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Abstract 

The design options available to the ecological engineer were expanded by exploring 

new sustainable water quality improvement techniques, specifically the applicability of 

passive treatment of acid mine drainage (AMD) in high-altitude, arid environments, 

passive co-treatment of AMD and municipal wastewater (MWW), and ecologically 

engineered floating vegetation mats (EFVM).   

Field studies at Cerro Rico de Potosí, Bolivia demonstrated that AMD must be 

addressed to render local waters safe for agricultural use.  AMD discharges from both 

operating and abandoned portals as well as tailings-related deposits displayed a high 

degree of heterogeneity with total metal concentrations ranging from 0.11-7,48l, <0.022-

889, <0.0006-65.3, <0.001-310, 0.12-72,100, 0.3-402, <0.012-34.8, and 0.24-19,600 

mg/L of Al, As, Cd, Cu, Fe, Mn, Pb and Zn, respectively.  Net acidity and pH ranged 

from -10 to 246,000 mg/L as CaCO3 equivalent and 0.90-6.94 standard units, respectively.  

In-stream waters contained total metals concentrations of up to 16 mg/L As, 4.9 mg/L Cd, 

0.97 mg/L Co, 1100 mg/L Fe, 110 mg/L Mn, 4.1 mg/L Pb, and 1500 mg/L Zn with pH 

ranging from 2.8-9.5.  AMD-impacted streams contained elevated concentrations of the 

same major ecotoxic constituents present in AMD discharges at concentrations 

statistically greater than in those stream unimpacted by AMD.  The data indicate that 

historic and current mining activities have transformed these key natural resources into 

potential human and environmental health hazards. 

To assess the viability of passive water quality improvement approaches for treating 

AMD from Cerro Rico, alkalinity production, acidity neutralization and metals removal 

were tracked for incubations of AMD in the presence of limestone (LS), a 1:1 mix of 
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AMD and raw MWW, and a 1:1 mix of AMD and WW in the presence of LS.  Three 

AMD sources from abandoned adits on Cerro Rico, raw WW from the city of Potosí and 

locally available LS were incubated in-situ for 72 hr in 1-L cubitainers.  Although locally 

sourced LS can increase final alkalinity up to 397 mg/L as CaCO3, it is a prospective 

source for Mn and a few other potentially undesirable elements.  Relevant to the 

prospects of AMD and WW passive co-treatment, mixing AMD with WW had relatively 

little effect on the final alkalinity achieved by LS dissolution.  Accounting for dilution, 

dissolved concentrations of Ag, Al, As, Cd, Cr, Fe, Pb, Sb, Se, Sn, V and Zn decreased 

with AMD and WW incubation.   

In laboratory studies, passive co-treatment of AMD and MWW was further explored, 

resulting in a system that efficiently removed key constituents of both effluents.  A 

laboratory-scale, four-stage continuous-flow reactor system was constructed to test the 

viability of simulated Cerro Rico high-strength AMD and MWW passive co-treatment.  

The synthetic AMD had pH 2.6 and 1860 mg/L acidity as CaCO3 equivalent and with 46, 

0.25, 2, 290, 55, 1.2 and 390 mg/L of Al, As, Cd, Fe, Mn, Pb and Zn, respectively.  The 

AMD was mixed at a 1:2 ratio with raw MWW from the City of Norman, Oklahoma 

containing 265 ± 94 mg/L BOD5, 11.5 ± 5.3 mg/L PO4
-3, and 20.8 ± 1.8 mg/L NH4

+-N 

and introduced to the system which had a total residence time of 6.6 d.  During the 135 d 

experiment, dissolved Al, As, Cd, Fe, Mn, Pb and Zn concentrations were consistently 

decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9 and 73.4%, respectively, pH increased to 

6.8 ± 0.1, and net acidic influent was converted to net alkaline effluent.  PO4
-3 and NH4

+-

N were decreased to <0.75 and 7.4 ± 1.8 mg/L, respectively.  BOD5 was generally 

decreased to below detection limits.  Nitrification increased NO3
- to 4.9 ± 3.5 mg/L NO3

--
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N, however relatively little denitrification occurred.  Sulfate reducing bacteria were able 

to maintain a relatively high level of sulfate reduction (0.56 mol/m3-d).  A 100% 

reduction of all fecal indicator bacteria was observed.  Results indicated that passive 

AMD and MWW co-treatment is a viable ecological engineering approach for the 

developed and developing world that can be optimized and applied to improve water 

quality with minimal use of fossil fuels and refined materials.   

Field studies of EFVM illustrated that these systems could encourage water quality 

and temperature changes conducive to the passive treatment of various constituents.  Four 

EFVM designs were constructed of drainpipe, burlap, mulch, utility netting, and reused 

polyethylene bottles then planted with Typha spp. and Juncus effusus.  The water column 

beneath the EFVM in two test ponds was compared to that in an open water control pond.  

Dissolved oxygen concentrations and pH were lower, diurnal temperature range was 

dampened, and sulfate/nitrate reduction was greater under the EFVM with respect to the 

control.  Alkalinity was also greater under EFVM.  Although plant propagation was 

limited, results suggest that EFVM may be applied to encourage reducing, thermally 

insulated conditions for passive treatment of AMD and a wide range of other pollutants.  

Specifically, they may be employed to improve immediate and long-term performance of 

vertical flow bioreactors for AMD treatment by lowering dissolved oxygen 

concentrations in the water column and providing a continual source of organic carbon to 

the underlying substrate. 
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CHAPTER I 
 

Introduction 

 
 

This dissertation addresses augmenting and expanding the design options available to 

the ecological engineer by exploring new sustainable water quality improvement 

techniques.  Ecological engineering entails “the design of sustainable ecosystems that 

integrate human society with its natural environment for the benefit of both” (Mitsch, 

1996) and this dissertation specifically addresses several novel applications of this field: 

(i) the efficacy of passive treatment of AMD in high-altitude, low-productivity 

environments in the developing world, (ii) the co-treatment of acid mine drainage (AMD) 

and municipal wastewater (MWW), and (iii) the utility of ecologically engineered 

floating vegetation mats (EFVM) to impact water quality.   

The passive treatment of single waste sources, e.g, AMD and MWW alone, is a 

common proven ecological engineering application (Mitsch and Jorgensen, 2004; Kadlec 

and Wallace, 2009).  However, adoption of ecological engineering practices has lagged in 

the developing world (Rusong et al., 1998) despite the relative advantages that ecological 

engineering solutions hold over conventional engineering approaches in these settings 

(Rusong et al., 1998; Nelson et al., 2001).  This first chapter provides an outline for the 

following chapters, which present sustainable approaches for increasing the applicability, 

longevity and efficiency of passive AMD and MWW treatment systems for water quality 

improvement in the developed and developing world.   

High mountain environments often are the location of economically recoverable 

mineral deposits.  The Andes of South America host some of the world’s great mineral 
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deposits, many of which have been mined for centuries (Miller and Singewald, 1919) and 

will be mined far into the future (Rice and Steele, 2005).  Chapter II characterizes AMD 

discharges on the world’s largest silver deposit, Cerro Rico (Rich Hill) of Potosí, Bolivia, 

which is situated on the eastern flank of the Andes.  Cerro Rico has been intensively 

mined since the mid 16th century using a variety of technologies, creating a diversity of 

environmental problems primarily centered around mineral processing effluent and AMD.  

Local residents are subject to increased trace metals exposure and degraded irrigation 

water (Choque, 2007; Strosnider et al., 2007, 2008).  Although downstream impacts have 

been documented (Hudson-Edwards et al., 2001; Miller et al., 2002, 2004; Smolders et al., 

2002, 2003, 2004; Archer et al., 2005), there exists no published study of specific AMD 

sources on Cerro Rico.  Chapter II provides that study. 

Chapter III illuminates the need to address Cerro Rico AMD by explicitly linking 

contamination from AMD sources to downstream water quality degradation that places 

impacted waters below Bolivian and international standards for irrigation water.  Many of 

the first- through fifth-order streams and rivers near Cerro Rico are used extensively for 

irrigation of edible root crops which may pose a human health risk to the indigenous 

population.  Chapter III documents considerable environmental impacts from AMD, 

demonstrating the need for treatment technologies appropriate to the developing world. 

Chapter IV describes microcosm field studies that demonstrate the feasibility of 

passively treating Cerro Rico AMD via limestone exposure or incubation with MWW.  

Passive treatment, which relies on natural biogeochemical and microbiological processes 

to improve water quality, is well-established in the developed world (Younger et al., 2002; 

Watzlaf et al., 2004).  However, few passive treatment studies have been conducted in the 
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extreme environment of the Andes (Younger, 2007) and none of these focused on the 

possibility of using untreated MWW as an organic carbon source.  The study described in 

Chapter IV was designed to explore these promising ecological engineering options. 

Chapter V builds upon chapter IV by extensively exploring the passive co-treatment 

of high strength AMD (such as that from Cerro Rico) and raw MWW.  AMD and MWW 

are prevalent across the globe and their treatment is central to maintaining global water 

resource quality (e.g., Gadgil, 1998; Kivaisi, 2001; Nelson et al., 2001; Wolkersdorfer 

and Bowell, 2004a, 2004b, 2004c).  Although Roetman (1932) first suggested mixing 

AMD with MWW for pathogen removal, very few systems have been intentionally 

constructed to simultaneously treat these effluents and performance data are sparse (Rose 

et al., 1998; Van Hille et al., 1999; Johnson and Younger, 2006).  The author is not aware 

of any high-strength AMD and raw MWW co-treatment investigation, which is essential 

to addressing the approach’s feasibility and applicability.  Chapter V describes the results 

of a laboratory, flow-through, multi-stage, treatment mesocosm experiment and reveals 

that passive co-treatment of high-strength AMD and MWW is a highly efficient 

ecological engineering approach to address primary constituents of interest in each waste 

stream.  If AMD and MWW could be treated passively and simultaneously within the 

same system, many locales not currently treating AMD or MWW could inexpensively 

and sustainably improve local water quality.   

Chapter VI describes a field study which evaluates a new sustainable ecological 

engineering method of designing an ecosystem, in this case an EFVM, to optimize 

conditions in the underlying water column for the treatment of AMD and other effluents.  

Although tests and/or full-scale applications have been few, EFVM have been applied to 
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treat meat processing effluent (Van Oostrom, 1995), improve lake water quality 

(Boutwell, 2001), treat dilute de-icers from airport runoff (Revitt et al., 2001; Richter et 

al., 2003), and treat AMD (Smith and Kalin, 2000; Kalin and Caetano Chaves, 2003; 

Kalin, 2004; Kalin et al., 2006).  In addition, EFVM design specifications and 

performance are lacking in the literature.  Results presented in Chapter VI suggest that 

EFVM may be applied to encourage reducing, thermally-insulated conditions for 

sustainable passive treatment of AMD and a wide range of other pollutants.  EFVM may 

be especially valuable in cold climates, such as the Andean highlands, where 

temperatures limit treatment rates.   

Overall, this dissertation illuminates novel ecological engineering approaches to 

address water quality issues in the developed and developing world.  The goals to 

augment the applicability and efficiency of ecologically engineered water quality 

improvement were realized.  Applicability was expanded by demonstrating that passive 

AMD treatment or co-treatment with MWW is viable in highland Bolivia, AMD and 

MWW co-treatment is a feasible approach for effluents formerly thought to be passively 

untreatable, and EFVM may be able to create the setting for more sustainable and 

effective passive treatment in colder climates.  The following chapters also describe that 

AMD and MWW co-treatment can be more efficient than active or passive methods for 

AMD or MWW treatment alone and EFVM incorporated into conventional passive AMD 

treatment unit processes would likely increase treatment efficiency.  Ecological 

engineering applications hold promise for sustainably addressing water quality 

degradation in the developed and developing world, but expansion of their applicability 

and efficiency, as described in this dissertation, is key to their successful adoption.  
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Chapter II 

The Legacy of Five Centuries of Intensive Mining Cerro Rico de Potosí, 

Bolivia: Extreme Acid Mine Drainage Source Identification and 

Characterization 

 

Portions of this chapter are included in: 

Strosnider, W.H., Nairn, R.W., Llanos, F.S.  2007.  A legacy of nearly 500 years of 

mining in Potosí, Bolivia: Acid mine drainage source identification and characterization.  

Proceedings, 2007 National Meeting of the American Society of Mining and Reclamation, 

Gillette, WY. p. 788-803. 

 

Strosnider, W.H., Nairn, R.W., Llanos, F.S., Mamani, F.  To be submitted.  The legacy of 

five centuries of intensive mining Cerro Rico de Potosí, Bolivia I: Extreme acid mine 

drainage source identification and characterization.  Environmental Earth Science. 

 

2.1 Abstract   

Intensive mining and processing of Ag, Sn, Pb and Zn ores have occurred in various 

locations within and around the city of Potosí, Bolivia since 1545.  Surface and 

subsurface waters, stream sediments and soils are contaminated with various ecotoxic 

metals.  Acid mine drainage (AMD) is an important contamination source in the 

headwaters of the economically vital, yet highly impacted, Rio Pilcomayo watershed.  

Previous studies have documented downstream heavy metal contamination however not 

addressed their specific sources.  The AMD discharges identified in this study help link 
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downstream pollution to primary origins.  The majority of AMD would be considered 

high-strength due to metals and acidity concentrations orders of magnitude greater than 

typical AMD.  Discharges from both operating and abandoned portals as well as tailings-

related deposits displayed a high degree of heterogeneity with total metal concentrations 

ranging from 0.11-7,48l, <0.022-889, <0.0006-65.3, <0.001-310, 0.12-72,100, 0.3-402, 

<0.012-34.8, and 0.24-19,600 mg/L of Al, As, Cd, Cu, Fe, Mn, Pb and Zn, respectively.  

Net acidity and pH ranged from -10 to 246,000 mg/L as CaCO3 equivalent and 0.90-6.94 

standard units, respectively.  Data were gathered during two sampling events centered 

around the most extreme periods of the dry and wet seasons of one water-year.  Loadings 

to local streams were marginally greater for most metals in the wet season.  If observed 

loadings are historically representative, AMD has contributed thousands of tonnes of 

ecotoxic metals to the upper Rio Pilcomayo over the last five centuries.  Metals and 

hydrogen ion concentrations in the majority of AMD sampled were several orders of 

magnitude above discharge limits set by the Bolivian government, yet no action has 

historically or currently been taken.   
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2.2 Introduction 

2.2.1 Historical Background 

Twelve years after Pizarro dethroned Atahualpa and conquered the Inca, the largest 

Ag deposit in the world was discovered at Cerro Rico (Rich Hill) by the indigenous 

nobleman Diego Huallpa.  The next year the Spanish founded the city of Potosí at Cerro 

Rico’s base with Huallpa’s confidant, the Spaniard Juan de Villarroel, registering the first 

claim in 1545 (Wilson and Petrov, 1999).  Within a hundred years Potosí became one of 

the world’s richest and most populous cities during a boom fueled by Cerro Rico veins of 

up to 25% pure Ag (Wilson and Petrov, 1999; Bartos, 2000; Abbot and Wolfe, 2003; 

Waltham, 2005).  Mining has proceeded nearly continuously over the last five centuries 

and it is estimated that between 20,000 and 40,000 tonnes of Ag were produced from 

1545 to 1824 and over 10,000 tonnes from 1824 to present (Lindgren, 1928; Zartman and 

Cunningham, 1995; Pretes, 2002; Abbot and Wolfe, 2003).  Abbot and Wolfe (2003) also 

postulate that thousands of tonnes of Ag were produced from Cerro Rico and nearby 

deposits in Pre-Colombian times before and after the Incan conquest from the 10th to the 

15th centuries.  Ores from Potosí subsidized Spanish wars in Europe while millions of 

forced indigenous and slave African laborers died premature deaths mining the depths of 

Cerro Rico and processing the ores found within (Galeano, 1971; Tandeter, 1981; 

Bakewell, 1984).  Ag, Sn, Pb and Zn have been the primary metals mined and processed 

in and around the slopes of Cerro Rico, sustaining the city economically for centuries.  

However, the environmental cost of Potosí’s good fortune has been steep.  Terrestrial 

zones have experienced extreme deforestation and associated soil loss (Godoy, 1990).  
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Local watercourses have been impacted by mineral processing effluent and unmitigated 

acid mine drainage (AMD). 

 

2.2.2 Acid Mine Drainage 

Economically-valuable geologic deposits such as coal and metal ores are normally 

chemically stable under undisturbed in-situ conditions.  AMD forms when isolated 

sulfide minerals, such as pyrite (FeS2), sphalerite (ZnS) and galena (PbS), are exposed to 

oxygen and water (Younger et al., 2002).  Microbes such as Acidithiobaccillus 

ferrooxidans increase the rate of AMD evolution by catalyzing mineral oxidation 

(Younger et al., 2002).  This mineral oxidation creates and mobilizes free metal, sulfate 

and hydrogen ions into solution (equations 1-5): 

2FeS2(s) + 7O2(aq) + 2H2O → 2Fe2+ + 4SO4
2- + 4H+  (1) 

2Fe2+ + ½O2 + 2H+ → 2Fe3+ + H2O  (2) 

2Fe3+ + 6H2O → 2Fe(OH)3(s) + 6H+  (3) 

14Fe3+ + FeS2(s) + 8H2O → 15Fe2+ + 2SO4
2- + 16H+  (4) 

ZnS(s) + 2O2(aq) → Zn2+ + SO4
2-  (5) 

Pyrite oxidation (Equations 1-4) is the primary agent of AMD formation.  The acidity 

generated by pyrite oxidation lowers the pH, increasing the solubility of many metals and 

allowing faster weathering of other metal sulfides.  Weathering of other metal sulfides 

will not necessarily produce acidity, but will release metal ions to solution (Younger et al., 

2002).  Sphalerite oxidation (Equation 5) is an example of these reactions which may 

release Zn, Pb, Ni, Cd, Cu, As and other ecotoxic metals to solution often to be 
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transported to discharge points such as seeps, adits or boreholes which then impact 

downstream environments (Younger et al., 2002). 

The environmental cost of AMD has been known for centuries.  The man considered 

to be the founder of geology as a discipline, Georgius Agricola, stated in the 16th century 

that “…when the ores are washed, the water which has been used poisons the brooks and 

streams, and either destroys the fish or drives them away” (Agricola, 1556).  The 

ecotoxic metal ions, acidity and resultant precipitates (such as iron oxyhydroxide often 

referred to as ochre) associated with AMD are a significant threat to freshwater resources 

and can cause fish-kills and lasting degradation of aquatic habitats (Adams and Younger, 

2001; Younger et al., 2002).  AMD also often renders receiving watercourses unfit for 

use as water resources (Adams and Younger, 2001). 

