urbanization (Iu)

Urbanization is a characteristic of our time. It may be regarded as the conversion of rural areas to cities and suburban communities resulting in human activies involving changes in land occupancy and use (Chapin, 1965)¹². According to the United Nation Water Conference (Lindh, 1977)³⁹:

"....On a world-wide scale, the total growth during this century has been accompanied by a continuous increase in the ratio of urban to rural dwellers, and it is expected that by the year 2000, half of the world's population will be urban. Among the obvious effects of the migration to urban areas are increased population density, and increased density of residential, industrial and commercial buildings. Paradoxically, the land occupied by urban population is only a small fraction, often less than 5%, of the total land area." Indeed, the concentration of population and urban activities in small areas intensifies urban land use. As urbanization continues on floodplains, there is more property invesment with risk of flooding which will result in the increase of potential flood damages. Therefore, the intensity of urbanization (Iu) is selected as one of the variables which effect the outcome of potential flood damages.

Iu can be computed by taking the ratio of the space devoted to infrastructural and urbanal activities to the total land area for a particular tract of land. To provide an advantage of convenience for future land planning and development, the relationship between the intensity of urbanization and population density (Pd) are further investigated based on census of population (1970-1980) and land areas surveyed according to census tracts within the Oklahoma City area (Research and Economic Development Division, OKC, 1982)⁴⁶. The correlation between the intensity of urbanization and population density for 37 tracts located in Oklahoma City is tested by the regression analysis. The results from the SAS program yield the following relationship with a R² value of 0.95 and PR>F of 0.0001.

$$I_{u} = 0.011(P_{d})$$
 (Eq. 3.9)

where Iu is the percentage of devoloped urban land, and Pd denotes the population per square mile.

Though the relationship between Iu and Pd was only tested locally, a similar function may be established for other areas as:

$$I_u = k \cdot P_d$$
 (Eq. 3.10)

where k represents a correlation constant. This relationship provides a quantitative manner to estimate the urban land which may be developed in the future based on population projections.

3.4.5 Flood Severity (Fs)

An essential step in estimating flood damages is estimating the severity of the flooding produced by a given flood. Before proceeding further, it is important to define this subject first. Different people view flooding differently because floods are complex phenomena. According to Chow (1956)¹³, "A flood is a relatively high flow which overtaxes the natural channel provided for the runoff." A more general definition was provided by Ward (1978)⁶² as "A flood is a body of water which rises to overflow land which is not normally surbmerged.". On the whole, floods always imply damages on inundated land. Floods can result from a number of basic causes, such as climatological events, coastal storm surges, streamflow and tidal interaction, earthquakes, landslides, and other phenomena (Ward, 1978)⁶². It can occur on riverine areas as well as coastal areas. The main emphasis herein will be on river floods generated by climatological events, predominantly rainfall.

A flood hydrograph as depicted in Figure 4 provides a good perception of a given flood. This diagram presents an example of a flood hydrograph which traces the magnitude of discharge against time during a flood event. It contains three major parts: rising limb, crest segment, and falling Td, Tc, and Tb denote time of storm duration, time of limb. concentration, and base time of the given flood respective-P signifies the peak discharge. The area covered by ly. the section APB yields the total runoff volume; whereas the remaining area contributes to the baseflow. The shape of the flood hydrograph, which provides a good insight for flood severity, may be modified by the climatological input as well as the variations of basin and channel characteris-For example, the hydrograph may have a low peak cortics. responding to a prolonged-time base for a sluggish stream; in contrast, a flashy stream may have a high peak and a short-time base resulted from a same flood event as shown in Figure 4.

Several variables can be used to measure the severity of flooding. Parker, et al, (1972)⁴⁷ suggested that stage, frequency, discharge rate, duration, and velocity have major effects on the severity of flooding. Among them, stage and discharge rate are most commmonly used as indices to measure flood severity.

-40-

Water stage has the advantage that it may be measured directly; while discharge rate can provide a basis to predict the flood magnitude. However, the total severity depends on the areal extent of flooding to each depth which varies with the topography of floodplains, as well as duration and velocity. The discharge rate reflects velocity implicitly, but it does not include flood duration. In fact, a more comprehensive way to measure flood severity would be the quantitative difference between the total runoff volume (Vt) and the channel conveyance (Vc). The former, Vt, reflects the magnitude of flood, velocity, and duration since it is computed by integrating the direct runoff discharge rate with flood duration. The channel conveyance (Vc) denotes the carrying capacity of a stream channel for a period It reflects the volume and the velocity of traveling time. of floodwater in a channel. The difference between Vt and Vc is the actual volume of flood water which overtops the banks of a channel and inundates adjacent land.

In summary, the severity of flooding can be measured as:

$$V_{e} = V_{t} - V_{c}$$
 (Eq. 3.11)

Where Ve is the excess volume of floodwater overflowing land in acre-foot; Vt and Vc are the same as previously defined. Besides the merit of taking account of the effects of depth, magnitude, velocity, and duration, this way of measuring flood severity actually allows two variables, Vt and Vc, to be modified simultaneously. For example, the flood severity of a given flood can be measured for a stream with the natural channel condition compared with other conditions of alternatives in which Vt and Vc can be altered with the changes of surface storage or channel capacity. Therefore, this method has the advantage to provide a sound basis for alternative evaluation and selection concerning the severity of flooding. The HEC-1 and the HEC-2 (Water Surface profile,1982)³³ programs can be used to compute Vt and Vc, respectively. The detail procedures will be described in chapter IV.

3.4.6 Ratio of Inundated Land (Ri)

The nature of the flood is closely related to the physical characterisics of basin, channel, and channel network in the following aspects: topography, soil, geology, and land cover. As illustrated in Figure 5, some characteristics are relatively stable and others are very comparatively variable. The effects of variable characteristics are very complex due to the interactions between climate, soil, geology, vegetation cover and man's influence. However, the interactions of these complex variables can be modeled and treated by using HEC-1, and the outcome, as expected, may have some effects on peak discharge, time of concentration, total runoff volume, and/or channel conveyance.

Figure 5. PHYSICAL CHARACTERISTICS OF A WATERSHED

Source: After Ward, 1978

-44-

The stable characteristics are considered relatively unchanged. They are more related to the aspect of topography, such as area, slope, length, width, and shape of a ba-Among them, area is probably the most important elesin. ment because it affects the time of concentration and the total volume of runoff generated by a given flood event. As has been noted, not all the total volume of runoff overflows floodplains since the channel carries a portion of floodwa-The fraction of inundated area (Ri) ter. during a flood event depends on the width and the length of path where the floodwater travels. In order to identify and determine Ri, the investigation starts with channel cross section and floodplain outline as depicted in Figure 6.

First, the conventions used in this diagram are defined as follows:

Ti = the top width of floodplain at cross section i, Bi = the channel bank width at cross section i, Yi = the depth difference between the flood surface elevation and the channel bank surface level at cross-section i, S1/Sr = the slopes of left/right side of overbank which are equivalent to the values of 1/Zl and 1/Zr, ^Ali/^Alr = the portions of cross-sectional area on left/right sides of overbank land at cross-section inundated by a given flood, Ai' = the channel cross section area at cross section i,

•

٠

Figure 6. CHANNEL AND FLOODPLAIN CROSS SECTION PROFILE

- Ai = the trapezoidal area bound by denotions a, b, c, and d,
- ^ΔLi = the channel length between cross section i-1, and cross section i.

Wi = the average width of Ti and Bi.

Furthermore, the following conditions are assumed herein:

- a) Channel has a rigid boundary.
- b) The geometry of channel and the slope of overbank land remains fairly consistent between cross sections.
- c) The channel encroachment is "squeezed" to the boundary of channel banks which is the maximum allowance according to the FIA floodway regulation.

According to Figure 6, the following relationships exist for any cross-section i in the channel.

$$A_{i} = (0.5) \cdot (T_{i} + B_{i}) \cdot Y_{i}$$
 (Eq. 3.12)

$$A_{1i} + A_{ri} = A_i - (B_i)(Y_i) = 0.5(T_i - B_i)Y_i$$
 (Eq. 3.13)

Also, Ti can be computed as:

$$T_{i} = B_{i} + (Z_{1} + Z_{r}) \cdot Y_{i}$$
 (Eq. 3.14)

Which yields,

$$Y_{i} = (T_{i} - B_{i}) / (Z_{1} + Z_{r})$$
 (Eq. 3.15)

Combining the above equations results in:

$$\frac{A A_{1i} + A_{ri}}{A_{i}} = \frac{T_{i} - B_{i}}{T_{i} + B_{i}}$$
 (Eq. 3.16)

The excess volume of floodwater (Ve) for a given flood event can be determined by taking triple integral of the depth (Y), the width (W), and the length (L). It can be denoted as:

$$V_{e} = \iiint f(W \cdot Y \cdot L) dW \cdot dY \cdot dL \qquad (Eq. 3.17)$$

If the channel is assummed to be evenly subdivided to m cross-sections, then Ve can be found by substituting and extending the above equation to the case of discrete segments.

$$V_e = \Sigma W_i \cdot Y_i \cdot \Delta L_i = \Sigma 0.5 (T_i + B_i) \cdot Y_i \cdot \Delta L_i \qquad (Eq. 3.18)$$

Combining with equation 3.12, yield the following relationship:

$$V_e = \sum A_i \cdot \Delta L_i$$
 (Eq. 3.19)

By the same token, the volume of floodwater actually inundates floodplain (Vi) can be computed as:

$$V_{i} = \sum (\Delta A_{i} + \Delta A_{ri}) \cdot (\Delta L_{i})$$
 (Eq. 3.20)

The ratio of Vi to Ve yields Ri as:

$$R_{i} = \frac{V_{i}}{V_{e}} = \frac{\sum (\Delta A_{i} + \Delta A_{ri}) \Delta L_{i}}{\sum (\Delta A_{i}) (\Delta L_{i})}$$
(Eq. 3.21)

Since the cross-sections are assummed to be evenly divided, the above equation can be simplified to:

$$R_{i} = \frac{\sum (\Delta A_{1i} + \Delta A_{ri})}{\sum A_{i}}$$
(Eq. 3.22)

Combining with equation 3.16,

$$R_{i} = \frac{\Sigma(T_{i} - B_{i})}{\Sigma(T_{i} + B_{i})}, \quad \text{or} \quad R_{i} = \frac{\overline{T}_{i} - \overline{B}_{i}}{\overline{T}_{i} + \overline{B}_{i}} \quad (\text{Eq. 3.23})$$

Where \overline{T}_i and \overline{B}_i represent the average weighted values of \overline{T}_i and \overline{B}_i , respectively. \overline{B}_i or \overline{B}_i can be obtained from field surveys, while \overline{T}_i or \overline{T}_i can be determined by using the HEC-2 program to compute water surface profiles. The detail will be elaborated in chapter IV.

As assumed earlier, the maximum encroachment for urban land is the boundaries of the channel banks. This implies that the floodway is delineated evenly with channel banks which yields a maximum area for urban use on floodplains. In general cases, the Bi value represents the width of the floodway at cross-section i, and it can be determined by using the HEC-2 program as it will be discussed in the next chapter.

Chapter IV METHODOLOGY

This chapter describes the methodology and integrated programs involved in the application of the flood damage model which was developed in the previous chapter. It uses the HEC-1 program to simulate basin hydrologic processes, employs the HEC-2 program to model channel hydraulic characteristics and to compute water surface profiles, and ultilizes the expected annual damage computation, featured in HEC-1, as the basis for flood damage economic analysis. This integrated approach can be very useful in evaluating scenarios and alternatives concerning future land use and flood control projects. In fact, this chapter delineates the following aspects: (1) basin hydrologic simulation with HEC-1, (2) water surface profiles and floodway encroachment using HEC-2, (3) expected annual damage computation, and (4) summary of the methodology.

4.1 BASIN HYDROLOGIC SIMULATION WITH HEC-1

A powerful feature of HEC-1 is its capability to model the flood runoff from a single storm event for complex river basins. The modeling includes describing the topographic structure of the basin, organizing the logic network between

- 50 -

subbasins and stream channels, defining the parameters, and simulating the rainfall-runoff response of the basin. Rainfall is computed based on lumped basin parameters including loss rate, unit hydrograph, and routing criteria. The algorithm to compute the runoff volume (Vt) and flood hydrographs using HEC-1 is illustrated in Figure 7, in which the runoff is generated by transforming the rainfall excess to a unit hydrograph through the processes of routing and combining local subbasins to the basin outlet.

FIGURE 7: ALGORITHM OF RAINFALL-RUNOFF MODEL USING HEC-1

4.1.1 <u>Modeling Processes</u>

The essential processes involved in basin hydrologic modeling are described briefly as below (HEC-1 manual, 1981).

4.1.1.1 Topography

The topographic structure of the basin is modeled in the program by defining the channel network and routing reaches as shown in Figure 8. Hydrographs are computed, routed, and combined in accordance with the data sequence provided. In this manner any complex basin comprising large number of subbasins and reaches can be simulated rationally and accurately.

4.1.1.2 Precipitation

There are several forms of precipitation. Herein, rainfall is considered to be predominant and the terminology is used throughout this study to refer to precipitation. In general, two types of rainfall data can be used as input historical events and hypothetical events. data for HEC-1: The historical storm data may be obtained from weather stations and local goverment agencies; the subbasin total precipitation can be computed according to weights provided from each station or specified as an average total precipitation with a temporal pattern for distributing the total precipitation. For hypothetical storms, the program can compute automatically the Standard Project Storm (SPS) using the criteria developed by the Corps of Engineering $(1952)^{58}$, the Probable Maximum Precipitation (PMP) using criteria de-1956, and veloped by the National Weather Service (NWS, synthetic storms for specific frequencies using data developed by the NWS (Hydro-35, 1977; TP-40, 1961)⁴³. Thus, precipitation data, historical or hypothetic, can be supplied directly or computed in the program to simulate various storms.

4.1.1.3 Loss Rate

There are four techniques available in HEC-1 to compute precipitation loss rate, namely: (1) initial and constant method, (2) HEC exponential method, (3) SCS method, and (4)

-55-

Holtan method. In this study the SCS method (S.C.S., 1975)⁵³ is selected because it has the advantage to signify the combined effects of soil type, vegetation, land use, and antecedent soil moisture conditions.

The curve number (CN) values can be estimated from Table 5 developed by the Soil Conservation Service (SCS) based on extensive experiments. As illustrated in that table, CN values vary with soil group, land use, and land treatment. Also, the CN value is affected by the antecedent moisture condition as shown in Table 6. This can be used to adjust the CN values according to the moisture condition specified. The CN values for urban areas, anticipating future developments, also can be estimated and modified based on categories of land use and degrees of imperviousness as shown in Figure 9. To compute the composite runoff CN value for each subbasin, a weighted average method is used as:

$$CN = CN_i \cdot W_i / \Sigma W_i$$
 (Eq. 4.1)

where, CN = weighted composite CN value in a subbasin,

CNi = CN value for certain land use type i,

Wi = relative weight of area in percentages

for land use i,

Thus, changes of rainfall loss due to changes of land use in either pattern or intensity can be accounted through modifying CN values.

		HYDROLOGIC SOIL GROUP			
LAND USE DESCRIPTION	A	В	С	D	
Cultivated land ¹ : without conservation treatment		81	88	91	
: with conservation treatment	62	71	78	81	
Pasture or range land: poor condition	68	79	86	89	
good condition	39	61	74	80	
Meadow: good condition	30	58	71	78	
Wood or Forest land: thin stand, poor cover, no mulch	45	f.6	77	53	
good cover ² /	25	55	70	77	
Open Spaces, lawns, parks, golf courses, cemeteries, etc.					
good condition: grass cover on 75% or more of the area	39	61	74	SO	
fmir condition: grass cover on 50% to 75% of the area		69	79	84	
Commercial and business areas (85% impervious)	89	92 .	94	95	
Industrial districts (72% impervious).		88	91	93	
Residential: ^{2/}					
Average lot size Average \$ Impervious ¹]			
1/8 acre or less 65	77	85	90	92	
1/4 acre 38	61	75	83	87	
1/3 acre 30	57	72	81	86	
1/2 acre 25	54	70	80	85	
lacre 20	51	68	79	81	
Paved parking lots, roofs, driveways, etc. ^{3/}	98	98	98	98	
Streets and roads:					
paved with curbs and storm severs $\frac{3}{2}$	98	98	98	98	
gravel	76	65	89	91	
dirt		82	87	89	

Table 5. RUNOFF CURVE NUMBER OF HYDROLOGIC SOIL COVER COMPLEX

1/ For a more detailed description of agricultural land use curve numbers refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, Aug. 1972.

 2^{\prime} Good cover is protected from grazing and litter and brush cover soil.

2/ Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to lawns where additional infiltration could occur.

2/ The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

 $\frac{1}{2}$ In some warmer climates of the country a curve number of 95 may be used.

From: National Engineering Handbook, Section, Hydrology, 1972

Table	6.
the second se	

+		
CN for	Corresponding CN f	For Conditions
Condition II	I	III
+		
	100	100
100	100	
95	87	99
90	78	98
85	70	97
80	63	94
75	57	91
70	51	87
65	45	83
60	40	79
55	35	75
50	31	70
45	27	65
40	23	60
35	19	55
30	15	50
25	12	45
20	9	39
15	4	33
10	2	26
5	2	! 17
1 0	0	0
1		1
+		f

CN VALUES MODIFIED WITH ANTECEDENT MOISTURE CONDITION

where:

Condition I: soils are dry but not to wilting points; satisfactory cultivation has taken place.

Condition II: average conditions.

Condition III: heavy rainfall, or light rainfall and low temperatures have occurred within the last 5 days; saturated soil.

4.1.1.4 Unit Hydrograph

A unit hydrograph is defined as the hydrograph that results from one inch of excess rainfall during a particular duration of storm as shown in Figure 10. It can be input directly to the program or synthesized from supplied parameters. Three techniques are available to synthesize the unit hydrograph: Clark, Snyder, and SCS methods.

The Clark method has advantages of directly computing unit hydrographs and a means of adjusting for changes in drainage patterns through the modification of parameters. There are two parameters required in using the Clark method: (1) the time of concentration (Tc), known as the travel time of water from the most upstream point to the downstream outflow location, and (2) the storage coefficient (R), described as the subbasin natural attenuation characteristics. The Clark method translates incremental instantaneous runoff from subbasin to the basin outlet according to the travel time of overlands, then routes the runoff through a linear reservoir to account for the basin storges. The instantaneous routed runoffs are then averaged to produce the unit hydrograph. Both Tc and R can be estimated by using charts, graphs, or empirical formulae (Linsley, 1975; ⁴⁰ Thomas 1975).⁵⁵ However, HEC-1 has the capability to optimize Tc and R, and determines the "best-fit" unit hydrograph by automatic calibration of parameters.

