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CHAPTER I 

 

INTRODUCTION 

 

1.1 Research Motivation 

 There are more than 600,000 highway bridges in the united states ASCE (2009). 

Guidelines by the AASHTO (2007) suggest that the expected service life of a bridge to 

be a minimum of 75 years.  The majority of bridges currently in use were built after 

1945. However, significant environmental damage requiring repair typically occurs 

before the average bridge reaches mid-life. In 2005, the ASCE estimated that it would 

take $188 billion over the next 20 years to eliminate bridge deficiencies in the United 

States (ASCE, 2005). The cost of delaying these repairs is significant as delay leads to 

increases in road user costs, material, and construction costs.  

It is possible that the condition or health of these bridges could be effectively 

monitored by using sensors. Using sensor information, more informed repair and 

maintenance decisions could be made. Furthermore, these sensors may be able to give the 

local state Departments of Transportations (DOTs) information about when a bridge is 

nearing the end of its usable life. While this could be a useful tool, it is not currently cost-

effective to monitor the health of common structures due to the high cost of sensors,



2 
 

installation of these sensors and, ultimately, the monitoring of the sensor system. 

However, it has been found to be cost-effective by several DOTs to use structural health 

monitoring (SHM) on major “lifeline” or critical structures. These structures are of such 

great importance to the public that they must remain open and be maintained to last as 

long as possible. 

According to the FHWA and US DOT (2009) report there are more than 600,000 

bridges in the United States and 11.8% of the bridges are structurally defective and 

13.01% are functionally obsolete and more than $17 billion is needed to improve the 

current condition of bridges. Visual inspection is the primarily method used to evaluate 

the condition of these bridges. SHM can help the decision making process of 

classification of condition of bridges by assessing the internal condition of the bridge 

structures where it would be inaccessible or uneconomical by the visual inspection 

approach. The consequence of ineffective inspection of bridges can be very severe. The 

collapse of the I-35W Mississippi River Bridge on August 1, 2007 in Minneapolis caused 

a loss of13 lives and the replacement cost for the bridge was about $234 million. Other 

costs are incurred as a result of increased commute times, loss of business from lack of 

local access, and lost revenue from the blockage of a major river shipping channel. 

According to the (NTSB, 2007) report the bridge is collapsed due to design defects and 

excess load at the time of the collapse. 

 

1.2 Problem Statement 

Components that directly affect the performance of the bridge must be 

periodically inspected or monitored. Currently, visual inspection is the primary method 
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used to evaluate the condition of most highway bridges. Inspectors periodically visit each 

bridge to assess its condition. This type of inspection is highly dependent upon the 

individual inspectors‟ experiences. Even for experienced inspectors, it is difficult to 

detect corrosion and crack development inside of structural elements, and almost 

impossible to realize the resulting changes in deflections of the structure due to local 

changes in stiffness. Moreover visual inspection is labor intensive and costly.  

 

1.3 Research Objectives 

Due to the shortcomings of traditional inspection methods and advancement in 

sensor technology and wireless data transmission, researchers have turned their attention 

to SHM in recent years. SHM is generally a type of non-destructive inspection (NDI) 

which allows the examination or testing of an object or material without affecting the 

operational life or causing damage. The ultimate goal of the research in this thesis is 

application of data processing methodologies and statistical techniques for response data 

acquired from sensors for the purpose of SHM. The objectives of this research include: 

(i) Time series modeling and spectral analysis of data gathered from a normal 

working state and damaged state to validate the proposed signal processing 

tools.  

(ii) Application of statistical tools to support the proposed signal processing 

approaches to be able to decide when damage occurs to a structure.  

(iii) Prediction or forecasting of damage indicator parameters based on past 

recorded values. 
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1.4 Research Methodology 

Damage to a civil structure can be detected by processing or analyzing response 

data obtained from sensors installed on the structure such as a bridge.  The premise 

behind these response data analysis methodologies is that when damage occurs to a 

structure, it induces changes in the structural properties which results in loss of stiffness 

or a change in energy dissipations of the structure. These changes in turn will alter the 

measured dynamic response of the structure.  

To detect the incurred damage, time series modeling and spectral analysis 

approaches are utilized in this research. High volume data from a functional bridge is 

analyzed in a step by step approach from a time series perspective. Frequency domain 

approaches which include Fourier transform, wavelet analysis and Hilbert transform were 

also applied on a simulation data of a benchmark problem. Comparison of the 

effectiveness and sensitivity of the methodologies was also the subject of this research. 

The main feature extraction or damage indicator parameter approaches used in this study 

were frequency changes in the spectral analysis tools while time series and statistical 

analysis tools were applied to detect the changes in the amount of deformation developed 

on a supporting column of a bridge.  

 

1.5 Thesis Organization 

Background and a detailed review of recent development of SHM are discussed in 

chapter 2. Prior studies conducted on feature extraction and signal processing for the 

purpose of SHM are also revised in this chapter. In chapter 3 proposed methodologies of 

data processing approaches and case studies to show the applicability of the methods are 
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described in detail. Chapter 4 presents the application of the proposed methodologies for 

data obtained from a currently working bridge and a benchmark simulation.  Presented in 

chapter 5 are the conclusion and summary of the research work together with the 

recommendations for future study in this area. 
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CHAPTER II 

 

LITRETURE REVIEW 

 

2.1 Introduction to Structural Health Monitoring 

According to (Sohn et al., 2003) Structural Health Monitoring (SHM) can be 

defined as “the process of implementing a damage detection strategy for aerospace, civil 

and mechanical engineering infrastructure”.  In this context, damage is defined as 

changes in the geometric or material properties of the infrastructures, which negatively 

affect the normal working condition. For example, a crack that develops on a supporting 

column of a bridge invokes a change in the stiffness of the column; hence it can be 

considered as damage.  

 

2.2 Phases of Structural Health Monitoring 

SHM deals with the observation of structures, such as, bridges or buildings, over a 

period of time; by means of response measurement data acquired from sensors, feature 

extraction from the measurement system and the application of statistical tools to detect 

the presence of damage. 
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Fig.2.1 Basic steps in SHM system 

 

2.2.1 Operational Evaluation 

Operational evaluation is concerned with the scope of SHM system as a whole. It 

addresses the following issues:  

(i) The need to conduct SHM for a particular structure under study. 

(ii)  Definition of damage to the structure.  

(iii) The Operational and environmental condition under which the monitored 

structure exists or experiences. 

 Some of the major reasons in conducting SHM are economic and life style issues. 

For example, the collapse of the I-35 Mississippi Bridge resulted in death of 13 people 

and an economic loss amounting between 400 thousand to 1 million dollars. 
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 Environmental and operational conditions should also be considered while 

implementing SHM. Doebling and Farrar (1997) state that the modal analysis of 

Alamosa Canyon Bridge in New Mexico depicts first mode frequency variation due to 

the temperature difference recorded within 24 hours. The implication here is that, 

changes in the surrounding conditions can produce a far more significant amount of 

variation on measured parameters compared with the actual damage progress 

experienced by the structure. Staszewki et al. (2000) discuss that ambient vibration and 

temperature could affect piezoelectric sensors negatively, which is mounted on 

composite plates. The delimitation in the composite plates was concealed by temperature 

variability. Rohrmann et al. (1999) found that a structure‟s material properties were 

altered as a result of change in temperature and this change resulted in a change in the 

reaction forces from the bridge supports. The authors also formulated a mathematical 

modal using regression to show the effect of temperature on the natural frequency. 

Δf=a0T0+a1ΔT     2.1 

As the equation shows, there is a linear relationship between temperature change and 

natural frequency. According to the article by (Wong et al., 2001), the displacement 

response of a bridge is the combined effect of impacts, which arise from major sources of 

wind, temperature, highway, and railway. The authors further discussed the effect that 

temperature has on long suspension bridges. Temperature difference could cause damage 

to a bridge by forcing expansion and contraction of the bridge along the longitudinal 

direction. The effect of wind and rain-wind induced vibration on the performance of a 

bridge is discussed in the report by (Zuo et al., 2010).  
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2.2.2 Data Acquisition 

 The acquisition of data is one of the integral components of a modern SHM 

system. Issues such as how often to collect the data, the type, placement and number of 

sensors are also handled in this step. After the data has been produced, it is necessary to 

get this information from the data acquisition system and to the user to evaluate. 

Sampling and processing of signals, usually manipulated by a computer, to obtain the 

desired information is referred to as Data Acquisition (DAQ).  

The components of data acquisition systems include appropriate sensors that 

convert any measurement parameters to electrical signals, which are acquired, displayed, 

analyzed and stored on a PC by interactive control software and hardware. A general 

understanding of this system and its components is essential in order to design an 

efficient and useful monitoring program. Generally, there are two common data 

acquisition systems, namely, the manual and computer based systems. 

In a manual system, the operator visually reads the data from the read out units 

and records it manually. Since this system does not need bulky equipments, it is an 

economical and convenient way to collect data from a small number of sensors within a 

short period of time. However, for more general applications, a computer based 

acquisition system must be used. The components of this data acquisition system are 

signal conditioners, one or more data acquisition boards, and a computer. 
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2.2.2.1 Excitation Methods 

Prior to obtaining the data, there should be some sort of excitation method applied 

on the structure of interest. Generally, the excitation methods that we use to vibrate or set 

a structure in to motion can be categorized in to forced excitation and ambient excitation. 

Forced excitation: in this category, a number of different excitations methods are 

applied. Some of the most commonly used are: actuators, shakers and a variety of 

methods of measured impact. Sohn et al. (2000) used actuators and electromagnetic 

shakers in order to excite a bridge concrete column. The benefit of this method is that the 

input force used to excite the structure under study is large enough that it reduces the 

effect of noise disturbances, which could have a stronger signal to noise ratio. Other 

subsection of forced excitation is the local excitation. Local excitation is a type of forced 

excitation whereby input force is applied where there is the need to excite a subsection of 

a particular structure of interest. The local excitation has a benefit of surpassing the effect 

of environmental and operational conditions to which a structure is subjected.  

Ambient excitation: occurs to a structure while the structure is working under 

normal operating conditions. One major difference between ambient excitation and 

forced excitation is that it is not easy to measure the amount of input force from this 

source of excitations; unlike the forced excitation types, other ambient excitation 

differences are persistent consistently (Sohn et al., 2003). For example, a bridge is 

consistently influenced by ambient excitation sources.  The major sources of ambient 

excitations are traffic, wind, wave motion, and pedestrians. These sources of excitations 

are the preferred alternatives while implementing SHM systems, since it indicates the 

actual and real time excitation of a structure. However, these sources of ambient 



11 
 

excitations may not be applicable to all types of bridges. Pedestrian excitations which are 

generated while people are walking on a bridge may not be applicable to a Highway 

Bridge. At the same time, excitation from traffic is uncommon to a small bridge which is 

found farther away from cities.  