 

2.2.3 Geological Setting 

Cerro Rico de Potosí was created by volcanic eruptions of the Tertiary Age.  It lies 

within a Neogene-Quaternary volcanic-plutonic complex stretching for approximately 

800 km along the Eastern Cordillera of the Andes (Zartman and Cunningham, 1995; 

Kamenov et al., 2002).  Ore occurs throughout systems of veins in a conical dacitic 

volcanic dome rising 700 m above the city of Potosí (Zartman and Cunningham, 1995).  

Argentiferous magma crystallized into cassiterite-rich veins formed in Ordovician slate, 

dacitic tuff and tuff breccia, and other dacitic stock (Griess, 1951; Brading and Cross, 

1972; Rice and Steele, 2005).  The veins are enclosed in zones of metal sulfides, oxides 

and gangue minerals such as quartz, tourmaline, siderite and kaolinite.  Silver oxides 

predominated in the upper altitudes of Cerro Rico while Ag sulfide ores dominate in the 
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lower reaches (Bartos, 2000).  Host rock is pyritized near the veins and pyrite is the 

predominant associated mineral with the sulfide ores and country rock (Lindgren, 1928; 

Lindgren and Creveling, 1928; Petersen, 1945; Wilson and Petrov, 1999).  Pyrite is the 

prime source of AMD formation and its pervasiveness indicates that AMD will be 

released to the surrounding areas for decades or centuries unless remedial actions are 

undertaken.  The polymetallic nature of the orebody indicates that this AMD would likely 

contain elevated concentrations of multiple metals of concern.   

 

2.2.4 AMD Legacy 

The history of Potosí, like many historic mining centers, is one of cyclical boom and 

bust that has likely maximized AMD evolution.  Many local mines have been abandoned, 

flooded, dewatered and mined again multiple times (Hillman, 1984), following the rise 

and fall of ore prices.  There is evidence from Pb-contaminated lake sediments that 

mining and smelting for Ag production may have begun at Cerro Rico around 1000 A.D 

(Abbot and Wolfe, 2003).  However, intensive mining did not begin until Spanish 

conquest.  Cerro Rico is considered the world’s largest Ag deposit and Potosí led the 

world in production during the 16th and 17th centuries (Lofstrom, 1970; Zartman and 

Cunningham, 1995; Bartos, 2000; Rice and Steele, 2005).  After an initial boom fueled 

by Ag oxide ores of up to 25% purity, mining lulled from approximately 1555-1575 until 

the introduction of the mercury amalgamation process (Serrano et al., 1996; Wilson and 

Petrov, 1999).  Ag production peaked in the late 16th century when there were over 600 

mines on the mountain working a vertical interval of approximately 250 m (Serrano et al., 

1996; Waltham, 2005).  Production lulled yet again from approximately 1700 to 1745 
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(Serrano et al., 1996).  After a resurgence from approximately 1745 to 1805, production 

fell precipitously so that by 1825 Cerro Rico was home to more than 5,000 open mine 

shafts and adits, most of which were abandoned, flooded or collapsed (Lofstrom, 1970).  

Of those shafts, only 50-60 were in use and the lower majority of the mountain was 

flooded (Lofstrom, 1970).  In the 1800s Potosí’s population had fallen from a maximum 

of approximately 160,000 during the Ag boom of the 1600s to about 10,000 (Pretes, 

2002).  

Resurgence of the Ag industry from 1850-73 enabled by lower Hg prices (Hg was 

used in the amalgamation technique for processing Ag sulfides) caused the short-lived 

dewatering and re-start of many mines (Hillman, 1984).  In the latter quarter of the 1800s, 

Potosí’s fortunes rebounded yet again with the emergence of the Sn industry as the Ag 

industry declined (Hillman, 1984).  An indication of the rich polymetallic nature of the 

Cerro Rico ore body, another metal, Cu, was mined and processed in the early 1900s 

(Miller and Singewald, 1919; Cunningham et al., 1996).  As of 1928, many veins in 

Potosí had been worked over a vertical interval of approximately 600 m (Lindgren, 1928).  

The pinnacle of the Sn industry was in the first half of the 20th century when Bolivia was 

one of the top three worldwide Sn producers during World War II (Griess, 1951).  

Although the Sn industry was first established by the Incas, Sn only surpassed Ag in 

economic importance around the turn of the 20th century (Hillman, 1984; Godoy, 1985).  

At this time Sn miners dewatered and worked former Ag mines as well as alluvial 

deposits (pallacos) at the base of Cerro Rico (Bartos, 2000; Waltham, 2005).  However, 

the 1985 Sn price collapse caused the closure and flooding of many Potosí mines 

(Waltham, 2005; Younger, 2007).  Mineral prices have risen in recent years, leading to 



15 
 

yet another boom cycle of dewatering and ore exploitation.  In 1996, Serrano et al. (1996) 

reported that over 500 shafts and adits were in operation, worked by about 5,000 miners.  

As of 2000, mine workings had extended to a vertical interval of 1,150 m (Bartos, 2000).  

Currently, it is estimated that approximately 20,000 miners are either reworking old 

tailings and mine workings or opening new workings in deeper zones of Cerro Rico 

mining primarily Pb and Zn ores, and to a lesser extent, Ag and Sn ores.  The repeated 

flooding, dewatering and mining of Cerro Rico has likely led to near-continuous 

production of high-strength AMD for centuries as freshly exposed sulfide minerals 

contact water during non-operational periods.  The subsequent dewatering allows for 

oxygen ingress and fresh mineral exposure as the cycle is repeated. 

Broad and progressive Bolivian environmental regulations became law in 1992 

(BMSDP, 2000).  The law (Number 1333) regulates pollutant discharges of nearly all 

industries, sets water quality standards for receiving bodies and establishes limits for 

liquid discharges.  However, it appears to have been largely ignored by the mining 

industry (Garcia-Guinea and Harffy, 1998).  Article 45 of the Bolivian Mining Code 

states that mining operations should use systems and technology compatible with 

environmental protection (Bocangel, 2001).  The Bolivian government issued and widely 

publicized Supreme Decree 25419, requiring all mining operations to obtain an 

environmental license (Bocangel, 2001).  Supreme Decree 25877 extended the deadline 

for compliance and has also met very limited success (Bocangel, 2001).  It is likely that, 

in addition to discharging AMD and mineral processing effluent out of compliance with 

Bolivian law, many mining facilities have not acquired an environmental license.     
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2.2.5 Previous Environmental Studies 

Intensive mining over several centuries has devastated the aquatic environment 

around Potosí.  Hudson-Edwards et al. (2001), Smolders et al. (2002, 2003, 2004), Miller 

et al. (2002, 2004) and Archer et al. (2005) documented dissolved and total ecotoxic 

metals concentrations orders of magnitude greater than natural background levels in Rio 

Tarapaya from the western edge of Potosí’s city limits to ~500 km downstream in Rio 

Pilcomayo.  Miller et al. (2002) linked this contamination to mining activity via isotopic 

analysis of Pb in river sediment, however the specific contaminant sources (i.e., AMD, 

mineral processing effluent, tailings dam erosion, etc.) could not be identified. 

Although downstream heavy metals contamination has been fairly well-documented, 

contamination sources have not.  No peer-reviewed studies of Cerro Rico AMD or the 

other probable ecotoxic metal sources have been encountered in the literature.  The 

following study was conducted to characterize one of the major sources of ecotoxic 

metals pollution from Cerro Rico mining operations to the upper Rio Pilcomayo to better 

understand the relationship between downstream pollution and upstream sources.   

 

2.3 Methods 

2.3.1 Study Area 

The study centered around Cerro Rico, approximately 1 km south of the city of Potosí, 

Bolivia.  Potosí (19.585°S 65.754°W) lies in the Eastern Cordillera range of the Central 

Andes in the upper reaches of the Rio Pilcomayo watershed.  As the entirety of Cerro 

Rico and immediate environs can essentially be considered a mine, all groundwater 

discharges noted were classified as AMD.  AMD identified and characterized were from 
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active and abandoned mine portals of Cerro Rico and seeps influenced by tailings 

deposits and/or the mineral-rich pallacos at the northwest base of Cerro Rico (Figures 

2.1-3).  The AMD documented in this study are those which were flowing during Potosí’s 

dry season of July/August 2006 and wet season of March 2007 and those not intercepted 

for mineral processing use.  Innumerable working and abandoned mine portals dot Cerro 

Rico, however the majority were observed to not produce effluent.  Portals likely to be 

producing drainage near the base of Cerro Rico were visited in this field study.  The 

majority of those portals were not flowing at the time.  Active mine portal, abandoned 

portal, and tailings-related discharges were assigned the prefixes “C”, “A” and “T”, 

respectively.  Of the thirteen AMD sources identified and characterized on Cerro Rico 

proper, seven were from active mine portals, five were from abandoned portals and one 

was from a tailings deposit.  Three tailings-related AMD sources were located at the 

northwest base of Cerro Rico.   

Discharges 1A, 3A, 4T and 1-4C (Figure 2.1) drain to Rio Huayna Mayu which 

empties into the highly polluted Ribera de la Vera Cruz, which also contains residual 

tailings from past mineral processing plant discharges and raw sewage from the city.  

Discharges 2A, 4-5A and 6C drain to Quebrada Chimborazo which shortly thereafter 

confluences with Rio Villacollu Mayu.  Discharge 5C drains to the highly impacted Rio 

Jayac Mayu (“spicy river” in Quechua, the language of the Inca) which also may receive 

diffuse acid rock drainage (ARD) from numerous waste rock piles near its source.  

Discharge 7C drains to Rio Sucu / Kori Mayu which also receives AMD from the 

pallacos zones (discharges 1-3T).  The pallacos discharges are associated with natural 

and anthropogenic erosion of mineral-rich material from Cerro Rico and the tailings from 



18 
 

Sn mining of that material that ceased decades ago (Bartos, 2000; Waltham, 2005).  

These sources are also likely influenced by groundwater seepage from the San Miguel 

tailings dump, which lies between Rio Sucu / Kori Mayu and the Ribera de la Vera Cruz.  

The Pailaviri tailings deposit (discharge 4T) on the slope of Cerro Rico drains to Huayna 

Mayu (Figure 2.3).  A few AMD sources (7C, 4A, 5A and 4T) were only sampled in the 

wet season because they were not flowing during the dry season. 

 

 

Figure 2.1  Study area and AMD discharges with respect to receiving streams, tailings 

deposits, greater Bolivia and South America. 
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Figure 2.2  AMD sources 1A (left) and 1C (right).  Source 1A is an abandoned portal 

near the eastern base of Cerro Rico.  Source 1C is a functioning mine portal on the north 

slope of Cerro Rico. 
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Figure 2.3  A portion of the Pailaviri tailings deposit which lies less than 100 m from 

Huayna Mayu, which confluences with the Ribera de la Vera Cruz less than 2 km from 

the location pictured. 

 

2.3.2 Data Collection 

Water quality parameters and grab samples were obtained at the points indicated on 

Figure. 1 during the dry (July-August 2006) and wet (March 2007) seasons of one water-

year (Figure 2.4).  These intervals were chosen in an attempt to capture the groundwater 

level/efflux and surface water flow extremes of both seasons, when are near their minima 

(dry) and maxima (wet).  Sampling periods were offset from the minima and maxima of 

the monthly average precipitation because of the common response lag of groundwater 

level/efflux and surface water flows to precipitation events (Eltahir and Yeh, 1999).   
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Figure 2.4  Sampling periods (orange) with respect to monthly average precipitation in 

the City of Potosí from 1958-2002 (BSNMH, 2003).   

 

The location of each AMD discharge was recorded with a Garmin® GPS unit.  

Alkalinity titrations were conducted in the field following standard methods (APHA, 

1998).  Temperature, pH, dissolved oxygen (DO) and specific conductance (SC) were 

determined using a properly calibrated Orion 1230 multimeter.  All grab samples were 

taken using 125-mL HDPE containers for subsequent analysis at the University of 

Oklahoma Center for Restoration of Ecosystems and Watersheds (CREW) laboratories.  

Samples for anion analyses were stored at 4 °C until filtered through 0.2 µm nylon filters 

and Dionex OnGuard® II H cartridges.  A MetrOhm® 761 Compact ion chromatograph 

unit was used to quantify SO4 concentrations following EPA method 300.  Total metals 

samples were immediately preserved with concentrated nitric acid and stored at 4 °C until 

microwave acid digestion.  Dissolved metals samples were first filtered through 0.45 µm 
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nylon filters then preserved with concentrated nitric acid and stored at 4 °C until 

microwave acid digestion.  All microwave acid digestions followed EPA method 3015.   

Digested metals samples were filtered through 0.45 µm nylon filters then analyzed via a 

Varian Vista-Pro® simultaneous inductively coupled plasma-optical emission 

spectrometer (ICP-OES) following EPA method 6010.  Acidity was calculated following 

a modified version of that presented by Younger et al. (2002), which accounted for the 

acidity from the substantial Cd2+, Cu2+ and Zn2+ concentrations present in these unique 

waters.  For acidity calculations, all Fe was assumed to be Fe(II) when pH > 3 and Fe(III) 

when pH < 3, because Fe(III) predominates for most solutions with pH < 3 (Kirby and 

Cravotta, 2005).  This assumption generally follows empirical observations (Younger et 

al., 2002; Watzlaf et al., 2004; Kirby and Cravotta, 2005).  Hedin (2006) demonstrated an 

excellent relationship between calculated and measured net acidity for a diverse data set 

of 1,484 AMD sources. 

Flow rates (Q) were obtained via two methods.  When possible, flow rates were 

obtained by building temporary weirs and determining time to gather a known volume in 

a bucket or graduated cylinder. When flow rates were greater than this method would 

allow, discharge was estimated by determining channel cross-section, depth and velocity 

as approximated by floating a partially submersible object a given distance.  Wet and dry 

season loadings were determined by multiplying total metals concentrations by their 

respective flow rates.  Where flow rates were too low or diffuse to determine using the 

aforementioned methods, a conservative flow rate of 0.01 L/s based on comparative 

observation was assigned to enable the prudent estimation of metal loadings. 
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2.4 Results and Discussion 

 Physiochemical parameters, total and dissolved metal concentrations, and SO4 

concentrations for sampled AMD are presented in Tables 2.1 and 2.2.  These results are 

compared to various water quality criteria set by the Bolivian government in Table 2.3.  

Generally, dissolved metal concentrations were similar to total metal concentrations, 

indicating that the bulk of metals discharged to receiving streams from mine water 

discharges are in the more mobile, dissolved form.  Metals, SO4 and acidity 

concentrations in AMD varied by several orders of magnitude, indicating a high degree 

of heterogeneity within the groundwaters of Cerro Rico.  Metals are not uniformly 

disseminated throughout Cerro Rico which is reflected by these data.  The majority of 

AMD would be considered high-strength AMD due to metals and acidity concentrations 

orders of magnitude greater than typical AMD (e.g., Younger et al., 2002; Watzlaf et al., 

2004).  Concentrations of contaminants in most sampled AMD were orders of magnitude 

out of compliance with Bolivian discharge limits and likely contributed to the 

aforementioned pollution downstream. 
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Table 2.1  Mean physical parameter measurements, net acidity and SO4 concentrations, 

and flow rates of Cerro Rico AMD in the dry and wet season.  Dry season data are 

unshaded and wet season data are shaded grey.  N=1 except where otherwise noted.  Net 

acidity calculations used total and (dissolved) metal concentrations.  pH is bolded where 

exceeding the monthly Bolivian discharge limit. 

Site pH DO SC Net Aciditya SO4 Q 

  s.u. mg/L µS/cm 
mg/L as CaCO3 

eq. mg/L L/s 

1C 2.97 3.5 10440 9870 0.03 

1C 3.24 3.6 6370 7280(6860) 6480 0.05 

2C 3.30 0.8 9470 19300 0.01 

2C 3.10 2.5 6800 24400 19300 0.10 

3C 3.02 4.08 19070 25400 0.01 

3C 3.20 3.80 22000 47800 34000 0.05 

4C 3.15 4.40 8690 16300 0.13 

4C 3.60 2.70 4290 8370(8850) 8830 0.18 

5C 2.46 6.10 18640 39900 0.28 

5C 3.39 3.75 9290 11200 8720 0.28 

6Cε 3.25 2.15 3160 2190 3400 0.17 

6C 3.56 7.20 3780 3350(3190) 3270 0.08 

7C 2.11 3.1 23200 31600(28800) 23000 0.05 

1Aη 3.56 6.63 1888 1150 1320 0.86 

1Aε 4.52 6.39 1457 870(455) 631 0.86 

2Aε 2.90 1.33 7530 11100 9180 0.02 

2A 2.30 0.10 11300 12500(12200) 8740 0.18 

3A 3.02 2.91 14900 25200 0.07 

3A 3.60 3.00 9230 12300(11500) 10000 0.02 

4A 6.94 5.70 345 -6.61(-6.51) 232 0.03 

5A 6.9 5.55 272 -10.0(-37.3) 257 0.06 

1T 2.96 2.50 2820 1400 0.26 

1T 2.98 3.75 2710 1050(1020) 1730 0.72 

2T 4.20 4.65 1115 78.4 4.6 

2T 4.08 1.00 1174 83.1(82.1) 498 1.1 

3T 6.49 6.60 893 -46.9 0.10 

3T 6.40 3.79 960 -30.9(-32.0) 322 0.33 

4T 0.90π ND 54600 246000(239000) 175000 0.03 
ND = Not determined; η n = 3; ε n = 2; ªCalculated net acidity = acidity – alkalinity 
πValue is suspect due to the extreme pH 
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Table 2.2   Mean total and (dissolved) metal concentrations determined for grab samples 

of Cerro Rico AMD.  Dry season data are unshaded and wet season data are shaded grey.  

As, Cd, Cr, Cu, Fe, Pb and Zn concentrations are bolded where exceeding the monthly 

Bolivian discharge limit.  Total Cr concentrations were compared to more conservative 

Cr(III) discharge limits because it is the more commonly prevalent species at the pH 

conditions noted (Stumm and Morgan, 1996). 