-60-

* Source: After Clark, 1971

4.1.1.5 Base Flow

Conventionally, runoff can be divided into two major parts: direct surface runoff and base flow as depicted in Figure 11. Base flow is normally contributed by the portion of water which percolates through soil layers until it reaches the water table (Linsley, 1975)⁴⁰. HEC-1 uses a logarithmic decay function to simulate the base flow. The program requires three parameters to describe the base flow and the recession. They are: (1) starting flow (Qs), (2) recession flow (Qr) and (3) recession ratio (RR). By this means, the direct surface hydrograph can be separated from the baseflow.

4.1.1.6 Routing

There are several expedient techniques available in HEC-1 to simulate channel and/or reservoir routings. These include the methods of Muskingum, Modified Puls, Kinematic,Straddle-Stagger, Working R & D, Normal- Depth, and Tatum method. The bases of these techniques are well described in HEC-1 and other supplemental documents (HEC, 1960;²⁸ Feldman, 1981)²². Herein, the Muskingum and Modified Puls methods, which will be applied in the case study in chapter V, are briefly mentioned as follows.

The Muskingum method, generally applied to channel routing, determines reach outflows based on inflows and coefficients which describe the reach travel time and the storage characteristics. The relation among storage (S), and inflow (I), and outflow (O) can be expressed as:

$$S = K[x \cdot I + (1 - x)0]$$
 (Eq. 4.2)

where K and x denote the reach travel time and storage coefficient respectively. Both K and x, required as parameters in the program, can be derived from charts or graphs or optimized by HEC-1. This technique is still widely used because of its simplicity and effectiveness in application.

The Modified Puls method (Chow,1964)¹⁵ uses a storagedischarge relation based on a solution of the continuity equation as:

$$O_2/2 = (I_1 + I_2)/2 - (S_2 - S_1)/\Delta t - O_1/2$$
 (Eq. 4.3)

where $^{\Delta}t$ denotes the routing period, subscripts 1 & 2 represent the beginning and end of the routing period; 0, I, and S were previously defined. This method is appropriate for both channel and reservoir routings. Two parameters are required: storage volume (SV) and discharge (SQ) which can be obtained from the output of a water surface profile (HEC-2) computer run. This approach has several advantages over others: (1) channel characteristics can be simulated as closely as possible, (2) the overbank storage is taken into consideration, and (3) the continuity is maintained between the surface profiles of different reaches.

4.1.1.7 Stream Network

The basin modeling in HEC-1 must begin at the uppermost subbasin of a stream branch and proceed downstream by converging tree-like network as shown in Figure 8. The sequence of the elements (subbasins and reaches) supplied in the data deck has to represent the logical drainage pattern of the modeled basin. For example, as illustrated in Figure 8, the runoff from subbasins 101 to 102 must be computed and combined before routing through reach 1030 and computing the runoff from subbasin 103. After the routing is specified and performed, the local runoffs at subbasins 103 and 104 are computed, routed and combined with the local inflow at subbasin 105 at which the job is complete.

-64-

-65-

4.1.2 Assumptions and Limitations of HEC-1

The program assumes that the basin hydrologic processes can be simulated by lumped parameters which reflect the average temporal and spatial conditions of a subbasin. Therefore, care must be taken for selecting the rainfall duration-time interval and size of basin component so that the average parameters will represent the subbasin characteristics without creating significant deviations from real con-As noted earlier in chapter 2, the major limitaditions. tion of HEC-1 is that this program only simulates a single storm event which does not account for the soil moisture recovery during periods of zero precipitaion. However, the advantages of HEC-1 as discussed previously outweights this limitation. Besides, the rainfall loss rate may be adjusted for the antecedent moisture condition by using SCS curve number technique. Regarding the parameter optimization, the program uses a univariate gradient procedure (Beard, 1966)⁷ which does not quarantee a global optimization; therefore, a reasonable estimate must be initiated to insure that the procedure does not arrive at a local optimum. Furthermore, basin and channel routing are majorly performed by hydrologic methods which take less consideration of overbank storage and the attenuation of floodplains. However, HEC-1 has the option to use kinematic theory which employs hydraulic elements including channel shape, length, slope and roughness to simulate overland and channel routings. In this

study, HEC-2 is used to obtain storage-outflow data. Those data are then used to join with the HEC-1 routing process to account for the effects of channel storage and floodplain attenuation.

4.1.3 Data Requirements and Input Structures

The basin hydrologic simulation requires parameters to describe the loss rate, baseflow, and routings occurring in each subbasin and reach. The general structure of input data is illustrated in Figure 12. Colume 1 & 2 in the first field are designated by two characters to specify the desired function. For example, BA denotes basin area; LS is for loss rate by SCS method. The program proceeds from upstream to downstream until a "ZZ" card is encountered which ends the job.

4.1.4 Program Overview and Output Format

HEC-1 is designed to accept input in card or record formats. Figure 13 outlines the overviews of program operations. As mentioned earlier, it is vital to input the data deck in the correct order and sequence to represent the topographic structure of the basin and the network between subbasins and channel reaches. Regarding the output format, the "ID" card can be used to specify the degree of detail. In general, computations for rainfall losses, excess, runoff volume, discharge rate, optimized parameters are tabulated upon request. A summary table, which includes peak flows,

	C	B B Combining Routing C
<u>c</u>	ard ID	Description
	ID .	Title
	IT	Time interval and beginning time
	10	Output control option for whole job
Runoff from Subbasin A	KK BA BF P L U	Subbasin A Area Base flow Select one precipitation method, use IN if necessary Select one loss rate method Select one rainfall excess transformation method
Subbasin B runoff	KK BA BF P_,L_,U_	Similar to above for Subbasin A
Combine	KK	Station name
A + B	HC	Indicate 2 hydrographs are to be combined
Route	KK	Station name
A + B to C	RL R	Channel loss optional Select one routing method
Subbasin C	BA	Similar to above for Subbasin A
runoff	BF P_,L_,U_	
Combine routed + C	КК НС	Station name Indicate 2 hydrographs are to be combined
	kk In Qø	Compare computed and observed flows
	32	End

Figure 12. Example Input Data Organization for a River Basin From: HEC-1 user, s manual, 1981

Figure 13. HEC-1 PROGRAM OPERATION OVERVIEW

* Source: HEC-1 programer's manual, 1981

.

accumulated drainage area, peak time, etc., is usually provided. Also, the scheme of the channel network can be traced by including a "DIAGRAM" card. In addition, hydrographs can be plotted in tables and/or graphs with time and sequence number for each ordinate. In short, HEC-l is versatile and effective in providing a great variety of output format.

4.1.5 <u>Computer Requirements</u>

HEC-1 requires a FORTRAN IV compiler and up to 16 input/output files. These can be stored on tape or disk. HEC-1 was originally developed and tested on UNIVAC 1108 and CDC 7600 (HEC-1 programmers manual,1981)³². It has been installed and modified to use the IBM-3081 at the University of Oklahoma. Table 7 lists the compiler time and memory required for a few tested computers. -70-

					·
	UNIVAC	CDC	CDC	HARRIS	IBM
1	1108	7600	Cyber175	500	1 3081
	1100	7000	Cyberry	500	5001

55-small 116

39.28

49-large

17.49

525

570

288

7.47

(K BITES)

Table 7. HEC-1 COMPUTER MEMORY AND TIME REQUIREMENTS

4.2 HYDRAULIC ANALYSIS WITH HEC-2

39

30

MEMORY

(K WORDS)

CPU (sec)

HEC-2 is now considered to be the most acceptable and widely used program for channel hydraulic analysis. It was originally developed by Bill S. Eichert in 1967 and has been modified with up-to-date information and increased capability and ease of use. The program is designed to simulate the hydraulic characteristics of channels, bridges, culverts, and weirs. It performs the steady, gradually varied flow computations for river channels of any cross-section under either sub- or supercritical flow condition. The effects of channel improvements, levees, and floodways on water surface profiles can be also simulated, computed, and assessed. The results of water profile and encroachment computations with HEC-2 yield important data, such as: (1) chnnnel capacity (Vc) which can be applied in the flood damage model and for channel design, (2) storage-outflow relation to join with HEC-1 for stream routing, and (3) flood areas and widths of given storms which can be applied to the flood damage model in computing the inundated ratio (Ri) as described in Chapter III.

Not all of the features built in the program are used in this study. This section concentrates on the following areas: (1) water profile and encroachment, (2) assumptions and limitations, (3) input structure and data requirement, (4) output format, and (5) computer requirements.

4.2.1 Profile Computations

The profile computation with HEC-2 is based on the solution of the one-dimensional Bernoulli equation with other losses equations. In fact, the follwing two equations are used and solved in HEC-2 by an iterative procedure to compute an unknown water surface elevation at cross-section 2 as depicted in Figure 14.

$$WS_2 + \frac{d_2V_2}{2g} = WS_1 + \frac{d_1V_1^2}{2g} + H_e$$
 (Eq. 4.4)

$$H_{e} = Ls_{f} + c \left| \frac{\alpha_{2} V_{2}^{2}}{2g} - \frac{\alpha_{1} V^{2}}{2g} \right|$$
 (Eq. 4.5)

11 4

where, WS1, WS2 = water surface elevations (ft) at

d1, d2 = velocity coefficients for flows

at cross-section 1 & 2,

g = acceleration of gravity (ft/sec²),

He = energy head loss (ft),

L = discharge-weighted reach length (ft),

Sf = representive friction slope for reach,

C = expansion or contraction loss coefficient.

HEC-2 uses the standard-step procedure to compute water elevation at a specific location (see Figure 14) by solving equations 4.4 and 4.5 iteratively. The procedures are summarized as follows (HEC-2 manual, 1981)³³:

- a) assume water surface elevation at cross-section 2:
 WS2,
- b) compute total conveyance (K2) and velocity head $(\alpha 2V2/2g)$ based on geometry and Manning equation,

- c) compute Sf with the options available in HEC-2, compute WS2 by combining eq 4.4 and 4.5
- d) compare the computed WS2 with the assumed WS2; repeat until the error is within 0.01 ft.

4.2.2 <u>floodway</u> encroachment

The concept of floodway and the impact of encroachment on water surface profiles are important aspects for planners, land developers, and engineers in balancing the economic gain from floodplain development aginst the resulting increase in flood hazards. The current policy regarding floodway determination is based upon a one-percent exceedance frequency flood of the existing condition of a floodplain. As shown in Figure 15, a 100 year floodplain is divided into two parts: a floodway and a floodway fringe. The floodway is designated to be kept free of encroachment in order to carry the selected 100-year flood discharge without raising the water surface more than one foot above that of the natural floodway; while the floodway fringe is assumed to be filled with solid for development (U.S. Corps of Engineers, 1972).

There are six option methods avalable in HEC-2 to specify encroachments for floodway determinations. The variations and detail procedures for these options are well described (HEC-2 manual, 1981)³³.

-74-

* Source: U.S. Water Resource Council, 1978

Figure 15. FLOODWAY SCHEMATIC

In this study, the floodway is computed so that the conveyance with the encroached cross-sections (at some higher elevation) is kept equal to that of the natural crosssection at the natural water level as shown in Figure 16 (method 4 of encroachment options). The encroachment stations are programmed so that an equal loss of increased conveyance due to higher water elevation is eliminated on each side of channel, if possible, to carry the original selected When half reduction of conveyance cannot be obdischarge. tained in one overbank, the other overbank makes up the difference so that encroached stations will not fall within the Table 8 illustrates the format of data input main channel. for the encroachment computer run. The overall procedures for floodway and encroachment determinations include the following steps:

- a) The water surface elevation and the conveyance are computed for the natural condition (without encroachment) as the first profile of a multiple profile run using HEC-2.
- b) The water elevation is delineated with an increment (one foot for example) and this increased value and the selected method is assigned in the INQ field of the ET card (see table 8). For example, a value of 10.4 is assigned, where "10" denotes the tenths of a foot allowed for increase in water elevation and "4" designates the method 4 of encroachment options.

c) The resulting conveyance and encroached stations are computed in the subsequent profiles. Additional computer runs may be made to meet the criteria of the designated floodway.

ENCROACHMENT METHOD 4

Figure 16. <u>A Scheme of Encroachment Lethod 4</u> (After HEC-2 User's Lanual, 1981)

•

Table 8 Encroachment Data Organization

CARD	YALUES	CONVENTS
13 - 13		Title information (natural profile)
	[NQ(J1.2=2)	Read 2nd field of ET and OT card.
JI	WSEL(J1.9)	Starting water surface elevation is specified here.
JŽ	ITRACE(J2.10=15)	Request flow distribution for natural profile.
J3	IVAR(J3.1+110), IVAR(J3.2-200)	Summary table 110 and 200 will be requested for summary printput.
NC QT		
	ENCFP(ET.2=0)	1st profile is natural profile.
ET	EHCFP(ET.3=8.4)	2nd profile is Method 4 with .8 foot rise.
	ENCFP(ET.4+10.#)	3rd profile is method 4 with one root rise.
XI GR		
xi [1
1	ENCFP(ET.2=0)	Ist profile is natural profile (no change).
ET	ENCFP(ET.3=7.4)	2nd profile is changed to 7.4.
	LmL+P(E1.4=3.41)	are provice is changed to 5.41. procee encroache ment stations (for the BT cards) will be the same as the downstream encroachments.
X1 GR	<u> </u>	
58		
	ENCFP(ET.2=0)	Ist profile is natural profile (no change).
ET	ENCFP(ET.3-7.11) (ET.7-STENCL) (ET.8-STENCR)	2nd profile is channed to Method 1 for bridge. Bridge encrochments (for both 8T and GR cards) are specified in the 7th and 8th fields of the ET card.
	ENCEP(ET.4=0)	Continue previous encroachment instructions.
X1 X2 BT		
	EN(59(57, 2-0)	lat empfile (a satural empfile (se chan-)
_	ENCEP(ET.3=15.3)	2nd profile is changed to Method 3.
ET	ENCFP(ET.4-10.5)	3rd profile is changed to Method 5.
XI		
GR		
- X1 GR		
EJ		End of data.
T1 - T3	· · · · · · · · · · · · · · · · · · ·	Title information (Method 4 encroachment).
	INQ(J1.2=3)	Read 3rd fields of ET and OT card.
10	STRT(J1.5=0)	Slope area method of starting should not be used for encroachment profile.
	WSEL(J1.9)	Starting water surface elevation specified here.
J2	MPROF(J2.1=2)	2nd profile.
TT - T3	1	Title information (Method 4 encroachment).
	INO(J1.2=4)	Read 4th fields of ET and OT card.
JI	STRT(J1.5=0)	Slope area method should not be used.
	WSEL(J1.9)	Starting water surface elevation specified area.
J2	NPR0F(J2.1=15)	Last profile, request summary printout.
3 blank cards		}
ER		End of run.

.

ENCROACHMENT DATA ORGANIZATION

.

-79-

4.2.3 <u>Computation Controls</u>

HEC-2 has the automatic ability to "balance" the unknown water surface elevation by an iterative procedure as mentioned earlied. In addition, the critical depth, known as the depth of critical flow at which the specific energy is a minimum value for a given discharge, can be computed by the program as a criteria to verify the flow regime and to assure the computed elevation is on the "right" side. For instance, the water elevation for a subcritical flow regime is expected to be higher than the critical elevation for a given cross-section; while the elevation is expected to be below than the critical elevation for flow in the supercritical regime. HEC-2 assumes the computed profile is either all subcritical or all supercritical. Either flow condition can be processed but must be done separately. If a change of flow regime is identified in the computation as shown in Figure 17, it prints out messages which may imply that either a local phenomenon (eg. hydraulic jump) occurs or a problem ("red-flag") exists in the assumed flow regime. Α different flow regime to restart the computation or additional cross-sections inserted in between the problem area to simulate the stream more detail is strongly suggested (HEC, Vol#6, 1975)²⁹ to ascertain the flow condition.

(O) subcritical run, (x) super critical run: (dashed line) critical; (solid line) actual.

Figure 17. TRANSITION FROM SUBCRITICAL TO SUPERCRITICAL FLOW (After Feldman, 1981)

-81-

4.2.4 Assumptions of HEC-2

The following assumptions are made in the profile and encroachment computations (HEC-2 manual,1981)³³:

- a) Flow is steady, which means the time variation with flow is not included in the energy equation.
- b) Flow is gradually varied, which is based in the premise that the hydrostatic pressure distribution domains at each cross-section.
- c) Flow is one-dimensional, the direction of the predominant velocity is parallel to the flow.
- d) Manning's equation, developed for uniform flow, is applied to evaluate the conveyance and friction slope in a gradually varied flow.
- e) Channels have relative small slopes so that the pressure head can be represented by the water depth measured vertically.
- f) The flow regime is assumed to be either subcritical proceeding downstream to upstream, or supercritical proceeding upstream to downstream. The program only processes one flow regime at a time.

4.2.5 Data Requirements and Input Structures

The data required by HEC-2 to perform water surface profile computations includes: specified flow regime (subor supercritical), starting water elevation, discharge flow, loss coefficients, cross-section geometry, reach lengths, and the configuration of local obstructions such as bridges and culverts. The general input structure for a multiple water surface profile computation is listed in Table 9.

4.2.6 Program Overview and Output Format

The program has been revised to ease data handling and to increase manipulation capability. Many options and routines are available to simulate and manipulate the cross-section with skewing factor, raising or lowering the geometry as desired. Figure 18 illustrates the overall operation of HEC-2 to compute the water surface profile. As noted, this program is comprised of a number of large subroutines with specific functions for each component.

Regarding the output format, HEC-2 is featured with a large selection of output control options. The simplest and most efficient output includes a list of input data and specified summary tables. The detail computations of crosssections, flow distribution in three subdivisions (left overbank, main channel, and right overbank) of each cross section, and some trace variables, such as critical depth can be requested for checking and debugging purposes. Also, the storage-outflow data for each cross-section can be provided for conjunction with HEC-1 channel routings. In addiition, plots of any profile and/or any cross-section can be performed at any scale as desired.