Once the source of excitation is studied, the next step would be measurement of 

the output from the excitations. Sensors are used to capture or to record the output from 

the different types of excitations. The premise of vibration or excitation based SHM is 

when a change in mechanical properties occurs; these changes are depicted in the 

response output measured. Response measurements from sensors are kinematic 

parameters, which include strain, displacement, acceleration and velocity. In addition to 

these parameters, temperature, wind, humidity are also recorded to examine the 

surrounding conditions of the structure.  

  

2.2.2.2 Sensor Applications in SHM 

Real-time data for bridge condition monitoring can be provided by embedded 

sensors installed on the structure of interest.  The type of sensors to be installed is 

dependent up on the accuracy needed, type of bridge under investigation and the 

measurement of interest. The most common types of sensors used in bridge health 

monitoring are strain sensors. Strain sensors are measuring elements that convert force, 

pressure, tension, etc., into strain readings (Zalt et al., 2007). Through connection of 

sensors networks by using a wired or wireless connection system a bridge‟s performance 

can be performed. 
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Fig. 2.2 Application of strain gauges for SHM (Problem  Solving  with Computers) 

 

2.2.3 Feature Extraction 

According to (Sohn et al., 2003) feature extraction is the withdrawal or extraction 

of damage sensitive parameters from the dynamic response measurement obtained from 

sensors. Feature extraction relies on finding the relationship between measurement 

responses and the observation of a system for a period of time. For example, when a 

structure undergoes deterioration the amount of strain developed increases through time. 

Therefore, one can relate strain measurement as a potential damage indicator.  Other 

system response parameters, such as, frequency, damping ratio, and mode shape among 

others  could be taken as a feature extraction indices due to the fact that the quantitative 

measurement of these parameters could indicate the progress of damage(Chen et al. 
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2004). The following sections of this subtopic try to focus on the major feature extraction 

methods used by different scholars for effective development of modern SHM. 

 

2.2.3.1 ARMA/ARIMA Modal Families 

Coefficients of Autoregressive Moving Average (ARMA) or Autoregressive 

Integrated Moving Average (ARIMA) time series models have been used in the past as a 

feature extraction or damage detection parameters (Carden et al. 2007). The rationale 

behind fitting time series models to a response measurement data is to detect the progress 

of damage through monitoring the coefficient of these models. Sohn et al. (2000) used 

coefficients of AR model in order to detect the presence of damage to acceleration 

response measurement obtained from a bridge column by forced excitation. The 

experiment was conducted in the laboratory by exciting a bridge column using actuators 

and electromagnetic shakers. By continuously applying a greater amount of force to the 

same concrete column, another set of AR modal is again fitted to acceleration response 

data. By observation of the coefficients of the AR modals fitted at the early and later 

stages of force application; the authors were able to detect the level of damage induced in 

to the structure. Omenzetter et al (2006) studied unusual events during construction and 

service period of a major bridge structure. In their study they showed that  coefficients of 

the ARIMA modal fitted for the strain signal were able to detect the occurrence of 

unusual events. The authors showed the effectiveness of ARMA modals for damage 

detection. The coefficients of the ARMA modals were fed to a classifier and the classifier 

detected the change in the structural response of data obtained from different sources. 

Sohn et al. (2001) introduced in their study that the residuals of Autoregressive (AR) and 
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Autoregressive exogenous (ARX) models could be used as a feature extraction 

parameter. The residual the authors used was the difference between the actual measured 

acceleration signal and the prediction obtained using the AR modal. Mattson et al. (2006) 

introduced damage diagnosis using standard deviation of residuals after vector 

autoregressive (ARV) model was implemented. Other studies which used AR modal 

coefficients as a feature extraction can be found in Wang et al. (2008 and 2009). 

 

2.2.3.2 Modal Parameters 

The damping ratio is used to express how a vibration response decays after a 

structure is set in to motion. Most SHM systems rely on the analysis in the frequency 

domain. The extraction of modal parameters from sensor data is discussed in (Taha et al. 

2006). Modal parameters of a structure include natural frequency, mode shape and 

damping ratio. The premise behind this methodology is that, when a structure loses its 

stiffness due to the application of force, the modal parameter will change and this can be 

detected by the application of spectral analysis tools. For healthy structures, the 

instantaneous natural frequency is time invariant. Peng et al. (2005) showed that by 

investigating the instantaneous frequency of a vibration response signal, obtained from a 

three degree of freedom (DOF) spring mass system, the loss of stiffness and hence 

progress of damage could be detected.  When a structure, such as a bridge deteriorates 

due to the accumulation of damage, the natural frequency will exhibit variation instead of 

a constant frequency. Natural frequency can be defined as the frequency at which a 

structure oscillates once it is set into motion. Meo et al. (2006) presented the 

determination of natural frequencies, damping coefficients and mode shapes of a medium 
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span suspension bridge as feature extraction parameters by using wavelet analysis. The 

comparison of the extracted dynamic responses of the bridge from the displacement 

response data with the calculated dynamic parameters was shown to be an efficient 

damage indicator.  

 

2.2.3.3 Energy Distribution 

Methods which are based on the spectral analysis, which show the energy 

distribution of signals, are also used to identify presence of damage. Hui Li et al. (2009) 

discussed the application of marginal spectrum of a Hilbert transform to detect the 

progress of damage in roller bearings. Marginal spectrum measures the contribution of 

the total amplitude from each frequency values that exist in a signal. When damage 

occurs to a structure, the Hilbert energy spectrum will decrease. Furthermore, (Bassiuny 

et al.2007) discussed another application of marginal Hilbert method to fault diagnosis on 

a stamping process. The authors induced two types of faults during the stamping process 

by artificially creating a miss feed and too thick material. The strain signal obtained from 

the experiment is decomposed using empirical mode decomposition (EMD) and then the 

energy index and Hilbert transform of the signal was analyzed for detecting the induced 

errors in the stamping process. It is found out from the study that a change in the 

marginal spectrum of a response signal depicted abnormal condition on the stamping 

process. Energy signal under normal condition were found out to be different compared 

with that of the faulty conditions. 
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2.2.4 Statistical Model Development 

 Statistical model development serves the purpose of quantifying the damage 

status of a structure after the implementation of feature extraction. There are two major 

categories of statistical model development: supervised and unsupervised learning. 

 Supervised learning: is when response data is available from a damaged and 

undamaged state of a structure. Most of the time, it is not common to find data which 

consists of both a damaged and undamaged state.  

 Unsupervised learning: is the case when data is not available for the damaged 

state of a structure. To account for the scarcity of data from the damaged state a finite 

element simulation is implemented. 

 Statistical analysis tools are applied in a variety of studies together with both time 

series and frequency domain applications. A number of statistical tools have been used 

for the purpose of SHM up to now. Sohn et al. (2000) introduced the usage of one of the 

most widely used statistical control tools called control charts in a supervised learning 

manner. It is discussed in the report that after feature extraction is employed using the 

coefficients of AR modal; X-Bar control chart was introduced to detect the damaged and 

undamaged state of a bridge concrete column. The base lines of comparison, which are 

the control limits for the X-bar were taken from the undamaged state of the column. By 

constructing X-bar chart for the subsequent AR coefficients obtained from different level 

of damage, the authors were able to detect the outliers and hence detect the progress of 

damage in the concrete column. A multivariate statistical process control (MSPC) tool is 

applied in the study conducted by (Wang et al. 2008). The Hotteling T
2 

chart was applied 

to the coefficients of Autoregressive (AR) modal, which is fitted to the acceleration 
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response data of a structure. The T
2
 chart gave the advantage of sensitivity in the number 

of out of control points compared with the Shewhart x-control charts. 

 Fugate et al. (2001) applied the residual of AR (5) modal to detect damage 

progress. The X-bar, S-chart was used to plot and contrast the residuals of the damaged 

and undamaged structure. Mattson et al. (2006) used the standard deviation of 

autoregressive residual errors as a damage indicator for damage detection of roller 

bearings. From the results, it is shown that this residual based method standard deviation 

is found out to be a robust damage indicator.  In this paper, it is also shown that skewness 

or kurtosis test used on the raw acceleration data as a damage indicator, but the outcomes 

were found to be unreliable. In the article by (Sohn and Farrar, 2001) it is discussed that 

the residual error obtained through the difference of the actual measurement and 

predicted modal increases as data from damaged regions is fitted.   Lei et al. 

(2003)employed sum of squared difference between  autoregressive(AR) coefficients and 

ratio of standard deviation of standard errors  as a damage sensitive parameters based on 

data obtained from the four storey modal of ASCE task group. Other statistical tool 

application for damage detection, which makes use of extreme value statistics, can be 

found in (Park &Sohn 2006; Oh et al., 2009). Sohn et al. (2005) discussed the application 

of extreme value statistics for damage diagnosis on eight degree-of-freedom spring mass 

system. Extreme value statistics is used on data set that lies in the tails of a distribution 

center. 
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2.3 SHM Data Processing and Statistical Application 

Many researchers have applied different types of data analysis techniques, which 

are based on the characteristics of the data acquired from the sensors. The literature 

review and focus of this thesis would be on signal processing methodologies used by 

different scholars based on the two approaches: i) Time series based SHM and ii) 

Frequency domain based SHM. Note that Statistical process control tools, such as control 

charts and PCA (principal component analysis) are used together with the above two 

approaches of data analysis in many of the researches that are conducted for damage 

diagnosis. 

 

2.3.1 SHM-based on Time Series Analysis 

The response data obtained from sensors installed on the structure is analyzed 

based on the different time series modeling approaches. The time series modals could be 

but not limited to Regression, Moving Average (MA), Autoregressive (AR), and 

Autoregressive Integrated Moving Average (ARIMA).   

Sohn et al., (2000) explained the use of control charts to detect the presence of 

damage on a concrete column by using autoregressive (AR) modal as a feature extraction 

method.  Feature extraction is the process of identifying parameters, which are sensitive 

to damage. By analyzing changes in the AR coefficients, the authors were able to predict 

whether the data is coming from damaged or undamaged system. In this paper, X-bar 

control chart is employed to monitor changes in the means of the measured data and to 

identify samples which are abnormal compared to data recorded previously. 
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Kullaa (2003) used data obtained from an actual working bridge to detect the 

status of damage based on the modal parameters from the response data of a bridge. The 

bridge used for investigation is Z24 Bridge, which is found in Switzerland. By extracting 

the modal parameters of the structure, such as, natural frequencies, mode shapes and 

damping ratio, the authors were able to detect the presence of damage. A number of 

univariate and multivariate control charts were used to detect the presence of abnormal 

characteristics based on the control limits of these control charts.  