 Site Al As Cd Co Cr Cu 
  mg/L 
1C 273 0.57 12.4 2.28 0.030 1.76 
1C 211(196) 1.35(0.65) 10.7(11.2) 2.08(2.02) 0.034(0.032) 2.83(2.75) 
2C 461 29.6 7.19 4.05 0.09 10.8 
2C 420 85.2 12.2 2.68 0.12 30.7 
3C 752 34.4 35.9 3.93 0.13 12.9 
3C 1110 125 65.3 7.22 0.63 39.6 
4C 648 40.7 21.2 2.51 0.22 84.9 
4C 306(258) 30.6(4.66) 10.3(11.0) 1.35(1.84) 0.29(0.17) 49.5(44.0) 
5C 1120 180 36.2 4.03 0.43 152 
5C 440 8.46 6.94 2.21 0.16 5.91 
6C 110 13.6 0.57 1.05 0.031 0.39 
6C 64.1(64.1) 15.0(8.31) 4.73(4.99) 0.70(0.75) 0.049(0.042) 0.32(0.28) 
7C 1300(1170) 138(125) 10.6(11.1) 2.79(2.66) 1.10(1.10) 227(232) 
1A 5.76 0.030 0.17 0.14 0.002 0.037 
1A 25.7(8.97) 0.94(0.022) 0.43(0.38) 0.079(0.057) 0.011(<0.001) 0.13(0.040) 
2A 85.0 21.5 7.79 0.59 0.031 0.047 
2A 77.1(80.5) 41.5(38.8) 9.42(9.84) 0.73(0.74) 0.042(0.043) 0.13(0.12) 
3A 810 7.35 48.5 5.58 0.15 10.5 
3A 446(437) 8.44(7.15) 16.5(17.3) 2.02(2.46) 0.14(0.14) 29.9(29.9) 
4A 0.11(0.023) <0.022(<0.022) <0.0006(0.001) <0.001(<0.001) <0.001(<0.001) <0.001(0.003) 
5A 3.82(0.052) <0.022(<0.022) 0.0008(<0.0006) <0.001(<0.001) 0.001(<0.001) <0.001(0.002) 
1T 167 <0.022 0.72 0.33 0.006 23.6 
1T 123(115) <0.022(<0.022) 0.55(0.64) 0.27(0.30) 0.005(0.007) 20.0(20.3) 
2T 8.12 <0.022 0.087 0.018 0.004 0.60 
2T 8.27(8.06) <0.022(<0.022) 0.10(0.10) 0.022(0.021) <0.001(<0.001) 0.68(0.68) 
3T 0.28 <0.022 0.025 <0.001 0.002 0.030 
3T 0.48(0.27) <0.022(<0.022) 0.035(0.035) <0.001(0.002) <0.001(<0.001) <0.001(0.044) 
4T 7480(7390) 889(821) 16.6(15.1) 14.8(8.3) 2.51(2.56) 310(301) 
η n = 3 
ε n = 2 
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Table 2.2 (cont.) 

Site  Fe Mn Ni Pb Zn 
  mg/L 
1C 796 18.3 2.92 0.211 4000 
1C 896(795) 18.8(17.0) 3.08(2.86) 0.50(0.29) 2880(2780) 
2C 6320 402 4.26 1.40 3050 
2C 6390 221 4.20 2.82 6630 
3C 2580 33.6 6.36 2.53 10800 
3C 6310 56.0 11.2 34.8 19600 
4C 3050 84.6 1.87 1.07 4500 
4C 1750(1710) 74.8(73.7) 2.01(1.71) 13.1(0.61) 3460(2690) 
5C 6410 51.7 2.55 17.5 10500 
5C 2052 114 2.15 5.41 3180 
6C 512 54.2 0.56 7.36 351 
6C 637(587) 43.4(42.2) 2.26(0.55) 6.05(1.21) 1140(1100) 
7C 8130(7410) 9.60(6.31) 2.83(2.56) 5.65(1.28) 1170(1120) 
1A 111 13.2 0.16 0.065 574 
1A 105(14.3) 14.1(9.94) 0.087(0.067) 3.23(0.22) 271(226) 
2A 2000 135 0.82 0.50 3240 
2A 2410(2410) 122(125) 0.92(0.96) 1.46(1.67) 3360(3130) 
3A 3240 44.9 5.92 0.64 9620 
3A 2140(1920) 45.8(46.5) 2.91(2.60) 0.65(0.60) 3810(3050) 
4A 0.12(0.15) 3.95(4.09) <0.004(<0.004) <0.012(<0.012) 0.24(0.43) 
5A 3.12(0.072) 0.42(0.060) <0.004(<0.004) 0.043(<0.012) 0.26(0.11) 
1T 49.1 48.5 0.29 0.17 103 
1T 27.8(29.0) 39.4(40.4) 0.23(0.25) 0.036(0.049) 87.0(90.3) 
2T 0.36 3.65 0.078 0.042 14.3 
2T 0.14(0.14) 4.23(4.08) 0.058(0.058) <0.012(<0.012) 15.5(15.9) 
3T 0.15 0.30 0.026 0.025 4.84 
3T 0.13(0.028) 0.79(0.80) 0.022(0.023) <0.012(<0.012) 6.32(6.46) 
4T 72100(70500) 96.1(91.5) 11.4(11.6) 24.8(26.1) 1660(1630) 

 

Table 2.3  Bolivian discharge and receiving water body criteria 

Standard pH Al As Cd Co Cr α Cu Fe Mn Ni Pb Zn SO4 

  s.u. mg/L 

Daily 
discharge 

6-9 
 

1.0 0.3 
 

1.0/0.1 1.0 1.0 
  

0.6 3.0 
 

Monthly 
discharge 

6-9 
 

0.5 0.15 
 

0.5/0.05 0.5 0.5 
  

0.3 1.5 
 

Class "A" 6.0-8.5 0.2 0.05 0.005 0.1 0.05 0.05 0.3 0.5 0.05 0.05 0.2 300 

Class "B" 6-9 0.5 0.05 0.005 0.2 0.6/0.05 1.0 0.3 1.0 0.05 0.05 0.2 300 

Class "C" 6-9 1.0 0.05 0.005 0.2 0.5/0.05 1.0 1.0 1.0 0.5 0.05 0.2 300 

Class "D" 6-9 1.0 0.1 0.005 0.2 1.1/0.05 1.0 1.0 1.0 0.5 0.05 0.2 400 
αCr (III) and Cr (VI) limits respectively
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The active mine portals generally had higher metals concentrations than the 

abandoned and tailings-related sources (Table 2.2).  The tailings-impacted pallacos 

discharges (1-3T) generally exhibited lower metals concentrations than the other 

abandoned and active mine sources.  This is likely due to the increased weathering that 

the alluvial deposits have experienced.  These deposits were created over millennia as 

surface rock of Cerro Rico weathered and was transported downhill.  Much of the 

sulfides on the exposed surfaces of the alluvial deposits have likely been weathered, 

leaving more inert material that produces AMD or ARD of lower metals concentrations 

and acidity.  The freshly exposed sulfides within Cerro Rico are likely leading to higher 

metals concentrations in the drainage of the active mines.  Cerro Rico has been mined for 

centuries at irregular unsystematic intervals and many workings are interconnected due to 

the degree of exploration and common collapse features (Petersen, 1945; Cunningham et 

al., 1996).  The active mine portals shared the same general pH and metals concentrations 

as three of the abandoned portals (1-3A).  The abandoned mine portals sampled in this 

study are likely connected to and receive waters from active workings, thus sharing in the 

effect of the ongoing fresh sulfide mineral exposure.   

The seep from the Pailaviri tailings deposit (4T) produced the most acidic and metal-

laden AMD identified.  The pH and metals concentrations of this seep place it among the 

most extreme examples of AMD in the world.  Dissolved As, Fe and SO4 concentrations 

rival those documented at Iron Mountain, which as of 1999 was reported to have the 

greatest concentrations of these constituents ever recorded in groundwater (Nordstrom 

and Alpers, 1999; Nordstrom et al., 2000).  Another site with acute AMD, the Iron Duke 

mine in Zimbabwe, demonstrated similar Al and Fe concentrations to the Pailaviri seep 
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(Williams and Smith, 2000).  The Iron Mountain and Iron Duke mines are examples of 

the most ideal geologic settings for AMD production in the world.  The Pailaviri tailings 

deposit must present a similar geologic setting, and thus a major environmental liability.   

The AMD documented in this study are contributing to the downstream violations of 

Bolivian receiving body water quality limits noted in the following chapter.  Class “D” is 

the lowest designation of Bolivian receiving water bodies in which industrial applications 

and navigation are the only suitable uses except in extreme circumstances (BMSDP, 

2000).  Bolivian law states that class “D” waters must be “coagulated, flocculated, 

filtered and disinfected” prior to domestic use (BMSDP, 2000).  It is not known how or if 

the water bodies downstream of Potosí are designated.  However, they are used for 

agriculture and therefore should be rated at a minimum above class D.  The introduction 

of AMD with concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and SO4 

orders of magnitude greater than class “D” limits is contributing to non-compliance 

downstream.   

All but one of the AMD discharges (4A) exceeded Bolivian monthly discharge limits 

to some degree and most by orders of magnitude for multiple metals.  Half of the sixteen 

AMD discharges had higher than permissible concentrations of As, Cd, Cu, Fe, Pb and 

Zn.  Fourteen AMD discharges had higher than permissible Zn concentrations, often by 

three or four orders of magnitude.  Thirteen had lower than permissible pH.  The data 

support the assertion of Garcia-Guinea and Harffy (1998) that Bolivian environmental 

law “has been sadly ignored where mining is concerned.” 

Local streams were considerably loaded with ecotoxic metals from Cerro Rico (Table 

2.4).  Active mine portals contributed the majority of metal loadings in both seasons.  All 
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metal loadings except Cd, Cu and Zn were at least marginally greater during the wet 

season.  Combined Al, As, Fe, Mn, Ni and Pb loadings were 26, 12, 88, 76, 45 and 57% 

greater, respectively, in the wet season.  Tailings related discharge loadings were much 

greater in the wet season when 4T was flowing.  The majority of AMD discharges had 

concentrations of As, Cd, Cu, Pb and Zn orders of magnitude higher than those found 

downstream in Rio Tarapaya and Rio Pilcomayo by earlier studies (e.g., Hudson-

Edwards et al., 2001; Smolders et al., 2003).  Overall, the data indicate that these AMD 

discharges are contributing to some degree to downstream heavy metals pollution in the 

upper Rio Pilcomayo basin.  If observed loadings are historically representative, AMD 

has contributed thousands of tonnes of ecotoxic metals to the upper Rio Pilcomayo over 

the last five centuries.  Nonpoint source ephemeral ARD sources also exist, due to the 

prevalence of innumerable ancient and recent ore and tailings dumps upon and around 

Cerro Rico (Miller and Singewald, 1919; Lindgren and Creveling, 1928; Francis et al., 

1981), exposure of ores near the peak with recent and ongoing surface mining, as well as 

the highly mineralized nature of Cerro Rico’s slopes.  Despite efforts to locate all AMD 

sources around Cerro Rico, other point sources likely exist because of the size of Cerro 

Rico and dynamic nature of ongoing mining.  The likelihood of other AMD sources 

render downstream loadings documented in this study a probable underestimate.   
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Table 2.4  Seasonal AMD total metal loadings to streams draining Cerro Rico 

   Dry Season Wet Season 
Operating Abandoned Tailings Total Operating Abandoned Tailings Total 

  kg/d 
Al 38 5.6 6.9 50 31 3.7 28 63 
As 5.1 0.08 Δ 5.2 2.7 0.73 2.4 5.8 
Cd 1.2 0.33 0.05 1.6 0.84 0.20 0.09 1.1 
Co 0.15 0.5 0.01 0.21 0.15 0.02 0.06 0.23 
Cr 0.01 0.001 0.002 0.02 0.02 0.002 0.007 0.03 
Cu 4.7 0.07 0.76 5.5 2.3 0.05 2.1 4.5 
Fe 210 32 1.2 240 200 48 200 450 
Mn 3.4 1.5 2.5 7.4 6.5 3.0 3.1 13 
Ni 0.11 0.05 0.04 0.20 0.21 0.02 0.05 0.29 
Pb 0.55 0.01 0.02 0.58 0.58 0.26 0.07 0.91 
Zn 330 110 8.0 450 280 77 11 370 

Δ Concentrations below detection limits, loadings inestimable 

 

The relative importance of different pollution sources to the Rio Pilcomayo is 

unknown.  Hudson-Edwards et al. (2001) and Smolders et al. (2003) stress the 

significance of mineral processing effluent in downstream contamination.  However, 

these studies were undertaken when the tailings load to the upper Rio Pilcomayo was 

much higher, before the construction of the Laguna Pampa and San Antonio tailings 

dams which are now the destination of most mineral processing effluent.  In addition, no 

published peer-reviewed studies have documented the mineral processing effluent 

characteristics and loading rates.  This study is the first to characterize AMD sources.  

However, the data presented in this study were the bare minimum required to extrapolate 

annual loading to downstream watercourses, and are likely an underestimate of the total 

loading from point AMD sources because of the probable existence of other sources.  

Further research, including mineral processing effluent discharge and nonpoint ARD 

characterization will help solidify the relative importance of the upper Rio Pilcomayo’s 
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pollution sources.  This information would help establish priorities for future remediation 

efforts. 

2.5 Conclusions and Recommendations 

The extraction and export of mineral wealth has dominated the political economy of 

Bolivia for centuries, however, the importance of mining has declined somewhat in 

recent decades (Griess, 1951; Hillman, 1984).  However, Potosí’s economy and roughly 

150,000 residents are still heavily dependent upon mineral extraction and processing.  

Therefore, environmental law enforcement should be carefully applied and fitting 

solutions presented to lessen the impact of mining operations.  Measured by multiple 

metrics, Bolivia is one of the poorest nations in the Western Hemisphere (World Bank, 

2009).  Therefore, solutions attempted to address to the mine water pollution problems in 

Potosí can not be capital-intensive.  A labor-intensive solution may be desirable because 

of high unemployment and underemployment in Potosí, as well as the low cost of local 

labor.   

Passive systems may be more suitable than active systems for AMD treatment in 

Potosí.  Passive treatment uses unrefined natural materials to promote natural chemical 

and biological processes to improve water quality (Younger et al., 2002).  Active 

treatment, the improvement of water quality by methods that require ongoing inputs of 

energy and chemical reagents, generally has higher operational costs than passive 

systems (Younger et al., 2002).  Highly mechanized construction or operational activities 

are not desirable in Potosí because of logistical and supply issues.  In developed nations, 

passive treatment systems have higher up-front costs because of greater land and 

construction expenses (Younger et al., 2002).  However in Bolivia depressed land and 
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low construction costs may make passive treatment a logical solution from both long- and 

short-term perspectives.  The chemicals, electricity and equipment needed for active 

treatment may make passive treatment by default the most applicable solution.  In 

addition, passive treatment system construction and metal reclamation could provide 

needed employment for Potosínos.   

In 2000, Younger’s preliminary experiments indicated passive treatment system 

feasibility on the slopes of Chacaltaya and Huayna Potosí, near La Paz, a setting similar 

to the Cerro Rico de Potosí (Younger, 2007).  Limestone gravel and llama dung were set 

in a series of buckets receiving a continuous flow of AMD from the abandoned Milluni 

mine.  The average pH rose from 3.2 to 6.3 and metals were taken out of solution even 

though the experiment ran through the coldest time of year when reaction rates are lowest 

(Younger, 2007).  There are documented limestone and dolomite deposits around Potosí 

(Zartman and Cunningham, 1995; Deconinck et al., 2000; Kamenov et al., 2002).  The 

Cayara® lime plant on the outskirts of Potosi currently accepts limestone of 85-92% 

calcite from local sources, which indicates that high quality limestone for passive 

treatment is available.  Llama dung is readily available around Potosí as domesticated 

llama herds roam nearby valleys and mountainsides.  Other carbon sources for SO4 

reducing bacteria are also available, including domestic sewage, cow dung, brewery 

waste and waste sugar cane from lowland regions northeast of Potosí.  However, the 

ubiquity of Al and likely prevalence of Fe(III) in high concentrations within the AMD 

around Potosí precludes the application of anoxic limestone drains and may limit the 

useful life of other traditional passive treatment systems, such as reducing and alkalinity 

producing systems.  Hybrid active-passive treatment systems or a new type of passive 
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treatment system may need to be developed and applied to sustainably address the 

situation.   

Action is necessary to address the non-compliant AMD sources documented in this 

study.  They are contributing to previously-documented downstream pollution.  If 

environmental laws are to be enforced, care should be taken to ensure that the fragile 

mineral extraction and processing industries vital to Potosí can continue operation.  

Passive treatment may prove a suitable solution to the unique circumstances presented in 

the “Villa Imperial” of Potosí. 
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Chapter III 

The Legacy of Five Centuries of Intensive Mining Cerro Rico de Potosí, 

Bolivia: Extreme Acid Mine Drainage Contaminates the Headwaters of 

the Rio Pilcomayo 

 

Portions of this chapter are included in: 

Strosnider, W.H., Llanos, F., Nairn, R.W.  2008.  A legacy of nearly 500 years of mining 

in Potosí, Bolivia: Stream Water quality. Proceedings, 2008 National Meeting of the 

American Society of Mining and Reclamation, Richmond, VA. p. 1232-1251. 

 

Strosnider, W.H., Nairn, R.W., Llanos, F.S.  To be submitted.  The legacy of five 

centuries of intensive mining Cerro Rico de Potosí, Bolivia II: Extreme acid mine 

drainage contaminates the headwaters of the Rio Pilcomayo.  Environmental Earth 

Science. 