-82-

	TABLE 9 TYPICAL HEC-2 DATA ORGANIZATION		
	(Multiple Profile Run)		
CARD TYPE	CARD IDENTIFICATION		APPLICATION
Documentation	AC, C		All profiles
Documentation	T2* - T3*)	
Job Control	J1*, J2	\$	ist profile
Job Control	J 3 - J6)	
Change	NC*, NH, NV, QT, ET		
Cross Section	X1*, CI, X2, X3, X4, X5, GR*		
Bridge (Special	Bridge) SB*		
Cross Section	X1*, X2*, X3, X4, X5, BT, GR	>	All profiles
Change	NC, NH, NV, QT, ET		·
Cross Section	X1*, CI, X2, X3, X4, X5, GR		
Cross Section	X1*, CI, X2, X3, X4, X5, GR		
Job Control	EJ*)	
Documentation	T1* - T3*	١	
Job Control	J1*, J2*	}	2nd profile
Documentation	T1* - T3*	١	
Job Control	J1*, J2*	\$	Last profile
Job Control	3 blank cards*	1	
Job Control	ER*	}	Terminate run

.

* From HEC-2 manual, 1981

.

Figure 18. GENERAL FLOW CHART OF HEC-2 COMPUTER PROGRAM

Table 10 summarizes output control options; and detail information is found available from HEC-2 manual (1981)³³.

OUTPUT	CONTROL (CARDS)
Commentary	C
Input Data Listing	Jl.1
Detailed Output by Cross Section	J5
Flow Distribution	J2.10, X2.10
Traces	J2.10, X2.10
Summary Table	J2.1, J3, J5
Profile Plots	J2.3
Cross Section Plots	J2.2, X1.10
Archival Tapes	AC
Program Storge Tapes	J6
Punched Cards	J4

Table 10. CONTROL OF HEC-2 PROGRAM OUTPUT

4.2.7 <u>Computer</u> requirement

The HEC-2 program was originally developed for use on the CDC 6600. It has been adapted to several other computers including the IBM-3081. Table 11 lists the approximate memory and time requirements of several tested computers.

TABLE 11

HEC-2 COMPUTER MEMORY AND TIME REQUIREMENTS

COMPUTER	MEMORY (WORDS)	CPU TIME (SEC)
CDC 7600	32000	3.9
CDC 6600	32000	24.1
UNIVAC 1108	32000	35.0
IBM 370/168	248 K BYTES	121.4
HONEYWELL CS6058	46000	59.6
HERRIS S120	96000	402
IBM 3081	288 K BYTES	7.5

-87-

4.3 EXPECTED ANNUAL DAMAGE COMPUTATION

Economic efficiency is one of the main criteria in evaluating future land development and flood control alternatives. Therefore, the expected annual flood damage is taken as a economic base for comparison. The damage reduction benefits due to a project or a future land use scenario can be computed as the difference between damage values, occurring in a river basin, with and without the project or scenario.

As illustrated in Figure 19, the expected annual damage is computed from integrating the damage-frequency curve which is obtained by combining and transforming the flowfrequency and the flow-damage curve for a damage reach in a basin. HEC-1 has the capability to compute EAD provided with flow (or stage)-frequency relations and flow (or stage)-damage relations. It uses a Guassian quadrature procedure to establish the damage-frequency function and integrates the resulting damage-frequency function for multiplan (eg. existing condition and alternatives) analyses.

4.3.1 Flow-Frequency curve

The flow-frequency data are usually non-linear. HEC-1 uses a cubic-spline fit for interpolation as shown in Figure 20 to construct the flow-frequency curve from the multiple flood analysis based on ratio of precipitation or runoff to the base event (eg. 25-year storm).

.

Also, the program is featured to model multiple plans in one single computer run; thus the flow-frequency relationship corresponding to each plan can be established and modified automatically according to the changes in discharge flows resulted from each plan (see Figure 21). The modified flow-frequency curves can be carried out and used to compute the EAD for modified conditions in a multiflood, multiplan analysis. -91-

4.3.2 <u>Computation of EAD</u>

As mentioned earlier, the EAD computation is performed by integrating the damage-frequency curve which results from transforming the flow-frequency and flow-damage curves. Besides the flow-frequency curves, the flow-damage data must be provided in order to carry out the EAD computation. In this study, the flow-damage relation is calculated based on the flood damage model, whereas the flow-frequency curve can be obtained from a multiflood analysis using HEC-1 basin simulation. Usually, several damage reaches are specified, as shown in Figure 22, according to the designated index locations which are selected to represent the average damage condition for each damage reach. A damage reach is selected as a length of river with consistent profiles for the range of specified discharges which are significant for the EAD The changes in damage due to alternatives or computation. future scenarios can be computed through the modified flowfrequency curve or the modified flow-damage function.

4.3.3 Assumptions of EAD

The following assumptions are made in the EAD computation:

- a) Same time-pattern of precipitation is applied to all ratios in the multiflood computation, unless the ratios are developed from separate computer runs with specified temporal distribution of precipitation to each flood.
- b) In modifying the flow-frequency curve for multiplans as shown in Figure 20, the frequency of each ratio remains the same; only the peak flows change with plans. Time variation of EAD is not taken into account in HEC-1.

In spite of these limitations, the EAD computation using HEC-1 can provide a quantitative measure in evaluating alternatives and scenarios regarding flood control and future land use. The computational efficiency and avalability of this method have been outweighted its constrains. Furthermore, by using the flood damage model, the time variation of EAD values can be included by cost index (Ci) to account for the effect of inflation as time goes on.

4.3.4 Data Requirements and Input Structures

The data required for the EAD include: (1) damage area for each damage reach according to the classification of damages which can be estimated base on the flood damage mo-94-

del, (2) frequency data which can be in the form of stagefrequency or flow-frequency relations.

Table 12 summarizes the input structure for an EAD computation. If damage data change with plans, then different sets of QD and DG cards must be provided for each plan and located after EP card until all the plans are evaluated.

TABLE 12

INPUT DATA ORGANIZATION FOR EAD COMPUTATION

______ Card Identification Card Type & Function Job Indentification for EAD EC Damage Category Identification CN Frequency Data FR Discharge corresponding to FR QF Plan Name PN Discharge corresponding to Damage | QD Damage Data DG End of Plan EP +

-95-

4.3.5 Output Format

A summary table for EAD computations usually includes a cross table tabulated by stream station, damage reach, damage category, and EAD values computed for each plan as shown in an example computation illustrated in Table 13. The damage is summed for each plan, and the damage benefits are computed by taking the difference of damage values between alternatives and the base condition.

STREAM STATION	DAVIAGE REACH	WATERSEED	TOURSELP +	1	DNOLCE CATEGORY	FLAR 1	PLAF 2	DANDAGE PLAN 3
3071	1		•	1		0.00	0.00	0.00
	-		•	- 2	DED/COM	0.00	0.00	0.00
			•	Ĵ	AGRIC	129.22	6.18	4.27
			٠		TOTAL	129.22	6.18	6.27
			DANGE CRANG	t (1	NUTERITE)	BASE	123.04	122.95
	•							
	2			1		1099.86	139.58	375.40
				- 2		20.21	1.97	5.29
			:	3	Mauc	0.00	9.00	0.00
			٠		TOTAL	1120.06	141.55	380.69
			DANAGE CEANG	i (1	Linerits)	BASZ	978.52	739.38
BAS I	N TOTAL		•	1	SES ID	1099.86	139.58	375.40
			•	2	DED/CON	20.21	1.97	5.29
			•	Ĵ	AGRIC	129.22	6.18	6.27
			•		TOTAL	1249.28	147.73	386.96
			DANAGE CERNIC	6 (1	LINCEPITS)	BARE	1101.56	862.33

Table 13. EXPECTED ANNUAL FLOOD DAMAGE SUMMARY

* Source: HEC-1 manual, 1981

4.3.6 <u>Computer Requirement</u>

Since the EAD computation is a feature built in the HEC-1 program, the computer requirement is the same as described and summarized in Table 11.

4.4 <u>SUMMARY OF THE METHODOLOGY</u>

The procedure to apply the flood damage model for evaluating the hydrologic impact, hydraulic efficiency, and economic feasibility of land use and flood control alternatives as described in previous sections can be summarized into three phases with detail steps listed as follows:

PHASE I: HYDROLOGIC ANALYSIS

- a) Obtain detailed topographic, soil, and land maps to identify the basin characteristics.
- b) Define the drainage boundary, locate index stations and stream network configuration, and divide the basin and stream into subbasins and reaches.
- c) Collect rainfall, streamflow data for gaged stations, or adapt hypothetical storms from TP-40 and HYDRO-35 for ungaged stations.
- d) Determine the CN valules and other parameters including area (A), time of concentration (Tc), storage constant (R), and routing criteria (K or SQ-SV) for each subbasin and each reach.

-96-

- e) Structure the input deck according to the topographic layout of the basin and apply to HEC-1 to generate design storm hydrographs (eg. 2-, 10-, 25-, 50-, and 100- year storms).
- f) Construct the flow-frequency curve based on HEC-l results and compare it with the one developed based on recorded flows; adjust parameters until the two coincide.
- g) Perform a multiflood-multiplan HEC-1 run including the existing and future conditions.

PHASE II: HYDRAULIC ANALYSIS

- a) Determine channel parameters, including design storm flow rates, Manning's roughness values, cross-sectional elevataion and station data, reach length, starting water surface elevation and flow regime.
- b) Obtain configurations of culverts, bridges, or other obstructions located along the stream.
- c) Compute the existing water surface profiles and floodway encroachment for selected storms (eg. 10-, 50-, 100-, and 500- years storms).
- d) Determine the channel capacity and outflow-storge relationships for each reach by profile computations
- e) Estimate the profiles and flodway encroachments of slected storms for future conditions by changing discharge rates and/or other parameters.

f) Delineate the floodway and channel encroachment of 100-year base flood for existing and future conditions.

PHASE III: ECONOMIC ANALYSIS

- a) Specify index locations and damage reaches.
- b) Determine the parameters, comprised in the flood damage model, including Pv, Kc, Ci, Iu; and obtain Ve, and Ri from output of HEC-1 and HEC-2 runs.
- c) Construct the flow-damage data of existing and future conditions for a range of selected frequency events for each damage reach.
- d) Perform EAD computations for the existing and future conditions in a multifood-multiplan computer run, modify the flow-damage data for each plan if damages change with plans.
- e) Evaluate the economic impacts of existing and future conditions by trading-off the values among the resulting EAD values and the estimated cost due to land use control.
- f) Repeat steps (a) to (d) for a selected future land use condition based on result (e), with and without various degree of flood protection.
- g) Evaluate the economic efficiency of proposed alternatives; select a "best-plan" by using the cost-benefit analysis.

Summing up, Figure 23 structures the framework and the inter-relationships among the components of this integrated methodology.

FIGURE 23 FLOW DIAGRAM OF PROPOSED STUDY

Chapter V CASE STUDY

5.1 OBJECTIVES OF CASE STUDY

The concept of the model and the structure of the integrated methodology have been decribed previously. The case study herein is conducted to achieve the following objectives through testing on a selected watershed.

- * To demonstrate <u>HOW</u> the model and the methodology works.
- * To highlight WHAT the major effects are of land use on flood characteristics, as well as floods on land use.
- * To show WHY this technique can provide a quantitative economic basis in guiding land development as well as evaluating flood control alternatives.

To accomplish these objectives, a number of assertions are made:

- a) The constraints of HEC-1 and HEC-2 are validated and retained in modeling the hydrologic and hydraulic characteristics of the testing watershed.
- b) Land use is classified into three major categories: agricultural, residential, and commercial/industrial zones; the residential and commercial/industrial areas are further divided into 4 groups respectively as described in chapter III.

- 101 -

- c) The degree of land development is signified by the intensity of urbanization (Iu) which is defined as the ratio of space presumably projected for urban growth and infrastructural activities to the total land area.
- d) The economic feasibility of land-use is determined solely by trading off the cost of preventing urban development and the benefit of flood damage reduction from land-use control. Political, social, and jurisdictional influences are not considered.
- e) The economic loss due to preventing land-use is computed based on estimating the maximum economic gain when land is in its highest use.
- f) The flood damages are categorized into three groups according to the type of land-use classified; damage reduction benefits are computed as the difference between the expected annual damage (EAD) values, with and without proposed land uses or control projects.
- g) Channel improvement is chosen as the example alternative to demonstrate the ability of this technique for analyzing and evaluating the economic efficiency of flood alleviation projects; other measures, structural or non-structural, can be similarly applied, but not repeated herein.

It is important to choose a basin with realistic size so that the model's computation and data requirements do not become prohibitive. The Cow Creek basin is selected because of the realistic size of the basin, the expection of substantial development in the near future, and the avalability of hydrologic and hydraulic data.

5.2 WATERSHED DESCRIPTION

The Cow Creek basin, as diagrammed in Figure 24, encompasses an approximate drainage area of 20 square miles. It is fan-shaped with a maximum width of 6 miles in the eastwest direction and a maximum length of 5 miles along the south-north direction.

Cow Creek, which is a tributary of the Canadian River, composes a main stream and three branches with a total stream length of 21 miles. The headwater starts in the area of MacArthur Boulevard and S. 74th street of Oklahoma City, Oklahoma. It joins the Canadian River at approximately one-half mile south of S. 149th street and one-half mile east of Rockwell Avenue. Most channels are earth-made with cross-sections varying from trapezoidal to triangle in Streams are mostly narrow and meandering with low shape. In general, the drainage pattern follows an easterly banks. and southerly direction.

The climate of the study area is typically continental in type. The average annual precipitation is approximately 31.8 inches with a maximum rainfall of 52.0 inches in 1908. Temperature ranges from a low of 28 °F to a high of 50 °F in winter, and 70 °F to 98 °F in summer.

-103-

Figure 24. TOPOGRAPHIC LAYOUT OF COW CREEK BASIN

The topography of this basin shows a moderate rolling profile with an average slope of approximately 25 feet per mile (Figure 24). The elevation ranges from 1200 feet to 1350 feet. The geologic formation of the Cow Creek watershed is majorly underlain by silt stones and sand stones, commonly known as the Bison formation. The remaining area is underlain by terrace deposits of sand, silt, and clay with a low permeability (SCS, soil survey, 1974)⁵². Most floodplain areas along the streams are open grass and farmland except the riparian areas are densely wooded.

The current land use in the watershed is primarily open space and agriculture with scattered low density residential and light commercial usage. Oklahoma City is experiencing rapid growth and expanding urbanization at the present time. The City has a growing plan for the eastern and southern portions of the basin to become medium to heavy industrial and commercial zones. In the past, flood problems were generally confined to local tributaries. The increase of flood problems is expected with anticipating land-uses and developments in the future.

5.3 DATA ACOUISITION AND INPUT DEVELOPMENT

The basic data required for this study include maps (land, soil, and topography), basin characteristics, meteorologic and streamflow records, channel configurations, and economic data for the Cow Creek basin.

Maps, basin, and channel information were obtained from the U.S. Geologic Survey. Precipitation records for Oklahoma City, considered typical of the basin, were available from year 1891 to the present. There was no stream gaging station within the basin. However, streamflow records were available at two nearby stations: one on the Worley Creek near Tuttle (station no. 7228930), the other on the Canadian River near New Castle (station no. 7228960). The records of these two streams with similar size and comparable hydrologic characteristics were used by statistical analysis (Beard, 1962)⁶ to calibrate the parameters of the basin. The economic data were not easy to obtain. However, substantial data were sampled and collected from various sources. Then, the data were consolidated by statistical analysis as described in chapter III. Estimations of property value for different land-use categories were tabulated in Table 1, 2, and 3.

To apply the model, certain parameters and input need to be developed and transformed into the right format prior to the performance of hydrologic, hydraulic, and economic analyses. These include basin and stream characteristics, loss rate, unit hydrograph parameters, channel routing criteria, design storm pattern, flow-frequency relationship, and flow-damage relations. The bases of developing these input data were described in chapter IV. They were constructed and summarized in the following manner. -107-

5.3.1 Basin Charcteristics

The Cow Creek basin was divided into 13 subbasins and 7 reaches as diagramed in Figure 25. Tables 14 & 15 summarize the physical characteristics of each of the subbasins and reaches. Subbasin areas were measured with a planimeter. The average subbasin land slope was determined by averaging several representative land slopes, each was measured by dividing the elevation difference of two contour lines into the normal distance between these lines depicted on the topographic map. The length of overland was determined by dividing the subbasin area into the length of the reach receiving the subbasin's overland flow. Stream length was measured by a stadiometer along a map representative of the main channel from the outlet to the basin divide. Stream slopes were measured by dividing the difference of elevations between upstream and downstream locations by the stream length. Bottom widths were calculated by averaging the bottom widths of cross-sections within the respective The drainage network among subbasins and stream reach. reaches was illustrated in Figure 26.

-108-

-1	0 9 -
----	--------------

TABLE 14

Subbasin	Area (sm)	Length (mi)	Slope (ft/mi)
+	*		
1	3.5	3.2	21.8
2	1.5	0.9	33.8
3	3.0	1.1	36.4
4	3.2	2.8	18.7
5	2.2	2.0	20.8
6	1.0	1.1	26.0
7	0.9	1.5	16.1
8	1.0	1.9	16.1
9	0.8	0.5	23.4
10	0.8	1.0	13.5
11	1.2	2.2	18.7
12	0.6	0.4	14.6
13	1.5	1.5	10.0

PHYSICAL CHARACTERISTICS OF COW CREEK BASIN

-	1	1	0	~
---	---	---	---	---

TABLE 15

		اد جو جو مو مد مد مد مد مد مد مد مد		
Reach	Length (ft)	Flowing slope (%)	Side slope (H/V)	Bottom Width (ft)
			· · · · · · · · · · · · · · · · · · ·	
1	7890	0.10	2	5
2	9950	0.30	2	6
3	2630	0.10	2	8
4	5230	0.05	2	7
5	2100	0.50	2	9
6	11500	0.60	4	3
7	7850	0.10	2	8
1	1		1	
	+		+	+

PHYSICAL CHARACTERISTICS OF COW CREEK REACHES

5.3.2 Imperviousness and Loss Rate

The subbasin percentage of impervious cover was determined by superimposing a grid on basin areal photographs, averaging the number of grid points with roof tops, streets, and other infrastructural activities, and dividing by the total number of grid points on the subbasin (Thomas & Corley, 1977)⁵⁵.

The loss rates were computed by the SCS method as described in chapter III. The average moisture condition (see Table 6) was assumed as the antecedent moisture condition throughout the testing for this basin. The CN values, modified and adjusted according to changes of urbanization intensity are tabulated in Table 16.