 Damage identification based on time series analysis is discussed in (Omenzetter 

et al.2006). The variations in the coefficients of autoregressive integrated moving 

average (ARIMA) modal analyzed during the construction and service life of  a bridge 

were used as damage indication parameter. Mattson et al.(2006) indicated by using one 

of the time series modeling approaches, which is  AR model residuals to  detect the 

existence of deterioration from data gathered from a simulation data experimented at the 

Los Alamos National Laboratory(LALN). From a numerically simulated case study 

data,(Wang et al., 2009) used AR modal coefficients to fit data gathered from a normal 

and abnormal condition of damage scenario. By using the AR coefficients together with 

multivariate exponentially weighted moving average control charts, the authors were able 

to detect whether the data is coming from a damaged state or not.  
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2.3.2 SHM-based on Frequency Domain Analysis 

The second category of signal processing which is frequency domain based SHM 

is concerned with, viewing the data on hand from a different perspective i.e. spectrum 

analysis instead of time. The rationale behind this methodology is that information which 

is not readily available in the time domain could be extracted from the frequency 

analysis. Moreover, physical properties of structures, such as natural frequency can be 

easily compared with the instantaneous frequency which is obtained by this approach. 

The major approaches applied to date in the aspect of frequency domain are Fourier 

transform, Wavelet analysis and Hilbert Huang transform coupled with empirical mode 

decomposition (EMD). The spectral analysis method to apply in the frequency domain 

depends on the nature of the data acquired from the sensor system. When enough 

information is not readily available from the raw time series data, transformation to the 

frequency domain is the preferred choice. Frequency domain parameters, such as modal 

frequency, damping ratio and modal shapes are enormously affected when a structure is 

damaged. Zhu et al. (2008) showed that wavelet analysis successfully detected damage 

progress when a gradual and sudden loss is induced to the spring stiffness from a 

laboratory experiment of spring mass system. This loss of stiffness was depicted as a 

decrease in the natural frequency of the spring. Hou et al. (2000) discussed the 

application of wavelet analysis for SHM. Acceleration data obtained from simulation of 

simple structural modal was analyzed by using wavelet decomposition. From the details 

of the wavelet decomposition, the abrupt and cumulative damage progress was 

effectively detected.  
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The most recent approach among the frequency analysis methods is the Hilbert-

Huang transform, which is applied together with empirical mode decomposition (EMD). 

The application of this method to fault diagnosis on a stamping process was discussed in 

(Bassinuy et al. 2007). The authors induced two types of faults during the stamping 

process by artificially crating a miss feed and too thick material. The strain signal 

obtained from the experiment is decomposed using EMD and then the energy index and 

Hilbert transform of the signal was analyzed for detecting the induced errors in the 

stamping process.  It is found out from the study that a change in the marginal spectrum 

of a response signal depicted abnormal condition on the stamping process. Energy signal 

under normal condition was found out to be different compared with that of the faulty 

conditions. The application of marginal spectrum and Hilbert transform in (Li et al., 

2007) applied on the IMF (Intrinsic Mode Function) components of the decomposed 

signal using EMD showed that the proposed method detected the characteristic frequency 

of the roller bearings faults. Yang et al. (2004) discussed the application of EMD and 

Hilbert Huang transform to detect damage time instants from data obtained on the 

benchmark problem from the ASCE task group on structural health monitoring. The 

intrinsic mode functions (IMFs) were able to capture damage spikes in the recorded data 

and instantaneous frequency and damping ratio were successfully obtained by using the 

Hilbert transform before and after damage.  

 According to (Pai et al., 2008), HHT can be used to obtain instantaneous natural 

frequency of bridge columns and to understand the relationship between frequency 

changes and bridge conditions. It is shown through experimental investigation that the 

wider spread the distribution of the Hilbert spectrum, the more severe damage of the 
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column. Natural frequency refers to the number of times a given event will happen in a 

second. Moreover, a progressive decrease in natural frequency indicates that a structure is 

deteriorating. Shinde and Hou (2004) applied Hilbert Huang transform to detect the 

sudden and gradual loss of stiffness by extracting the instantaneous frequency of the raw 

signal which was a time series data representing acceleration versus time. A simulation 

data obtained from the excitation of a 3 degree of freedom (DOF) spring-mass-damper 

system was used for analysis.  

 Bassiuny et al. (2007) used Hilbert marginal spectrum together with neural 

network to diagnose damage progress of a stamping process. From this study, it was 

found that by using Hilbert marginal spectrum as a damage indicator, the authors were 

able to detect damage introduced to the stamping process. A review of literature of 

frequency domain approaches can be found in (Pai et al., 2008). In this study, it is 

discussed that when damage event occurs during the recording period of health 

monitoring system, the recorded acceleration data in the vicinity of the damaged location 

will have a discontinuity at that time. A statistical pattern classification method based on 

wavelet packet transform (WPT) is developed in (Shinde and Hou, 2004) for structural 

health monitoring. The vibration signals obtained from a structure were decomposed in to 

wavelet packet components using WPT. Signal energies of these wavelet packet 

components are calculated and sorted based on their magnitude, from the output, the 

small signal energy components are discarded. The dominant component energies are 

defined as a novel condition index to indicate presence of damage. Results show that the 

health condition of the beam can be accurately monitored by the proposed method and it 

does not require any prior knowledge of the structure being monitored and is very 
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suitable for continuous online monitoring of structural health condition.  It is assumed 

that the structure is excited by a repeated constant pulse force that might require the use 

of a mechanical shaker in practice. 

 By altering the parameters of beam elements, a damage detection strategy is 

presented in (Medda et al., 2007). Comparison between unspoiled condition of the beam 

with the damaged condition were made and results show that damage can be located and 

detected for a real vibration signal and a simulated data.  
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CHAPTER III 

 

PROPOSED METHODOLOGY AND CASE STUDY 

 

One of the challenges faced by modern SHM systems is analysis of high volume 

of data to characterize and detect abnormal structural behavior acquired from the sensors. 

Data acquired by SHM system should be managed and reduced into useable and filtered 

form for an SHM system to be successful (Omenzetter et al., 2006). One approach which 

has received wide application for monitoring of integrity and safety of structures based 

on vibration response data is time series analysis. The aim of this chapter is to apply basic 

concepts of the time series modeling and spectral analysis approaches for the purpose of 

Structural Health Monitoring (SHM).  

 

3.1 Time Series Modeling 

 According to (Shumway and Stoffer,2005) time series is defined as a “collection 

of random variables indexed according to the order they are obtained in time.”Time series 

modeling can be used for two basic purposes. Understanding of the behavior of the 

observed time series is the first one and the second is to fit a model for the purpose of 

predicting future values based on the past. Time series modeling assumes that a 

correlation exists between the observed series which is the dependence of the current
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value of the series on past observed values. Time series applications have been used in a 

variety of fields that include economic and sales forecasting, stock market analysis, 

census analysis, weekly share prices, monthly profits, daily rainfall, wind speed, 

temperature, etc.  

 By using statistical tools, one can investigate if the assumption of correlation 

exists between adjacent points in time holds or not. Study of the nature of data is 

instrumental before going further to the modeling approaches. Data can be of different 

characteristics which might be under the categories of stationary, non-stationary, linear 

and non linear.  

 The mean function µt for a random process Yt which varies with time at (t=0,±1, 

±2, ±3…)is given by  Eq.(3.1) as the expected value of the series at time t. 

µt=E(Yt)      3.1 

 Auto covariance given by γ(s, t) measures the linear dependence between two 

points on the same series observed at different times.  

  γ(s, t) =Cov(Ys, Yt)= E[(Ys-µs)( Yt-µt)]   3.2 

where µs is the mean at time s and µt is the mean at time t. Ys and Yt are the time 

series at time s and t respectively.  

 Auto correlation given by  ρ(s,t) measures the linear predictability of the series at 

Yt based on the observed values at Ys 

        
      

√             
                                                   3.3 

 Stationary time series Yt  is a finite variance process such that 

 The mean value function µt  is constant and does not depend on time and 



26 
 

 The covariance function γ(s, t) depends on s and t only through their 

difference /s-t/. 

 Partial Autocorrelation Function (PACF) : Suppose we have  a time series Yt, the 

partial autocorrelation of lag k is the autocorrelation between Yt and Yt + k with the 

linear dependence of X t + 1 through to Xt + k − 1 removed(Box et al.,19 94). 

 Auto Regressive (AR):is a model which is used to find an estimation of a signal 

based on previous output values.  

Y(t)= Φ1y(t-1)+ Φ2y(t-2)+…+ Φpy(t-p)+ εt                                       3.4 

where Y(t) is the current output value, y(t-1), y(t-2)….y(t-p) previous output values 

and Φ1, Φ2… Φp coefficients of the AR, εt are white noise or error term and p is 

order of the AR model.  

 Moving Average (MA): is a model which is used to find an estimation of a signal 

based on previous white noise or error term values.  

   Y(t)= α1ε (t-1)+ α2ε (t-2)+…+ αqε(t-q)+ εt                                      3.5                                                                      

where α1,α2…αq are coefficients of MA model and εt ,ε (t-1) … ε (t-q)  white noise 

observations and   q is order of the MA model.  

 Auto Regressive Integrated Moving Average (ARIMA): is the combination of AR 

and MA models with order (p,d,q). In equation (3.6) the first part is from AR and 

the second part indicates MA model. The d represents the number of differencing 

made to make the non-stationary data stationary. 

     ∑  Φ         
 

   
 ∑  α  ε      

 

   
                        3.6 

whereΦ  and αi represents coefficients from the AR and MA models respectively. 

 

http://en.wikipedia.org/wiki/Autocorrelation
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Steps in time series analysis 

i. Plot the series: to understand the behavior of the series over time and to detect if 

there are any underlying trends.  

ii. Checking for stationarity: if the time series data is not stationary take the 

differencing. The differencing for a time series data Xt can be taken as Xt = Xt-

Xt-1. 

iii. Identification of model orders: By using ACF (autocorrelation function) and 

PACF (partial autocorrelation function) determined the order for the MA(moving 

average) and AR(autoregressive models). 

iv. Parameter estimation: On the basis of ACF and PACF estimate a model for the 

series. 

v. Diagnostic test of the model: If the time series data can be well explained by the 

fitted model, the residuals from the model should follow the characteristics of a 

white noise. 

 

3.2 Frequency Domain Analysis 

Most real life application data are time series based, that is to say, the 

measurement that are obtained, is a function of time. The x-axis usually represents the 

time elapsed and y-axis is the amplitude. One of the reasons to transform a time series 

signal to a frequency spectrum is to determine what frequency components exist in the 

time series signal. For example, the transformation of Electrocardiography (ECG) signals 

to frequency domain by using computerized ECG analyzers has assisted physicians to 

easily detect the presence of abnormal situation more easily compared with the raw signal 
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which initially was in time series. Time frequency analysis of signals is getting more 

recognition in structural health monitoring. Previously it has been used to analyze signals 

occurring in the fields of biomedicine, vibration analysis and telecommunications. 