 

3.1 Abstract   

Ag, Pb, Sn and Zn ores have been intensively mined and processed at Cerro Rico de 

Potosí, Bolivia since 1545.  Acid mine drainage (AMD) and mineral processing plant 

effluent are prime sources of water contamination in the headwaters of the economically 

and ecologically vital, yet highly impacted, Rio Pilcomayo watershed.  Streams receiving 

drainage from the slopes of Cerro Rico and surrounding landscapes were sampled during 

the dry (July-August 2006) and wet (March 2007) seasons of one water-year.  In-stream 
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waters contained total metals concentrations of up to 16 mg/L As, 4.9 mg/L Cd, 0.97 

mg/L Co, 1100 mg/L Fe, 110 mg/L Mn, 4.1 mg/L Pb, and 1500 mg/L Zn with pH 

ranging from 2.8-9.5.  AMD-impacted streams contained elevated concentrations of the 

same major ecotoxic constituents present in AMD discharges at concentrations 

statistically greater than in those streams unimpacted by AMD.  Many of the AMD 

impacted water bodies are more degraded than class “D” of the Bolivian receiving water 

body criteria, rendering them unfit for domestic or agricultural use.  Natural attenuation is 

insufficient to render waters safe for use, however some of these waters are currently 

being utilized for irrigation and livestock watering.  The data indicate that historic and 

current mining activities have transformed these key natural resources into potential 

human and environmental health hazards. 
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3.2 Introduction 

3.2.1 Historical Background 

Cerro Rico de Potosí lies near the headwaters of a major Bolivian watershed, the Rio 

Pilcomayo, which flows from central Bolivia east to Argentina.  Mining joins grazing 

pressure, farmland expansion, road construction, and urbanization as serious causes of 

long-term environmental degradation in highland southern Bolivia (Brandt and 

Townsend, 2006).  Potosí has endured water shortages throughout its history and local 

streams are key resources in the arid, high-altitude, low-productivity landscape (Rudolf, 

1936).  Contamination limits the uses of the Rio Pilcomayo.  Water is precious in the arid 

Eastern Cordillera and Chaco regions of southern Bolivia (USACE, 2004), one of the 

poorest nations in the Western Hemisphere (World Bank, 2009).   

Aside from tremendous anthropogenic alterations in local groundwater hydrology 

from intensive mining, surface waters in Potosí bear no physical semblance to the pre-

mining landscape.  Water resources in and around the city of Potosí (estimated population 

150,000) have been dramatically and continuously impacted geomorphologically, 

geochemically, and ecologically by human activities since the initiation of mining.  First, 

a system of artificial lakes was constructed in the Kari-Kari region east of the city to 

provide drinking water and hydropower for ore processing (Rudolf, 1936).  Concurrently, 

the Ribera de la Vera Cruz was constructed through the city with a system of 32 dams to 

power the waterwheels of over a hundred ore processers or ingenios (Rudolf, 1936; 

García-Guinea, 1995).  Ingenios continuously discharged tailings to the Ribera de la Vera 

Cruz until 2004.  AMD (acid mine drainage) and ARD (acid rock drainage) has likely 

continuously impacted local waterways since the onset of mining.  ARD differs from 
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AMD in that it is a broader term that can include the diffuse acidic runoff of acid-

generating from both disturbed and undisturbed surface mineral deposits (Younger et al., 

2002).   

Wasteful mineral processing methods used in Potosí have led to the release of 

ecotoxic heavy metals to the local landscape and waterways.  Initially, Incan smelting 

technology was applied to process the Ag oxide cap of Cerro Rico with small charcoal-

fueled clay furnaces (huayras) (García-Guinea, 1995; Abbott and Wolfe, 2003).  During 

this period, thousands of active huayras illuminated the slopes of Cerro Rico (Bakewell, 

1984; García-Guinea, 1995).  The silver oxide minerals were mixed with galena (PbS) in 

the huayras to decrease the melting point (García-Guinea, 1995; García-Guinea and 

Harffy, 1998).  Abbott and Wolfe (2003) documented the diffuse Pb deposition from 

these operations in nearby lake sediments.  It is likely that other ecotoxic heavy metals 

common within Cerro Rico ores, such as As and Cd, were dispersed into the local 

environment during this period as well.  In 1572, hydraulically powered Hg 

amalgamation replaced smelting as the primary Ag extraction process as mine workings 

moved deeper into Cerro Rico where Ag sulfide ores predominate (Serrano et al., 1996; 

Bartos, 2000; Abbot and Wolfe, 2003).  Wasteful use of Hg in amalgamation processes 

has been documented and estimates suggest that 0.85-4.1 kg of Hg was lost to the 

environment for every kg of Ag produced (Lofstrom, 1970; Nriagu, 1993).  A dam burst 

in 1626, causing extreme destruction over two hours as an increasingly polluted torrent of 

ore, tailings, amalgam and Hg rushed down the Ribera de la Vera Cruz through Rio 

Tarapaya (Serrano et al. 1996).  Approximately 4,000 residents died as hundreds of 

homes and over 125 of the 132 ingenios were destroyed (Rudolf, 1936; Serrano et al. 
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1996).  However, the ingenios were soon reconstructed so by 1636 there were more 

ingenious than before the disaster (Serrano et al., 1996) and the gangue from the 

amalgamation process continued to be washed out of the mills and into local waterways 

(García-Guinea, 1995).   

Ingenios used amalgamation until the late 19th century, at which time Sn processing 

by gravimetric concentration became the prime source of mineral processing effluent to 

local streams.  Gravimetric concentration is a water-intensive process that involves the 

turbulent mixing of crushed ores with water to separate the denser Sn-related particles.  

This process weathers ores, releasing metals and contributing acidity to solution.  

Flotation for Zn, Pb and Ag recovery became the primary mineral processing technique 

after 1985 and up to the present day. 

Until 2004, local streams received froth flotation effluent and pyrite-rich tailings from 

local mills as well as AMD from the extensive mine shafts within Cerro Rico and large 

tailings piles around the mountain.  Waters traversing Potosí are used by multiple ore 

processing facilities concentrating Pb, Ag, Zn, and Sn.  Most ore processing facilities 

within Potosí are outdated flotation systems using disproportionate amounts of reagents 

discharging sulfurous solids, cyanide, xanthate and elevated concentrations of metals in 

their highly alkaline (pH 10-13) effluent (Bocangel, 2001).  In 1997, the owners of 35 

active operations in the department of Potosí announced their commitment to pay for 

rehabilitating the Pilcomayo (García-Guinea and Harffy, 1998).  However, there was 

little follow-through until the construction of the tailings dams and canals to shunt ore 

processing effluent west of the city into the Laguna Pampa and the San Antonio tailings 

dams.  Over the centuries and until the last few years, nearly all tailings were discharged 
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directly into local streams.  Mining activities before the tailings dams, were estimated to 

annually release approximately 360,000 tonnes of mining-related sludge to Ribera de la 

Vera Cruz (Smolders et al., 2002).  Despite the new tailings canal and tailings 

impoundment, some processing effluent still regularly enters the Ribera de la Vera Cruz, 

often washed in during rain events from an overflowing tailings canal and/or poorly 

designed floatation ponds or purposely released to avoid costs associated with pumping 

tailings to the dams.  However, the recent controls on tailings discharges leave AMD as 

the primary unabated ecotoxic metal source to local streams.   

 

3.2.2 Previous Studies 

Intensive mining over several centuries has severely degraded the aquatic 

environment downstream of Potosí.  Previous studies have documented the general 

downstream geochemical and ecological impacts of mining and ore processing.  

Downstream of Cerro Rico near the western edge of Potosí’s city limits, Hudson-

Edwards et al. (2001) found dissolved metals concentrations orders of magnitude above 

background levels (Table 3.1).  However, the pH was 10.3, which limited the solubility 

of metals species and indicates that local mineral processing plants were discharging 

directly to local streams at the time.  Near the same location, Smolders et al. (2003) found 

dissolved metals concentrations similar to that found by Hudson-Edwards et al., (2001).  

Miller et al. (2002 and 2004) documented severe contamination of water and sediments 

up to 200 km downstream of Cerro Rico.  Smolders et al. (2002 and 2004) sampled 

dissolved ions and suspended solids over 500 km downstream at Villa Montes to find 

vast differences in pollution levels between the rainy (December – March) and dry (May 
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– September) seasons.  Smolders et al. (2002) found that in the rainy season, when heavy 

erosion from uncontaminated sources dilutes the metals concentrations of suspended 

solids, suspended solids averaged 23.6 g/L with Zn, Cu, Pb and Cd levels of 139, 23.9, 

35.3 and 0.55 mg/kg dry weight, respectively.  In the dry season, when mining related 

effluent contributes a higher proportion of flow, suspended solids averaged 0.011 g/L 

with Zn, Cu, Pb and Cd levels of 19327, 1107, 1495 and 12.4 mg/kg dry weight, 

respectively (Smolders et al., 2002).  This ecotoxic metals pollution dramatically reduced 

the diversity of benthic macroinvertebrate communities downstream of the mines, with a 

gradient of increasing diversity noted with distance from Cerro Rico (Smolders et al., 

2003).  The environmental effects of mining on the lower Rio Pilcomayo are diminished 

by the dilution of both dissolved and suspended heavy metals by uncontaminated waters 

and sediment (Smolders et al., 2002).  Miller et al. (2002) linked the aforementioned 

contamination to mining activity via isotopic analysis of Pb in river sediment, however 

the specific contaminant sources (i.e., AMD, mineral processing effluent, tailings dam 

discharges/erosion, etc.) could not be identified.   
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Table 3.1  Aqueous metals concentrations in stream grab samples taken in previous 

studies downstream of Potosí 

Site Type pH  As    Cd    Cu     Pb   Zn      Season    Source 
   - - - - - - - - - - - - - mg/L - - - - - - - - - - - - -        

Potosí   dissolved 10.3 0.065 0.01 0.3 0.041 0.035     dry-1998   HE 
Potosí   dissolved NR NR 0.00076 0.014 0.0285 0.238   dry-1999   S  
Potosí   total NR NR 0.0592 0.304 1.399 6.021   dry-1999   S  
El Molino total NR 12.8 NR NR NR NR   dry-2003   A  
El Molino total NR 2.74 NR NR NR NR   wet-2004   A 
Rio Tarapaya  dissolved NR NR 0.005 0.013 0.056 0.601   dry-1999   S  
Rio Tarapaya  total NR NR 0.315 1.709 2.291 12.416  dry-1999   S  
Tasapampa total NR 0.272 NR NR NR NR   dry-2003   A  
Tasapampa total NR 0.113 NR NR NR NR   wet-2004   A 
Tuero Chico total NR 0.154 NR NR NR NR   dry-2003   A  
Tuero Chico total NR 0.199 NR NR NR NR   wet-2003   A 
Sotomayor total NR 1.213 NR NR NR NR   dry-2003   A  
Sotomayor total NR 0.421 NR NR NR NR   wet-2003   A 
Villa Montes  dissolved 8.77 0.03 <0.01 <0.02 0.025 0.016   dry-1998   HE 
Villa Montes  dissolved NR NR 0.00039 0.0022 0.0007 0.017   dry-1999   S  
Villa Montes  total NR NR    0.00077 0.017 0.0198 0.186   dry-1999   S   
 

HE = Hudson-Edwards et al., 2001 
S = Smolders et al., 2003 
A = Archer et al., 2005 
NR = Not reported  

 

Primary human exposure pathways in the region are likely through inhalation of 

airborne particulates and ingestion of contaminated water, agricultural produce and fish 

(Smolders et al., 2002; Miller et al., 2004).  Downstream communities rely on river water 

for irrigation, washing and occasional cooking and drinking (Garcia-Guinea and Harffy, 

1998; Archer et al., 2005).  Little study has been undertaken to quantify contaminant risk 

to humans.  However, As concentrations in human hair and urine from downstream 

communities exceed published values for non-occupationally exposed subjects (Archer et 

al., 2005).  Concentrations of Cd, Pb and Zn in some local agricultural soils exceed 

recommended guidelines for agricultural usage (Miller et al., 2004).  Increased local 

human exposure risks are present because rural communities in the region have been 
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found to consume 56 plant species for medicinal purposes (Fernandez et al., 2003).  

Distant consumers could be at risk as well because contaminated irrigation water is used 

extensively to grow vegetables for sale in greater Bolivia (Miller et al., 2004).  The lower 

Rio Pilcomayo is also a major fishery.  The sábalo (Prochilodus platensis) fishery in the 

lower Pilcomayo is the most important commercial fishery in Bolivia according to Payne 

and Harvey (1989).  By addressing pollution sources to the upper Rio Pilcomayo, the 

region’s ecosystem and human health would be improved.   

No peer-reviewed studies have been encountered in the literature regarding the 

degradation of stream water quality within the city of Potosí and on the slopes of Cerro 

Rico or its links to specific contamination sources, such as AMD and mineral processing 

effluent.  The study presented in this paper characterizes the current water quality of the 

streams that drain Cerro Rico and Potosí to form Rio Tarapaya, a chief tributary of the 

Rio Pilcomayo system.  The purpose of this study was to determine the extent of water 

quality degradation and its relationship to unabated AMD from Cerro Rico.   

 

3.3 Methods 

3.3.1 Study Area 

The study centered around Cerro Rico, approximately 1 km south of Potosí, Bolivia 

(Figure 3.1).  Potosí (19.585°S 65.754°W) lies in the Eastern Cordillera range of the 

Central Andes in the upper reaches of the Rio Pilcomayo watershed.  The Rio Pilcomayo 

is a chief tributary of the Rio de la Plata system, a crucial water resource for south-central 

and southeastern South America.  The sampled streams and rivers drain to Rio Tarapaya, 

which later combines with Rio Yocalla approximately 30 km downstream to become Rio 
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Pilcomayo.  The Rio Pilcomayo flows in a general southeasterly direction down the 

Eastern Cordillera range and through the semi-arid Chaco Plains.  Eventually, the Rio 

Pilcomayo forms Argentina’s northern border with Paraguay before it diffuses, and 

partially disappears beneath the surface, into a wide alluvial fan that empties into the Rio 

Paraguay at Asunción, Paraguay. 

 

 

Figure 3.1  Study area and stream sample points with respect to AMD sources, tailings 

deposits, greater Bolivia and South America 
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3.3.2 Sample Sites 

The streams and rivers sampled in this study vary widely in the types of effluent they 

receive and the watersheds they drain, ranging from highly urbanized to low-intensity 

agriculture to barren mining-impacted landscapes.  Each water body and watershed is 

described below. 

Huayna Mayu (sample sites HM1, HME, and HMW on Figure 3.1), “young river” in 

Quechua, is born near an abandoned mine discharge at the eastern base of Cerro Rico.  

Huayna Mayu runs north past abandoned brick foundries then turns west to collect 

drainage from AMD discharges and runoff from the Pailaviri tailings deposit on the north 

face of Cerro Rico.  As Huayna Mayu flows through the city it also receives stormwater 

and wastewater until emptying into the Ribera de la Vera Cruz.  During the dry season 

sampling period, Huayna Mayu was formed solely by an abandoned mine discharge 

(HM1).  HM1 is equivalent to discharge 1A in the previous chapter.  In the wet season, 

two ephemeral tributaries to Huayna Mayu, (HMW) and (HME), joined HM1 to form 

Huayna Mayu.    

The headwaters of Rio Agua Dulce (sample sites AD1, AD2 and AD3), “sweet water 

river” in Spanish, lie in a sparsely populated agricultural area with little to no mining.  

Vilacollu Mayu (VC1 and VC2) is a tributary of Rio Agua Dulce that collects drainage 

from the southern slopes of Cerro Rico and Cerro Chico in the Canta Canta valley.  The 

ephemeral stream Quebrada Chimborazo (CB1 and CB2) is impacted by several AMD 

sources in the Chimborazo region of Cerro Rico and impacts Vilacollu Mayu before it is 

impounded and diverted for agricultural use in the village of Vilacollu (Choque, 2007).  

Rio Agua Dulce borders many farms and is used for agricultural purposes along its length. 
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Jayac Mayu (JM1, JM2 and JM3), “spicy river” in Quechua, drains the southwestern 

mining district of Cerro Rico and impacts an unnamed tributary before joining with Rio 

Agua Dulce.  An unnamed tributary to Jayac Mayu (JMUT) is a key water resource to a 

few farms upstream of the confluence.  A cistern has been recently constructed 

approximately 10 m upstream of the confluence to capture and store water from the 

unnamed tributary before it is impacted by Jayac Mayu.  Downstream of the confluence, 

Jayac Mayu borders small agricultural plots (Figure 3.2), but does not appear to be used 

for irrigation.   

 

 

Figure 3.2  Llama and sheep grazing aside a parched farm plot that has been prepared for 

planting aside a highly impacted reach of Jayac Mayu between JM2 and JM3 
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Rio Huarampaya (HP1 and HP2) accepts wastewater and stormwater from unnamed 

tributaries that drain the north side of the City.  It neither receives AMD nor has received 

mineral processing effluent.  An unnamed tributary of Rio Huarampaya (sample site 

HPUT) drains wastewater and stormwater from a residential district.  Rio Huarampaya 

runs through a small agricultural area before emptying into the Ribera de la Vera Cruz.   

The Ribera de la Vera Cruz (RDL1, RDL2, RDL3, RDL4, and RDL5) runs east to 

west through the city past multiple active and defunct mineral processing plants.  Since 

its construction in the 1570’s, tailings and other mineral processing waste had been 

dumped directly into this stream.  However, after the construction of the Laguna Pampa 

tailings dam and tailings diversion chute in 2004, tailings introduction has dramatically 

decreased.  The tailings diversion chute runs parallel to Ribera de la Vera Cruz until it 

veers towards the San Antonio tailings dam, near the Laguna Pampa tailings dam.  

Tailings still periodically enter the stream during rain events when the chute overflows 

and when mineral processing plants fail to pump their tailings to the chute.  Ribera de la 

Vera Cruz also accepts stormwater and wastewater from the city.  Despite the recent 

measures to limit tailings introduction, the substrate of Ribera de la Vera Cruz remains 

“tailings” grey.  The telltale red staining from weathering pyrite is evident along the 

banks and in stagnant pools in the stream.  In addition, the Ribera de la Vera Cruz runs 

less than 100 m from the San Miguel tailings deposit, a serious potential nonpoint 

pollutant threat, and accepts AMD from springs in abandoned alluvial deposit mines.   

Rio Tarapaya (TP1, TP2 and TP3) is formed by the combined flows of the Ribera de 

la Vera Cruz and Rio Agua Dulce.  The substrate of Rio Tarapaya is visually similar to 

that of Ribera de la Vera Cruz and red staining from weathering pyrite is evident in 
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stagnant portions of the river.  Rio Tarapaya meets Rio Cayara at a shuttered Sn smelting 

facility where slag piles line the southern bank.  Tailings have accumulated over the 

centuries in the Rio Tarapaya valley because its bed slope is much less than its tributaries.   

Rio Cayara (RC) is an important water resource in a productive agricultural 

watershed, which is nearly the same size as that of Rio Tarapaya, in which no evidence of 

mining was observed.  However, past or present mining activity cannot be ruled out due 

to the near ubiquity of mining in the region. 

Reference points (JMUT, HP1, VC1 and RC) were designated in reaches without in-

stream tailings deposits that were expected to not be considerably impacted by historical 

or current mining or mineral processing.  The only reference site sampled in the dry 

season was JMUT, however all four were sampled in the wet season.  In all, 10 locations 

were sampled in the dry season and 16 sites were added to those in the wet season.  