-113-

TABLE 16

 Subbasin 	 EC*	 Iu* =25%	Iu=50%	Iu=75%	Iu=100%
1 2 3 4 5 6 7 8 9 10 11 11 12 13	77 74 76 75 75 76 75 78 77 77 77 77 75 76 77 77	83 81 83 82 83 82 83 83 83 83 83 83 83 83	88 86 87 87 87 87 88 88 88 88 88 88 88 88 88	92 90 91 91 91 92 92 92 92 92 91 91 91 92 92	98 97 98 98 98 97 98 98 98 98 98 98 98 98 98 98 98 98

CN VALUES FOR VARIOUS EXTENT OF URBANIZATION

* EC denotes the existing condition.

* Iu is the intensity of urbanization as defined in eq 3.1.

5.3.3 Unit Hydrograph Parameters

.

The Clark method was selected to develop unit hydrographs. The parameters, time of concentration (Tc) and storage coefficient (R), were initially estimated by equations developed by the U.S. Geologic Survey using a regression analysis (Thomas & Corley, 1977)⁵⁵.

$$T_c = 0.388L$$
 S I (Eq. 5.1)

$$R = 0.093 A$$
 S I (Eq. 5.2)

where, A is the drainage area in square miles, S is mainchannel slope in feet per mile, L is the main-channel length in miles, and I denotes the 2-year, 24-hour rainfall in inches.

HEC-1 automatically calibrated these two parameters in "trial runs", and determined the "best-fit" unit hydrographs for selected design storms. Table 17 summarizes results of Tc and R for each basin.

TABLE 17

UNIT HYDROGRAPH PARAMETERS (Existing Condition)

 Subbasin	Tc (hr)	R (hr)
 2 3 4 5 6 7 8 9 10 11 12 13 	2.9 1.4 2.0 2.8 2.4 1.7 2.4 2.8 1.3 2.1 2.7 1.4 3.3	2.0 1.4 1.6 2.1 1.5 2.0 1.7 1.8 1.0 1.6 1.6 1.4 2.4

Further, Tc and R were optimized and converted to Tp (basin leg time) and Cp (Snyder's coefficient). These two Snyder's parameters were adjusted by the SCS method, and then used in the multiplan analysis to account for the effects of the increased imperviousness due to additional extent of land use and decreased lag time resulting from channel hydraulic modefication. Table 18 summarizes these adjustments.

TABLE 18

BASIN LAG TIME (Tp) MODIFIED WITH THE EXTENT OF URBANIZATION

*		L			L
 Subbasin	* EC Tp (hr)	Iu=25% Tp (hr)	Iu=50% Tp (hr)	Iu=75% Tp (hr)	Iu=100% Tp (hr)
1 2 3 4 5 6 7 8 9 10 11 12 13 	2.46 1.31 1.74 2.41 2.03 1.45 1.99 2.36 1.10 1.82 2.19 1.31 2.85	2.19 1.15 1.53 2.12 1.79 1.28 1.77 2.10 0.98 1.60 1.95 1.17 2.54	1.94 1.01 1.36 1.88 1.58 1.13 1.57 1.86 0.87 1.42 1.71 1.03 2.25	1.89 0.98 1.32 1.81 1.52 1.10 1.53 1.82 0.85 1.37 1.66 1.01 2.19	1.87 0.97 1.31 1.78 1.50 1.09 1.51 1.79 0.84 1.35 1.64 1.00 2.17

* EC denotes the existing condition

5.3.4 Routing criteria

First, the Muskingum K's were estimated by the folloing empirical formula:

$$K = L / v$$
 (Eq. 5.3)

where, K = the reach travel time in hours,

L = the reach length in miles,

v = the average reach velocity in miles per hour.

These initial K's values for each routing reach were used in a number of HEC-1 computer runs to model basin hydrologic and hydraulic responses, and to generate peak discharges for selected storm events. The final routing criteria for multiflood-multiplan computations were obtained from HEC-2 output of storge (SV) and outflow (SQ) data resulting from channel capacity runs.

5.3.5 Design Storm Pattern

Since the historical streamflow will not repeat exactly in the future, especially with anticipated changes in landuses, hypothetical streamflow for selected storms (eg. 10, 25, 50, and 100-year recurrence) were constructed by procedures established in the U.S. Water Council Guidelines for determining flood flow frequency (WRC, 1976)⁶³. The average point depths were taken from the isopluvial maps (NWS: TP-40,1961;⁴³ HYDRO-35, 1977)⁴⁴ for the study area for return periods from 2 to 100 years and for durations from 5 minutes to 24 hours as tabulated in Table 19. HEC-1 automatically adjusted the point rainfall to area rainfall and distributed the storm patterns for each subbasin according to the depth-duration-area data specified in input.

TABLE 19

 Storm Duration 	 2 yr (in) 	5 yr (in)	 10 yr (in)	 25 yr (in)	 50 yr (in)	100 yr (in)
5 min	0.64	0.56	0.63	0.72	0.80	0.87
10 min	0.78	1.01	1.10	1.24	1.35	1.45
15 min	1.01	1.33	1.43	1.60	1.73	1.86
30 min	1.40	1.80	2.01	2.34	2.58	2.84
1 hr	1.82	2.29	2.62	3.10	3.46	3.85
2 hr	2.01	2.57	2.95	3.50	3.93	4.36
2 hr	2.23	2.86	3.29	3.91	4.38	4.87
6 hr	2.78	3.59	4.15	4.95	5.57	6.18
12 hr	3.23	4.24	4.91	5.86	6.60	7.34
24 hr	3.75	4.89	5.68	6.78	7.65	8.50

POINT RAINFALL FOR SYNTHETIC STORMS

5.3.6 Flow-Frequency Relation

A discharge-frequency statistical analysis has been made for statewide gaging stations located in Oklahoma State by the U.S. Geologic Survey using regression equations to associate the flow rates with basin and climatic characteristics (Thomas & Corley, 1977)⁵⁵.

Two flow-frequency curves were conducted based on HEC-1 rainfall- runoff modeling and recorded flow rates for stations on Worley Creek and Canadian River Tributary; the results were found parallel with the ones estimated by U.S. Geological Survey.

Then, the synthetic streamflows for selected recurrence intervals from 2 to 100 years for the Cow Creek basin were developed by HEC-1 program using parameters (Tc and R) estimated from regression equations (Eq 5.1 & 5.2). Additional computer runs were made to adjust parameters by calibration on a regional basis. Table 20 summarizes the recommended peak discharge rates at selected index points.

TABLE 20

RECOMMENDED PEAK FLOW (Qp) AT SELECTED INDEX POINTS

 Station 	 2-yr (cfs) 	5-yr (cfs)	 10-yr (cfs) 	 25-yr (cfs)	 50-yr (cfs) 	100-yr (cfs)
100	570	950	1260	1700	2080	2440
200	1140	1890	2510	3400	4150	4860
400	560	940	1260	1720	2120	2500
300	400	680	910	1240	1520	1780
500	2180	3620	4780	6400	7600	8610
600	2340	3710	4880	6590	7690	9010

* see Figure 26 for station location

5.3.7 Flow Damage Relationship

The methods of determining the parameters comprised in the flood damage model for economic analysis were described in chapter III. Table 21 summarizes the estimations of these parmeters. The flow-damage data were constructed for a range of selected frequency events (eg. 2-, 5-, 10-, 25-, 50-, 100-year intervals) based on the outcome of the flood damage model, and the relationship of flow-frequency established earlier.

TABLE 21. ESTIMATION OF PROPERTY FLOOD DAMAGE COST

+	+	+
 Parameter	 Value 	 Estimating Method
Pv	Table 1, 2, and 3	Pv=L+S+C (eq 3.2) projected from tax assessment records and local real estates, and data compiled by Census of Population and Housing (1980-1982)
KC	0.030	regression analysis based on depth-damage relationship (table 4)
Ci	 vary with t years 	regression analysis based on consumer cost index where the yearly inflation rate was computed to be 8% (eq 3.7 & 3.8)
 Iu 	 ranging from 0 to 1 	estimated by taking the ratio of the space occupied by urban activities to the total land area, Iu of 1.0 representing full development without zoning
Ve	 =(Vt-Vc) vary with Vt and Vc	Vt,total runoff volume, resulted from HEC-1 computation; Vc, channel capacity, obtained from HEC-2 run.
 Ri	 vary	computed by eq 3.23

5.3.8 <u>Channel Configurations</u>

The data required to perform water surface profiles and floodway encroachments were available from the U.S. Geologic Survey.

The starting water elevations at downstream points for each design storm were computed by using the slope-area method available in HEC-2. The discharge rates for each selected design storm were obtained from the output of HEC-1 discharge-frequency analysis. The Manning's n values, used to signify the channel and floodplain roughness characteristics, were assigned during the field reconnaissance. They were made based on engineering judgment and the methodology described in "Open Channel Hydraulics" (Chow, 1959)¹⁴. Table 22 presents a summary of roughness factors used in the streams.

-121-

TABLE 22

ROUGHNESS FACTORS USED FOR COW CREEK BASIN

Stream	 Channel From	n Value To	Overbank	n Value To
Main Stream Tributary #1 Tributary #2 Tributary W2 Tributary N2 Tributary N2 Tributary #3	0.035 0.030 0.040 0.040 0.035 0.040	0.100 0.070 0.090 0.100 0.080 0.080	0.040 0.035 0.045 0.040 0.035 0.035	0.110 0.075 0.130 0.110 0.095 0.095

* Tributary W2 & N2 denote the west and north branches of Tributary #2

5.3.9 Cost of Land-Use Control

As James stated (1971)³⁴ "....The economic loss caused by outside forces, such as floodplain zoning, to prevent the realization of the full potential income from the land would equal to the difference between the potential and the actual income..." In other words, the economic loss due to landuse control or floodplain regulation would be computed as the difference between the potential land income (Lp) that would be expected when land was in its maximum use and the actural land income (La) would be experienced when land-use was under control.

The average annual land cost due to land-use control would be determined as:

$$ALC = (F_{cr}) [(F_{pf})(L_p) - L_a]$$
 (Eq. 5.4)

where, ALC denotes the annual cost of preventing full land development on floodplain based on projected land market value. Lp and La are previously defined. Fcr represents the capital recovery factor based on projected discount rate i in t years, and Fpf is the factor to convert the future value of Lp to present value based on interest rate j for t years. Table 23 summarizes the estimations of annual landuse control cost developed for the studied basin.

TABLE 23

ESTIMATION OF ANNUAL COST OF LAND-USE CONTROL

 Parameter	Value	Estimation Method
Lp (\$/acre)	vary (Iu)	Estimated from projected land use and value of land equvalent to t years later
La (\$/acre)	vary (Iu)	projected from tax assessment records,local real estate investments
Fcr (A/P,i%,t)	0.1359	capital recovery factor for 6% and 10 years
Fpf (P/F,j%,t) 	0.4632	Convert future value factor to present value based on 8% & 10 yr

5.3.10 Cost of Channel Excavation

The amortized annual cost for channel excavation was estimated by the following equation.

$$ACE_{i} = (C_{u})(V_{di})(F_{cr})$$
 (Eq. 5.5)

-124-

where, ACEi = the amortized annual cost for channel

excavation for bottom width of i feet.

Cu = unit cost of excavation in \$/cfs.

Vdi = volume of dirt need to be excavated

for bottom width of i feet.

Fcr = capital recovery factor, same as in eq 5.4. From channel geometry, by taking cross-sectional areas and length of channel to be excavated into consideration as shown in Figure 27, Vdi was derived and transformed into the following relationships:

For triangle cross-sections:

$$V_{di} = (b_i)(L)(Y)$$
 (Eq. 5.6)

For trapezoid cross-sections:

$$V_{di} = (b_i - b_o)(L)(Y)$$
 (Eq. 5.7)

where, Ai = trapezoidal cross-sectional area (sq-ft)

after excavation with bottom width i feet and side slope to be paralled to the original cross-sections,

Ao = original cross-sectional area in sq-ft,

L = length of channel to be excavated in ft,

bi = bottom width after excavation in ft,

Y = elevation difference between bank and channel bottom in ft.

Before Excavation

After Excavation

Area: $A_i = (b_i + ZY) \cdot Y$

Figure 27. GEOMETRIC ELEMENTS OF CHANNEL SECTIONS
Combining equtions 5.5, 5.6, and 5.7 yields the following relationships:

$$ACE_{i} = (b_{i})(K)$$
 or $ACE_{i} = (b_{i} - b_{o})K$ (Eq. 5.8)

where, K denotes the product of Cu, Fcr, L, and Y, which is non-varying with cuts of channel excavation. Therefore, the ratio of ACE's for different cuts can be expressed in a simplified manner as shown in Table 24 which summarizes the excavation cost ratios of channel improvements performed by altering bottom widths for studied streams.

Reach	bi=10ft	bi=20ft	bi=40ft	bi=60ft	bi=80ft
	bo *				
1	1.0	3.0	7.0	11.0	15.0
2	1.0	3.5	8.5	13.5	18.5
3	1.0	6.0	16.0	26.0	36.0
4	1.0	4.3	11.0	17.7	24.3
5	1.0	11.0	31.0	51.0	71.0
6	1.0	2.4	5.3	8.1	11.0
7	1.0	6.0	16.0	26.0	36.0

EXCAVATION COST RATIO FOR VARIOUS BOTTOM WIDTH (bi)

* bo: refer to table 15 for original channel bottom width

5.4 ANALYSES AND OUTPUT RESULTS

The hydrologic, hydraulic, and economic analyses as outlined in chapter IV, were performed for the following propositions:

 a) existing condition (plan#1): agriculture and open space,

-127-

TABLE 24

- b) future development plans including 4 incremental levels of urbanization: Iu=25% (plan#2), Iu=50% (plan#3), Iu=75% (plan#4), Iu=100% (plan#5); with no target of protection,
- c) various degrees of channel improvement proposed for a reasonably future development plan.

5.4.1 Hydrologic study and effects of land-uses on floods

After developing the rainfall-runoff parameters, the input was structured according to the topographic layout of the basin and applied to HEC-1 to generate design storm hydrographs.

Additional computer runs were made to construct the flow-frequency relationships for selected flood intervals. Then, a multiflood-multiplan computation was made in one single computer run to determine the flood characteristics for the existing and proposed future plans. Tables 25, 26 and 27 highlight the major effects of land-use on flood peak discharges, total runoff volume, and time of concentration.

These results show that peak discharge (Qp) and runoff volume (Vt) increase with the intensity of urbanization. The more frequent storms appear to be mainly affected by changes of land use. For example, a magnitude of 1 to 4 in Qp was changed at station 300 for 2-year storm, compared to a magnitude of 1 to 2 for 100-year storm under same conditions (Table 25). Conversely, the time of concentration (Tc) decreases with the increase of urbanization as shown in Table 27.

TABLE 25

PEAK DISCHARGE (Qp) RESULTING FROM MULTIFLOOD-MULTIPLAN ANALYSIS

+	+		+	+	h 	
Flood Qp Sta. Plan	2-yr cfs 	5-yr cfs	10-yr cfs 	25-yr cfs 	50-yr cfs	100-yr cfs
100 P#1	573	950	1260	1700	2080	2436
P#2	1020	1500	1880	2410	2850	3260
P#3	1530	2110	2570	3180	3690	4160
P#4	1900	2540	3020	3660	4180	4660
P#5	2150	2800	3280	3930	4450	4933
200 P#1	1140	1890	2510	3400	4150	4860
P#2	2030	2980	3750	4790	5630	6430
P#3	2970	4115	4989	6131	7099	7987
P#4	3722	4944	5930	7054	8044	8987
P#5	4201	5427	6342	7575	8588	9405
300 P#1	1862	3123	4140	5544	6742	7733
P#2	3372	4935	6120	7628	8806	10310
P#3	4950	6690	7910	9880	11310	12460
P#4	6144	7864	9368	11277	12547	14638
P#5	6810	8530	10260	12030	13900	15690
400 P#1	555	942	1266	1728	2124	2500
P#2	1054	1566	1974	2539	3013	3458
P#3	1631	2263	2752	3413	3958	4464
P#4	2086	2778	3301	4002	4574	5102
P#5	2374	3086	3620	4332	4911	5445
500 P#1	2180	3620	4790	6400	7610	8610
P#2	3880	5710	6960	8460	9620	10950
P#3	5700	7440	8620	10340	11810	13100
P#4	6930	8570	9870	11750	13170	14630
P#5	7580	9200	10670	12510	13980	15550
600 P#1	2340	3720	4890	6580	7690	9020
P#2	3950	5790	7120	8740	10190	11622
P#3	5710	7450	8910	10920	12510	13890
P#4	6920	8810	10390	12440	13970	15500
P#5	7530	9620	11260	13250	14810	16440
						

-130-

TABLE 26

TOTAL RUNOFF (Vt) RESULTS FROM MULTIFLOOD-MULTIPLAN ANALYSIS

+	-+	+	+	*		
Flood Vt Plan	2-yr ac-ft 	5-yr ac-ft 	10-yr ac-ft 	25-yr ac-ft 	50-yr ac-ft	100-yr ac-ft
RCH 1 P# P# P# P# P# P#	183 2 308 3 427 4 527 5 590	300 450 588 699 766	397 562 713 830 899	534 717 881 1001 1075	650 846 1020 1147 1219	760 967 1149 1279 1351
RCH 2 P#	111	184	243	327	398	465
P#	2 190	278	347	443	522	597
P#	3 257	355	430	532	616	694
P#	4 318	422	501	607	693	773
P#	5 358	464	544	651	738	818
RCH 3 P#	1 366	601	794	1068	1300	1520
P#	2 615	897	1120	1426	1682	1922
P#	3 847	1166	1411	1744	2018	2272
P#	4 1038	1377	1634	1978	2259	2518
P#	5 1165	1513	1774	2122	2406	2667
RCH 4 P#	1 184	307	410	555	678	795
P#	2 318	468	586	751	888	1017
P#	3 456	630	763	944	1093	1232
P#	4 566	752	893	1081	1235	1377
P#	5 636	826	969	1160	1315	1458
RCH 5 P#	L 598	986	1306	1758	2141	2505
P#	2 1017	1478	1859	2372	2800	3200
P#	3 1420	1956	2369	2928	3389	3817
P#	4 1751	2324	2758	3340	3814	4253
P#	5 1964	2552	2991	3578	4056	4497
RCH 6 P#	L 37	62	81	109	133	156
P#	2 62	90	113	144	170	194
P#	3 85	117	142	175	203	228
P#	4 105	139	165	200	228	255
P#	5 117	152	179	214	243	269
RCH#7 P#	L 687	1119	1481	1993	2428	2840
P#	2 1152	1684	2105	2686	3170	3628
P#	3 1607	2213	2681	3315	3836	4321
P#	4 1985	2635	3127	3787	4325	4823
P#	5 2230	2895	3395	4062	4605	5105

.