There are a number of signal processing methodologies which are used to 

transform a raw signal in time domain to frequency domain. Fourier, Wavelet and Hilbert 

Huang transform are the most widely used and popular methods of spectral analysis 

methodologies. The choice of these methods depends mainly on the nature of data to be 

processed.  Fig.3.1 shows the spectral analysis methods to choose based on the nature of 

the data. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Flow chart showing the applicability of frequency domain approaches 
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3.2.1 Fourier Transform 

 Fourier transform tells us what frequency components exist in a signal with 

frequency-amplitude representation which originally was a time-amplitude 

representation. It is utilized for stationary signals. Stationary signals have the same 

frequency components regardless of time, i.e. the frequency components exist at all 

times. Basically a Fourier transform multiply a time series signal by a sinusoidal 

function        (Polikar,2001). 

       ∫     
 

  
*        dt                                            3.7 

       ∫     
 

  
*        df                                        3.8 

In Eq.(3.7) & Eq. (3.8) represents a raw time domain signal is represented by x(t) and 

X(f) is it‟s fourier transform. Eq. (3.8) is used to calculate the inverse fourier transform 

which basically is the time domain transfromation of a frequency domain signal.  

  

Example of Fourier Transform  

 The following example shows the transformation of a simple sinusoidal signal in 

to its frequency spectrum by using the Fourier transform.  

Stationary signal: Consider the sinusoidal stationary signal  

x(t)= cos(2*pi*10*t)+ cos(2*pi*25*t)+ cos(2*pi*50*t)+ cos(2*pi*100*t)3.9 

 As shown in Eq. (3.9) the signal consists of frequency components of 10, 25, 50 

and 100 Hz. From Fig. 3.4 the frequency amplitude representation of x(t) shows a peak at 

frequency values of 10,25,50 and 100 Hz implying the signal contains these frequency 

components.  
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Fig. 3.2 Time series plot of stationary signal 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Fourier transform of signal x(t) 
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 The signal y (t) given by Eq.(3.10)  is the sum of the signals contributed from a 

variety of other signals with different frequency, represents a non-stationary signal due to 

the fact that the frequency varies along with time (Eq.3.10). Figure 3.5 represents the 

time series plot of the signal y (t). 

x1(t1) = cos(2*pi*t1*100); for t1 from 0 to 0.3 

x2(t2) = cos(2*pi*t2*50); for t2 from 0.3 to 0.6 

x3(t3)= cos(2*pi*t3*25); for t3 form 0.6 to 0.8 

x4(t4)= cos(2*pi*t4*10);for t4 from 0.8 to 1.0 

  y(t)=x1(t1)+x2(t2)+x3(t3)+x4(t4)                                      3.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Time series plot of signal non stationary signal y(t)  
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Fig. 3.5 Fourier transform of signal y(t) 

  

 The Fourier transform of y(t) shows clearly the frequency components of the 

signal Fig. 3.6. The amplitude of the 10 and 25 Hz frequency is lower compared to the 50 

and 100 Hz because of the fact that the duration for the 10 and 25 Hz signal is less(0.2 

sec) compared with the 50 and 100Hz(0.3sec). One limitation of this Fourier 

representation is that it does not show at what time the frequency components occur. No 

time information is available. From the time series plot of y(t) we can see that the higher 

frequency oscillations 100 and 50 Hz occurred at an early stage but this information is 

not shown in the Fourier transform. The Fourier transformed spectrum, provides no 

information on how the signal‟s frequency changes as a function of time for non 
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stationary signals. Due to this limitation of the Fourier transform a short time Fourier 

transform (STFT) was developed.  

 Short Time Fourier Transform (STFT) is developed to overcome the limitation of 

the lack of time information of the Fourier transform which makes use of fixed a 

windowing function (Polikar, 2001). STFT uses a fixed size window which moves along 

the signal to determine the frequency components that exist within the specified window 

size. The signal is assumed to be stationary within each segment of the window. From 

Fig. 3.4 we can see that the signal is stationary for different segments, it can be 

considered that the signal to be composed of four different stationary signals with a time 

duration of 0.3 sec (for 50 and 100 Hz) and 0.2 sec(for the 25 and 10Hz) . Once the signal 

is divided in to a number of window segments the next step is to apply Fourier transform 

to each segment of window. The difference between Fourier and STFT is that in case of 

STFT the signal is divided into segments of stationary parts by using a window. The 

width of the window is chosen where stationarity is valid for the signal under study.  

 The problem with STFT is resolution. We might know at what time interval the 

frequency existed but not exactly at what time. The window function is fixed for the 

entire signal which might not be the case in most application. i.e. the assumption of 

stationarity or width of the window is fixed at all intervals. From Fig. 3.4it is shown that 

the stationarity interval should vary between 0.3 sec and 0.2 sec. Usage of a very narrow 

window helps for the assumption of stationarity but the narrower window would not give 

a good frequency resolution. Therefore, there is a tradeoff between narrow window 

application and frequency resolution as shown on Table 3.1. On the other hand to get a 

perfect frequency resolution, the size of the window must be very wide or infinite in case 
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of Fourier transform. In Fourier transform there is no problem of identification of what 

frequency components exist but there is no time indication which means we have a zero 

time resolution. In case of a raw time series signal the value of the signal at any time is 

known but no frequency information can be obtained, i.e., it is a zero frequency 

resolution.  

 

Table 3.1 Relationship between time resolution and frequency resolution in STFT 

Window Size  Time resolution Frequency resolution 

Narrow window Good time resolution Poor frequency resolution 

Wide window  Good frequency resolution Poor time resolution 

 

3.2.2 Wavelets Transform 

 Wavelet analysis is the decomposition of a signal in to shifted and scaled versions 

of the original wavelet. It is developed to overcome the fixed size window analysis of the 

Short Term Fourier Transform. Wavelet can be defined as a small wave extending over a 

finite time duration unlike cosine  and sine waves which extends from minus to plus 

infinity in case of Fourier transforms(Pokilar,2001). 

 Let x(t) be the signal to be analyzed or to be transformed in to a frequency 

domain. The mother wavelet is chosen to serve as a prototype for all windows in the 

process. All the windows that are used are the dilated (or compressed) and shifted 

versions of the mother wavelet. As shown in Eq. (3.11), (Hou et al., 2000), the 

transformed signal is a function of two variables, a and b: the translation and scale 

parameters, respectively. 
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Fig. 3.6 The wavelet transforms process (Zemmour, 2006) 

 

  

CWT (a,b)=
 

√ 
∫     

  

  
   

   

 
 dt                                 3.11 

where  (t)is the mother wavelet and CWT is the continuous wavelet transform which is 

given as a function of the coefficient of the scaled and translated form of the mother 

wavelet. The higher the wavelet coefficient the more resemblance between portion of the 

raw signal and the mother wavelet chosen. 

 Instead of frequency the term scale is used in wavelet analysis. The scale works as 

in the same way with the scale of a map. A lower scale shows a compressed size of the 

map while a higher scale represents detailed contents of the map. Lower scale 

corresponds with higher frequency and vice versa (Bayissa et al., 2007). Wavelet analysis 

can be either continuous or discrete. Discrete wavelet is used for signal decomposition 

and continuous wavelets are used for spectral analysis. In Fig. 3.7 the „s‟ represents scale 

and „f‟ is frequency. As the scale decreases, the frequency increases. By comparing the 
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signals when s=1 and s=0.05 it can be seen that the frequency is highest (f=20) when the 

scale is lowest(s=0.05). 

 

 

 

 

 

 

 

 

 

Fig. 3.7 Relationship between scale and frequency in wavelet transform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Translation of a mother wavelet along a signal for a s=1(Polikar, 2001) 
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 In wavelet analysis translation is moving the mother wavelet across the signal for 

each scale that is considered. From Fig.3.8 at a scale of (s=1), the window or the mother 

wavelet continuously moves along the time axis. Four different location of the wavelet is 

shown when it is at 2sec, 40sec, 90sec, and 140 sec, respectively. The whole signal is 

multiplied by each scale at different locations as in Eq. (3.9) of the mother wavelet and a 

higher value indicates that the signal contains more of the attributes of the multiplying 

wavelet.  

 

 

 

 

 

 

 

 

 

 

Fig. 3.9 Translation of a mother wavelet along a signal for a s=5 (Polikar, 2001) 

 

 

 As illustrated in Fig. 3.9 the scale of the wavelet has increased from s=1 to s=5 

(lower frequency mother wavelet) compared to Fig 3.8. The signal is multiplied by this 

scale at different positions, and it will pick up the lower frequency components of the raw 

signal.   
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 The goal in Wavelet transform is to turn the information of a signal into numbers 

which are coefficients that can be manipulated, stored, transmitted, analyzed or used to 

reconstruct the original signal (Zhu et al., 2007). Wavelet transform is aimed at 

converting information contained in a time-series signal in to wavelet coefficients so that 

one can detect changes in the analyzed and transformed coefficients which might be 

hidden in the raw time series signal. These coefficients can be represented in a graphical 

representation called scalogram. A scalogram is time (translation)-scale (frequency) 

representation of a transformed signal where a coefficient is computed for each 

combination of scale and translation. The color intensity represents the wavelet 

coefficients. A bright color corresponds to a higher wavelet coefficient; this in turn 

represents a strong correlation between the signal and the wavelet applied (Pokilar, 

2001). Therefore a strong correlation or higher wavelet coefficient or brighter color 

intensity means that a portion of the signal resembles the wavelet. 

 

3.2.3 Hilbert-Huang  Transform(HHT) and Emperical Mode Decompositon(EMD) 

3.2.3.1 Hilbert Huang Transfrom(HHT) 

 HHTtakes a function u(t) as an input and produces a function, H(u)(t), with the 

same domain. Hilbert transform has got a wide application for data which are non-

stationary and non-linear (Huang and Attoh-Okine , 2005).  

            ∫                 
 

  
∫  

    

     
   

 

  
)  3.12 

where H(u)(t)  is the Hilbert transform of u(t), and u(t) is any real valued function, p.v. is 

the principal value of the singular integration.  
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Hilbert transform can also be described by the equation, 

 z(t)= x(t)+j y(t) = a(t)            3.13 

where a(t)  is the instantaneous amplitude and is given by 

 a(t)  =√                                                                  3.14 

    is the phase function and the phase angle from which  the instantaneous frequency is 

calculated as given by Eq. (3.7) and Eq.(3.8). 

      =    
     

   
                                                                   3.15 

f= (1/2   (
     

  
)                                                   3.16 

 One advantage obtained with the representation in Eq. (3.16) is that frequency can 

be determined at any given time t, since frequency can be calculated by differentiating 

the phase angle with respect to time (Huang and Attoh-Okine, 2005).  

 The following example illustrates the effect of having a zero mean in the 

application of Hilbert transform. All the three functions are the same sinusoidal function 

except for mean shifted by 0.5 and 1.5 as shown in Fig.3.10. 