Sampling points (HMW, HME, VC1, VC2, CB1 and CB2) were added in the wet season 

because some of the streams sampled are ephemeral and were not flowing or 

imperceptibly flowing during the dry season.  Other points of interest were added in the 

wet season to expand the scope of the study (AD3, RDL1, RDL3, RDL4, HP1, HPUT, 

HP2, TP2, TP3 and RC).   

The AMD sources characterized in the previous chapter are represented on Figure 3.1.  

Tailings deposits, innumerable ore piles that dot the slopes of Cerro Rico, tailings 

discharges by ore processors and tailings within stream sediments are other probable 

ephemeral and permanent point and non-point sources of water quality degradation. 
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3.3.3 Data Collection 

Water quality parameters and grab samples were obtained at the points indicated on 

Figure 3.1 during the dry (July-August 2006) and wet (March 2007) seasons of one 

water-year.  These intervals were chosen in an attempt to capture the groundwater 

level/efflux and surface water flow extremes of both seasons, when are near their minima 

(dry) and maxima (wet).  Sampling periods were offset from the minima and maxima of 

the monthly average precipitation because of the common response lag of groundwater 

level/efflux and surface water flows to precipitation events (Eltahir and Yeh, 1999).  No 

rain events occurred during the dry season sampling.  However, two rain events 

influenced wet season sampling of AD3, TP1, HME and HMW.   

The location of each sampling point was recorded with a Garmin® GPS unit.  Acidity 

and alkalinity titrations were conducted in the field following standard methods (APHA, 

1998).  Temperature, pH, dissolved oxygen (DO), and specific conductance (SC) were 

determined using an Orion 1230 multi-meter.  All grab samples were taken using 125-mL 

HDPE containers for later analyses at the University of Oklahoma Center for Restoration 

of Ecosystems and Watersheds (CREW) laboratories.  Samples for anion analyses were 

stored at 4-°C until filtered through 0.2 µm nylon filters and Dionex OnGuard® II H 

cartridges.  A MetrOhm® 761 compact ion chromatograph (IC) unit was used to quantify 

SO4 concentrations following EPA method 300.  As a field backup, SO4 was also 

quantified on-site using EM QUANT® 200-1600 ppm test strips.  Samples were diluted 

when concentrations were greater than 1600 ppm.  Total metals samples were preserved 

with concentrated trace metals grade nitric acid and stored at approximately 4-°C until 

microwave acid digestion following EPA method 3015.  The digested metals samples 
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were filtered through 0.45 µm nylon filters then analyzed via a Varian Vista-Pro® 

simultaneous inductively coupled plasma-optical emission spectrometer following EPA 

method 6010.  Acidity was calculated following a modified version of that presented by 

Younger et al. (2002), which accounted for the acidity from the substantial Cd2+, Cu2+ 

and Zn2+ concentrations present in these unique waters.  For acidity calculations, all Fe 

was assumed to be Fe(II) when pH > 3 and Fe(III) when pH < 3, because Fe(III) 

predominates for most solutions with pH < 3 (Kirby and Cravotta, 2005).  This 

assumption generally follows empirical observations (Younger et al., 2002; Watzlaf et al., 

2004; Kirby and Cravotta, 2005).  Hedin (2006) demonstrated an excellent relationship 

between calculated and measured net acidity for a diverse data set of 1,484 AMD. 

 

3.3.4 Data Analysis 

Water quality parameters were primarily compared to Bolivian and international 

water quality standards.  Wet season mean concentrations of SO4 and total metals of 

streams unimpacted by AMD or ARD (HPUT, HP1-2, VC1, RC), streams impacted by 

AMD (JM1-3, AD1-3, RDL1-5, HME, HMW, TP1-3, CB2, VC2), and source AMD 

(discharges 1-7C, 1-3A, 1-2T from the previous chapter) were compared using two-tailed 

heteroscedastic Student’s t-tests (α = 0.05).  HM1 was excluded from the impacted group 

because it is also an AMD source.  JMUT and CB1 were excluded from the unimpacted 

stream group because they may receive diffuse ARD from the slopes of Cerro Rico.  

Discharges 4-5A and 3T were excluded from the AMD group because they did not 

display the typical characteristics of AMD (low pH and elevated SO4, Fe and other 

metals).  Discharge 4T was excluded from the AMD group because it had concentrations 
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of Al, As, Fe and SO4 over three standard deviations greater than the mean of the AMD 

group.  Dry season data were not statistically tested because no suitable reference 

location was sampled.   

 

3.4 Results and Discussion 

Physical parameters, SO4, and total metals concentrations for sampled streams are 

presented in Tables 3.2-4.  These results may be compared to various water quality 

criteria set by the Bolivian government and irrigation standards set by the United Nations 

Food and Agriculture Organization (UNFAO) and, for reference purposes, drinking water 

standards set by the United States Environmental Protection Agency (USEPA) and World 

Health Organization (WHO) as shown in Table 3.5.  UNFAO irrigation water guidelines 

are established at contaminant concentrations above which water can degrade agricultural 

soils and decrease crop productivity (Ayers and Westcot, 1994).  UNFAO livestock 

drinking water guidelines are set at contaminant concentrations above which water can be 

toxic or unpalatable to livestock or lead to bioaccumulation, rendering livestock products 

unsuitable for human consumption (Ayers and Westcot, 1994).  WHO drinking water 

guidelines and USEPA primary drinking water standards have been established to protect 

public health (WHO, 2006; USEPA, 2007).  The secondary drinking water standards 

determined by the USEPA are guidelines for contaminants that can cause adverse 

cosmetic or aesthetic effects, such as teeth staining, odor, and bad taste (USEPA, 2007).  

All mining-impacted reaches had concentrations of the ecotoxic metals that place them 

well above WHO, USEPA and UNFAO standards.   
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Table 3.2  Physiochemical parameters.  pH is bolded if it exceeds Bolivian Class “D” 

requirements.  SC is underlined if it exceeds the 700 µS/cm ceiling recommended for 

UNFAO long term irrigation use.  Sites indented by watershed 

Site pH               Net Acidityª DO    SC Temp. 
 (s.u)           (mg/L as CaCO3 eq.)   (mg/L)                (µS/cm)  (°C) 

Dry Season 
JM1 3.4 5570 13.4  5070  2.9  
 JMUT 7.3 - 9.7   534  6.1   
 JM2 3.5 5690 10.6   4870  4.9   
 JM3 9.5 - 8.5   2100  9.5  
AD1 8.0 - 10.0   1010  10.0   
 AD2 9.4 - 7.7   2010  10.6  
HM1* 3.6 910 6.6   1890  8.5  
RDL2 5.0 - 10.8   1420  7.4  
 RDL5 7.5 - 9.0   1160  11.7  
TP1 7.7 - 8.7   1170  11.0   

Wet Season 
VC1 7.7 -23 7.5   593  14.0   
 CB1 4.7 30 6.1   216  13.3   
 CB2 3.1 1620 9.4   2510  13.4   
 VC2 3.6 525 8.0   1210   12.8   
JM1 2.8 1250 8.3  2820  13.0   
 JMUT 8.1 82 8.8   160  11.8   
 JM2 4.8 521 9.4   870  12.3   
 JM3 5.0 529 6.5   1140  16.5   
AD1 7.5 562 9.5   290  14.8   
 AD2 6.9 652 6.2   613  14.9   
 AD3 7.7 5320 5.8   438  16.7   
HP1 8.3 -196 5.2   1460  19.8   
 HPUT** 8.5 -329 4.5   1280  14.3 
 HP2 8.4 -295 5.7   1020  16.3 
HM1** 4.5 625 6.4   1460  9.6 
 HMW 5.4 1910 6.0   181  6.0   
 HME 5.5 2360 6.0   718  5.0 
RDL1 6.3 151 7.5   1290  11.3  
 RDL2 3.2 1320 9.2   2430  10.6 
 RDL3 3.4 1140 6.2   2310  14.0   
 RDL4 5.4 319 6.3   1380  17.0  
 RDL5 6.3 351 6.1   1390  18.0   
TP1 7.4 4250 1.7   548  15.3   
 TP2 4.9 569 5.5   1620  18.5  
 RC 7.1 -80 6.4   374  15.8  
 TP3 5.9 351 5.9   1040  17.9  
 

*n = 3; ** n = 2 (n =1 for all other sites); ªNet acidity = acidity – alkalinity; - = no data available



 
 

Table 3.3   Dry season mean SO4 and total metal concentrations.  Concentrations are bolded if exceeding Bolivian Class “D” 

requirements and underlined if exceeding UNFAO long term use irrigation standards.   Sites indented by watershed 

Site         Al        As Ca        Cd  Co Cr        Cu        Fe        Mg    Mn  Na  Ni        Pb       Zn       SO4
2-       SO4

2-‡ 
               - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - mg/L - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     

JM1 210 14 140 4.9 0.90 0.065 19 1100 110 82 24 0.81  3.2 1500 -  4000-8000 
 JMUT 0.21  <0.022 46 0.0007 <0.001 <0.001 0.007 0.44  36 0.044 23  0.009 0.040 0.29 -  < 200 
 JM2 220  16 140 4.9 0.97 0.071  20 1100 110 79 22  0.84  4.1 1500 -  4800-6400 
 JM3 19  1.1 540 0.41 0.11 0.008  2.6 44  19 10 52  0.10  1.2 110 -  400-800  
AD1 0.44  <0.022 90 0.002 <0.001 0.003  0.009 0.52  41 0.23 57  0.017 0.041 0.76 -  < 200  
 AD2 17  0.86 530 0.38 0.10 0.008  2.4 37  19 9.3 52  0.094 1.1 100 -  1200-1600  
HM1* 5.8  0.03 100 0.17 0.14 0.002  0.037 110  16 13 15  0.16  0.065 570 1300 1200-1600  
RDL2 38  1.2 51 0.12 0.066 0.015  1.2 140  11 2.9 57  0.073 0.26 29 -  400-800  
 RDL5 14  1.7 100 0.10 0.038 0.014  0.84 67  14 2.2 65  0.041 1.1 32 -  400-800  
TP1 13  1.4 140 0.12 0.042 0.012  0.82 59  13 2.9 63  0.065 0.92 34 -  400-800  
 

‡ SO4 ranges obtained in the field with EM QUANT® test strips; bdl = Below detection limits; * n = 3 (n =1 for all other sites); - = no data available 
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Table 3.4   Wet season mean SO4 and total metal concentrations.  Bolded concentrations exceed Bolivian Class “D” requirements.  
Underlined concentrations exceed UNFAO long term use irrigation standards.  Sites indented by watershed 
Site         Al         As Ca        Cd  Co Cr        Cu        Fe       Mg    Mn  Na  Ni        Pb       Zn       SO4

         SO4‡ 
               - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - mg/L - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     

VC1 1.3  <0.022 74 0.002 <0.001 <0.001 0.005 1.0  13 3.0  31  0.008 <0.012 1.5 200 400-800 
 CB1 3.5  0.091 18 0.018 <0.001 0.0020 0.014 2.7  3.3 0.79  3.5  0.011 0.33 7.3 74 400-800  
 CB2 41 1.1 110 1.2 0.27 0.014 0.50 210 27 61  6.7 0.26  0.33 560 1400 > 1600 
 VC2 16 0.38 86 0.39 0.095 0.008 0.17 66 18 21  24 0.095 0.13 170 720 800-1200 
JM1 71 0.25 92 0.24 0.81 0.020 6.7 180 78 110  13 0.80  0.24 64 2200 >1600 
 JMUT 15  <0.022 22 0.002 0.035 0.015  0.015 0.030 9.2 16  3.2  7.2  0.046 0.37 23 <200 
 JM2 21  0.11 38 0.63 0.22 0.009  1.7 63  28 25  8.3  0.21  0.17 160 440 400-800  
 JM3 24  0.31 120 0.58 0.20 0.020  1.3 79  45 27  19  0.23  0.37 140 640 800-1200 
AD1 81  0.088 97 0.018 0.053 0.054  0.076 100  37 2.5  17  0.065 0.18 2.3 66 400-800  
 AD2 71  0.13 97 0.16 0.10 0.049  0.40 100  41 9.5  17  0.12  0.26 44 240 400-800  
 AD3 630  0.45 930 0.082 0.38 0.47  0.91 950  310 27  47  0.57  0.95 25 110 400-800 
HP1 8.1  0.034 190 0.002 <0.001 0.004  0.015 7.3  51 0.30  100  0.010 0.046 0.16 6 < 200 
 HPUT* 5.9  0.053 66 0.006 <0.001 0.007  0.065 6.7  12 0.34  78  0.011 0.22 1.6 10 < 200 
 HP2 2.6  0.032 72 0.002 <0.001 0.006  0.033 4.7  35 0.55  57  0.005 0.069 0.47 230 < 200 
HM1* 21  0.37 71 0.27 0.065 0.007  0.064 73  14 7.7  8.7  0.073 1.2 220 630 800-1200 
 HMW 190  1.8 65 0.34 0.12 0.074  0.35 370  34 11  9.8  0.095 6.1 120 100 - 
 HME 240  2.2 43 0.14 0.13 0.11  0.69 530  41 17  6.9  0.10  9.2 38 330 - 
RDL1 16  0.84 150 0.23 0.051 0.009  1.9 40  14 5.2  55  0.046 0.66 38 420 400-800 
 RDL2 71  5.0 110 0.37 0.16 0.026  3.6 410  19 6.7  55  0.16  0.52 93 1400 > 1600  
 RDL3 60  4.6 150 0.39 0.17 0.022  3.5 330  24 10  53  0.15  0.62 100 1300 800-1200 
 RDL4 20  1.6 97 0.12 0.059 0.010  1.1 100  18 3.7  58  0.056 0.35 35 490 400-800  
 RDL5 19  2.1 180 0.11 0.061 0.010  1.2 110  19 4.2  58  0.079 0.57 33 600 1200-1600  
TP1 550  0.43 450 0.12 0.27 0.29  0.60 650  200 18  47  0.25  0.95 10 160 400-800 
 TP2 36  1.8 180 0.18 0.099 0.019  1.4 150  30 7.2  50  0.097 0.98 53 720 800-1200 
 RC 14  <0.022 70 0.002 <0.001 0.009  0.011 12  11 0.38  16  0.023 0.024 0.15 110 < 200 
 TP3 24  1.2 130 0.11 0.060 0.013  0.93 92  20 4.1  32  0.065 1.2 30 420 800-1200 
 

SO4 ranges obtained in the field with EM QUANT® test strips; * n = 2 (n =1 for all other sites); bdl = Below detection limits; - = no data available 
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Table 3.5  Bolivian receiving water body criteria, UNFAO irrigation and livestock drinking water guidelines, USEPA drinking water 

standards, and WHO drinking water guidelines 

Standard pH Al As Ca  Cd    Co     Cr  Cu Fe Mg Mn Na Ni Pb Zn SO4
2-  

          - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - mg/L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Bolivian class “A”    6.0-8.5 0.2 0.05 200 0.005     0.1      0.05   0.05 0.3 100 0.5 200 0.05 0.05 0.2 300 
 
Bolivian class “B” 6-9 0.5 0.05 300 0.005     0.2  0.6/0.05α   1.0 0.3 100 1.0 200 0.05 0.05 0.2 300  
 
Bolivian class “C” 6-9 1.0 0.05 300 0.005     0.2  0.5/0.05α   1.0 1.0 150 1.0 200 0.5 0.05 0.2 300  
 
Bolivian class “D”     6-9 1.0 0.1 400 0.005     0.2    1.1/0.05α     1.0 1.0 150 1.0 200 0.5 0.05 0.2 400  
 
UNFAOμ                   6.5-8.4 20 2.0   0.05     5.0    1.0   5.0 20  10  2.0 10 10  
 
UNFAOδ                   6.5-8.4 5.0 0.1   0.01     0.05    0.1   0.2 5.0  0.2  0.2 5.0 2.0  
 
UNFAOτ                       5.0 0.2   0.05     1.0    1.0   0.5 2.0  0.2  0.2 5.0 2.0 
 
WHO     0.01   0.003    0.05   2.0   0.4   0.07 0.01 
 
USEPA primary      0.01   0.005     0.1   1.3      0.015  
 
USEPA secondary  6.5-8.5   0.2         1.0 0.3  0.05    5 250 
 

α Cr (III) and Cr (VI) limits respectively 
μ Short term ( < 20 years) of continuous irrigation usage 
δ Long term ( > 20 years) of continuous irrigation usage 
τ Livestock drinking water standard
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Bolivian water quality standards are stringent, progressive and comparable with those 

of most industrial nations.  However, non-compliance with pollutant discharge criteria is 

rarely punished and little regulation is in effect to assure that water bodies meet their 

class designations.  Class “A” receiving water bodies, those which are suitable for 

drinking without treatment or only with bacterial disinfection, are suitable for most uses, 

including livestock watering and irrigation (BMSDP, 2000).  Class “B” waters only differ 

from Class “A” in that they require filtration and disinfection to be suitable for drinking.  

Class “C” waters differ from Class “B” in that they are unsuitable for the irrigation of 

fruits or vegetables.  Class “D” is the lowest designation of Bolivian receiving water 

body in which industrial application and navigation are the only suitable uses except in 

extreme circumstances.  Bolivian law states that class “D” waters must be “coagulated, 

flocculated, filtered and disinfected” prior to domestic use and that they are unsuitable for 

agricultural usage or animal watering (BMSDP, 2000).  There is no class designation 

lower than “D” and it is not known how the water bodies downstream of Potosí are 

designated, nor if they have a designation at all.  However, some are used for agriculture 

and therefore should be rated at a minimum above class “D”.  All of the AMD-impacted 

streams sampled did not meet class “D” requirements.   

AMD impacted streams contained elevated concentrations of the same major ecotoxic 

constituents present in AMD and at concentrations statistically greater than those 

unimpacted by AMD.  Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and SO4, which were 

major components of Cerro Rico AMD, were all significantly greater in the AMD 

impacted streams, often by multiple orders of magnitude (Table 3.6).  Only the base 

cations (Ca, K, Mg and Na), were not significantly different in the AMD impacted 
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streams versus the unimpacted streams, because they were not major components of the 

Cerro Rico AMD.  Results indicate dramatic transformative impacts from AMD 

discharges upon receiving stream water quality.   