TABLE 27

Subbasin	EC Tc (hr)	Iu≈25% Tc (hr)	Iu=50% Tc (hr)	Iu=75% Tc (hr)	Iu=100% Tc (hr)
 2 3 4 5 6 7 8 9 10 11 12 13 	2.88 1.43 2.00 2.79 2.39 1.67 2.38 2.77 1.30 2.12 2.71 1.43 3.34	2.63 1.30 1.91 2.57 1.99 1.35 2.03 2.61 1.22 1.97 2.39 1.31 3.03	2.31 1.23 1.69 2.17 1.83 1.24 1.91 2.14 0.94 1.66 2.08 1.23 2.65	2.17 1.19 1.50 2.10 1.82 1.23 1.88 2.12 0.92 1.57 2.06 1.21 2.63	2.17 1.18 1.48 2.06 1.82 1.22 1.88 2.12 0.90 1.54 2.06 1.21 2.63

TIME OF CONCENTRATION (Tc) VARIATION WITH EXTENT OF URBANIZATION

* EC denotes the existing condition

5.4.2 Hydraulic study and effects of floods on land use

The existing water surface profiles and flood boundaries for selected storms were computed. The channel capacity and the outflow-storage relationship for each reach were determined by a multi-profiles computation using a series of sequential flow rates. Then, the output was used to join the channel routing in the final multiflood-multiplan computation. Next, the water profiles and floodway encroachments were made by changing peak discharges, resulting form HEC-1 multiflood-multiplan runs, for future conditions. The results were compared with the ones generated from existing condition.

Table 28 summarizes the effects of flood characteristics (i.e. peak flow) of existing and future conditions on floodplain zoning and water surface profile. The flood hazard factor (FHF) was defined by FIA as the average weighted difference between the 10-year and 100-year flood water surface elevations expressed to the nearest one-half foot, and shown as a three-digit code. The FHZ, flood hazard zone, was designated as Al through A30 according to the corresponding FHF value (HEC-2 manual, 1981)³³. These two factors were usually used in flood studies as flood information to correlate flood insurance rates; the higher the FHF and FHZ, the higher the insurance premium rate. Also, they can be ultilized as good indices for floodplain zoning.

	·····	F	lan #	1	P	lan #	2	. <u></u> , <u></u> ,	Plan	#3		Plan	#4		Plan	# 5
Reacl	n ELV ₁	:0 WED	FHF	FHZ	WED	FHF	FHZ	WED	FHF	FHZ	WED	FHF	FHZ	WED	FHF	FHZ
#1	1205.20	2.68	025	A5	3.40	035	A7	4.23	040	A7	6.72	065	A13	7.40	075	A15
#2	1209.15	1.49	015	A3	4.05	040	A8	6.37	065	A13	8.08	080	A16	8.70	085	A17
#3	1194.95	3.95	040	AB	4.45	045	A9	4.82	0 50	A10	5.31	055	A11	5.47	055	A11
#4	1196.11	2.02	020	A4	2.47	025	<u>A5</u>	4.01	040	A 8	4.59	045	A9	4.66	045	A9
#5	1190.51	1.90	020	A4	3.58	035	A7	4.15	040	A8	4.67	045	A9	5.27	055	A11
#6	1211.72	1.82	020	A4	1.96	020	A4	2,51	025	A5	3,15	030	AG	5,11	050	A10
#7	1183.89	1.96	020	A4	3,25	035	A7	3,65	035	A7	4,31	045	A9	4,83	050	A10

Table 28. CHANGES OF WATERPROFILES AND FLOOD ZONES DUE TO URBANIZATION

Notes:

- ELV10 the weighted water surface elevation of 10-year flood of existing hydrologic condition
- WED ---- weighted average elevation difference between the 100-year flood of respective plans and the 10-year flood of existing condition
- FHF --- flood hazard factor defined by FIA (1977)
- FHZ ---- flood hazard zone designated according the respective FHF value (FIA, 1977)

-133-

As shown in this table, the increased FHF and FHZ signify the increasing severity of floods on the land as urbanization intensity increases. In other words, changes of flood characteristics (peak flow per se) due to intensified urbanization have significant impacts on flood zoning which should be taken into consideration in future land use and the development policy.

5.4.3 Economic Evaluation

The benefits of flood damage reduction were computed as the difference between the annual damage value (EAD) of the studied basin, with and without changes in land-use or flood control projects.

The EAD computation was performed by a multiflood-multiplan damage analysis to include the existing and future conditions. The results are presented in Table 29.

Meanwhile, the average annual land cost (ALC) due to land-use control with different levels of urbanization were estimated. The results were compared with EAD values as summarized in table 30. The most "promising" land-use pattern, level of urbanization per se, was selected as the one that yielded the maximum net benefit between EAD and ALC values. In this case, a 50% of land development was recommended as the result of trading-off between the economic scales of land-use and flood damage control.

STREAM STATION	DANAGE Reach	TOWNSHIP +	DAMAGE CATEGORY	EXPECT PLAN 1	PLAN 2	DANAGE PLAN 3	PLAN 4	PLAN 5
BCH 1	1	DANAGE CHANGE	1 AGB1C 2 BESID 3 INC/COM TOTAL (BENEY1TS)	4.59 0.0 4.59 Base	0.0 24.59 65.96 90.55 -85.96	0.0 70.95 199.d2 270.77 -206.1d	0.0 313.16 861.59 1174.75 -1170.16	0.0 575.80 1453.60 2029.40 -2024.91
RCH2	2 .	DAMAGE CHANGE	1 AGRIC 2 RESID 3 INC/CON TOTAL (BENEVITS)	2.93 0.0 0.0 2.93 BASE	0.0 28.85 79.09 107.94 -105.00	0.0 111.98 308.31 420.29 -417.35	0,0 1546,55 855,41 2401,96 -2399,03	0.0 400.21 1100.62 1500.83 -1497.89
RCH3	3	DANAGE CHANGE	1 AGRIC 2 RESID 3 INC/CON TOTAL (DENEFITS)	3.61 0.0 0.0 3.61 BASE	0.0 43.12 121.02 164.14 -160.53	0.0 173.45 464.31 637.76 -634.16	0.0 545.06 1498.70 2043.76 -2040.15	979.53 2693.74 3673.27 -3669.67
RCH4	4	DARAGE CHANGE	1 AGBIC 2 BESID 3 INC/COM TOTAL (BENEFITS)	6.10 0.0 6.10 BASE	0.0 57.22 157.55 214.78 -208.67	271-59 747-41 1018.99 -1012.89	0.0 542.43 1406.13 1988.56 -1982.46	0.0 #14.86 2295.79 3130.05 -3124.55
BCH5	5	DANAGE CHANGE	I AGRIC 2 BESID 3 INC/COM TOTAL (BENEFITS)	11.72 0.0 11.72 BASE	0.0 132.94 365.68 498.61 ÷486.89	0.0 725.13 2061.45 2786.58 -2774.85	0.0 1666.73 4583.64 6250.38 -6238.65	0.0 1697.66 4660.91 6366.57 -6354.84
RCH6	6	DANAGE CHANGE	1 AGRIC 2 RESID 3 INC/CON TOTAL (DENEPITS)	0.45 0.0 0.0 0.45 0.45 BASE	0.0 2.14 5.90 8.05 -7.60	0.0 11.67 31.62 43.29 -42.84	0.0 36.18 99.95 136.13 -135.68	0.0 57.40 184.93 252.33 -251.88
RCH7	7	DANAGE CHANGE	1 AGRIC 2 BESID 3 INC/CON TOTAL (BENEPITS)	3.34 0.0 0.0 3.34 BASE	0.0 78.67 216.38 295.05 -291.71	0.0 391.77 1077.24 1469.01 -1465.67	0.0 998.04 2744.87 3742.91 -3739.57	0,0 1651,59 4541,92 6193,51 -6190,16
BASI	IN TOTAL	DAMAGE CHANGE	1 AGRIC 2 BESID 3 INC/COM TOTAL (BENEFITS)	32.74 0.0 0.0 32.74 BASE	0.0 367.5% 1011.58 1379.12 -1346.37	0.0 1756.54 4890.14 6646.67 -6613.93	0.0 5688.16 12050.27 17738.43 -17705.68	0.0 6207.04 16939.50 23146.54 -23113.80

•

* <u>Table</u> 29. <u>Expected Annual Damage Summary For Various</u> <u>Extent Of Urbanization</u>

-135-

*

-1	3	6	-
----	---	---	---

TABLE 30

TRADE-OFF BETWEEN EAD AND ALC VALUES

Value	Plan #1	Plan #2 Iu=25%	Plan #3	Plan #4	Plan #5
EAD ALC	Base 0 Base 0	-1346k +3070k	-6614k +9890k	-17706k +16523k	-23114k +22848k
+	0	+1724k	*+3276K	-1182 k	-265 k

EAD--changes of expected annual flood damages

resulting from Table 29 ALC--annual land cost computed by eq.5.4 and table 23 "*"--the maximum net benefit resulting from EAD and ALC trade-off

Next, channel improvement was analyzed and evaluated as the example alternative to show the sensitivity of this economic analysis. The protection target was set for the 50-year, 6-hour duration storm. By altering channel bottom width (i.e. bi = 10, 20, 40, 60, and 80 feet), the channel improvement computation, available in HEC-2, was conducted for the selected future growth plan (50% of urbanization) to assess channel capacities for these various degrees of channel excavation. Also, the output of storge-outflow were used to join with HEC-1 in multiflood, multiplan evaluation.

Further, EAD computations were performed to analyze the potential outcome of flood damage reductions with and without various level of channel improvements. The results are presented in Table 31.

The amortized annual channel excavation cost (ACE) were estimated in the manner presented in Table 24. To select the "best plan" for this example, the cost-benefit analysis was applied to evaluate the economic feasibility among these selected alternatives. The results were summarized in Table 32. The alternative with sufficient channel capacity and yielding the highest B/C ratio as the result of cost-benefit analysis was selected as the "best plan".

DANAGE Feach	TOWNSHIP 4		DAMAGE CATEGORY	EXPECT PLAN 1	LED ANNUAL PLAN 2	DAMAGE Plan 3	PLAN 4	PLAN 5
RCH4		1 2 3	AGRIC RESID IND/COM	0.0 280.21 771.30	0.0 152.53 419.95	0.0 34.60 95.48	0.0 1.28 0.17	0.0 0.0 0.0
	DAMAGE CHANG	<u>в</u> (TOTAL Benefits)	1051.50 Basé	572.47 479.03	130.08 921+42	1.04 1050+46	0.0 1051.50
RCH5		1 2 3	AGRIC Resid Ind/com	0.0 801.89 2276.40	0.0 586.96 1721.05	0.0 359.57 1027.08	0.0 33.23 97.90	0.0 6.80 20.35
	DAMAGE CHANG	E (TOTAL BENEFITS)	3078 30 Base	2308.91 770.29	1386.65 1691 65	131.13 2947.17	27.19 3051.10
RCH7		123	AGRIC RESID IND/COM	0.0 419.07 1152.46	0.0 35.02 96.34	0.0 7.90 21.70	0.0 0.0 0.0	0.0
	DANAGE CHANG	E (TOTAL Benefits)	1571.52 BASE	131.36 1440+16	29.59 1541•93	0.0 1571-52	0.0 1571.52
BASIN TOTAL	1	1 2 3	AGRIC Resid Ind/Con	0.0 1501.17 4200.16	0.0 774.51 2237.34	0.0 402.07 1144.26	0.0 33.51 98.67	0.0 6.80 20.39
	DAMAGE CHANG	Е (TOTAL BENZFITS)	5701.32 Base	3011.85 2689.47	1546.33 4154.99	132.17 5569.14	27.19 5674.12

* Table 31 Expected Annual Damage Summary For Alternatives With Various Extent Of Channel Excavation

•

* See Appendix-B for Program Input

•

.

-133-

-139-

TABLE 32

COST-BENEFIT ANALYSIS FOR ALTERNATIVES BASED ON A 50% DEVELOPMENT PLAN WITH/WITHOUT CHANNEL IMPROVEMENT

	L	L			h	L
 Parameter 	ALT #1 bi=bo Iu=50%	ALT #2 bi=10ft Iu=50%	ALT #3 bi=20ft Iu=50%	ALT #4 bi=40ft lu=50%	ALT #5 bi=60ft Iu=50%	ALT #6 bi=80ft Iu=50%
R4/Channel Capacity	-	-	+	+	+	
EAD net ACE ratio	base /	479K 1	921K 4.3	1050K 11.0	1052K 17.7	1053K 24.3
 B/C ratio	NF	NF	* 214	94	59	43
R5/Channel Capacity		_	+	+	+	
EAD net ACE ratio	base	770k 1	1692K 2.4	2947K 5.3	3051K 8.1	3054K 11.0
 B/C ratio	 NF	NF	* 705	556	377	278
R7/Channel Capacity	-	_	-	+	+	
EAD net ACE ratio	base /	1440K	1542K 6.0	1572K 16.0	1572K 26.0	1573K 36.0
 B/C ratio	 NF 	 NF 	 NF 	 * 98 	60	44
· · · · · · · · · · · · · · · · · · ·		,	,	• • • • • • • • •	•	•

Notes:

NF denotes non-feasible alternative "-" represents insufficient channel capacity "+" represents sufficient channel capacity "*" signifies the selected alternative with the highest B/C ratio and with a sufficient capacity

Chapter VI

SUMMARY AND CONCLUSION

This study represents a new approach for estimating, analyzing, and evaluating the reducible flood damages in urban areas associated with land use and flood alleviation projects.

The model for estimating potential urban flood damages was developed and formulated using an interdisciplinary approach (Figures 2 & 3). The model parameters and variables were determined and verified by statistical analyses as addressed in chapter III.

The methodology, schematically shown in Figure 23, integrates the HEC-1 and HEC-2 programs in simulating the hydrologic responses and channel hydraulic characteristics for the Cow Creek basin under five propositions, including the existing and future plans, each varied with the degree of urbanization as elaborated in chapters IV and V.

The economic analysis involves computations of the following criteria: (1) the expected annual flood damage (EAD), (2) the annual land cost (ALC), and (3) the amortized annual channel excavation cost (ACE). The flood damage reduction benifits were computed, then the trade-off between the benifits of reducible EAD due to land use control and costs of

- 140-

ALC from preventing urban development was made in order to select the most "promising" plan for future land use. Furthermore, channel improvement, chosen as the example alternative to demonstrate this technique, was tested by hydrologic and hydraulic analyses for various channel bottom widths. The cost benefit analysis was then applied to the hydraulic efficient ones for evaluating the economic feasibility of these alternatives. Tables 29-32 summarize these results.

This study resulted in several important conclusions. First, the flood model provides a quantitative means for estimating potential urban flood damages, especially since historical damage data is no longer valid due to rapid urbanization on floodplains.

Second, flood characteristics are significantly affected by land use. Hydrologic analysis for the Cow Creek basin shows that peak flow (Qp) and runoff volume (Vt) increase with the intensity of urbanization (tables 25 & 26). The more frequent storms appear to be more influenced by changes of land use. Conversely, the time of concentration (Tc) decreases with the increase of urbanization as summarized in table 27.

Third, besides land use, Qp and Vt are also affected by the frequency and the duration of storm events. Both increase as the increase in duration and/or frequency of storms, while Tc remains the same for changes of duration and frequency.

Fourth, changes of flood characteristics induce changes in flood land zoning. Hydraulic analysis shows that the increase of peak flow due to urbanization projected for the future has significant impacts on water surface profiles and floodway zoning (see Table 28). These effects should be taken into account in floodplain delineation and design of flood control projects to accomodate changes in future de-Conventionally, flood studies for watersheds velopment. were conducted based on present hydrologic conditions, which is not truely representative for the future, especially with changes in land use. It is recommended that a floodplain be zoned to coordinate with the forcasted outcome due to the anticipated future land use.

Fifth, the sensitivity of the economic scale with changes of land use and channel improvement has been demonstrated and results of this study (Tables 29 to 32) yield the most allowable amount of urbanization and selection of the "best" plan for flood alternatives. This technique provides a sound, quantitative economic basis for evaluating land use and flood alternatives.

Sixth, changes of land use has vital impacts on the watershed with regard to the following aspects: hydrologic responses of the basin, hydraulic characteristics of streams and changes of flood zones, and economic impacts in terms of potential increasing flood damages and land use profits. Therefore, land use control plays a significant role in urban flood management. The uniqueness of this integrated approach includes the following:

- a) The flood model provides a quantitative means for estimating future urban flood damages.
- b) Minimum data and reasonable cost are required for model computation; with the capability and availability of the HEC-1 and HEC-2 programs, many complex propositions can be simulated in a single computer run.
- c) This technique offers dual consideration between land use and floods; the effects of land use on floods and the effects of floods on land use can be explored by hydrologic and hydraulic analyses as outlined in chaper IV.
- d) The scheme of this technique can be applied to other watersheds with modification of basin parameters and land use patterns to fomulate a general guide for evaluating land use proposals and flood alleviation projects.

Practically, as conducted in this study, the test basin can be first divided into discrete units in space and time. These lumped parameters are used to represent the average hydrologic and economic conditions for the model computation and to form a guideline in planning stage. For use in final design and implementation of selected plans, these lumped units must be subdivided as small as possible to represent the actual individual components. Due to the heterogenous characteristics of watersheds, each separate entity of floodplains requires an individual treatment for best management. Also, time variations demand continuous updating of analysis and periodic adjustment of the plan.

In addition to the technical and economic aspects dealt with in this study, the social, institutional, and environmental aspects, which are beyond the scope of this research, must be carefully weighted, and integrated in floodplain management to reach the balance of the pursuit of mankind's benefits and maintaining harmony with the river.

It is hoped that this study will be beneficial for the developer, urban planner, consulting engineering, and policy decision- maker in seeking flood problem solutions and effective planning for future land use.