 Example on Hilbert transform: Consider three signals given by   a =sin x +α, for α 

= 0, 0.5, 1.5 from which we can have three different sinusoidal signals: sin x, sin x+0.5 

and sin x+1.5 (Huang and Attoh-Okine, 2005). 

 The first step in the extraction of instantaneous frequency is transformation of the 

signal by using Hilbert transform to obtain the phase plane diagram inFig.3.11. From the 

plane or phase diagram, phase angle is withdrawn as depicted in Fig.3.12 by 

differentiating the phase angle with respect to time and instantaneous frequency is 

obtained using Eq. (3.16).  
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Fig. 3.10 Time series plots of signals of sin x +α, for α =0, 0.5, 1.5 

  

 From the three sinusoidal plots of the three signals with identical shape but 

different mean values, it is obtained that the frequency is positive and constant for the 

signal (sin x) with zero mean as shown in Fig.3.13. For the (sin x+ 0.5) signal the 

frequency is not constant and for the third signal which is (sin x +1.5) the frequency 

fluctuates between negative and positive values.  

 This example shows that the instantaneous frequency gives a meaningful value 

when a signal such as a sine function is symmetrical with respect to the zero mean. 

Therefore, to obtain Hilbert transform and hence instantaneous frequency, the raw signal 

should have a mean value symmetrical with respect to zero. To accomplish this purpose, 

a signal should be analyzed using Empirical Mode Decomposition (EMD) prior to 

applying the Hilbert Huang transform.  
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Fig. 3.11 Hilbert transform of sin x+ α for α =0, 0.5, 1.5 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12 Phase angle of sin x+ α for α =0, 0.5, 1.5 
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Fig. 3.13 Instantaneous frequency of sin x+ α for α =0, 0.5, 1.5 

  

3.2.3.2 Empirical Mode Decomposition (EMD) 

 EMD is a fundamental and is a necessary step to reduce any given data in to a 

collection of intrinsic mode functions (IMF) to which the Hilbert analysis can be applied 

(Huang and Attoh-Okine, 2005). An IMF represents simple oscillatory mode embedded 

in the raw data where each IMF deals with only one mode of oscillation with no complex 

riding waves present. Since most data does not represent IMF naturally the Hilbert 

transform is not capable of producing full description of frequency if the data contains 

more than one oscillatory mode at a particular time. Due to this reason, data should be 

decomposed in to independent IMF components.  
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 Sifting is the process of decomposition of a signal in to its IMF components by 

using Empirical Mode Decomposition (EMD). The sifting process can be explained by 

the following steps. 

 Step1.  Assume a signal x(t) is given to be sifted by EMD. Find all the upper and 

lower peak points of the signal and create upper and lower envelop by 

interpolation. The upper envelop can be denoted by emax(t) and the lower 

by emin(t) and take the average of the envelopes emax(t) and emin(t) to get 

m1Fig. 3.15a.  

 Step 2. Subtract the envelope mean m1 from the original signal. This is shown on 

Fig.3.15b as h1=x(t)-m1.  

 After this step check if the new data h1 has fulfilled the criteria for IMF or not 

and if h1 is not IMF, repeat the steps given by 1 and 2.  

 The criteria for a sifted signal to be IMF is  

i. When number of extrema(maxima+minima) and zero crossings are the same or 

differ by one and   

ii. Envelopes as defined by all the local maxima and minima are being symmetric 

with respect to zero (Huang et el. 2005). 

 The sifting process should stop when the SD (standard deviation) between two 

consecutive sifted signals is smaller than a preset value given by Eq.(3.14).The original 

signal(data) to be sifted x(t) can be represented by Eq. (3.15) which illustrates  the 

decomposition of x(t)  in to n-IMF components(Cj)  and a residue(rn). 
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Fig. 3.14(a) The cubic spline upper and the lower envelopes and their mean h1 

(Huang and Attoh-Okine, 2005) 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14(b)Comparison between data x(t) and h1 

(Huang and Attoh-Okine, 2005) 
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Fig. 3.14(c) Repeat the sifting process using h1 as data 

(Huang and Attoh-Okine, 2005) 

 In Eq.(3.14) (                     ) represents two consecutive sifted signals. 

The residual rn, can be either a constant, monotonic mean trend or a curve having only 

one extrema point. 

 

       ∑
(                 )

 

          
 

 

   

                                     3.17 

 x(t)= ∑    
   +rn     3.18 

 IMFs have are always symmetrical with respect to the local mean and have a 

unique local frequency different from the rest of the other IMFs. Fig. 3.15 summarizes 

the steps to be followed in the EMD sifting process in the form of a flow chart.  
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Fig. 3.15 Flow chart showing the steps in EMD (Zemmour, 2006) 
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3.2.4 Comparison of Fourier, Wavelet, and Hilbert Transform 

For the purpose of comparison consider a chirp signal which changes frequency 

continuously with time.  

 

 

Fig. 3.16 Time series plot of a chrip signal 

 

Fig. 3.17 Fourier transform of chrip signal 
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Fig. 3.18 Continuous wavelet transform of the chrip signal 

 

Fig. 3.19 Instantaneous frequency plot of the chrip signal 

 The Fourier transform of the chrip signal Fig 3.17 shows the high frequency 

components with a horizontal line with no information at what time the frequencies 

occur. The spectrogram in Fig. 3.19 illustrates graphically that the low frequency 

components of the signal occur at an early stage by indicating it with higher scale values. 

The scale of bright line goes decreasing through time in the spectrogram implying an 

increase in frequency since a decrease in scale represents an increase frequency. Whereas 
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the instantaneous frequency Fig. 3.19 which is the product of Hilbert transform 

demonstrates that the frequency increases constantly with time. One advantage of this 

representation over the continuous wavelet transform is that, the frequency at the desired 

instant of time can be obtained. 

 Therefore Hilbert transform looks the favorite candidate among the spectral 

analysis tools. Table 3.3 revises the advantage and disadvantages of the three frequency 

domain approaches. 

 

Table 3.2 Comparison between the different frequency domain analysis methodologies 

 

 FOURIER WAVELET HILBERT HUANG 

Basis A priori A priori Adaptive 

Frequency 

Convolution: 

global, uncertainty 

Convolution: 

Regional, uncertainty 

Differentiation: 

local, certainty 

Presentation Energy-frequency Energy-time-frequency Energy-time-frequency 

Non linear No No Yes 

Non Stationary No Yes Yes 

Feature extraction No Discrete: No Continuous: yes Yes 
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CHAPTER IV 

 

IMPLEMENTATION OF PROPOSED METHOLOGIES 

 

4.1 Data Sources for Analysis 

In order to validate the proposed methodologies of data analysis tools, simulation 

data and data from a functional (working) bridge were applied. This chapter explains the 

application of the proposed methodologies, to data sources obtained from two different 

sources. Spectral analysis of a benchmark problem simulation data is presented in the 

first section followed by statistical analysis and time series modeling for the bridge data. 

 

4.1.1 Data Source from Bridge 

 For the purpose of time series analysis data was obtained from strain gauge 

sensors installed on a bridge found in Texas. Four sensors were mounted on two of the 

supporting columns of the bridge since 2001. Apart from deformation measurements, 

temperature at each of the sensors was also measured by the strain gauge sensors. The 

data obtained contains three years full data from 2002-2004 and partial year data for year 

2001 and 2005 measured every hour of a day. 
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Strain gauge  

mounted on the column 

 

            

  

 

 

 

 

 

Fig. 4.1 Supporting column of the bridge 

 

4.1.2 Data Source from Simulation 

Data obtained from a 4-storey and 2-bay by 2-bay steel frame scale model 

structure as shown in Fig. 4.2 designed by theAmerican Society of Civil 

Engineers(ASCE) for the purpose of SHM was gathered to show validity of the spectral 

analysis approaches.  The structure is located in the earthquake engineering research 

laboratory at the University of British Colombia (UBC) (Johnson et al., 2004). In this 
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study to excite the structure the cases considered were electrodynamic shaker,impact 

hammer, and ambient excitation.  

 

 

 

 

 

 

 

 

Fig. 4.2 Picture and 3D model showing the bench mark problem building 

(Johnson et al., 2004) 

 

For the electrodynamics shaker excitation, the shaker was placed on top floor the 

structure with a capacity of 311 N (Dyke et al. 2003). To capture the response of the 

structure accelerometers were placed throughout the structure in the structure‟s weak(y-

direction) and strong (x-direction). Based on the experiments conducted in the earthquake 

laboratory, a Matlab algorithm by the name „DATAGEN‟ was developed to simulate the 

real conditions of the experiment (Lin et al., 2005). 
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4.2 Frequency Domain Analysis of Simulation Data 

The bench mark structure from which simulation data was taken is a 2.5 m by 

2.5m floor area and 3.6 m high Fig. 4.2. A bracing system placed along the diagonal was 

fixed for each bay and to emulate a real structure a concrete slab was built at each floor 

and the removal of these braces is designed to simulate damage to the structure. For the 

experiment wind ambient excitation and another two types of forced excitation sources 

were introduced (Dyke et al., 2003). Impact hammer test and electrodynamics shaker 

were applied for the forced excitation case. A more detailed description of the bench 

mark structure problem can be found in (Johnson et al., 2004). One undamaged case and 

six damage patterns were the subject of study of this benchmark problem. Matlab code by 

the name „DATAGEN‟ is used to run the simulation according to the damage patterns 

shown in Table 4.1 and Fig. 4.3. 

 

Table 4.1 Damage patterns and their description considered in the Matlab program 

(Johnson et al., 2004) 

 

Damage case 
Description(method of execution) 

Pattern-1 Removing all  the braces in the 1
st
  floor 

Pattern-2 Removing all  the braces in the 1
st
  and 3

rd
 floor 

Pattern-3 Removing one brace in the 1
st
  floor 

Pattern-4 Removing one  braces from both the  1
st
  and 3

rd
 floor 

Pattern-5 

Removing one  braces from both the  1
st
  and 3

rd
 floor 

plus one of the beams partially unscrewed from the 

column 

Pattern-6 Area of one brace in the 1
st
floor  reduced to 2/3 



54 
 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Six damage patterns defined by the Benchmark problem (Johnson et al., 2004) 

 

The six damage patterns used for the simulation are revised in Table 4.1. Fig. 4.4 

explains the each damage patterns graphically. Table4.2 summaries four different cases 

considered for demonstration of the spectral analysis approaches obtained by applying 

the Matlab program (DATAGEN) provided by the study group, (Lam, 2000). 

Four different cases were devised to test the validity of the frequency domain 

approaches. The first one is data withdrawn from the undamaged state of the structure by 

applying the default parameters of the Matlab program. The second case is obtained by 

running the simulation for damage pattern-2 which is removing all the braces from the 1
st 

and 3
rd

 floor. The third case considered is data from damaged condition but with a less 

damage extent (pattern-1) simulated by removing the braces on the 1st floor as shown in 

 



55 
 

Table 4.2 Different damage scenarios considered 

 

 

 

 

 

 

Table 4.2. Case-4 is the combination of damaged (pattern-2) and undamaged conditions 

of the bench mark structure. There were 4 accelerometer sensors installed on each floor 

of the structure (Lam, 2000). 

