Lecture 1B. Thermodynamics:

Brief Review of Chemical Equilibria

System: Single Phase;

Single Reaction

 $\sum_{j=1}^{S} v_j A_j = 0$

Equilibrium state is defined by:

i)
$$\sum_{j=1}^{5} \upsilon_j \ \widetilde{G}_j = 0$$

ii) $N_j = N_{jo} + v_j X_e$ for all j

iii) appropriate equation of state

 $\widetilde{G}_j(T, P, X_i)$ is the partial molal Gibbs free energy of *j* and is the function of temperature, pressure and composition.

In general

$$\widetilde{G}_{j} = \widetilde{G}_{j}^{ex} + G_{j} + RT \ \ell n \ x_{j}$$

 \widetilde{G}_{i}^{ex} is the excess mixing Gibbs free energy to be evaluated from an appropriate mixture model;

 x_i is mole fraction of j;

 N_i is moles of j;

 N_{io} is initial moles of j;

 v_i is stoichiometric coefficient of j (positive for products, negative for reactants);

 G_{j} is the Gibbs free energy of species j (function of T only);

T is temperature of the system;

 X_e is the equilibrium reaction molar extent;

If we define the standard Gibbs free energy of reaction at temperature T by

$$\Delta G_r = \sum_{j=1}^{3} \upsilon_j G_{\underset{r}{j}}$$
(1)

with G_{j} being evaluated at temperature T of interest.

Then the <u>thermodynamic equilibrium constant</u>, K, which is a function of temperature only, is given by:

$$K = \prod_{j=1}^{S} a_j v_j = e^{-\frac{\Delta Gr}{RT}}$$
(2)

where a_i is the activity of species j.

In order to calculate the equilibrium reaction extent and equilibrium composition we need to:

- a) Calculate K at the temperature of interest,
- b) Relate the activity of each species, j, a_j , to a measure of composition (e.g. mole fraction) by an appropriate model for the mixture,
- c) Relate measure of composition to reaction extent using stoichiometric relations indicated above by relation ii).

Van Hoff's equation establishes the rate of change of the equilibrium constant K with temperature:

$$\frac{d \,\ell n \,K}{dT} = \frac{\Delta H r}{RT^2} \tag{3}$$

$$T = T_o (= 298 K); K = K_{298} = e^{-\frac{\Delta G r_{T_o}}{R T_o}}$$
(3a)

where ΔHr is the standard heat of reaction at temperature T, K_{298} is the equilibrium constant at the standard state temperature of T_o (most likely 298 K) and ΔGr_{To} is the standard Gibbs free energy of reaction at T_o which is obtained from tabulated Gibbs free energies of formation ΔG_{T_o}

$$\Delta Gr_{T_o} = \sum_{j=1}^{S} \nu_j \Delta G_{f_j}$$
(4a)

The heat of reaction at temperature T is also obtained from the tabulated heats of formation, ΔH_{f_i} , and specific heats, C_{p_i} .

$$\Delta H_r = \sum_{j=1}^{S} \upsilon_j \ \Delta H_{f_j} + \sum_{j=1}^{S} \upsilon_j \int_{T_o}^{T} C_{p_j} \ dT$$

For gases (standard state pure gas at 1 atm) we use y_j for mole fraction of j and:

$$a_{j} = y_{j}P\left(\frac{\tilde{f}_{j}}{y_{j}P}\right) / 1 atm = p_{j}\left(\frac{\tilde{f}_{j}}{y_{j}P}\right) / 1 atm$$
$$a_{j} = y_{j}P\phi_{j} / 1 atm = p_{j}\phi_{j} / 1 atm$$
$$K = \prod_{j=1}^{s} a_{j} \upsilon_{j} = \left(\frac{P}{1 atm}\right)^{\Sigma \upsilon_{j}} \prod_{j=1}^{s} y_{j} \upsilon_{j} \prod_{j=1}^{s} \phi_{j}^{\upsilon_{j}}$$
$$K = \left(\frac{P}{1 atm}\right)^{\Sigma \upsilon_{j}} K_{y} K_{\phi}$$

$$K = \prod_{j=1}^{S} a_j \upsilon_j = \prod_{j=1}^{S} p_j \upsilon_j \prod_{j=1}^{S} \phi_j \upsilon_j / (1 \text{ atm})^{\Sigma \upsilon_j}$$
$$K = \prod_{j=1}^{S} a_j \upsilon_j = K_P K_{\phi} / (1 \text{ atm})^{\Sigma \upsilon_j}$$

The generalized fugacity coefficients ϕ_j , $\phi_j = \left(\frac{\tilde{f}_j}{y_j P}\right)$, would have to be evaluated from an (f_j)

appropriate equation of state. If Lewis-Randall rule is used $\phi_j = \left(\frac{f_j}{P}\right)$

<u>For gases at low pressure</u> $K_{\phi} \approx 1$

$$K_{a} = \left(\frac{P}{1 \text{ atm}}\right)^{\sum v_{j}} K_{y} = K_{p} / (1 \text{ atm})^{\sum v_{j}}$$

<u>For liquids</u> (assuming standard state of unit activity <u>i.e.</u> the standard state of each component is the pure component state)

$$a_j = x_j \gamma_j$$

where γ_j is the activity coefficient

$$K = \prod_{j=1}^{S} a_j \ \upsilon_j = \prod_{j=1}^{S} (x_j \ \gamma_j)^{\upsilon_j} = K_x \ K_{\gamma}$$

Since $x_j = C_j / C$ $K = C^{-\Sigma \nu_j} K_c K_{\gamma}$

<u>For an ideal mixture</u> $K_{\gamma} \approx 1$

Above C_j is the molar concentration of species j and C is the total molar concentration.