BIBLIOGRAPHY

- 1. Abbott, J. "Testing of Several Runoff Models on an Urban Watershed" Hydrologic Engineering Center, U.S. Army Corps of Engineers, Tech. Paper, No. 59, 1978.
- Ackermann, W. C. "Systematic Study and Development of Long Range Programs of Urban Water Resources Research." <u>Amer. Society Civil</u> <u>Engr</u>. Appendix C, 1968.
- Amandes, C. B. and Bedient, P. B. "Stormwater Detention in Developing Watersheds of Houston, Texas," <u>Jour. Environmental Engr. Div</u>. <u>Amer. Society Civil Engr. 106</u> (EE 2), 1980.
- 4. Anderson, D. G. "Effects of Urban Development on Floods in Northern Virginia," U.S. Geol. Survey, Open-file report, 39p., 1968.
- 5. Barr, A. J. <u>A User's Guide to SAS Program</u>, Raleigh, N. Carolina: SAS Institued, Inc., 1976.
- 6. Beard, L. R. "Statistical Methods in Hydrology," Davis, CA: HEC, U.S. Army Corps of Engr., 1962.
- 7. Beard, L. R. "Optimization Techniques for Hydrologic Engineering," Davis, Calif.: HEC, Tech. Paper No. 2, 1966.
- 8. Beard, L. R. and Chang, S. " An Urban Runoff Model for Tulsa, Oklahoma," Austin, Texas: Center for Research in Water Resources, the University of Texes, 1979.
- Brandstetter, A. "Assessment of Mathematical Models for Storm and Combined Sewer Management," Environmental Protection Aency Tech. EPA-60012-76-175a, 1976.
- Bureau of Labor Statistics "Consumer Price Index:"1967-1982,"
 U.S. Dep. of Labor, Washington D.C., 1982.
- 11. Carrigan, P. H. "User's Guide for U.S. Geological Survey Rainfall-Runoff Models," U.S. Geol. Survey, Open-File, Rep. 77-884, 1977.
- 12. Chapin, F. S. <u>Urban land Use Planning</u>, 2nd ed., Urbana: University of Illinois Press, 1965.

- 13. Chow, V. T. "Hydrological Studies of Floods in the United States," Int. Ass. Scient. Hydrol. Publ. <u>42</u>, pp. 134-70, 1956.
- 14. Chow, V. T. Open-Channel Hydraulics, New York: McGraw-Hill, 1959.
- Chow, V. T. <u>Handbook of Applied Hydrology</u>, New York: McGraw-Hill, 1964.
- Crawford, N. H. and Linsley, R. K. "Digital Simulation in Hydrology," Technical Rep. 39, Dep. of Civil Engr., Stanford University, Stanford, Calif., 1966.
- Dempster, G. R. Jr. "Effects of Urbanization of Floods in the Dallas, Texas Metropolitan Areas," U.S. Geol. Survey Water Res. Inv. 60-73, PB-230 188, 1973.
- Espey, W.H. "Study of Some Effects of Urbanization on Storm Runoff from a Small Watershed," Texas Water Development, Board Report, <u>23</u>, 109p., 1966.
- 19. Federal Insurance Administration "Revised Depth-Damage Curves," FIA, Washington D.C., 1975.
- 20. Federal Insurance Administration "Flood Hazard Factors, Depth-Damage Curves, Standard Rate Tables," FIA, Washington D.C., 1970.
- Feldman, A. D. "Flood Hydrograph and Peak Flow Frequency Analysis" Davis Calif.: HEC, Technical Paper No. 62, 1979.
- Feldman, A. D. "HEC Models for Water Resources System Simulation: Theory and Experience," in <u>Advances in Hydroscience</u>, New York: Academic Press, 1981.
- 23. "Flood Insurance Act," in <u>National Flood Insurance Program</u>, U.S. Dep. of Housing & Urban Development, Washington D.C., 1976.
- 24. "Flood Disaster Protection Act," in <u>Public Law 93-234</u>, 93rd Congress, H. R. 8449 Dec. 31, 1973.
- Gregory, R. L. and Arnold, C. E. "Rational Runoff Formulas," <u>Trans. Amer. Soc. Civil Engr., 96</u>, 1972.
- Grigg, N. S. "Evaluation and Implementation of Urban Drainage Projects," <u>Jour. Urban Plan. Devel. Div., Amer. Soc. Civil Engr.</u> <u>101</u> No up 1, p.61-75, 1975.
- Hydrocomp, Inc. <u>Hydrocomp Simulation Programing Operations Manual</u>, 4th ed., Palo Alto, Calif., 1976.
- 28. Hydrological Engineering Center "Routing of Floods through River Channels," Engineering Manual 1110-2-1408, U.S. Army Corps of Engineers, Davis, Calif., 1960.

- 29. Hydrological Engineering Center "Hydrological Engineering Methods for Water Resources Development," HEC-IHD-0600, U.S. Army Corps of Engineers, Davis, Calif., 1975.
- 30. Hydrologic Engineering Center "Storage, Treatment, Overflow, Runoff Model, STORM." U.S. Army Corps of Engineers, Davis, Calif., 1976.
- 31. Hydrologic Engineering Center "Flood Hydrograph Package: HEC-1, User's Manual," U.S. Army Corps of Engineers, Davis, Calif., 1981.
- 32. Hydrologic Engineering Center "Flood Hydrograph Package: HEC-1, Programmer's Manual," U.S. Army Corps of Engineers, Davis, Calif., 1981.
- 33. Hydrologic Engineering Center "Water Surface Profiles: HEC-2, User's Manual," U.S. Army Corps of Engineers, Davis, Calif., 1981.
- 34. James, L. D. and Lee, R. R. <u>Economics of Water Resources Planning</u>, New York: McGraw-Hill, 1971.
- 35. James, L. D., Banke, A. C., and Ragsdale, H. L. "Integration of Hydrologic, Economic, Ecologic, Social, and Well-Being Factor in Planning Flood Control Measure for Urban Storm," Georgia Institude of Technology, ERC-0357, 1975.
- 36. Kates, R. W. "Industrial Flood Losses: Damages Estimation in the Lehigh Valley," University of Chicago, Research Paper No. 98, Chicago: University of Chicago Press, 1965.
- 37. Leman Powell Associates, Inc. "A Process for Community Flood Plain Management," Summary Report, OWRT TT/80 1, U.S. Dep. of the Interior, Washington D.C., 1980.
- Leopold, L. B. "Hydrology for Urban Land Planning: A Guidebook on Hydrologic Effects of Urban Land Use," U.S. Geol. Survey, Circular 554, 1969.
- 39. Lindh, G. and Berthelot, R. M. eds. <u>Socio-Economic Aspects of</u> <u>Urban Hydrology</u>, Paris: The UNESCO Press, 1977.
- 40. Linsley, R. K., Kohler, M. A., and Paulhus J. L. <u>Hydrology for</u> <u>Engineers</u>, 2nd ed. New York: McGraw-Hill, 1975.
- McCorkle, M. and Halff, A. H. "Flood-Plain Management in Dallas, Texas," <u>Jour. of Hydraulics Div., Amer. Soc. Civil Engr.</u>, pp. 125-137, Feb. 1979.

- Vational Weather Service "Seasonal Variation of Probable Maximum Precipitation," Hydrometeorological Report No. 33, U.S. Dep. of Commerce, Washington D.C., 1956.
- National Weather Service "Rainfall Frequency Atlas of the United States," Tech. paper No. 40, U.S. Dep. of Commerce, Washington D.C., 1961.
- 44. National Weather Service "Five to 60-Minute Precipitation Frequency for the Eastern and Central United States," NOAA Tech. Memo, NWS HYDRO-35, Silver Spring, MD, 1977.
- 45. Nixon, M. "FLood Regulation and River Training," in Smith, K. and Tabin, G. A. <u>Human Adjustment to the Flood Hazard</u>, New York: Longman Inc., 1979.
- Office of Research and Economic Development "Oklahoma City Development Activity," Office of RED, the City of Oklahoma, 1982.
- Parker, D. J. and Penning-Rowsell, E. "Problems and Methods of Flood Damages Assessment," Flood Hazard Research Project, Tech. Report No. 3, Middlesex Polytechnic., 1972.
- Resources Analysis, Inc. <u>MITCAT Catchment Simulation Model</u>, Description and User's Manual, Version 6, Cambridge, Mass., 1975.
- Rockwood, D. M. "Streamflow Synthesis and Reservoir Regulation," U.S. Army Corps of Engineers, North Pacific, Tech. Bulletin No. 22, 1964.
- 50. Sauer, V. B. "Flood Characteristics of Oklahoma Streams," U.S. Geol. Survey, Water Resources Inv., 1974.
- 51. Soil Conservation Service "Computer Program for Project Formulation Hydrology," Technical Release No.20, U.S. Dep. of Agriculture, Washington D.C., 1965.
- 52. Soil Conservation Service "Soil Survey for the County of Cleveland, Oklahoma," SCS, U.S. Dep. of Agriculture, 1974.
- Soil Conservation Service "Urban Hydrology for Small Watershed," Technical Release No. 55, U.S. Dep. of Agriculture, 1975.
- 54. Tennesse Valley Authority "TVA Research on Flood Loss Rates," TVA, 1969.
- 55. Thomas, W. O. Jr. "Techniques for Estimating Flood Discharges for Oklahoma Streams," U.S. Geol. Survey, Water Resources Inv. 77-54, 1977.

- 56. Trent, R. E. "FHWA Method for Estimating Peak Flow Rates of Runoff for Small Rural Watersheds," Federal Highway Admin., Office of Research, Development, Environmental Design, and Control Div., Washington D.C., 1973.
- U.S. Department of Agriculture "Flood Damage Estimation of Residential and Commercial Property," WEP Technical Guide 21, Supple. 1, 127p., 1970.
- U.S. Army Corps of Engineers "Standard Project Flood Determinations," Engineering Manual 1110-2-1411, Washington, D.C., 1952.
- 59. U.S. Army Corps of Engineers "Flood Insurance Study for the City of Lîncoln, Nebraska," Prepared for Federal Insurance Administration, 1970.
- 60. U. S. Army Corps of Engineers "General Guidelines for Development of Floodway Data," U.S. Army, Washington, D.C., 1972.
- 61. U.S. Environmental Protection Agency <u>Storm Water Management</u> Model User's Manual, Version 2, Washington, D.C.: EPA, 1975.
- 62. Ward, R. <u>Floods: A Geographical Perspective</u>, New York: Halsted Press, A Division of John Wiley & Sons, Inc., 1978.
- 63. Water Resources Council "Guidelines for Determining Flood Flow Frequency," WRC, Washington, D.C., 1976.
- 64. White, C. F. <u>Choice of Adjustment to Floods</u>, Chicago Ill.: University of Chicago Press, 1964.
- 65. Williams, K. K. <u>Oklahoma City Urban Storm Runoff Quantity:</u> <u>Comparison and Calibration of Predictive Methods</u>, Dissertation of Ph.D., University of Oklahoma, 1979.
- 66. Wilson, K.V. "Flood Frequency of Streams in Jackson, Mississippi," U.S. Geol. Survey, Open-File Report 6p. 1966.
- Wiltala, S. W. "Some Aspects of the Effect of Urban and Suburban Development Upon Runoff," U.S. Geol. Survey, Open-File Report 28p. 1961.

APPENDIX A

Frogram Input of a Multiflood-Multiplan Analysis for Various Extent of Urbanization

.

. .

. .

HEC-1 INPUT

.

...

LINE	ID	1		3		5				• • • • • 9 • • •	10
1	ID	EF	FICT OF I	UREANIZA'	TION OF	BUNOFF.	TISE OF	CONCENTR	ATION 5	PLOOD DA!	AGE
÷	īī	I.	VESTIGAT	ION BY ST	DE LIN L	EEIS					
3	15	F1.	COD DASA	GE ANALY	SIS (EL	PECTED A	AC JACKE	SAGE)			
ŭ	ID	80	LTIFLOOD	. BULTIP	LAN ANAL	TSIS		,			
5	15	ST	REAM NET	OPK CON	PUTATION						
6	T 5	2	5 78. 6	HE DURA	TION						
ž	1.5		CREEK	BASTN. OF	LABORA	CITT. OF					
•	* 5 74	GRAM									
2	TT	5			100						
à	ŤÓ	ž									
10	10	รั									
11	10	7244	0 56	0 72	0 84	1 00	1 12	1 25			
••	94	FALC	0.30 .	0.72	0.04	1.00	1. 1.3	1.27			
		6034									
12	h h	2081									
13	N 11		AOFF CON	PUIATION							
14	5 A	3.5	- 0 - 4	• •							
15	Br	ů,	-0.1				2 20	3 96			
16	Pu	4		0.63	1.44	2-88	3-29	3. /3	4. OV		
17	15	0									
15	05	2.40	0.00								
19	K 2	2									
20	LS	0	81	20							
21	15	2.19	J. 66								
22	KP	3									
23	LS	0	85	40							
24	05	1.94	0.65								
25	KP	4									
26	LS	0	90	60							
27	U 5	1.89	0.66								
.28	K P	5									
29	LS	0	94	80							
30	U S	1.87	0_66								
31	KK	SUB2									
32	E H	EU	NOFF COM	PUTATION							
33	ВА	1.5									
34	LS	5	74								
35	JS	1.31	0_58								
36	KP	2									
37	LS	õ	78	20							
38	US	1.15	0.58								
39	K 2	3									
4D	LS	ō	83	40							
41	ŪS	1-15	0.58								
42	KP	4									
43	LS	Ó	88	60							
24	05	0.98	0.58	•••							
45	K P	5									
46	LS	ō	93	80							
47	0.5	0.97	0.58								
	•••										
48	E K	100									
40	E.S.	co	SBINE								
50	KO	0	2	0	0						
51	EC	2									
52	KK	RCHI									
- J 5 //	K M	EO	DTING								
54	FS	1	FLOW	-1							
35	SV	20	33	47	60	74	91	107	124	140	200
56	SV	231	275	32n	340	350	365	397	429		
57	52	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
55	SQ	5500	6000	6500	7000	7500	8000	9000	10000		
••											
59	K K	SUB3									
60	KS	RU	NOFF COR	PUTATION							
61	BA	3.0									
62	LS	0	76								
63	ŪS	1.74	0.63								
64	KP	2									
65	LS	0	80	20							
66	US	1.53	0.63	_							
67	KP	3									
68	LS	0	84	40							
69	US	1.36	0.63								
70	KP	4									
71	LS	0	89	60							
72	US	1.32	0.63								
		-									

144.

73 74 75 5 0 1.31 KP LS US 94 0.63 80 76 77 79 80 81 82 KK RCH2 FOUTING 1 FLOW 36 69 369 419 KH RS -1 171 514 2500 7500 338 102 472 1500 137 505 2000 265 631 4000 10000 203 540 235 591 296 SV 5 V 5 Q 5 Q 369 3000 3500 4500 5000 7000 8000 9000 83 ĸĸ KS BA LS US 84 85 KP LS US 1.77 RP LS US 3 86 40 1.57 0.63 KP LS KF 4 90 C 60 0.63 1.53 5 Ū 94 80 15 03 1.51 0.63 EUNOFF COMPUTATION . 100 101 102 103 104 105 107 109 ĸκ SJ38 65 BA LS DJ KP LS US KP LS 2.36 0.69 20 81 20 2.10 0_68 3 0 85 40 US KP LS 110 111 112 113 114 117 116 1.86 0.58 40 90 60 US 1.82 0.68 KP LS US 5 94 80 1.79 0.68 117 119 119 120 K K K O 200 ō 2 0 0 K H H C COMBINE ш 121 122 123 124 125 126 127 FK RC83 ROUTING K M F S S V -1 14 111 1500 FLOR 22 166 2500 7500 6 74 11 18 28 37 46 55 63 SV S2 S2 170 88 131 175 188 500 1000 2000 3000 8000 3500 4000 4500 5000 5500 6000 6500 7000 10000 SUNOFF COMPUTATION 3.2 0 75 128 129 130 131 132 133 134 135 ĸĸ SUB4 R M BA 2.41 C. 64 2 79 0.64 20 2. 12 KP LS US 136 3 137 138 84 0.64 40 1.88 139 Κ₽ 4 140 141 LS 0 39 0.64 60 1.91 KP LS US 142 5 93 0.64 143 144 80 1.78

-152-

.

. •-

145	KK	SU35									
146	医胃	FU	NOFT CON	PRTATION							
147	BA	2.2									
14 9	LS	0	75								
149	JS	2.03	0.59								
150	r P	2	••••								
151	LS	ō	70	20							
152	115	1.79	0 5 3	20							
153	ĸP		v. J ;								
154	LS	តី	9/1								
155	115	1. 58	0 59								
156	KP	и ц	0.57								
157	15	õ	• •	60							
155	85	1. 52	0 50	60							
159	82		0.33								
160	1 5	ด้	6 .5								
161	15	1 50	94	80							
	•5		0.39								
162		400									
163	80	400	2	•	~						
164	8.9	, ro	#370F	v	U						
165	80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
		-									
166	E E	8024									
167	KE	EC.IV	NCT:: 0								
168	RS	1	E.O.	-1							
169	SV	12	201	2,							
170	SV	205	215	220	757	110	120	131	152	189	195
171	so	500	1202	15.00	25/	283	306	317	347		
172	รว	5500	6000	65.30	2000	2500	3000	3500	4000	4500	5000
			0005	0300	1000	1500	8300	9000	10000		
173	KK	SUBS									
174	KĦ	EJ	NOFT COS	PUTATION							
175	BA	8.0									
170	LS	0	77								
177	05	1.10	0.60								
179	RP	2									
179	LS	5	81	20							
120	US	0.98	0.60								
121	K P	3									
132	LS	õ	85	40							
193	ns	0-87	0.60								
194	KP	4									
195	1.5	õ	90	60							
136	55	0.85	0.60	••							
197	8 2	Š									
158	1.5	õ	94	80							
139	05	0.84	0.63	••							
100	r r	STR10									
193	E H	RD	SOFT COS	PUTATION							
197	R.	0.8									
123	LS	ō	75								
194	75	1.82	0.65					•			
195	K D	2									
196	1.5	ō	79	20							
107	ns	1-60	0.65								
198	K P	3									
199	1.5	õ	84	40							
200	05	1.42	0.65								
201	κP	- 4									
20.	1.5	0	89	60							
202	85	1_37	0.65								
200	E P	5									
205	85	1.35	0.65								
206	LS	Ō	93	80							
200		-									
217	K K	300									
208	KO	ŏ	2	0	0						
209	KH	CC	DABINE								
210	BC	4									
210		-									
211	K K	BCH5									
212	K N	RC	UTING								
213	RS	1	FLOR	-1							
214	SV	6	11	14	18	23	28	37	46	55	61
215	SV	71	85	107	124	158					
216	so	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
217	50	5500	6200	6500	7000	7500					
- • •	-										

.