The sampling frequency taken for all the different cases is 1000Hz and the time 

span of the simulation is 40 sec. In this study simulation data from the 4
th

 floor were 

considered.  The time series plot, the Fourier transform and, 2D&3D wavelet plots are 

presented in the following sections.  

 

Case Damage status Damage pattern 

1 Undamaged Undamaged(No braces removed) 

2 Damaged Removing braces 1
st
 and 3

rd
 floor 

3 Damaged Removing  braces from 1
st
 floor 

4 Mixed cases Combination of case-1 and case-2 
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Fig. 4.4 Time series plot of the damage scenarios considered (case1-case 4) 
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Fig. 4.5 Fourier transform of the four cases (case1-case 4) 
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Fig. 4.6 Wavelet transform (2D) of the four cases (case1-case 4) 
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Fig. 4.7(a) 3D-wavelet transform for case-1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7(b) 3D-wavelet transform for case-2 
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Fig. 4.7(c) 3D-wavelet transform for case-3 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7(d) 3D-wavelet transform for case-4 
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4.2.1 Fourier Transform of Simulation Data 

From the Fourier transform in Fig. 4.5 each of the different cases seem to have 4-

frequency mode components except for case-4. Table 4.3 shows the magnitudes of the 

four frequency modes obtained from each case. From the numbers one can understand or 

observe that the frequency obtained from the damaged data sources is less than data 

simulated from the undamaged. The amount of reduction varies for the different damage 

cases. For example each of the four frequency values for case-2 are less than case-3 

implying that data induced from damage scenario case -2 is more severe that of case-3. 

Case-4 has more frequency mode components but the dominant values are as shown in 

Table 4.3. 

 

Table 4.3 Fourier transform output values for the four damage cases 

 Case 1 Case 2 Case 3 Case 4 

Frequency mode 1 8.565 4.66 5.02 4.64 

Frequency mode 2 20.24 11.97 17.18 11.83 

Frequency mode 3 30.77 28.93 29.86 31.34 

Frequency mode 4 38.32 32.06 38.32 33.26 

 

 Fig. 4.8 presents a summary of the frequency comparison of the four damage 

scenarios considered for the case study. From the figure it is apparent and imperative to 

expect that the frequency extracted from the undamaged case is higher compared with 

those from the damaged status. It also shows that the frequency gets even lower and 

lower as more severe damage is introduced to the structure.  
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Fig. 4.8 Comparison of frequency from Fourier transform for the four damage cases 

 

4.2.2 Wavelet Analysis of Simulation Data 

From the scalogram plots of the four different damage cases shown in Fig. 4.6 and 

Fig. 4.7 one can compare and contrast the scale-translation representation both in 2D and 

3D. The 2D plot shows only two axes: scale and time. The coefficients for each scale and 

combination are represented as color intensity. The 3D plots shown in Fig 4.7(a) - Fig 

4.7(d) shows the wavelet transform in scale, time and coefficient axes unlike the 2D plots 

where the coefficients are represented in terms of color intensity. 

In wavelet analysis a higher scale means lower frequency and vice versa. From 

wavelet transform of damage case-2 as shown in Fig.4.7(b) the peaks starting from 

around a scale of 81 to higher scale shows that the frequency has decreased and also the 

coefficient of lower scale values(higher frequency  components)has decreased. While in 
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damage case-4 the scale starts to increase after around 20 sec which indicate that damage 

was introduced after 20 sec which is consistent with the simulation data. For the first 20 

sec the plots for case-1 and case-4 looks almost the same as in Fig 4.7(a) and Fig 4.7(d). 

By computing the coefficients at each scale of the simulation data, we can 

compare the plots both in 2D and 3D and observe the changes in the scale which 

indirectly represents frequency. One advantage that is gained by using wavelet analysis 

for this case study time information is available unlike the Fourier transform. In damage 

case 4 which is a combination of undamaged and damaged simulation data, it can be seen 

that around the 20 sec, the scale starts to increase indicating a frequency decrement and 

hence damage introduction to the structure.  

 

4.2.3 Hilbert-Huang Application to Simulation Data 

The four cases introduced in Table 4.2 were also considered to show the validity 

of the Hilbert Huang transform. Empirical Mode Decomposition (EMD) is applied to the 

different cases prior to Hilbert-transform and instantaneous frequency computation for 

each of the four cases. Fig 4.11 shows the Intrinsic Mode functions (IMFs) for case-1.  

From the computation of EMD it is found out that the signal from the undamaged 

case has 11 IMFs. The Hilbert transform is computed for the first and second IMFs to 

obtain the phase diagram. From the phase diagram phase angle is computed. By 

differentiating the phase angle we can finally compute the instantaneous frequency which 

is the feature extraction or damage indicator which we are looking for. Recall the 

relationship between phase diagram, phase angle and instantaneous frequency from  
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Fig. 4.9 IMF components of case-1 after EMD of the acceleration signal 

 

section 3.2.3 of chapter 3.The same procedure is followed for the rest of the damage 

cases and the instantaneous frequency is extracted and the final output is as shown in Fig 

4.10. The steps followed for the Hilbert transform can be revised in the following steps, 

i. Sifting of a signal in to IMFs by using EMD 

ii. Hilbert transform and Instantaneous frequency computation for IMFs. 

 From the instantaneous frequency plots (cases 1-4) from Fig. 4.10 it is difficult to 

see the difference in magnitude of frequency plotted for the damaged and undamaged 

cases. To be able to decide there is a difference in mean and variance from the cases 

considered, a statistical hypothesis test was conducted.  
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(iv) Instantaneous frequency plot for case-1(IMF-1)   (b) Instantaneous frequency plot for case-2(IMF-1) 

 

 

 

 

 

(c)Instantaneous frequency plot for case-3(IMF-1)     (d) Instantaneous frequency plot for case-4(IMF-1) 

 

 

 

 

Fig. 4.10 Instantaneous frequency plot for (case-1-case-4) from the 1
st
 IMF of each case



66 
 

Statistical Hypothesis testing 

In statistics hypothesis testing is done to draw inferences about a population based 

on statistical evidence from a sample. The instantaneous frequency values from the 

samples that were taken in the damaged (cases 2, 3, and 4) and undamaged condition 

(case-1) from the plots could not tell us if there is shift in mean and variance when 

damaged is introduced. Since the data being investigated are generated from two separate 

and independent groups (damaged and undamaged), the two tailed T-test for mean 

change and variance change was selected for the test.  

Hypothesis testing for Mean change in the instantaneous frequency: 

Null Hypothesis  

 H0: mu1-mu2=0 or (mu1=mu2) with unknown variance 

 No mean change in the instantaneous frequency 

Alternate Hypothesis  

 H1: mu1-mu2 ≠ 0 or(mu1≠mu2) 

 There is change in the mean of the instantaneous frequency 

where mu1 and mu2 represents the  mean values from different and independent cases.  

From Matlab statistical tool box the function h = ttest2(x, y) was selected to 

perform a t-test of the null hypothesis. The t-test assumes that x and y (the cases to be 

compared) are independent random samples from normal distributions. The result of the 

test is returned in h. h=1 indicates a rejection of the null hypothesis at the 10% 

significance level. h = 0 indicates a failure to reject the null hypothesis at the 10% 

significance level.  
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Hypothesis testing for variance change in the instantaneous frequency: 

Null Hypothesis  

 H0: s
2
1-s

2
2 =0 or (s

2
1= s

2
2) 

 No change in the variances of the frequency from two different cases 

Alternate Hypothesis  

 H1: s
2
1-s

2
2≠0 or (s

2
1≠ s

2
2) 

 There is change in the variances  of the instantaneous frequency 

where σ
2

1and σ
2

2 represents the sample variances from two independent set of data 

(frequency)  to be compared.  

From Matlab statistical tool box the function h = vartest2 (x,y) was selected to  

performs a t-test of the null hypothesis that the variances  from two independent samples 

are the same. The result of this test is returned in h. h = 1 signifies a rejection of the null 

hypothesis at the 10% significance level where as h = 0 indicates a failure to reject the 

null hypothesis at the 10% significance level.  

A Matlab algorithm was developed to do the hypothesis testing with a 

significance level of (α=0.1) that tests the null hypothesis every 1 sec for the whole time 

span of the sample data series which is 40 sec. Note that since the main focus here is to 

compare sample frequency changes in(mean and variance) from two different scenarios 

one damaged and the other undamaged and as a result, each of the three damaged 

conditions (case 2, 3, and 4) will be compared with the undamaged state (case-1). 
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Fig. 4.11 Two sample (case1&case2) Variance test 

 

 

 

 

 

 

Fig. 4.12 Two sample (case1&case2) Mean test 

 

 

 

 

 

 

 

Fig. 4.13 Two sample (case1&case3) Variance test 
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Fig. 4.14 Two sample (case1&case3) Mean test 

 

 

 

 

 

 

 

Fig. 4.15 Two sample (case1&case4) Variance test 

 

 

 

 

 

 

 

Fig. 4.16 Two sample (case1&case4) Mean test 
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 From the hypothesis test results of change in mean and variance between case1 

(undamaged) and the rest of the three cases (damaged), it is found out that the null 

hypothesis is rejected successfully as summarized in Table 4.4. The rejection of the null 

hypothesis implies that there is a difference in mean and variance from the two cases 

under study. For example the 90% rejection rate in variance test (case1 &case2) 

illustrates the frequency obtained from the two cases are different which is normal to 

expect since one is coming from a damaged and the other form undamaged case.  

 

Table 4.4 Success rate of the mean and variance test in rejecting the null hypothesis 

 

 

 

 

 

The higher successful rejection rate of case 2 compared with case3 shows that the 

proposed methodology is more sensitive and effective in differentiating between two 

cases as severe  damage is introduced. Moreover it can be observed that the Variance test 

which measures the hypothesis, if two different distributions obtained from damaged and 

undamaged have the same variance or not, is shown to be more effective in successfully 

rejecting compared with the mean test.  

Table 4.5 summarizes the output of variance and mean test conducted for other 

IMFs. From the table it can be observed that the successful rejection rate both by the 

 Case1&Case2 Case1&case 3 Case1&case4 

Variance test 90% 80% 95% 

Mean test 87% 65% 95% 
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mean and variance of the hypothesis testing tends to increase when the comparison of 

instantaneous frequency is made for the 2
nd

, 3rd and 4
th

 IMF values.  