 

Table 3.6  Mean AMD, AMD impacted stream, and AMD unimpacted stream total 

metals and SO4 concentrations for the wet season 

  
AMD 

AMD 
Impacted 

AMD 
Unimpacted 

  mg/L 

Al 378 121 6.39 

As 37.8 1.36 0.029 

Cd 12.1 0.30 0.003 

Co 1.84 0.18 <0.001 

Cr 0.41 0.068 0.005 

Cu 33.8 1.50 0.026 

Fe 2470 253 6.28 

Mn 63.7 20.4 0.91 

Ni 2.67 0.19 0.011 

Pb 6.13 1.35 0.073 

Zn 3690 96.1 0.78 

SO4 10400 654 110 
 

All streams sampled failed to meet Bolivian class “D” water quality standards in the 

wet and the dry seasons.  The introduction of AMD orders of magnitude over class “D” 

limits was likely leading to non-compliance downstream.  However, in some cases the 

failure to meet class “D” standards could be indicative of overly stringent water quality 

standards applied in a mineral-rich landscape where background concentrations of many 

of the metals tracked are naturally elevated.  In fact, Cerro Rico was dubbed “The Red 

Mountain” because of its color, which is due to the oxidation of Fe on its slopes, and 

mining abounds in the region due to the naturally elevated metals concentrations.  The 

chosen reference reaches (JMUT, HP1, VC1 and RC) did not meet class “D” 
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requirements and were unsuitable for irrigation and livestock despite the minimal 

influence that mining likely had on these systems.  Generally, elevated concentrations of 

the less ecotoxic metals (Fe and/or Mn) place these water bodies above the various limits.  

However, the reference reaches were the least contaminated in the region and it is likely 

that these reaches could be representative of background metals concentrations.   

Conversely, all mining-impacted reaches had concentrations of the ecotoxic metals 

(Al, As, Cd, Cr, Pb and/or Zn), in addition to the aforementioned less ecotoxic metals, 

that place them well above WHO, USEPA, UNFAO, and Bolivian class “D” standards.  

Nearly all of the waters sampled were unsuitable for irrigation according to the UNFAO, 

save the unnamed tributary to Jayac Mayu in the dry season.  However this tributary does 

not adequately dilute Jayac Mayu, which after the confluence retained concentrations of 

ecotoxic elements orders of magnitude greater than are acceptable for irrigation or 

livestock use.  In addition, Jensen et al. (2001) argue that the UNFAO limits likely must 

be more stringent to avoid unsafe accumulation of metals in agricultural soils, especially 

in water-stressed developing nations.  SC of many stream reaches was also greater than 

limits set by the UNFAO for unrestricted irrigation use.  Overall, SC and pH combine 

with metals, acidity and SO4 concentrations to rendered receiving waters unusable for 

multiple reasons.   

In general, there is a trend of AMD-impacted waters intercepting and degrading 

waters that were formerly much more suitable for irrigation and livestock consumption, 

such as was observed when Jayac Mayu intercepted its unnamed tributary then Rio Agua 

Dulce, Quebrada Chimborazo intercepted Vilacollu Mayu, Ribera de la Vera Cruz 

intercepted Rio Huarampaya, and Rio Tarapaya intercepted Rio Cayara.  Some of these 
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streams may have been impacted by previously deposited in-stream tailings or current 

tailings discharges.  However, AMD alone was sufficient to severely degrade receiving 

waters, as was demonstrated in the cases of the degradation of Jayac Mayu, Quebrada 

Chimborazo and upstream Huayna Mayu as well as the continuing impacts noted when 

Jayac Mayu intercepted its unnamed tributary and Quebrada Chimborazo intercepted 

Vilacollu Mayu.   

Oporto et al. (2007) found that Cd concentrations of 0.065-0.24 mg/L in a mining-

impacted river used for irrigation 150 km northwest of Cerro Rico caused a human health 

risk via Cd uptake in potatoes, a crucial Andean staple.  Many of the reaches sampled 

have higher Cd concentrations than those noted by Oporto et al. (2007), indicating that 

they could present a yet greater risk if their waters were used for crop irrigation.  The 

presence of 0.39 mg/L Cd in Vilacollu Mayu at VC2, which is diverted for agricultural 

use shortly thereafter, is of concern.  Application of AMD-impacted waters, such as those 

from Vilacollu Mayu, could increase metals soil concentrations to unsafe levels (e.g., 

Jensen et al., 2001).  Because some of the waters sampled are used for agriculture, locally 

grown beans, potatoes, barley, and maize (Choque, 2006) likely pose a human health risk.  

Indigenous populations in the region make use of tens of other plant species for natural 

remedies (Fernandez et al., 2003), another possible bioaccumulation route.   

The rain events during the wet season sampling of AD3, TP1, HME and HMW likely 

led to an increase in suspended sediment, which could explain the elevated metals 

concentrations that accompany uncharacteristically low SO4 and SC within the streams at 

that time.  However, the data from these events indicate that large quantities of metals 

from non-point sources may enter streams with runoff, increasing rather than diluting 
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contaminants.  These data indicate the opposite of the trend observed by Smolders et al. 

(2002) downstream in the Rio Pilcomayo where metals concentrations in suspended 

sediment were diluted by erosion from uncontaminated tributary watersheds.  The highly 

mineralized nature of the study area (e.g., Cunningham et al., 1996; Deconinck et al., 

2000; Rice and Steele, 2005) likely lead to elevated concentrations of metals in 

suspended sediment from erosion.   

Findings indicate that not all ingenios were diverting their tailings to the recently 

constructed tailings dams, continuing their past behavior.  Between sampling points JM2 

and JM3, an ingenio was likely discharging tailings to Jayac Mayu.  Elevated pH is 

necessary for ore floatation processing and this is typically achieved by the addition of 

quicklime (CaO).  The great increase in pH and Ca concentrations observed in the dry 

season in a locality where there is little natural alkalinity generating capacity and the 

telltale grey froth observed indicate that this tailings discharge likely exists.  Tailings 

discharges are often grey and frothy due to the mix of fine grey ore particles and 

floatation agents.  Wet season pH was essentially the same between JM2 and JM3, 

however, Ca concentrations dramatically increased, indicating a continuing tailings 

discharge.  Similar total Ca of 397 mg/L and pH 11.40, which are well above reference 

conditions, were recorded along with the grey froth approximately 400 m downstream 

from JM3 at AD3 in the dry season of August 2008 during unrelated studies performed 

with the same equipment.  One or more of the multiple ingenios bordering this reach 

appeared to be contributing yet more tailings to local streams.   

The decrease in pH from TP1 to TP2 is likely partially due to weathering of sulfide 

minerals from tailings present within the bed of Rio Tarapaya.  No other mining 
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influences were noted in this reach.  The inefficient floatation methods applied in Potosí 

lead to high concentrations of unrecovered metals (metal sulfides) in tailings (Smolders et 

al., 2003).  Rio Tarapaya has collected tailings for centuries through direct discharges 

from bordering ingenios and tailings discharges to the Ribera de la Vera Cruz within the 

city of Potosí.  Despite the dramatic recent decrease in tailings introduction to Rio 

Tarapaya and the Ribera de la Vera Cruz, tailings are still evident within Rio Tarapaya 

and appear to be negatively influencing water quality. 

 

3.5 Conclusions 

Mining and ore processing are considerable contributors to water quality degradation 

downstream of the Cerro Rico mines.  Streams that directly receive AMD and the streams 

and rivers with which they confluence contain concentrations of ecotoxic metals (Al, As, 

Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), SC, and acidity that render them unusable and 

environmental hazards.  Dilution and natural passive biogeochemical attenuation are the 

likely mechanisms by which metals and hydrogen ion concentrations decrease with 

distance from AMD sources within the streams not heavily contaminated with tailings.  

However, the weathering of tailings within the bed of Rio Tarapaya appears to present a 

strong enough signal to override some of the effects of the natural attenuation that occur 

in its tributaries.  

The dynamic nature of Potosí’s surface hydrology and contamination sources solicit 

further study.  The water quality conditions related in this study represent a limited 

snapshot of one water-year.  The previous chapter demonstrated that unabated AMD was 

a noteworthy contributor of trace metals and acidity to local streams.  The findings 
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presented here solidify the link between Cerro Rico AMD and downstream 

contamination by demonstrating 1) significantly elevated concentrations of the same 

ecotoxic elements discharged by AMD in receiving stream waters and 2) extreme water 

quality degradation in those streams in which AMD was the only impacting factor.  

Findings confirm that AMD must be addressed in any attempt to restore the upper Rio 

Pilcomayo watershed.  However, results suggest that tailings in stream sediments and 

ongoing tailings discharges are also sources of water quality degradation.  Due to the 

inherent natural dynamic hydrology of the region with the extremes of the wet and dry 

seasons overlying the El Niño / La Niña cycle, further study is recommended to better 

characterize contamination sources and downstream impacts.  Nonpoint ARD, in-stream 

tailings, and tailings discharges are likely contributors to water quality degradation and 

should be further studied to determine remediation priorities.     
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Chapter IV 

 

Effective Passive Treatment of High Strength Acid Mine Drainage 

and Raw Municipal Wastewater in Potosí, Bolivia using Simple 

Mutual Incubations and Limestone 

 

Chapter accepted for publication as: 

Strosnider, W.H., Nairn, R.W.  In Press.  Effective passive treatment of high strength 

acid mine drainage and raw municipal wastewater in Potosí, Bolivia using simple 

mutual incubations and limestone.  Journal of Geochemical Exploration. 

 

4.1 Abstract 

To assess the viability of passive water quality improvement approaches for treating 

acid mine drainage (AMD) at Cerro Rico de Potosí, Bolivia, alkalinity production, 

acidity neutralization and metals removal were tracked for incubations of AMD in the 

presence of limestone (LS), a 1:1 mix of AMD and raw municipal wastewater (WW), 

and a 1:1 mix of AMD and WW in the presence of LS.  Three AMD sources from 

abandoned adits on Cerro Rico, raw WW from the city of Potosí and locally available 

LS were incubated in-situ for 72 hr in 1-L cubitainers.  Although locally sourced LS 

can increase final alkalinity up to 397 mg/L as CaCO3, it is a prospective source for 

Mn and a few other potentially undesirable elements, indicating that in lieu of 

substrate analysis, AMD and LS cubitainer incubations reveal the quality and 

chemical composition of potential calcareous passive treatment substrate.  Relevant to 

the prospects of AMD and WW passive co-treatment, mixing AMD with WW had 

relatively little effect on the final alkalinity achieved by LS dissolution.  Accounting 
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for dilution, dissolved concentrations of Ag, Al, As, Cd, Cr, Fe, Pb, Sb, Se, Sn, V and 

Zn decreased with AMD and WW incubation.  Especially efficient As removal was 

noted, with WW incubation driving mixed concentrations from 19.4 to 0.34 and 3.58 

to 0.28 mg/L with the two higher strength AMD source waters.  Rare earth element 

(REE) results were varied.  Although AMD mixed and unmixed with WW then 

incubated with LS generally decreased REE concentrations, Pr and Nd concentrations 

increased under some LS exposures.  Incubation with WW alone generally decreased 

dissolved concentrations of REE, however La, Pr, Eu and Nd concentrations increased 

with WW exposure.  Overall, results indicate that cubitainer incubations have broader 

utility than that for which has been previously taken advantage, passive treatment can 

be expanded to target more constituents of interest than it has been traditionally 

applied, and the co-treatment of AMD with WW is a promising new application of 

passive treatment that should be further investigated.   
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4.2 Introduction 

 Acid mine drainage (AMD) and municipal wastewater (WW) are common 

environmental liabilities worldwide and their treatment is central to maintaining 

global water resource quality.  Untreated AMD causes water quality degradation in 

coal and metal mining regions worldwide (e.g., Salomons, 1995; Bell and Donnelly, 

2006).  Discharges of untreated WW degrade water resources in many developing 

nations (e.g., Gadgil, 1998; Kivaisi, 2001, Nelson et al., 2001).  In developed nations, 

where WW is generally treated actively, treatment consumes considerable financial, 

material and energy resources.  With respect to passive methods, conventional active 

WW and AMD treatment are less sustainable and more energy-intensive with higher 

operational and maintenance costs (Nelson et al., 2001; Younger et al., 2002; Muga 

and Mihelcic, 2008).   

 AMD is formed by the weathering of metal sulfide minerals, principally pyrite 

(FeS2).  Generally, AMD contains elevated concentrations of hydrogen ion, trace 

metals, sulfate and acidity (Watzlaf et al., 2004).  Because AMD is often net acidic 

and low pH, passive treatment usually necessitates alkalinity generation and pH 

augmentation, which is often realized via limestone (LS) dissolution.  The dissolution 

of calcite, the principle component of LS, occurs via a combination of the subsequent 

reactions (Stumm and Morgan, 1996): 

1) CaCO3(s) + 2H+ ↔ Ca2+ + H2CO3
* 

2) CaCO3(s) + H2CO3
* ↔ Ca2+ + HCO3

- 

3) CaCO3(s) + H2O
 ↔ Ca2+ + HCO3

- + OH- 

where [H2CO3
*] = [CO2(aq)] + [H2CO3].  The three reactions affect pH and alkalinity 

via changes in free hydrogen ion concentration and the generation of HCO3
- and OH-.  

Dissolved Ca concentrations also increase, creating a signature that can be used to 
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track dissolution efficiencies.  The rate of calcite dissolution, and hence alkalinity 

generation, depends on the pH, partial pressure of CO2 (Pco2), and the activities of 

Ca2+, HCO3
- and H2O, which ionic strength and temperature substantially impact 

(Cravotta and Trahan, 1999; LaBar et al., 2008). 

 Cubitainer experiments, initially developed by Watzlaf and Hedin (1993), have 

been used to determine the viability of passive treatment options by demonstrating the 

alkalinity generating capacity of calcareous substrate when exposed to AMD (Watzlaf 

et al., 2004).  A cubitainer is a collapsible, cubic, sealable LDPE container in which 

in-situ or ex-situ incubations can be rapidly initiated and undertaken.  Anoxic LS 

drains (ALD), reducing and alkalinity producing systems (RAPS) and oxic LS 

drains/channels (OLD/C) are the primary applications of calcareous substrates in 

passive treatment systems.  The alkalinity produced by calcareous substrate can vary 

by several hundred mg/L as CaCO3 equivalents, depending upon substrate quality, 

AMD chemical composition and exposure conditions (Watzlaf and Hedin, 1993; 

Cravotta and Trahan, 1999; Watzlaf et al., 2000, 2004; Cravotta, 2003).  Results of 

cubitainer tests can be directly applied via a set of sizing equations to design and 

predict the performance of passive alkalinity generating unit processes, such as RAPS 

and ALDs (Cravotta and Watzlaf, 2002; Cravotta, 2003) and OLD/Cs 

(Mukhopadhyay et al., 2007; Cravotta, 2008).  Because calcareous substrate and 

AMD vary widely in chemical composition between regions, site-specific cubitainer 

tests are necessary to help determine the overall regional viability of passive treatment.  

As of the writing of this manuscript, no Andean cubitainer test studies were 

encountered in the literature.   

 The passive co-treatment of AMD and WW is a promising remediation approach.  

However to the authors knowledge, only two published studies (Johnson and Younger, 
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2006; McCullough et al., 2008) have investigated the simultaneous synergistic water 

quality improvement possible by mixing AMD with WW.  McCullough et al. (2008) 

documented fortuitous water quality improvement and bacterial sulfate reduction 

(BSR) in an evaporation pond in which high-strength AMD was introduced to 

secondary WW.  The Johnson and Younger (2006) single-stage constructed wetland 

treatment system successfully improved the water quality of relatively weak 

secondary WW effluent and net-alkaline AMD.   

Aside from AMD and WW tending to be relatively low in specific pollutants 

which are relatively elevated in the other, allowing for contaminant dilution, 

beneficial reactions are likely to occur when mixing these two environmental 

liabilities.  The dilution of AMD hydrogen ion concentrations is important because 

the solubilities of many metals of concern decrease with increasing pH.  Dissolved Al 

and Fe in AMD can react with phosphate and precipitate (Omoike and Vanloon, 1999; 

Johnson and Younger, 2006).  Many metals of concern can bind to the organic ligands 

present in WW (Fristoe and Nelson, 1983; Fletcher and Beckett, 1987; Omoike and 

Vanloon, 1999; Norton et al., 2004; Gibert et al., 2005).  The organic matter present 

in WW is also a carbon source that sulfate reducing bacteria (SRB) can utilize to 

generate alkalinity and precipitate metal sulfides.  Studies have documented the 

effectiveness of sewage sludge as an SRB medium (Waybrant et al., 1998; Harris and 

Ragusa, 2000; McCullough et al., 2006).   

AMD passive treatment systems have generally been limited to the treatment of 

the more prevalent metal contaminants (i.e., Al, As, Cd, Fe, Mn, Pb, Zn, etc.) 

(Younger et al., 2002; Watzlaf et al., 2004).  However, recent research has been 

pushing the boundaries of passive treatment to enable the treatment of less common 

elements of concern, such as Sb, Se, U and others (Simmons et al., 2002; Merten et al., 
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2004; Luo et al., 2008).  It is likely that passive treatment can be expanded to target 

yet more elements, including rare earth elements (REE).   

 REE are a relatively chemically uniform group that includes Y, La and the 

Lanthanide series (Tyler et al., 2004).  REE typically form trivalent cations and 

behave similarly in the environment.  Until recently, the REE have neither been 

characterized as supportive for nor toxic to life.  Although REE are generally thought 

to be relatively benign (Hirano and Suzuki, 1996; Tyler, 2004), relatively few toxicity 

studies have yet been undertaken because REE are often in such low concentrations as 

to be difficult to detect (Tyler, 2004).  REE concentrations are highly elevated in 

some AMD (Verplank et al., 2004; Gilchrist et al., 2009) and could eventually prove 

to be of importance.  Hirano and Suzuki (1996) document that extremely elevated 

concentrations (ppm) of REE can be toxic to mammals.  However, a few studies 

indicate that REE can be preferentially taken up by plants (Stille et al., 2006) and 

slightly elevated concentrations of REE may be preferential to plant growth (Tyler, 

2004) and thus removal within passive treatment systems may be undesirable.  As of 

the writing of this manuscript, no studies have yet been encountered that document 

the dynamics of REE within any types of AMD passive treatment systems. 