-

218	K F	SUBA									
219	K.B.	2020 R	UNDER CON	DUTATION							
210	81	1 0		FOIRTION							
221	1 9 1	1.0	76								
222	ns.	1 45	2 55								
223	8.5		0.33								
220	nr te	ź									
775	10	1 70	0 55	20							
276	53	1.4.2.5	0.00								
220	8 F	د									
227	1.5		84	40							
226	05	1,13	0.55								
229	KP	4									
230	LS	0	89	60							
231	US	1_10	0.55								
232	KP	5									
233	LS	G	93	80							
234	US	1.09	0.55								
235	K K	BCH6									
23E	K H	B	OUTING								
237	RM	1	1.4	0.1							
238	KK	S3811									
239	K B	R	JHOFF COM	PUTATION							
240	BA	1.2									
241	LS	0	76								
242	85	2.19	C.69								
243	K P	2									
244	LS	0	80	20							
245	05	1.95	0.69								
246	KP	3									
247	LS	ō	84	80							
248	US	1.71	0.69								
249	E 2	1									
250	LS	õ	80	60							
251	75	1.66	0 69								
252	K.D		4.03								
253	15	2	Q //	80							
254	70	1 6 1	7 6 9	80							
234		1.04	0.03								
255		57312									
756		30012									
257	10	P	UNDER CON	PUIALLON							
25.9	DA	0.0									
200	1.5										
. 200	05	1- 31	0.55								
200	KP	2	-								
261	LS	0	81	20							
202	05	1.17	0.58								
263	KP	3									
264	LS	0	85	40							
265	05	1.03	0.53	• •	····						
266	KP	4									
267	LS	0	90	60							
26.8	05	1_01	0.58								
269	KP	5									
202											
27.0	LS	0	94	80							
27 C 27 1	LS	1_00	94 0.55	80							
27 C 27 1	LS OS	0 1.00	94 0.59	80							
27 C 27 1 27 2	LS DS KK	0 1-00 500	94 0.55	80							
27 C 27 1 27 2 27 2 27 3	LS US KK Ko	1.00 500 0	94 0.55 2	80 O	0						
27C 271 272 273 273 273	LS US KK K0 K1	1-00 500 0	94 0.55 2 083IN2	80 0	0						
27 C 27 1 27 2 27 3 27 4 27 4 27 5	LS US KN Kn HC	1-00 500 C	94 0.59 2 083IN2	80 0	O						
27 C 27 1 27 2 27 3 27 4 27 5	LS DS KK KA HC	1-00 500 C	94 0.55 2 Ongine	80 O	0						
27C 271 272 273 274 275 276	LS DS KK HC KK	0 1-00 500 0 2 8C77	94 0.58 2 Onbine	80 C	0						
27C 271 272 273 274 275 276 277	LS DS KO K1 HC KK	о 1-00 500 С 4 ВСЯ7 Е	94 0.55 2 0N3INZ	80 0	0						
27 C 27 1 27 2 27 3 27 4 27 5 27 6 27 7 27 7 27 7	LS DS KK KO KM HC KK KS SS	0 1-00 500 C RCH7 E	94 0.55 2 ONBINE ODTING FLOK	80 0	0						
27C 271 272 273 274 275 276 277 278 278	LS DS KK KC KK KS SV	0 1-00 500 0 2 4 RCH7 E 1 33	94 0.55 2 ONBINE OUTING FLOR 21	80 0 -1 28	0 34	39	49	80	107	132	154
27C 271 272 273 274 275 276 277 278 279 279	LS DS KK KO KK KS SV	0 1-00 500 C 4 RCH7 E 1 3 3 174	94 0.55 2 0N3IN2 00TING FLOT 21 192	80 0 -1 28 230	0 34 267	39 305	49 322	80 348	107 372	132	154
27C 271 272 273 274 275 276 277 278 279 279 279	LS DS KK KO HC KK SV SV SV	0 1-00 500 0 2 8 8 8 7 4 8 8 7 4 1 3 174 500	94 0.55 2 083IN2 00TING FLOE 21 192 1000	80 0 -1 28 230 1500	0 34 267 2000	39 305 2500	49 322 3000	80 348 3500	107 372 5000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 270 273 279	LS DS KK KO KI RS SV SV SV	0 1-00 500 0 2 8 8 8 7 4 33 174 500	94 0.55 2 0N3IN2 00T1NG FLOT 21 192 1000 600.0	-1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279	LS DS Kr HC Kr SS SS SS SS SS SS SS	0 1-00 500 2 4 RCH7 5 174 500 5500	94 0.55 200731N2 0071NG FLOT 21 192 1000 6000	-1 28 230 1500 6500	34 267 2000 7000	39 305 2500 7500	49 322 3000 60 00	80 348 3500 9000	107 372 \$000 10000	132 \$500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279	LS DS KK KO KT HC KK SV SV SV SQ KK	0 1.00 500 4 RCH7 1 174 500 5500 SUB13	94 0.55 200731N2 00731N2 00731N3 FLOW 21 192 1000 6000	-1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 280 281 281 282 283 283 284 292	LS DS KK KO KC KC KC SV SV SV SV SV SV SV SV SV SV SV SV SV	0 1.00 500 0 2 4 RCH7 5 13 174 500 5500 SUB13	94 0.55 0071N2 0071N3 FLOF 21 192 1000 6000 UROFF COF	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279 279	LS US Kr HC Kr SS SS SS Kr BA	0 1.00 500 C 4 RCH7 E 1 3 174 500 5500 SUB13 E 1.5	94 0.55 00731N2 0071NG FLOR 21 192 1000 6000 UROFF CON	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 \$000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279 279	LS DS KR KO KR SS SS SS SS SS KR BA LS	0 1.00 500 C 4 RCH7 E 1 3 174 500 5500 SUB13 12.5 0	94 0.55 200731N2 00731N2 00731N3 FLOW 21 192 1000 6003 UROFF COM	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 277 278 279 280 281 281 282 283 284 285 296 237	LS DS KK KCN HC KK SV SS SS SS SS SS SS SS SS SS SS SS SS	0 1.00 500 0 8CH7 1 13 174 500 5500 5500 55013 1.5 0 2.85	94 0.55 00731N2 FLOW FLOW FLOW 1000 6000 UROFF COM 77 0.66	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 275 276 277 278 277 278 279 270 270 273 279 270 273 279 273 279 273 274 275 276 277 278 279 270 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 276 277 277	LS US KR KC KC KC KC SV SQ KC KC KC SV SQ KC KC SQ KC KC SQ KC KC SQ KC KC SQ SQ KC SQ SQ SQ SC SQ SC SC KC KC KC KC KC KC KC KC KC KC KC KC KC	0 1.00 500 0 2.85 500 5500 5500 5500 5500 5500 5500 55	94 0.55 00731N2 0071NG FLOF 21 192 1000 600J UROFF COF 77 0.66	80 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 8500	154 5 0
27C 271 272 273 274 275 276 277 278 279 277 278 279 279 273 281 282 293 294 285 294 275	LS DS KKN HC KKZ SSV SS SS KKT BA LS LS LS	0 1.00 500 C 4 RCH7 E 1 3 3 74 500 5500 SUB13 1-5 0 2.85 2 0	94 0.55 200731N2 00731N2 00731N3 FLOW 71 192 1000 6003 UROFF COM 77 0.66 81	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 8000 10000	132 8500	154 5 0
27C 271 272 273 274 275 276 277 278 277 278 277 278 277 278 273 281 281 283 284 283 294 284 285 296 237 236 235 290	LS DS KKOKH HC KKH SSV SS SS SS SS SS SS SS SS SS SS SS SS	0 1.00 500 4 RCH7 1 33 174 500 5500 5500 5500 55013 1.5 2.85 2.85 2.54	94 0.55 2007ING FLOW 21 192 1000 600J UROFF COM 77 0.66 81 C.66	80 0 -1 28 230 1500 6500	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 80 00	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279 279	LS DS KKN HC KKM RS SV SQ KKM BA LS KS KS KS KS KS KS KS KS KS KS KS KS KS	0 1.00 500 RCH7 13 174 500 5500 5500 500 500 1.5 0 2.85 2 0 2.54 3	94 0.55 0NJINE 00TING FLOE FLOE 21 192 1000 600J UROFF COF 0.66 81 C.66	80 0 -1 28 230 1500 6500 PDTATION 20	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279 279	LS DS KKN HC KKN SSV SS KKN BA LS DSP LS LS	0 1-00 500 C 4 RCH7 E 1 3 174 500 5500 SUB13 E 1-5 0 2-85 2 0 2-54 3 0	94 0.55 200731N2 0071NG FLOR 21 192 1000 6003 UROFF COM 0.66 81 C.66 85	80 0 -1 28 230 1500 6500 FPUTATION 20 40	0 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 \$000 10000	132 \$500	154 5 0
27C 271 272 273 274 275 276 277 278 279 279 279 279 279 279 279 279 279 279	LSS KKON H KKBSVV222 KKNA BAS SS22 KKNA BSSV LDS KLSS LDS KLSS LDS KLSS LDS KLSS LSS KLSS LSS KLSS LSS KLSS K	0 1-00 500 4 RCH7 5 13 174 500 5500 5500 5500 50013 1-5 2-85 2-85 2-85 2-54 3 0 2-25	94 0.55 20073INE 92 1000 6003 UROFF COM 77 0.66 81 C.66 85 0.66	80 0 -1 28 230 1500 6500 PDTATION 20 40	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 50
27C 271 272 273 274 275 276 277 278 279 230 281 282 293 234 285 294 285 296 237 236 237 236 237 236 237 291 252 293 294	LSS KKNK HCKKM SSV SSKKNA LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM LSS KKM KKM KKM KKM KKM KKM KKM KKM KKM K	0 1.00 500 RCH7 4 RCH7 13 174 500 5500 SUB13 1.5 2.85 2 0 2.54 3 0 2.25 4	94 0.55 0NJINE 0DTING FLOE FLOE 192 1000 600J UROFF COR 0.66 81 C.66 0.66	80 0 -1 28 230 1500 6500 1901ATION 20 40	0 34 267 2000 7000	39 305 2500 7500	49 322 3000 8000	80 348 3500 9000	107 372 4000 10000	132 4500	154 5 0

296	US	2.19	0.66								
298	LS	0	94	80							
295	IJS	2.17	0.66								
330											
301	KO KO	600	2	0	0						
372	K B	Čc	DEBINE	v	Ŭ						
303	3 C	2									
304	EC										
305		8031									
336	CN	3	AGRIC	RESID	IND/COR						
307	FR		8	400	100	50	20	10	4	2	1
308	<u>C</u> F DF	•	-	220	300	560	930	1230	1672	2040	2378
310	C 3		A	220	LAND USE:	AGRICO	LTUEZ 6	OPEN GRA	SSLAND	20.00	
311	มือ		101	200	300	0	8	1230	25	2040	23/8
312	EP	_				-	-			•••	••
313	PN	2		UTUEE DI	EVELOPHENT:	25 X	UBBANIZA	TION			
315	20 DG		201	340	590	997	1464	1842	2354	2760	3161
316	DG		202	0	ő	ŏ	20	33	207	326	426
317	DG		203	Ő	ŏ	ŏ	45	91	571	898	1171
318	EP	•	_								
320	00	د	, r	UTURE DI 530	ARD	50 % 1878	UEBABIZA 2047	TION	3003	7677	204.0
321	5G		302	0	0		47	199	393	1011	1245
322	DG		303	Ó	Ō	ō	135	593	1082	2780	3425
323	E2		_								
324	0.0	4	r A	UTURE DI	VELOPHENT:	75 % 1050	URBANIZA	TION	3800	2000	
326	DG		402	000	38	90	2433	970	3479	3980 1864	3491
327	DG		403	ŏ	105	248	1367	2670	4090	5128	9326
328	EP	-	_								
330	PN CD	5		UTUEE DI 740	VELOPHENT:	100 \$	URBABIZ	ATION	3787		
331	DG		502	ő	163	413	1078	1440	3027	2751	3297
332	DG		503	0	450	999	2964	3961	5324	7565	9067
333	KZ	BCH2									
334	CN FP	د	AGEIC	RESID	IND/CON		20	••			
336	5F		0	90	180	500	570	755	1025	1250	1070
337	PN	1	E	TISTING	LAND USE:	AGRICO	LTORE 6	OPER GRA	SSLAND	.2.30	1470
338	ÇD		8	90	180	500	570	755	1025	1250	1470
339	26 75		101	0	0	1	6	10	16	22	26
341	PN	2	P	UTURE DI	EVELOPHENT:	25 K	URBANIZA	TION			
342	QD		8	220	360	606	895	1124	1442	1699	1941
343	DG		201	0	0	0	0	0	0	0	0
344	ם שם ממ		202	0	0	0	44	25	168	232	304
346	EP		205	v	v	v	141	230	403		033
347	PN	3	P	UTORE DE	VELOPHENT:	50 %	URBANIZA	TION			
348	<u>C</u> D		8	317	528	881	1222	1485	1831	2120	2391
347	DG		302	0	0	170	194	324	494	663	786
351	EP			v	Ŭ	.,,		072	1330	1044	2102
352	PN	4	F	JTURE DI	EVELOPHENT:	75 %	URBANIZA	TION			
353	C D		8	500	880	110B	1475	1744	2109	2411	2697
354	23		402	0	52	791	491	676	977	1147	1377
355	20 70		403	U	145	611	21/6	1828	2087	3139	3786
357	PN	5	F	TORE DI	EVELOPHENT:	100 1	DEBANI2	ENTION			
378	<u>0</u> D		8	575	924	1257	1627	1900	2272	2579	2868
359	D G		502	õ	205	403	759	1052	1437	1715	1987
303	JG		203	Ų	350	1108	2088	2892	3923	4/15	5464
367	KK	BC53									
362	CN	3	AGRIC	AESID	IND/CON				_	_	
363	FR		8	400	100	50	20	2510	3370	2	1
365	24	1	2	RISTING	LAND USE:	AGRICO	LTOBE E	OPEN GEN	SSLAND	4110	4620
36E	20		8	500	750	1140	1890	2510	3370	4110	4820
367	DG		101	0	0	0	0	11	31	47	63
368 369	EP	2				25 e		TOP			
370	้ออ	4	ค้	742	1212	2023	2965	3701	4736	5537	6218
371	DS		201	5	ō	0	0	0	D	0	0
372	DG		202	0	0	0	0	120	208	795	1003
373 372	D3 70		203	3	0	0	0	360	573	2187	2759

-155-

275	DN	7	*7	THEF	FINDEFET.	\$0 E	HDD127717	TON				
376	00		e 19	1022 020	1700	2975	4050	10R	5966	6752	70 1 1	
272	20		202	10/4	1/ 30	2775	40.50	4340	3707	34.45	1007	
377	100		302		, v			409	1/0/	2430	2002	
378	DG		203	9	Ð	U	U	222	4659	0033	1820	
379	EP											
330	PN	4	FU	TURE DEV	ELOPHENT:	75 🐒	DEBANIZAT	LON				
331	ςΣ		a	1319	2200	3665	4875	5691	6704	7444	8924	
392	อัต		402	0	0	0	587	2277	3222	4290	5145	
2 4 3	DG		403	ā	õ	Ō	1613	6261	8862	11798	14148	
334	FP			-	-	•					•••••	
195	55	5	20		- 789 80.14	100	-	TON				
220	PA	5		TORE DE		100 1	UEDEF148	1110#	_			
326	20		в	1480	2478	4130	5320	6112	7113	8417	9316	
387	DG		502	0	0	0	1744	3515	4817	6452	7402	
338	DG		503	0	0	0	4795	9669	13246	17744	20356	
339	R K	RCH4										
390	CK	3	AGEIC	BESID I	HD/CON	-						
391	FR	-	8	400	100	50	20			2		
397	05			460	200	500	20					
303	21	-		150	200	500	933	1240	1664	2011	2226	
3-3	r n		22	TRIE T	AND USE:	AGRICI	ILTURE & C	PEN GRAS	SLAND			
374	C D		8	150	200	500	933	1240	1664	2011	2226	
3 75	23		101	0	0	0	12	20	30	39	47	
396	EP											
397	21	2	TU	TURE DEV	ELOPHENT:	25 S	URBANTZAT	TON				
32 8	00		8	200	300	1034	1510	1270	7770	2580	2200	
205	20		701	200	500			10/0	2220	2000	3200	
			201	, , , , , , , , , , , , , , , , , , ,	ě	v						
-30	10			ŭ	<u> </u>		81	160	369	54Z	625	
401	26		203	J	0		224	440	1014	1490	1720	
432	EP											
403	2 N	3	FJ	TURE DEV	ELOPHENT:	50 %	UBBANIZAT	ION				,
434	ÇD		8	350	620	1558	2051	2320	3080	3640	6050	
405	วัด		302	0	0	169	532	BH O	1197	1417	1666	
406	DG		303	õ	ñ	867	1464	2311	3201	3996	8583	
407	80		505	•	•	407	1404	6311	3231	2020	4303	
407	55											
405	F R			TORE DEV	SLOPHERT:	13 3	UKBAN12AT	TON				
409	65		8	700	1167	1946	2324	2908	3660	4103	4461	
410	DG		402	0	164	446	1704	1613	2098	2502	2867	
411	DG		403	0	450	1228	3407	4437	4999	6880	7885	
412	ΞP											
413	2 N	5	F3	TURE DEV	ELOPHENT-	100 5	IRBANTZA	7108				
414	ο n	-	8	756	1260	2099	2534	3302	3947	#375	6020	
415	20		502			40.17	1000	2002	3072	3433	3024	
415	50		502	, v	443	1017	1383	2434	3073	3032	4179	
410	ЦG		503	0	1220	2796	5471	6693	8450	9989	11492	
417	KK	RCH5										
418	CN	3	AGRIC	RESID I	ND/COH							
419	FR		8	400	100	50	20	10	2	2	1	
420	OF			750	1150	1870	3300	#105	5895	6552	7003	
471	Dx	1	57	TOTTNO T	AND DET.	CPTC	TTTTTTT T O	DEN CONC	CTAND	0352	/403	
1177	2.2	•		750	1150	1070	21025 6 0	1105	ENOE	666 M	3403	
742	20			/ 30	1150	10/0	3100	4105	3433	0332	7403	
423	16		101	U	Ų	0	16	39	71	98	124	
424	EP	-										
425	PN	2	FU	TURE DEV	ZLOPHENT:	25 S	URBANIZAT	ION				
426	õ D		8	1200	2000	3339	4908	6002	7285	8804	10247	
427	ĎG		201	0	0	0	0	0	۵	0	0	
428	DG		202	õ	Ō	ā	74	87	1429	2386	2775	
475	DG		203	ñ	õ	ñ	44	200	3070	6567	7677	
430	RD			•	•	~	~~	270		0304		
271	 	2	27	THEE BES		50 -		TON				
431		5	. ru	1770	DAULGENT:	30 3	USDERLART	108	070.0			
* 32	<u></u>			1779	2343	4712	0451	7463	9/94	11247	12410	
433	DG		302	0	õ	40	1204	2593	4684	4772	6345	
434	DG		303	Ú	0	109	3664	7150	12880	13125	17448	
435	EP											
436	PN	4	23	TJRE DEV	ELOPHENT:	75 X	UPBAS12AT	ION				
437	GD		8	2160	3600	5999	7416	9296	11210	12500	14300	
43B	bG		402	0	54	654	8016	5437	7026	4319	8327	
439	ng		112		150	4700					UJL /	
440	FD			U	120	1122	11045	14950	19320	22878	22900	
	- t.											
22.1	מס	5	P R	TORE DE	ELOPEPHT -	100	DERANT?	TIOF				
441		2	<u>ہ</u>	2840	3940	6540		10174	11040	13430	98600	
442 80.4	60		503	4000	3340	4454	2020	() 70	11300	13030	14390	
443	DG		502	0	461	1191	4330	6075	7675	8979	10184	
444	DG		503	0	1270	3275	11909	16708	21107	24694	28005	
445	ĸĸ	RCHE										
44 E	CN	3	A GE IC	RESID 1	ND/COM							
447	FR	-	8	400	100	50	20	10	4	2	1	
<u>a 11 e</u>	~ 5		-	50	RÓ	120	200	250	350	ACL		
110	5 V	1	**	TSTTNC T		101101	ILTIRE C /	יופה צפפר	022 044 122	- J J	475	
14 H 2 15 F	r 3	•	ل ئے	TOTTE0 7		970	ALVAL V L					
450	60		8	50	80	120	200	250	350	455	495	
451	53		101	0	Q	Ø	0	2	4	5	7	
	•											
452	EP											

--

.