 

Table 4.5 Success rate of the mean and variance test in rejecting the null hypothesis from 

IMF-1 to IMF-4 

 Case1 & Case2 Case1 & Case3 Case1 & Case4 

Mean test Variance test Mean test Variance test Mean test Variance test 

1
st
 IMF 87% 90% 65% 80% 95% 95% 

2
nd

 IMF 85% 92.5% 85% 87.5% 90% 65% 

3
rd

 IMF 95% 95% 92.5% 98.5% 90% 85% 

4
th

 IMF 97.5% 100% 97.5% 92.5% 95% 95% 

 

  

A new case study (case-5) is created to show the efficiency of the proposed 

methodology of combining Hilbert transform and hypothesis testing to detect the 

progress from less severe to more severe damage. This case study is a combination of 

simulated data which comes from undamaged state, damage pattern-5, damage pattern-2 

and damage pattern-1 which is described in Table 4.1. Note that the severity of damage 

increases one move from the 1-10 sec interval to the 31-40 sec interval.  

 

Table 4.6 Damage patterns for case-5 

Time period(sec) Damage pattern 

1-10 Undamaged(No braces removed) 

11-20 

(pattern-5).Removing one brace from the 

1
st
 and 3

rd
 floor plus one of the beams 

partially unscrewed from the column 

21-30 
(pattern-1).Removing all braces in the 1

st
 

floor 

31-40 
(pattern-2).Removing all braces in the 1

st
 

and 3
rd

 floor 
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The instantaneous frequency obtained from case-5 is compared with case-1 (obtained 

from data from undamaged situation) to observe the change in mean and variance 

between the two cases.  

The result of the hypothesis test shows the change in the mean from the 

comparison of case-5 and case-1 is observable with time. The significance level for the 

hypothesis test is taken as (α=0.1). If the p-value of the test is less than 0.1 the null 

hypothesis is rejected and this rejection is line is represented by the dotted line as in Fig 

.4.17.  From Fig.4.17 the majority null hypothesis (60%) is not rejected which shows that 

the data from for the first 10 sec is from undamaged since it is compared with case 1. For 

the time interval between 11-20 sec there is 80% rejection rate of the null hypothesis 

which indicates the mean of frequency has changed as a result of damage introduction. 

The 21-30 sec interval indicates a 90% rejection rate as data is coming from a more 

severe damage situation.  Finally the 100% rejection rate of   the null hypothesis indicates 

that the mean of the frequency from the cases of   damaged and undamaged scenarios for 

the interval 31-40 sec are different. It is observed that the level of rejection of the null 

hypothesis varies for instantaneous frequencies obtained from different  

From the application of Hilbert transform and hypothesis testing to the simulation 

data, change in the mean and variance (dispersion) of instantaneous frequency can be 

detected in with the inclusion of time information 

By observing the mean and variance test plots from two different and independent 

instantaneous frequency plots, we can indicate at what time the difference in frequency 

occurs. Compared with the Fourier transform and wavelet analysis, the Hilbert transform 

together with the statistical hypothesis testing gives more information by quantifying the 
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damage level by indicating the successful rejection rate of the observed change in mean 

and variance of the instantaneous frequency.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.17 Two sample mean test (case-1&case-5) 

 

4.3 Statistical Analysis of Bridge Data 

In this section measurements from different sensors are investigated using 

statistical tools to understand underling trends on the measured strain and temperature. 

Besides, the relationship between temperature and strain recordings is examined. The 

terminologies clomn-1 and column-2 are used throughout this section to differentiate 

between the two columns of the bridge. 

To investigate the similarities and differences among the 4-sensors of column-1 a 

time series is plotted as shown in (Fig.4.19). From the plot it can be clearly seen that the 
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magnitude of deformation values for the 4-senosr varies with sensor 4 being with the 

highest magnitude of deformation followed by sensor-1, sensor-3 and sensor-2 

respectively in descending order. The deformation recordings from sensor 4 are 

approximately 6 times larger than that of sensor-2.The same kind of deformation 

recordings variation is observed for  column-2.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.18 Comparison of strain measurement from the 4 sensors of column-1 

 

The correlation matrix given in Table 4.7 shows there is a significant relationship 

between the measured strain values of the four sensors. The correlation coefficient shown 

in the matrix is a single number which lies between -1 and +1 and it shows how strong 

the relationship between two variables is. A correlation coefficient (r) close to +1 shows a 

strong relationship between the two variables. Assuming we have two variables X and Y, 

the strength of the correlation coefficient r, is as interpreted in Table 4.8. The matrix plot 
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in Fig. 4.19 also proves the fact that the sensor strain recordings are correlated which is 

shown in terms of lines. The more the straight the line, the higher the correlation. 

Table 4.7 Correlation coefficient among the 4-sensors 

  Column-1(correlation) 

  sensor-1 sensor-2 sensor-3 sensor-4 

sensor-1 1.00000       

sensor-2 0.86184 1.00000     

sensor-3 0.90971 0.90205 1.00000   

sensor-4 0.99155 0.84125 0.89387 1.00000 

 

 

 

 

Table 4.8 Summary of correlation coefficient values 

 

 

 

Correlation 

coefficient 
Interpretation 

r = + 1.0 As X goes up, Y always also goes up 

r = + 0.5 As X goes up, Y tends to usually also go up 

r = 0 No correlation 

r = - 0.5 
As X goes up, Y tends to usually go down 

 

r = - 1.0 As X goes up, Y always goes down 
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Fig. 4.19 Matrix plot showing the correlation among the 4-sensors

 

Fig. 4.20 Time series plot for the temperature readings at the 4-sensors from Column-1 



77 
 

 

From the plot of the temperature at each sensor of column-1, there is not only 

seasonality but also a very high amount of correlation between the sensor measurements. 

Seasonality is the periodic variation of a measured value over time. The temperature 

recordings are higher during the summer time and lower in the winter season. The 

correlation between the temperature measurements range between coefficient of 

correlation (r) value of 0.993 and 0.997.This implies that when the temperature measured 

at one sensor decreases (increase) so do the rest of the other sensor measurement values.  

 

Relationship between sensor deformation measurement and temperature: 

 To study the relationship between temperature and strain readings, one sensor was 

selected.  In Fig. 4.21, the standardized time series plot of deformation data for three 

years (2002-2004) and temperature measurement at the sensor location is illustrated. 

From the plot it can be clearly seen that there is seasonality with the temperature 

recordings where as for the strain data seasonality is observed after the data is de-trended. 

In time series analysis detrending is removing the slowly increasing or decreasing values 

or trend from a sequence of measured variables.  The correlation coefficient between 

temperature and strain, r, is found to be around 0.275 before detrending of the strain data. 

After detrending of the sensor data the correlation between temperature and strain is 

found to be improved to r = 0.5218.  
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Fig. 4.21 Relationship between temperature and deformation recordings 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22 Rate of increment of deformation for year 1, year 2 and year 3(sensor-4) 
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Table 4.9 Rate of increase of deformation for 4 sensors from column -1 

 

From the fitted trend lines shown in Fig. 4.22, it can be seen that the slope of the line 

decreases as we go from the first year to the second and from the second to the third year. 

This indicates that the rate of deformation decreases every year. Table 4.7 summarizes 

the rate of increment of deformation per day for all the 4-sensors. 

From Table 4.9 generally it can be seen that the rate of deformation decreases as 

we go from the first to the third year for each of the sensors. There is always an increase 

in the recorded deformation from year to year with different magnitude for each sensor; 

the rate of increase of deformation for sensor-3 is the highest.  

 

4.4 Time Series Modeling for Bridge Data 

A time series plot was made as shown in Fig. 4.23for one of the sensors (sensor-

4) for different time intervals: 3 months, 6 months, 1year and 3 years to observe how the 

deformation recordings behave for different time intervals. 

From the time series plot of strain measurement data for all the different time 

periods taken, the data is non-stationary as the value strain is increasing throughout time 

(mean is changing). For time series modeling approaches to be applied, first we should 

make the linear data stationary. The following section shows the detailed analysis for 

time period selected for 3-years. 

 Sensor-1 Sensor-2 Sensor-3 Sensor-4 

Year 1 2.62*10
-5

 1.74*10
-5

 2.40*10
-5

 4.02*10
-5

 

Year 2 1.81*10
-5

 1.42*10
-5

 2.82*10
-5

 3.28*10
-5

 

Year 3 1.18*10
-5

 1.21*10
-5

 2.37*10
-5

 1.17*10
-5
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Fig. 4.23 Time series plot for sensor-4 with different time period 

 The time series analysis contains four main steps which are time series plotting, 

model identification, parameter estimation and diagnostic checking. 

 

Step1: Time Series Plotting 

From Fig. 4.24 since the data is non-stationary we should be able to find a way to 

make it stationary. Power transformations are applied to improve the interpretability of 

data or appearance of graphs. A Box- Cox test was employed to identify what kind of 

power transformation is appropriate to the data. Based on the test from Fig.4.25 the type 

of transformation that we should use is taking the square of the raw time series data. The 

95% confidence interval for λ contains a value closer to 2, and this strongly suggests 

taking the squared value for the sensor data.  
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Fig. 4.24 Time series plot for sensor-4 (3-years) 

 

Step2: Model Order Selection 

Since the data is non-stationary we should take the first differencing as in Fig 

4.25.To support the decision for taking the differencing, the augmented Dickey-Fuller 

(ADF) test statistic was performed. The null hypothesis test for ADF is that the data to be 

tested is non-stationary while the alternate hypothesis being data is stationary. By running 

this test for the squared sensor data at a significance level of α=0.1 it is found that the p 

value is 0.7905 which fails to reject the null hypothesis. This suggests the hypothesis that 

the data stationary holds valid. 
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Fig. 4.25 Box-Cox plot for sensor-4 

Assume that x(t) is data for sensor-4  taken for 3 years , from the Box-Cox test we 

knew that we have to take the square of the data, and let y(t)=x(t)
2
. The expression 

diff(y(t)) indicates that a differencing is taken for the time series data y(t) and it can be 

defined by diff(y(t))= y(t)=y(t)-y(t-1). The plot for the diff(y(t)) is illustrated in Fig. 4.26.  

The main task in this step is determining the order of the model by plotting the 

partial autocorrelation (PACF) and autocorrelation (ACF). 

From Fig.4.27 the ACF plot seems tailing off slowly which makes it uncertain to 

determine the order for MA process (q). The PACF plot shows the values seem to cut off 

after lag p=2 but there is significant correlations between lags and 10. To determine the 

correct order for the model, the extended autocorrelation function (EACF) was performed 

to get the values shown on Table 4.10. From the EACF select a triangular region of 0 

values (shown in Table 4.10) and start from the top left vertex which gives the least 

combination of AR and MA model parameters. From the possible combination of AR and 

MA orders, select orders with the least p and q value. From the possible combination the 

model  orders (p,d,q) , (3,1,2)  and (1,1,4) seems a valid model.  
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Fig. 4.26 Time series plot for diff(y(t)) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.27 ACF and PACF plot for diff(y(t)) 
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Step 3: Parameter Estimation 

Once we have identified the model orders the next step is estimation of the 

parameters. The R-statistical software output of the two model orders selected, i.e. 

 c=(3, 1, 2) and c= (1, 1, 4) are as shown in Fig. 4.28.  