 This experiment was executed to determine the suitability of AMD from Cerro 

Rico de Potosí, Bolivia and local LS and WW for conventional passive treatment or 

co-treatment.  The overall goals of the experiment were to 1) increase the 

understanding of conventional passive treatment of high strength AMD, 2) explore the 

removal of elements usually not tracked or addressed with passive treatment, such as 

REE, to better understand the full utility of the approach, and 3) investigate the 

feasibility of AMD and WW co-treatment.   
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4.3 Methods 

4.3.1 Experimental Design 

 The experimental setup involved three AMD incubation regimes in triplicate: 

AMD mixed at a 1:1 ratio with WW (AMD+WW), unadulterated AMD incubated in 

the presence of LS (AMD+LS), and AMD mixed at a 1:1 ratio with WW and 

incubated in the presence of LS (AMD+WW+LS).  The WW and AMD for all 

incubation regimes were collected the same day as the incubation initiation to 

minimize biochemical changes to the effluents.  Unmixed AMD and WW initial field 

pH and alkalinity determination, as well as initial dissolved metals and sulfate 

sampling, were performed prior to cubitainer introduction.  AMD+WW initial field 

pH and alkalinity were determined at the exposure initiation immediately upon 

mixing.  However, to eliminate sampling error from ongoing reactions, initial 

AMD+WW dissolved metals concentrations were calculated by averaging 

concentrations in the pre-exposure AMD and WW.  All cubitainers were initially 

sealed with zero headspace then incubated throughout the 72-hr exposure March 19-

22nd 2007 outside in ambient conditions approximately 4 km from the peak of Cerro 

Rico at the Universidad Autónoma de “Tomás Frías” (UATF) (3950 m amsl, S 

19.58148°, W 65.75111°).  At the conclusion of the incubation, field pH and 

alkalinity were measured and dissolved metals samples were taken. 

 

4.3.2 Effluent Collection Areas 

 Raw WW was collected from an unnamed tributary to Rio Huarampaya that 

drains WW from the north-central sector of the city of Potosí previously characterized 

by Strosnider et al. (2008) (Figure 4.1).  AMD was collected from three abandoned 

adits that drain active mining zones of Cerro Rico de Potosí: Esperanza, Guadalupe 
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and Real Socavón, also previously characterized by Strosnider et al. (2007).  Cerro 

Rico is a highly mineralized extinct volcano located adjacent to Potosí, with mine 

portals situated less than 100 m from populated areas of the city.  Cerro Rico is the 

world’s largest Ag deposit and has been intensively mined for nearly five centuries, 

one environmental liability of which is AMD (Cunningham et al., 1999; Strosnider et 

al., 2007).  Discharge Esperanza emanates from an abandoned mine portal that is 

likely draining an active mining operation.  Discharge Guadalupe drains the 

abandoned Guadalupe mine in the Chimborazo sector of Cerro Rico which is also 

likely hydraulically connected to active mining operations.  Real Socavón was 

constructed from 1779 to 1790 to lower the water table within Cerro Rico and is 

situated near the heart of its most active mining sector.  Real Socavón and Discharge 

Esperanza drain to Rio Huayna Mayu and Discharge Guadalupe drains to Rio 

Villacollu Mayu, both heavily contaminated tributaries at the headwaters of the 

ecologically and economically vital Rio Pilcomayo (Strosnider et al., 2007, 2008).  LS 

of approximately 3-cm diameter was donated by the Estuquera Cayara, a local 

quicklime producer approximately 10 km from Potosí that sources LS from nearby 

deposits.   
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Figure 4.1  Location of each effluent collected with respect to the urbanized areas of 

Potosí, the incubation location and receiving streams. 

 

4.3.3 Sample analysis 

 An Orion 1230 multimeter was used to determine pH and temperature.  Alkalinity 

titrations were conducted in accordance with standard methods (APHA, 1998) and 

Hach Method 8203 (Hach, 2006).  A MetrOhm® 761 compact ion chromatograph 

unit was used to quantify initial sulfate concentrations following EPA method 300.  

Dissolved metals samples were filtered through 0.45-µm nylon filters prior to 

preservation with concentrated trace metal grade nitric acid then stored at 4°C until 

microwave acid digestion following EPA method 3015.  Digested metals samples 

were analyzed via a Varian Vista-Pro® simultaneous inductively coupled plasma-

optical emission spectrometer following EPA method 6010.   
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4.3.4 Data Analysis 

 An estimate of initial ionic strength was calculated with PHREEQC version 

2.16.02 (Parkhurst and Appelo, 2008) using initial sulfate, [H+] and dissolved metals 

concentrations.  Net acidity and acidity were calculated following a modified version 

of that presented by Younger et al. (2002), which accounted for the acidity from the 

substantial Cd2+, Cu2+ and Zn2+ concentrations present in these waters.  For acidity 

calculations, all Fe was assumed to be Fe(II) when pH > 3 and Fe(III) when pH < 3, 

because Fe(III) predominates for most solutions with pH < 3 (Kirby and Cravotta, 

2005).  This assumption generally follows empirical observations (Younger et al., 

2002; Watzlaf et al., 2004; Kirby and Cravotta, 2005).  PHREEQC was also 

employed to estimate which species of the major constituents may be precipitating at 

the incubation endpoint, assuming final DO to be zero, temperature to be 10°C and 

sulfate to be unchanged because the short incubation period would likely not allow for 

SRB to acclimate and reduce significant concentrations of sulfate (e.g., Gilbert et al., 

1999; Pruden et al., 2007).  To enable various calculations, when concentrations were 

below practical quantification limits (PQL), they were assigned values one half of the 

PQL.  All AMD+WW and AMD+WW+LS results and statistical comparisons 

account for dilution.   

 Prior to statistical testing with Microsoft Excel®, variances were calculated and 

found to be similar.  Assuming normality, two-tailed two sample homoscedastic 

Student’s t-tests (α = 0.05) were performed to determine statistical difference between 

all final results.  Single sample homoscedastic Student’s t-tests (α = 0.05) were used 

to determine if the initial conditions of each exposure were not equal to the mean of 

the final conditions.  Correlation was tested with Minitab® version 15 by calculating 
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Pearson’s product moment correlation coefficients.  All mean comparisons presented 

in the following paragraphs are based upon statistical testing (p < 0.05).    

 

4.4. Results and Discussion 

4.4.1 Influent Characteristics 

 Relatively extremely polluted waters were employed for this study.  Two of the 

AMD discharges, Real Socavón and Guadalupe, are high-strength AMD with metals 

and acidity concentrations orders of magnitude greater than typical AMD (e.g., 

Younger et al., 2002; Watzlaf et al., 2004).  The Esperanza mine AMD had more 

typical metals concentrations and acidity, except for highly elevated Zn.  The Potosí 

WW alkalinity places it in the “strong” designation of WW established by Metcalf 

and Eddy (1991).   

 

4.4.2 pH, Alkalinity and Acidity 

 The final alkalinity produced by the LS was representative of real-world ALD or 

RAPS performance (Watzlaf et al., 2000, 2004; Cravotta, 2003), indicating that the 

locally sourced LS is of high quality and suitable for passive treatment.  Each 

AMD+LS and AMD+WW+LS treatment produced substantial alkalinity and raised 

pH (Table 4.1).  Higher pH resulted from LS exposures of the weaker AMD 

(Esperanza).  Relevant to passive treatment, all LS exposures sufficiently produced 

alkalinity and raised pH for aerobic Fe oxidation to subsequently proceed efficiently, 

which requires circumneutral pH and sufficient buffering capacity to counteract the 

release of protons that accompanies Fe hydrolysis (Younger et al., 2002).   
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Table 4.1  Alkalinity generation and pH results (mean ± standard deviation).  N=1 for 

all initial (i) measurements.  N=3 for all final (f) measurements except where standard 

deviation is omitted because N=2.  Negative net acidity is net alkalinity. 

  pH Alkalinity Acidity Net Acidity 

  s.u. mg/L as CaCO3 

WWi 8.62 338 3 -335 

Esperanzai 4.10 0 454 454 

 +LSf 7.56 ± 0.08 149 ± 4.0 93 ± 8.3 -56 ± 12 

+WWi 6.25 152 227 75 

 +WWf 7.57 ± 0.53 152 ± 13 144 -1.0 

 +WW+LSf 7.92 ± 0.35 232 ± 7.6 20 -212 

Guadalupei 2.30 0 12745 12745 

 +LSf 6.78 ± 0.16 313 ± 13 7750 ± 129 7438 ± 119 

+WWi 3.05 0 5127 5127 

 +WWf 3.15 ± 0.05 0 ± 0 5149 5149 

 +WW+LSf 6.50 ± 0.53 299 ± 12 3112 ± 168 2923 ± 162 

R. Socavoni 2.70 0 12499 12499 

 +LSf 6.05 ± 0.22 397 ± 13 4889 ± 167 4502 ± 176 

+WWi 2.85 0 6272 6272 

 +WWf 3.00 ± 0.07 0 ± 0 5011 5011 

 +WW+LSf 6.61 ± 0.16 370 ± 10 1696 1326 
  

 Final alkalinity values were significantly different for all AMD+WW+LS and 

AMD+LS exposures.  Given that waters were exposed to the same LS under identical 

conditions, differences in final alkalinity and pH were dependent upon AMD 

chemical compositions.  The final alkalinity produced by LS exposure is dependent 

upon various physiochemical factors of the AMD (Cravotta and Trahan, 1999; 

Cravotta, 2003; Watzlaf et al., 2004).  For example, calcite dissolution is slowed by 

increased pH and concentrations of Ca2+ and HCO3
- and decreased Pco2 (Cravotta and 

Trahan, 1999).  LaBar et al. (2008) also noted a highly significant trend of increasing 

alkalinity generation with increasing ionic strength in a modified ALD design, which 

is reinforced by theory (Stumm and Morgan, 1996).   
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 Guadalupe and Real Socavón had much higher final alkalinities than Esperanza, 

which had higher initial pH than both waters, lower initial ionic strength than both 

waters and similar initial dissolved Ca concentrations as Guadalupe.  Real Socavón 

had a higher initial pH and contained 1.86 times more initial dissolved Ca than 

Guadalupe, however Real Socavón had slightly greater initial ionic strength and 

produced 84 mg/L more final alkalinity.  Linear regression of initial AMD and 

AMD+WW initial dissolved Ca concentration versus final alkalinity resulted in a poor 

relationship (Pearson’s correlation coefficient of 0.635 and p = 0.175).  However, a 

relationship was found between final alkalinity and initial ionic strength as well as 

initial pH (Figures 4.2 and 4.3).  These contrasts were statistically significant 

(Pearson’s correlation coefficients of 0.814 and -0.833, p = 0.049 and 0.039, 

respectively).  Overall, results indicate these waters’ initial ionic strength and pH are 

better predictors of final alkalinity than initial Ca concentration.   

 

 

Figure 4.2  Relationship between mean initial solution ionic strength calculated with 

PHREEQC and final alkalinity for all LS incubations of AMD and AMD+WW. 

 



83 
 

 

Figure 4.3  Relationship between mean initial pH and final alkalinity for all LS 

incubations of AMD and AMD+WW. 

 

 Relative to future co-treatment efforts, mixing AMD with WW before exposure to 

LS has mixed impacts on final alkalinity and pH.  Higher final alkalinity and pH are 

preferred because they enable greater and faster Fe or Mn oxidation in subsequent 

unit processes.  Although mixing AMD with WW prior to LS exposure raised initial 

pH and decreased initial ionic strength, it had relatively little effect on the final 

alkalinity of the two higher strength AMD.  Compared to unmixed AMD+LS, the 

final alkalinity of the AMD+WW+LS was only 4.3 and 6.7% less for Guadalupe and 

Real Socavón, respectively.  In the case of Esperanza, the addition of WW imparted 

alkalinity which was further enhanced by the LS exposure, resulting in final alkalinity 

55% greater than the unmixed LS exposure.  The impact of decreased ionic strength 

on final alkalinity is likely offset by the alkalinity imparted by the WW.  Regarding 

the influence on pH of mixing AMD with WW before LS exposure, the final pH of 

the unmixed Real Socavón was higher while that of Esperanza and Guadalupe were 

not statistically different than their unmixed respective AMD+LS.   
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 Despite the dilution involved, adding WW to AMD raised pH for only Esperanza.  

Although the net acidity of Guadalupe did not significantly decrease over the 

incubation period, the net acidity of Real Socavón and Esperanza decreased.  These 

results indicate that the full advantages of mixing AMD with WW may not be 

immediately realized and further acidity can be buffered during incubation.  It is 

unknown if the primary mechanism for acid neutralization is abiotic (i.e., sorption to 

organic ligands) or biotic (i.e., BSR) because final sulfate concentrations were not 

determined.  However, following Neculita et al. (2007) significant BSR is unlikely 

given the short incubation duration and Zn concentrations orders of magnitude greater 

than those determined to be severely inhibitive to SRB.  Therefore, it is assumed that 

the bulk of acid neutralization noted when incubating AMD+WW was via abiotic 

means.  In the case of the weaker AMD (Esperanza), the acid neutralization capacity 

provided by the WW was sufficient to produce marginally net-alkaline effluent.  This 

has implications for treatment because it may be possible to co-treat these net-acidic 

waters without LS and/or other organic substrate, which could result in significant 

cost savings.  In addition, further alkalinity may be generated by SRB using the 

substantial labile organic material in WW.   

 Regarding the LS exposures of the two higher strength AMD sources, it does not 

appear that calcite dissolution can account for all the acidity neutralization of Real 

Socavón and Guadalupe with or without WW.  Alkalinity generation from calcite 

dissolution was estimated by tracking the change in Ca concentrations, pre- and post-

LS exposure.  However, there are some drawbacks with this approach.  There appears 

to be some release of Ca by WW during incubation with AMD, evidenced by the 

increase in Ca during all WW+AMD incubations.  Cation exchange between WW 

solids and more electronegative elements in the AMD may explain this phenomenon.  
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The likelihood of gypsum (CaSO4) precipitation, which was indicated by PHREEQC 

modelling, would also detract from the accuracy of this approach.  In addition, the 

formation of compounds that do not result in the release of protons, such as metal 

carbonates that were modelled with PHREEQC to be oversaturated (ZnCO3, FeCO3 

and CdCO3), would decrease calculated acidity without consuming alkalinity.  The 

sorption of Zn or Cd to Fe hydroxides would also decrease calculated acidity without 

consuming alkalinity.   

 

4.4.3 Metals Behavior 

 As expected, dissolved concentrations of major elements (those generally in the 

ppm range) of interest in the mixed and unmixed AMD decreased with LS exposure 

(Table 4.2).  The AMD+WW incubations resulted in decreased dissolved Al, Fe, As 

and Zn.  The AMD+WW+LS exposures resulted in more complete removal of some 

metals of interest such as Al, Cd, Fe, Ni and Zn.  Overall, results indicate that passive 

mixing and incubation of AMD with WW can remove significant quantities of metals 

from solution.   
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Table 4.2  Mean dissolved major constituents (mg/L).  Standard deviation is italicized.  

N=1 for initial values, N=2 when standard deviation is not displayed (-), and N=3 

when standard deviation is presented. 

  Al As Ca Cd Cu Fe 

WWi 0.26 <0.022 44.4 <0.0006 0.029 0.51 

Esperanzai 10.3 0.025 122 0.46 0.046 6.9 

 +LSf 0.025 <0.022 397 0.029 0.015 0.034 

0.005 - 75.0 0.004 0.001 0.01 

+WWi 5.30 0.018 83.2 0.23 0.038 3.70 

 +WWf 0.020 <0.022 98.7 0.178 0.028 0.042 

 +WW+LSf 0.095 <0.022 216 0.006 0.11 0.14 

Guadalupei 80.5 38.8 121 9.84 0.12 2612 

 +LSf 0.11 <0.022 702 3.21 0.10 1826 

0.003 - 6.6 0.21 0.013 24.7 

+WWi 40.4 19.4 82.7 4.92 0.074 1306 

 +WWf 37.4 0.34 105 4.80 0.092 1162 

 +WW+LSf 0.20 0.10 674 1.62 0.055 612 

0.026 0.009 26.6 0.050 0.005 50.2 

R. Socavoni 437 7.15 225 17.3 29.9 1916 

 +LSf 0.53 <0.022 686 7.28 1.03 381 

0.18 - 8.9 0.34 0.049 4.49 

+WWi 218 3.58 135 8.64 15.0 958 

 +WWf 203 0.28 156 8.16 13.6 609 

 +WW+LSf 0.093 <0.022 760 2.26 0.72 66.2 
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Table 4.2  (cont.) 

  K Mg Mn Na Ni Zn 

WWi 44.1 9.67 0.12 68.8 <0.004 0.35 

Esperanzai 12.0 18.0 11.6 13.1 0.072 233 

 +LSf 23.6 37.9 5.33 18.4 0.029 53.9 

1.15 0.33 0.17 0.76 0.002 5.21 

+WWi 28.1 13.8 5.84 41.0 0.037 117 

 +WWf 28.5 13.8 5.87 41.2 0.331 86.4 

 +WW+LSf 40.9 42.3 1.62 46.5 0.015 10.6 

Guadalupei 10.5 31.7 125 9.14 0.96 3129 

 +LSf 29.2 80.0 162 16.1 1.12 2724 

1.50 3.08 1.22 0.20 0.007 54.2 

+WWi 27.3 20.7 62.4 39.0 0.48 1565 

 +WWf 30.8 23.7 68.0 40.9 0.48 1755 

 +WW+LSf 49.4 70.0 80.4 49.2 0.605 1222 

2.37 19.0 2.02 1.72 0.005 55.2 

R. Socavoni 3.89 178 46.5 14.3 2.60 3051 

 +LSf 20.4 236 70.1 19.8 2.92 2652 

0.71 4.23 0.93 0.20 0.098 104 

+WWi 24.0 93.9 23.3 41.5 1.30 1526 

 +WWf 30.3 98.5 22.9 43.9 1.28 1569 

 +WW+LSf 47.6 126 37.4 53.5 1.09 979 

 

 Concentrations of minor elements (those generally in the ppb range) tracked were 

also significantly affected by the treatments.  Cr, In, Pb, Sb, Sn and V were removed 

from solution by LS incubation of mixed and unmixed AMD (Table 4.3).  Some 

minor elements (Ag, Cr, Pb, Sb, Se, Sn and V) were removed from solution by WW 

incubation alone.  Although Ag was removed from solution in two of the three WW 

incubations, it was released by the LS.  The presence of leachable Ag in the local LS 

may be explained by the source’s proximity to Cerro Rico, the world largest Ag 

deposit, which is situated in a highly mineralized Ag-rich province (Cunningham et 

al., 1996).  Cr was removed more completely by mixed and unmixed LS exposure.  