453	PN	2	F	TURE D	EVELOPHENT:	25 S	GERANIZA	TION			
454	55	-	8	70	120	195	288	36.1	#63	548	680
455	DG		201	ŏ				501		540	0,00
456	DG		202	ŏ	ŏ	ŏ	ő	Š	14	35	49
457	DG		203	õ	ŏ	ŏ		10	7.	96	1 16
45E	EP			•	•	•	•		20	30	130
459	PN	3	71	TURE D	EVELOPHENT -	50 K	TRRANT?	TON			
460	5.5	-	8	108	180	285	395	878	598	686	773
461	20		302	0	0		14	410	78	105	137
462	DG		303	ō	ň	ň	36	121	274	29/1	379
463	20			•	•	•	50	121	* • •	230	370
ц <i>ғ.</i> ц	5.	n	7 1			. 76 e		TTON			
465	6.	-		100 100	210	5 /2 A 36#	UDEREIGI	11108 550	677	773	044
466	DC DC		202		210	334	470	333	155	773	202
460	DC		102	Ň	Ň		170	107	125	200	23/
86.8	50		403	v	v	• /	1/8	294	420	201	708
400 400	25	E	-								
405		5			CVELOPOESI 3		N VEDASIA	ATTUN			
415	20		500	140	240	370	515	604	/24	821	910
	26		502	U U	10	48	116	186	240	314	375
• • 2	10		503	U	45	131	324	511	659	864	1032
473	ĸĸ	BCE7									
474	CN	3	AGRIC	BESID	IND/CON						
475	FR		8	400	100	50	20	10	4	2	1
476	OF			900	1450	2192	3476	4576	6140	7200	8435
477	P N	1	21	ISTING	LAND USE:	AGETC	BLTBRE &	OPZN GEA	SSLAND		
478	C D		8	900	1450	2192	3476	4576	6140	7200	8435
479	56		101	Ō	0	0	0	10	19	50	79
490	EP				-	•	•				
431	PN	2	PU	TURE DI	EVELOPHENT:	25 🕱	DEBANIZ	TION			
482	2D		8	999	2340	3690	5417	6565	8192	9939	11643
433	25		.201	0.	.0	.0	.0	.0	.0	.0	.0
434	DG		202	0	0	Ó	0	261	683	1055	1577
435	DG		203	0	0	0	0	717	1880	2902	4336
436	EP										
497	PN	3	20	TURE DI	evelophent:	50 %	DEBASIZA	TION			
435	20		8	1930	3200	5320	6988	8355	10958	12742	14183
439	ĐG		302	0	0	0	653	1360	2354	3422	4205
490	DG		303	0	Ó	ō	1836	3740	6474	9412	11565
#21	EP										
402	PN	4	FC	TURE D	BVELOPHENT:	: 75 %	URBANIZI	TION			
493	QD		8	2332	3885	6472	8267	9999	12686	14286	16193
494	ສັດ		402	3	0	530	1942	3014	5266	6635	7999
475	DG		403	0	0	1458	5341	8290	14480	18249	21997
496	EP										
497	PN	5	F	TUBE D	EVELOPHENT:	: 100 !	S URBANIS	LOITAS			
498	CD		8	3450	6250	7073	9281	11390	13579	15376	17362
499	26		502	0	454	1402	3326	5418	7576	9916	11634
500	DG		503	Ō	1250	3856	9146	14900	20834	27269	31995
501	2.7.										

.

· _ ·

-157-

APPENDIX B

-

Program Input of a Multiflood-Multiplan Analysis for Various Extent of Channel Modification HEC-1 INFUT

LINE	I D		•••••2••		4			7		• • • • • 9 • •	10	
•	Th	PE	FRCTS OF		****				-	7704		
÷	ŧĭ	51 Tu	72013 01	TON DY C			TTE DO M	LOIONE	UECASI 44	1108		
2	10	TD DIGITICS INTELS FARTERS AND										
3	10	TO FLOUD DADAGE ABALIDLO (ELPECTED ABAULL DADAGE)										
4	15	20	TI ILIOOD	, NULIIP	LAN ANAL	ISIS			•			
5	ID	ID SIRLAN BETWORK COMPUTATION										
6	ID	50	Y3, 6	HE DURA	TION							
7	ID	CO	N CREEK	BASIN, O	KLAHONA	CITY. OK						
-	# DT 1	GRIK		, •			•					
•	77	C			100							
		5			100							
9	10	4										
10	JP	5										
11	JR	PREC	0.56	0.72	0.84	1.00	1.13	1.25				
12		51181										
13	F H	5051	NO #2 CO	0771								
13	n <u>n</u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	BOTT COS	FOTETTOE								
14	PA	3.5										
15	BF	0	-0.1	1.2								
16	PH	4	0	0.63	1_44	2.88	3.29	3.75	4.80			
17	LS	0	85	40								
18	បន	1.94	0_66									
10		capo										
17	~~	0004 										
20	КЦ	_ EO	NOFF COR	PUTATION								
21	BA	1.5										
22	LS	0	83	40								
23	05	1, 15	0.58									
4-	~~											
24	KK	100										
25	КЛ	C	ORBINE									
26	80	2										
77	**	BCB1										
20			17 TVC									
28	N.3		01130	- •								
29	R S	1	FLOW	-1		_						
30	S7	20	33	47	60	74	91	107	124	140	200	
31	57	231	276	326	340	350	365	397	429			
32	SO	500	1000	1500	2000	2500	3000	3500	8000	8500	5000	
17	50	5500	6000	65.00	7000	75.00	8000	9000	10000			
	24		0000	0,00	1000	1300	0000	,,,,,				
34	KK	SUB3										
35	KS	BO	BOFF COM	PUTATION								
36	Bλ	3.0										
37	LS	0	84	80								
28	10	1 36	0 63									
20	03	18.30	0.05									
39	K K	ECH2										
40	KH	BO	UTING									
41	85	1	PLOW	-1								
u7	ST	36	69	102	1 37	171	203	235	266	296	338	
n 3	CT	340	<u>4 10</u>	477	5.05	510	540	501	631	_/-		
4.1		505	412	47.6	202		2000	3500		****	6000	
44	52	500	1000	1200	2000	2500	2000	3300	4000	4300	3000	
45	5 <u>0</u>	5500	6000	6500	7000	7500	8000	9000	10000			
26	**	51187										
n7	E N		NOFT COM	PRTATON								
71	21	^ a ^v										
40	DA	0.3										
49	LS	0	86	40								
50	U S	1. 57	0.63									
51	KK	ST 88										
52	K M	811	NOFF CON	PUTATION								
52	23	1 0										
23	DA .											
54	1.5		85	40								
55	05	1.86	0.68									
56	**	200										
57		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MBINP									
20	HC.	4										
59	K K	BCH3										
60	KH	RO	UTING									
61	RS	1	FLOW	-1								
67	< V	Å	11	14	18	22	28	37	46	55	63	
04	21			4 4 4	10	122	170	175	+00	0.0	60	
6.3	5 1	14	88		131	100	2000	1/3	100		5000	
64	ຣວູ	500	1000	1500	2000	2500	3000	3200	4000	4500	2000	
65	SQ	5500	6000	6500	7000	7500	8000	9000	10000			

.

66	E K	SUB4									
67	Ka	RU	JNOFF CO	IPUTATION	2						
68	JA TC	3.2	a 11	"0							
70	05	1.88	0.64	40							
71	XX	SJ 85									
72	K.E.	B	JHOFF COS	PUTATIO	9						
73	Bà	2-2									
74	LS	0	84	40							
75	US	1.58	0.59								
76	KK	400									
78	EC	2	000100								
79	KK	BCH4									
30	KH	E	OJTING	-							
81	ES	1	FLOW	~1	E 1	110	120	131	152	189	195
82	SV	12	20	32	257	283	305	317	347		
83	57	209	213	1103 5	4407 5	1165.7	1195-6	1195-9	1196-5	1196.7	1196.9
84	SE	1180.5	1100-/	1197-6	1197.7	1197.9	1198-0	1198.2	1198.4		
85	52	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
30	20	5500	6000	65.00	7000	7500	8000	9000	10000		
37	25	2									
20	RS	1	FLOR	-1					_		
90	S V	12	20	31	49	105	114	122	140	172	177
91	SV	187	193	214	230	243	260	272	288		
92	SZ	1184_8	1186.4	1188.4	1190_8	1192.9	1195.4	1195.6	1195-8	1132-3	1170.0
93	SZ	1196.4	1196.9	1197.2	1197.4	1197.6	1197.8	1198.0	1198-2		
94	SQ	500	1000	1500	2000	2500	30 3 0	3500	4000	4500	5000
95	รอิ	5500	6000	6500	7000	7500	8000	9000	10000		
96	KP	3									
97	R S	1	FLON	-1							
98	SV	12	19	28	45	100	107	112	125	152	160
99	SV	165	173	189	200	210	222	232	239		
100	SZ	1184.0	1186-0	118/.8	1189.0	1190-1	1107 3	1191.3	1192-1	1192.9	1194.4
101	55	1192-0	100-0	1190-1	1130-0	2500	2000	3500	1170-1		5000
102	27	500	6000	1500	2000	2500	3000	3300	10000	4300	5000
100	50	5200	0000	0,000	/////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0000	3000	10000		
105	55	1	#1.0¥	-1							
10.5	57	12	19	30	45	99	105	111	124	146	150
137	SY	156	165	170	174	178	180	182	190		
108	SE	1183_6	1184.1	1185.0	1186.0	1186.8	1187.2	1188.3	1189-0	1189.6	1190.2
109	SE	1190.8	1191.3	1191.8	1192.3	1195.8	1196.0	1196-2	1196.3		
110	SQ	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
111	sõ	5500	60 0 0	6500	7000	7500	8000	9000	10000		
112	KP	5									
113	RS	1	PLOW	-1							
114	57	12	19	29	40	93	98	104	115	138	140
115	57	150	159	164	170	1/4	1/6	1/5	102	1107 6	44 80 4
116	52	1182-8	1183.5	1184-1	1184_0	1100 0	1103-0	1100.4	110/-0	110/+3	1100-1
117	55	500	1000	1109-00	2000	2500	3000	3500	#000	4500	5000
119	50 50	5500	60 0 0	6500	7000	7500	8000	9000	10000	4500	2000
120	KR	SVB9									
121	KH	B	UNOFF CO	HPUTATIO	N						
122	Bl	0.8									
123	LS	0	85	40							
124	US	0.87	0.60								
125	KK	SUBIO									
126	K.H	6	UBOFF CO	SPUTATIO	1						
127	BA	0.8									
128	LS	0	84	40							
129	US	1,42	0.65								
130	KP	2									
131	LS	0	84	40							
132	05	1.05	U. 65								
133	KP	5	0.0								
134	15	1 05	04	40							
135	U.⊅ ₩ D	1.05	0.03								
130	7 C		Q n	a۵							
138	15	1.05	0.65	47							
139	· R P	5									
140	LS	õ	84	40							
141	ซิร	1.05	0.65								

,

142	ĸĸ	300									
143	KĦ	CONBINE									
144	HC	4									
5 / E		5075									
145	K K.	RCHO	0.0778.0								
147	85	1	TION	-1							
148	SV	6	7.1	14	18	23	. 28	37	86	56	£ 1
149	SV	71	85	107	124	158		5.			01
150	SE	1185-2	1187.4	1189.1	1190.6	1191.8	1192.6	1193.2	1193.7	1194.1	1194-5
151	SE	1195.2	1195.9	1196.2	1196.5	1196.7					
152	SQ	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
153	SQ	5500	6000	6500	7000	7500					
154	KP C	2	=1.04								
155	85		FLOW 41	-1	47		26	34			
157	57	64	78	99	110	4 i 10.0	20	34	42	51	55
158	SE	1184.9	1187.0	1188-5	1189.8	1190-9	1191-9	1192-7	1193.5	1108 3	1100 0
159	SE	1195.4	1195.8	1196-1	1196.2	1196.3			113363		1134.3
160	SQ	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
16 1	SQ	5500	6000	6500	7000	7500					
162	K P	3									
163	RS	1	FLOW	-1							_
164	SV	6	11	14	16	20	25	33	41	48	52
165	S₹	60	80	87	98	121					
166	SE	1184-2	1186.0	1187.4	1188.5	1189.5	1190.4	1191-2	1131-3	1192-0	1193-2
167	SE	1193.8	1194.4	1794.9	1195-3	1195-6	2000	35.00	4000	4500	5000
165	50	500	1000	1500	2000	2500	3000	3200	4000	4300	5000
169	20	5500	6000	6500	7000	7500					
173	85	1	71.07	-1							
172	ST	6	10	13	15	18	23	29	35	40	43
173	SV	52	58	65	78	90					
174	SE	1182.8	1184.0	1185.1	1186_0	1186.8	1187.5	1188_2	1188.9	1189.5	1190-1
175	SE	1190.6	1191.1	1191.6	1192.1	1192.5				-500	5000
176	50	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
177	50	5500	6000	65 00	7000	7500					
178	KP	2	PT OF	-1							
1/9	64	5	10	13	15	18	23	27	33	37	39
191	57	47	52	57	68	78					
182	SE	1182.1	1183_0	1183.8	1184.5	1185.1	1185.8	1186.3	1186.9	1187.4	1187.9
183	SE	1183.4	1188.9	1189.3	1189.7	1190.2					
184	នភ្	500	1000	1500	2000	2500	3000	3500	4000	4509	5000
185	ຽວ	5500	6000	6500	7000	7500					
136	K K	SUB6			N 12						
157	23	1 0		<i>aru 14 11</i> (/#						
100	15		84	40							
190	05	1. 13	0.55								
191	KK	RCH6									
192	KH	5	OUTING								
193	2 H	1	1_4	0_1							
194	KK	SOB11									
195	Ka		UNUFF CO	nPUILII(7 M						
190	DA TC	1-2	94	20							
198	115	1.71	0.69	40							
199	KP	2									
200	LS	ō	84	40							
201	ឋទ	1.53	0.69								
202	K P	3									
203	LS	0	84	40							
204	05	1. 53	0.69								
205	KP	4	0/1	**							
207	15 17	1.57	0_ 60	40							
208	KP		4003								
209	LS	ō	84	40							
210	US	1.53	0-69	-							
211	KK	SUB12									
212	Kä	, E	NUROPP CO	EPUTATI(H						
213	BA	0.6	05								
215	12	1 02	0 5 0	40							
		(40 40								

,

.
220	£.3	COMBINE									
291	нс	2									
292	ΞX										
293	ĸĸ	RCH4									
224	CX	3	AGEIC	RESID	IND/COM						
295	FR		8	400	100	50	20	10	4	2	1
296	SF			1187.4	1189.0	1190.7	1192.8	1194.3	1195.7	1196.1	1196.5
297	30		В	1197.4	1189.0	1190.7	1192.8	1194_3	1195.7	1196.1	1196.5
293	D G		101	0	0	0	0	0	0	0	0
299	23		102	0	0	169	532	840	1197	14 17	1663
300	26		103	0	0	467	1464	2311	3291	3896	4582
301	KK	RCH5									
302	CX	3	AGRIC	RESID	IND/COM						
303	FB		3	400	100	50	20	10	4	2	1
304	SF			1189.9	1192.2	1194.4	1196.2	1196.7	1197.3	1197.8	1198.3
305	50		3	1189.9	1192_2	1194.4	1196.2	1196.7	1197.3	1197.8	1198_3
306	D G		101	0	0	0	0	0	0	0	0
307	DG		102	0	0	40	1204	2593	4684	4772	6345
308	56		103	0	0	109	3664	7130	12880	13125	17448
309	KK	ECH7									
310	C 3	3	AGLIC	RESID	IND/COM						
311	FR		3	400	100	50	20	10	4	2	1
312	57			1179.6	1182-8	1184.8	1185.6	1186.2	1186.4	1186.6	1186.7
313	30		8	1179.6	1132.8	1184_8	1185.6	1186.2	1186_4	1186.6	1186.7
314	DG		101	0	0	0	C	0	0	υ	0
315	D3		102				668	1360	2351	3422	4205
316	53		103				1836	3740	6470	9412	11565
317	ZZ										