 

Table 4.10 Sample extended autocorrelation function (EACF) for diff(y) 

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 X X X X X 0 0 X 0 0 X X 0 0 

1 X X X X 0 0 0 X 0 0 0 X X 0 

2 X X X X 0 0 0 X 0 0 0 0 0 0 

3 X X 0 0 X 0 0 X 0 0 0 0 0 0 

4 X X 0 0 X 0 0 X 0 0 0 0 0 0 

5 X X X 0 0 0 0 0 0 0 0 0 0 0 

6 X X X X 0 X 0 X 0 0 0 0 0 0 

7 X X X X X X X X X X X 0 0 0 

8 X X X X X X 0 0 X X X 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

 

 

 

 

 

 

 

 

(a)c=(3,1,2)      (b) c=(1,1,4) 

 

 

 

 

 

 

 

 

 

c)c=(2,1,2) 

 

 

 

Fig. 4.28  R-output for parameter estimation for model orders c=(3,1,2) c=(1,1,4) and 

c=(2,1,2) 

 

Call: 

arima(x = y, order = c(3, 1, 2)) 

Coefficients: 

         ar1       ar2      ar3       ma1       ma2 

1.0031  -0.4295  0.0356  -0.5838  -0.2542 

s.e.  0.1368   0.1614  0.0838   0.1342   0.1110 

sigma^2 estimated as 1.085e-09:   

log likelihood = 9737.98,   

aic = -19465.96 

Call: 

arima(x = y, order = c(1, 1, 4)) 

Coefficients: 

         ar1      ma1       ma2       ma3       ma4 

0.3151  0.1058-0.3966  -0.3205  -0.1065 

s.e.0.0960  0.0960   0.0407   0.0464   0.0517 

sigma^2 estimated as 1.089e-09:   

log likelihood = 9736.37,   

aic = -19462.75 

Call: 

arima(x = y, order = c(2, 1, 2)) 

Coefficients: 

         ar1      ar2      ma1       ma2 

0.9485  -0.3636  -0.5309   -0.2969 

s.e.  0.0464   0.0445   0.0470   0.0444 

sigma^2 estimated as 1.086e-09:   

log likelihood = 9737.9, 

aic = -19467.81 
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From the order model c=(3,1,2) it can be seen that the coefficient for Ar-3 is not 

significant implying there  Ar-3 is non-existent in the model and due to this reason, it is 

desired to fit a model of order C(2,1,2) whose parameters are estimated in Table 4.28(c). 

The coefficients for the order=c(1,1,4) are all significant and finally we need to compare 

model c=(2,1,2) and C(1,1,4) by comparing the AIC and log likelihood values. Based on 

the AIC and log likelihood values the best model for diff(y) would be ARIMA (2,1, 2). 

The model fitted can be written as in Eq.(4.1). 

y
2

(t)=0.9485y
2

(t-1)+ 0.3636y
2

(t-2)- 0.5309w
2

(t-1)- 0.2969w
2

(t-2)+ w(t)4.1 

 The fitted model ARIMA (2,1,2) is when three years of data is taken. The same 

procedure is followed to fit a time series model considering only a one year data and the 

model fitted is found to be ARIMA (0,1,2). This shows that the number of data points 

taken has a huge effect on the final model selection.  

 

Step 4: Model Diagnostics 

 This step is used to examine the goodness of fit of the selected model. If the 

goodness of fit is poor, it is desired to redo the model fitting part again or time series 

model may not be fitted at all. The residual which is the difference between the actual 

and predicted model will be diagnosed to indirectly assess the validity of the selected 

model. A model selection is deemed good if the model residual properties are close to 

white noise. 

From Fig. 4.29 the first plot that shows the standardized plot of the residuals 

suggest a rectangular scatter around zero with no trend. This suggests that the residuals 

are close to a white noise. The second plot indicates the autocorrelation of the residuals. 
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For a pure white noise these residuals should be uncorrelated and normally distributed 

with zero means and some variance. Based on the autocorrelation plot of the residuals it 

seems that it is uncorrelated which is a good indication that the selected model is 

appropriate. The third plot illustrates that the hypothesis test that the residuals are 

correlated is not rejected since the p-values are greater than the significance level. The 

normality plot Fig. 4.30 also shows that the residuals follow a normal distribution except 

for a slight distortion at the end points.  

From the time series modeling for the bridge data it is noted that  

(i) The model order selection is greatly affected by the number of data points. Two 

different types of models were found for the same set of data but different number 

of points. Taking 3 year data and 1 year data has resulted in model orders of c= 

(2,1,2) and (0,1,2) respectively. 

 

Fig. 4.29 Diagnostic plot for the fitted ARIMA c=(2,1,2) model 
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Fig. 4.30 Normality test for residuals 

 

(ii) Based on the fitted model future recordings from the sensors can be compared 

with the coefficients of the ARIMA model. The change in the coefficients of the 

model will indicate the deviation from the base line of comparison. By monitoring 

this change in coefficients, data can be analyzed if it is from a normal or damaged 

state by comparing it from the undamaged state.  
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CHAPTER V 

 

SUMMARY AND CONCLUSION 

 

5.1 Summary of Findings 

The proposed research was aimed at damage detection of civil structures bridges 

based on response data from sensors. The applied damage detection methodologies were 

time series modeling and frequency domain analysis. The validity of the approaches was 

shown through application of simulation data designed on a benchmark problem by the 

ASCE task group and data from a functional bridge.  The case study of simulation data 

considered in this research is aimed to show the capability of the proposed approaches to 

determine the change in the frequency from different sources of simulated data.  

According to the case studies conducted the frequency domain approaches were 

shown to be effective on identifying the presence of abnormality (change in frequency) 

from data captured from a damaged condition. In the study simulation data generated 

from three different damage cases and one normal condition were considered. Simulated 

data collected from the undamaged was taken as a baseline of comparison with the other 

set of data from a damaged state.  According to Huang et el., 2005, when damage is 

introduced in to a system the dynamic behavior will change and this can be observed in 
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the modal parameters of the system such as frequency. Therefore, the main target in 

transforming the raw acceleration time series data in to Fourier, wavelet and Hilbert 

transform is to monitor the change in frequency from the data simulated from normal and 

abnormal conditions.  

Fourier transform of data from a normal and damaged condition of  the civil 

structure were compared and it is found out that the frequency obtained from a damaged 

case were less in magnitude compared with the normal state. Since Fourier analysis lacks 

time information we have no clue as to when the damage started to occur in the structure.  

The wavelet analysis deals with the time information which is better than the 

Fourier analysis. Damage case-4 defined in Table 4.2 is a combination of undamaged 

data for the first 20 sec and damaged for the next 20 sec. The wavelet analysis applied to 

this specific case for detecting the damage progress showed in the scalogram 

representation that the scales of the transformed signal increases after 20 sec. This shows 

that the method is able to capture the change in frequency after damaged is introduced in 

the system.  

EMD and Hilbert Transform for extraction of the instantaneous frequency 

(frequency dependent on time) coupled with hypothesis testing were applied to the 

simulation data.  For the purpose of demonstration of the effectiveness of this approach 

only analysis based on the first IMFs are shown in this study.  In general the hypothesis 

testing and Hilbert transform, detected the change in frequency of the cases in form of 

rejecting and failure to rejecting the change in mean and variance of instantaneous 

frequencies. From the two methods of hypothesis testing experimented, the change in 

variance of the frequencies is found to be more effective and sensitive to successfully 



91 
 

reject the null hypothesis defined as no change in mean and variance of instantaneous 

frequency. It is also observed that the Hilbert transform applied is dependent on the IMF 

applied to get the instantaneous frequency. 

In this research the formal procedures in time series procedures were applied to 

data acquired from a functional bridge. It should be noted that the time series model 

fitting is dependent on the number of data points taken for the analysis. It is observed that 

taking different data sizes for the same sensor data will result in a different model order 

selection. Based on fitted ARIMA models future deformation recordings from the sensors   

can be forecasted which benefits in determining the extent of deformation and taking 

proactive measures.  

The statistical analysis has shown that there exists a high correlation between the 

measured deformation values and different sensors. It is also shown that temperature and 

deformation have a high correlation. Seasonality in the temperature recordings was 

observed where as the deformation was observed to increase with time. From the analysis 

it is observed that the level of deformation increment is dissimilar for different sensors. 

 

5.2 Future Work 

There are several barriers to the widespread use of sensors in bridges. One 

significant problem is that there is scarcity of adequate data showing a failed bridge. Due 

to this problem data analysis for bridges is limited to laboratory or experimentally 

simulated data. The problem with using these kinds of data is that the actual operational 

and environmental conditions at which the bridge experiences cannot be simulated well. 

One reason to this problem is the capability of finite element simulation software since 
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environmental parameters such as temperature, wind; humidity etc. cannot be easily 

incorporated into the model. 

Due to this problem more advanced data analysis methodologies such as time 

series analysis for non-stationary and non-linear data is the aim of future study. In this 

study a series of approaches such as power transformation and differentiation were 

applied to make the data stationary. It should be noted also that this process will conceal 

the inherent feature of the data which will lead to a different results and conclusion. The 

selection of optimal IMF for Hilbert transform and instantaneous frequency extraction is 

the subject of future study due to the different outputs obtained by applying selected 

IMFs.
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detailed time series modeling for data obtained from a functional bridge is 

investigated. The relationship between measured deformation values from 

different sensors installed on a bridge column is studied. The study also showed 
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installed on the column of the bridge. Spectral analysis approaches which include 

Fourier transform, wavelet analysis and Hilbert transform are applied for a bench 

mark problem using simulation data. A statistical hypothesis testing is also 

applied in conjunction with the Hilbert transform to differentiate between a 

change in mean and variance of instantaneous frequency of the simulated data 

which was obtained from normal and damaged conditions of a structure.  

 

Findings and Conclusions:  The research showed that the applied time series and spectral 

analysis methodologies are effective for SHM application. From the analysis of 

bridge sensor data it is shown that the deformation developed in the columns of a 

bridge was increasing through time and also there exists a high correlation 

between temperature and deformation recorded by the sensors. A case study was 

developed to show the effectiveness and validity of the frequency domain 

approaches. A change in frequency is observed from the Fourier analysis when 

data gathered from a damaged and undamaged state is considered. The wavelet 

approach was successful in capturing change of scale (frequency) with time. From 

the comparison of the spectral analysis presented the Hilbert transform and 

empirical mode decomposition (EMD) were found to be the best approach 

compared with Fourier and wavelet analysis since it showed change in frequency 

at any instant of  time. Coupled with statistical hypothesis testing, the Hilbert 

transform detected the change in the mean and variance of instantaneous 

frequency through time which signifies the presence of damage.  

 

 