Indium (In) was consistently removed to below the PQL during unmixed and mixed 

LS exposures.  Cerussite (PbCO3) formation, as these waters were modelled to be 
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supersaturated by PHREEQC, was a likely Pb removal mechanism.  However, Pb was 

also removed in the absence of LS and could have complexed with organic matter 

(e.g., Fletcher and Beckett, 1987) or sorbed to Fe oxyhydroxides (e.g., Carroll et al., 

1998).  Multiple minor elemental constituents (Ag, B, Ba, Co, Li, and Sr) were 

contributed to the water column by the LS.   

 

Table 4.3  Mean dissolved minor elemental constituents (µg/L).  Standard deviation 

is italicized.  N=1 for initial values, N=2 when standard deviation is not displayed (-), 

and N=3 when standard deviation is presented. 

  Ag B Ba Co Cr In Li 

WWi <1.6 293 41 <1 3.2 <24 29 

Esperanzai 2.6 171 41 61 <1 <24 166 

 +LSf 5.9 1254 81 31 1.3 <24 203 

0.2 69 2.1 0.7 0.2 - 20 

+WWi 1.7 232 41 31 2.2 <24 98 

 +WWf <1.6 214 36 28 <1 <24 96 

 +WW+LSf 2.7 1301 88 11 <1 <24 115 

Guadalupei 10 33 12 745 43 408 348 

 +LSf 12 1446 73 2133 7.4 <24 430 

0.5 55 4.1 147 0.6 - 4.5 

+WWi 5.6 163 27 373 23 205 189 

 +WWf 3.0 125 31 405 18 208 195 

 +WW+LSf 7.5 1248 81 1179 3.2 <24 246 

0.5 130 3.8 22 0.2 - 9.6 

R. Socavoni 3.4 364 8.6 246 135 3847 753 

 +LSf 7.5 1581 78 3086 2.9 <24 836 

1.8 74 7.2 69 0.1 - 13 

+WWi 2.1 329 25 123 69 1924 391 

 +WWf <1.6 317 31 1053 64 1788 375 

 +WW+LSf 7.8 1402 87 1534 1.4 <24 442 
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Table 4.3  (cont.) 

  Pb Sb Se Sn Sr V 

WWi 19 <12 <42 <18 373 <1.5 

Esperanzai 288 <12 <42 <18 1245 <1.5 

 +LSf <12 25 <42 <18 1693 <1.5 

- 1.5 - - 183 - 

+WWi 153 <12 <42 <18 809 <1.5 

 +WWf <12 <12 <42 <18 792 <1.5 

 +WW+LSf 23 <12 <42 <18 1086 1.7 

Guadalupei 1669 27 54 18 591 60 

 +LSf 452 21 63 <18 1524 <1.5 

1.7 2.4 4.0 - 29 - 

+WWi 844 16 37 14 482 30 

 +WWf 660 <12 <42 <18 505 8.0 

 +WW+LSf 294 <12 <42 <18 1273 <1.5 

6.7 - - - 42 - 

R. Socavoni 604 18 <42 59 320 90 

 +LSf 137 <12 <42 <18 1037 <1.5 

10 - - - 37 - 

+WWi 312 12 <42 34 346 46 

 +WWf 301 <12 <42 <18 359 10 

 +WW+LSf 39 <12 <42 <18 1117 <1.5 
 

 Generally, it is disadvantageous in passive treatment systems to remove Al or Fe 

in the presence of LS due to armoring and clogging issues (Watzlaf et al., 2000, 2004).  

As expected, the high Al and Fe removal rates noted during the Real Socavón and 

Guadalupe LS exposures indicate that some form of pretreatment would be necessary 

for higher strength AMD (Table 4.4).  The pH increase created by LS dissolution 

likely formed insoluble Al and Fe oxyhydroxides which over the long-term will 

decrease LS dissolution efficiency (Younger et al., 2002).  Orders of magnitude 

greater than ALD design guidance (Watzlaf et al., 2004), Al and Fe concentrations of 

the AMD may be too high for conventional RAPS designs as well.   
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Table 4.4  Volumetric removal rates calculated using initial and final dissolved 

concentrations.  Negative values denote an increase in dissolved concentrations.  

Values are omitted (-) where there was no significant difference between initial and 

final concentrations.  Mo is not included because concentrations were consistently 

below the PQL (<48 µg/L). 

   Esperanza Guadalupe Real Socavón 

   +LS +WW 
+WW 
+LS +LS +WW 

+WW 
+LS +LS +WW 

+WW 
+LS 

Major Constituents (g m-3 d-1)            

Al 3.4 1.8 1.7 27 - 13 145 - 73 

As 0.005 0.002 0.002 13 6.4 6.4 2.4 1.1 1.2 

Ca -92 -5.2 - -194 -7.5 -197 -153 -7.1 -208 

Cd 0.14 0.02 0.074 2.2 - 1.1 3.3 - 2.1 

Cu 0.010 - -0.025 - -0.006 0.006 9.6 - 4.8 

Fe 2.3 1.2 1.2 262 - 231 512 116 297 

K -3.9 - -4.3 -6.2 - -7.4 -5.5 -2.1 -7.9 

Mg -6.6 - - -16 - -16 -19 - - 

Mn 2.1 - - -13 - -6.0 -7.9 - -4.7 

Na -1.8 - -1.8 -2.3 - -3.4 -1.8 - -4.0 

Ni 0.014 -0.098 - -0.054 - -0.042 -0.11 - 0.071 

Zn 60 10 35 135 - 114 133 - 182 

Minor Constituents (mg m-3 d-1)            

Ag -1.1 0.30 - -0.53 - -0.64 - 0.44 -1.9 

B -361 - -356 -471 13 -362 -406 - -358 

Ba -13 - - -20 -1.4 -18 -23 - -21 

Co 9.9 - - -463 - -269 -947 -310 -470 

Cr - 0.44 0.44 12 1.7 6.7 44 - 23 

In - - - 132 - 66 1280 - 639 

Li - - -5.9 -27 - -19 -27 - - 

Pb 94 49 - 406 61 183 156 - 91 

Sb - - - - 3.4 3.4 4.1 2.0 2.0 

Se - - - - 21 5.5 - - - 

Sn - - - 3.0 1.5 1.5 17 8.4 8.4 

Sr - - - -311 - -264 -239 - -257 

V - - - 20 7.5 9.9 30 12 15 
  

 Experimental results indicate that it could be beneficial to remove Al and Fe by 

pretreatment with WW.  Real Socavón and Esperanza dissolved Fe concentrations 

decreased significantly with WW incubation.  However, only Esperanza dissolved Al 
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decreased significantly under the same treatment regime, likely due to the increase in 

pH which favored the formation of the insoluble amorphous Al(OH)3.  In addition to 

combining with phosphate to form a relatively stable solid, Al and Fe can complex 

with living and dead organic ligands (Fletcher and Beckett, 1987; Omoike and 

Vanloon, 1999).  In future studies the ratio of AMD to WW and incubation duration 

may be manipulated to encourage further Al and Fe removal.    

 Other major constituents of concern were removed by the three treatment regimes.  

Elevated concentrations of dissolved As were greatly diminished by all three 

treatment regimes, often to below the PQL.  The high rate of As removal from AMD 

when incubated with WW alone indicates that mixing with WW can effectively 

remove As from solution.  The mechanism of removal is unknown.  However, 

extensive research has documented the affinity of As to Fe hydroxides (Mohan and 

Pittman, 2007), which likely formed under all treatment regimes.  Cd concentrations 

of all AMD and AMD+WW treatments dramatically decreased in the presence of LS.  

It is likely that otavite (CdCO3) formed, which was predicted to be supersaturated by 

PHREEQC.  In addition, Cd removal was more complete with the AMD+WW+LS 

incubations, which may indicate Cd complexation with organic ligands and/or 

adsorption to bacterial solids (e.g., Fristoe and Nelson, 1983).  Only Real Socavón 

had highly elevated concentrations of Cu, which were decreased during mixed and 

unmixed exposures to LS.  Various solid Cu compounds were found by PHREEQC 

modelling to be supersaturated, such as CuFeO2, CuFeO4 and CuCr2O4.  Zn was 

removed at a high rate in the mixed and unmixed LS exposures.  PHREEQC 

modelling indicated that various Zn carbonates, such as smithsonite (ZnCO3), were 

supersaturated in the final solution.  Some Zn removal was likely due to sorption to Fe 

oxyhydroxides which Zn has a high affinity for at circumneutral pH (Carroll et al., 
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1998).  Zn removal was also observed without the presence of LS, in the Esperanza 

AMD+WW incubation.  Living and dead organic ligands present in the WW likely 

served as Zn sorption sites (e.g., Fletcher and Beckett, 1987; Norton et al., 2004).   

 Concentrations of some major constituents increased during LS exposures.  Ca, K, 

Mg and Na concentrations increased due to dissolution of the LS.  Unexpectedly, Mn 

concentrations increased during the LS exposures of the mixed and unmixed, more 

acidic (Real Socavón and Guadalupe) AMD.  However, Mn was removed from 

solution during mixed and unmixed LS exposure of the weaker Esperanza AMD.  

These mixed results may be due to increased attack of the LS matrix by the higher 

ionic strength, lower pH, more acidic AMD.  The generation of substantial Mn 

indicates that other LS sources ought to be explored for more suitable passive 

treatment substrate.  In the unfortunate case that a more suitable source is not 

available, the Mn generated may be removed in the final stages of passive treatment.   

 Many of the minor constituent metals either contributed to (Ag, Ba, Co and Li) or 

removed from solution (Ag, Cr, Pb, Sb, Se, Sn and V) are of human or ecological 

health concern (Nordberg et al., 2007).  Of these metals, Pb is the only minor 

constituent typically targeted for passive treatment and tracked throughout systems.  

The results above indicate that LS passive treatment substrate can be a source or sink 

for some minor constituents of concern.  However, conventional passive treatment 

unit processes with LS (i.e., ALDs, OLD/Cs, RAPS) can be applied to remove a much 

broader range of metals from solution.  The wide range of minor constituent metals 

removed from solution during the two co-treatment regimes indicates that passive co-

treatment may be a viable approach for remediation of waters with a broad range of 

contamination. 
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4.4.4 Rare Earth Elements 

 The REE tracked in this study generally decreased in concentration under all three 

incubation regimes (Tables 4.5 and 4.6).  Generally higher REE removal rates were 

noted during mixed and unmixed LS exposures than those without LS.  Four REE did 

not follow these general patterns.  Eu concentrations decreased during mixed and 

unmixed LS exposures, yet increased during the Real Socavón AMD+WW incubation.  

Pr appeared to be released by the WW and LS.  La was released by the WW 

exposures of Real Socavón and Guadalupe, but not the less acidic Esperanza AMD.  

However, all mixed and unmixed LS exposures resulted in decreased La.  Nd results 

were mixed with some treatments increasing dissolved concentrations and others 

decreasing.   
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Table 4.5  Mean dissolved REE constituents (µg/L).  Standard deviation is italicized.  

N=1 for initial values, N=2 when standard deviation is not displayed (-), and N=3 

when standard deviation is presented.  Er, Lu and Tb are not included because 

concentrations were consistently below the PQLs, at < 7.6, 4.3 and 10 µg/L, 

respectively. 

  Ce Dy Er Eu Gd Ho La Nd Pr Sc Sm Tm 

WWi <2.8 <1.2 <6 <4.6 <2.8 <2 3.1 25 87 <0.8 <3.8 <2.8 
              

Esperanzai 67 <1.2 7.5 5.8 11 <2 21 66 139 <0.8 13 <2.8 

 +LSf 6.3 <1.2 <6 <4.6 <2.8 <2 5.2 61 167 <0.8 <3.8 <2.8 

  0.4 - - - - - 0.1 2.4 9.6 - - -

+WWi 34 <1.2 5.2 4.0 6.3 <2 12 46 113 <0.8 7.4 <2.8 

 +WWf <2.8 <1.2 <6 5.0 <2.8 <2 4.0 37 125 <0.8 <3.8 <2.8 

 +WW+LSf 4.3 <1.2 <6 <4.6 <2.8 <2 5.1 54 168 <0.8 <3.8 <2.8 
              

Guadalupei 65 6.6 <6 6.6 70 3.3 10 59 44 23 62 7.9 

 +LSf 42 <1.2 <6 <4.6 33 <2 4.1 69 84 <0.8 <3.8 6.8 

  0.5 - - - 0.5 - 0.1 1.1 15 - 1.0 0.4 

+WWi 33 <1.2 <6 4.4 36 2.4 6.5 42 66 12 32 <2.8 

 +WWf 30 <1.2 <6 5.9 32 <2 7.0 49 75 10.1 31 3.4 

 +WW+LSf 25 <1.2 <6 <4.6 14 <2 4.4 68 128 <0.8 11 <2.8 

  0.6 - - - 0.4 - 0.2 0.2 4.4 - 1.2 - 
              

R. Socavóni 71 5.8 <6 6.4 66 4.1 22 84 60 87 34 6.7 

 +LSf 21 <1.2 <6 <4.6 10 <2 4.7 69 135 <0.8 11 3.1 

  0.7 - - - 0.8 - 0.2 0.6 4.9 - 0.8 0.2 

+WWi 36 <1.2 <6 4.4 34 2.7 13 55 74 44 18 <2.8 

 +WWf 34 <1.2 <6 6.2 30 2.2 13 64 109 41 16 <2.8 

 +WW+LSf 13 <1.2 <6 <4.6 4.6 <2 4.8 71 148 <0.8 4.0 <2.8 
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Table 4.6  Volumetric removal rates of REE calculated using initial and final 

dissolved concentrations (mg m-3d-1).  Negative values denote an increase in dissolved 

concentrations.  Values are omitted (-) where there was no significant difference 

between initial and final concentrations.   

   Esperanza Guadalupe Real Socavón 

   +LS +WW 
+WW 
+LS +LS +WW

+WW 
+LS +LS +WW 

+WW 
+LS

Ce 20 11 10 7.4 0.86 2.7 17 - 7.8 

Dy - - - 2.0 1.0 1.0 1.7 0.86 0.86 

Er 1.5 0.75 0.75 - - - - - - 

Eu 1.2 - 0.58 - -0.49 0.71 1.4 - 0.68 

Gd 3.2 1.6 1.6 12 1.3 7.1 19 1.4 9.7 

Ho - - - 0.78 0.39 0.39 1.0 - 0.51 

La 5.4 2.7 2.3 2.0 -0.15 0.72 5.8 -0.26 2.6 

Nd 1.6 2.8 - -3.5 - -8.7 4.9 -3.2 - 

Pr - -4.0 -18 -13 - -21 -25 -12 -25 

Sc - - - 7.4 0.46 3.7 29 - 14 

Sm 3.7 1.8 1.8 11 - 6.9 7.7 - 4.7 

Tm - - - 0.38 0.44 - 1.4 0.89 0.89 
 

 Generally, similar behavior among REE was observed under the three incubation 

regimes. Consistent behavior was expected because REE have similar properties.  

REE solubility decreases with increasing pH (Verplank et al., 2004; Gilchrist et al., 

2009), REE can sorb to Fe and Al oxyhydroxides (Verplank et al., 2004; Centeno et 

al., 2004; Marmolejo-Rodríguez et al., 2007) and various microorganisms may sorb or 

uptake REE (Tyler, 2004; Merten et al., 2004, 2005).  Relative to co-treatment, 

Merten et al. (2004) found that REE can sorb to the fecal indicator bacteria, E. coli.  It 

is likely that the aforementioned removal mechanisms contributed to the general 

decrease in aqueous REE concentrations during the three incubation regimes.  Our 

results combine with the previously discussed findings to indicate that passive 

treatment systems are likely removing REE from their AMD influent.  Enough is not 

yet known about the positive or negative environmental effects of REE to determine 

whether this removal is advantageous.   
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4.5 Conclusions and Recommendations 

 Results indicate that cubitainer tests have broader utility than has been previously 

taken advantage of, passive treatment can be expanded to target more constituents of 

interest than it has been traditionally applied, and that the co-treatment of AMD with 

WW is a promising new application of passive treatment that should be further 

investigated.  In lieu of substrate analysis, AMD exposure can reveal the quality and 

chemical composition of potential calcareous passive treatment substrate.  Cubitainer 

tests are not only valuable for predicting alkalinity generation, but determining if 

substantial concentrations of potentially undesirable elements may be released from 

calcareous substrate during passive treatment.  Regarding the prospects of co-

treatment, AMD exposure to WW can remove significant quantities of key metals, 

such as tens of mg/L of As, from solution as well as imbue sufficient alkalinity to 

AMD to allow for subsequent aerobic Fe removal.  In addition, mixing AMD with 

WW before exposure to LS has relatively little effect on final alkalinity.  Locally, 

results indicate that although regionally-sourced LS can produce relatively high final 

alkalinity, it is a possible source for Mn and a few other potentially undesirable 

elements.   

 This study solicits further exploration along a few avenues.  Supplementary 

experimentation should be undertaken to explore the feasibility of high strength AMD 

and WW passive co-treatment.  Specifically, the ability of WW to decrease DO, 

remove Al and reduce Fe(III) to Fe(II) before the mixed effluent’s introduction to LS 

should be investigated.  The experiment illuminated possible passive treatment 

removal options for elements not often targeted (i.e., Ag, Sb, Sn, V, REE).  Further 

exploration is recommended to determine the potential for removal of these elements 

as our understanding of their ecotoxicity increases.  Expanded elemental tracking 



97 
 

within existing passive treatment systems is a logical step.  In addition, the ability of 

SRB to utilize the buffering capacity and carbon substrate provided by WW to 

produce alkalinity and metal sulfides could be determined with longer duration 

incubations.   
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CHAPTER V 
 

Performance of an Ecologically-Engineered Multi-Stage Acid Mine 

Drainage and Municipal Wastewater Passive Co-Treatment System 
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5.1 Abstract 

 A laboratory-scale, four-stage continuous-flow reactor system was constructed to test 

the viability of the passive co-treatment of high-strength acid mine drainage (AMD) and 

municipal wastewater (MWW).  The synthetic AMD had pH 2.6 and 1860 mg/L acidity 

as CaCO3 equivalent and with 46, 0.25, 2, 290, 55, 1.2 and 390 mg/L of Al, As, Cd, Fe, 

Mn, Pb and Zn, respectively.  The AMD was mixed at a 1:2 ratio with raw MWW from 

the City of Norman, Oklahoma containing 265 ± 94 mg/L BOD5, 11.5 ± 5.3 mg/L PO4
-3, 

and 20.8 ± 1.8 mg/L NH4
+-N and introduced to the system which had a total residence 

time of 6.6 d.  During the 135 d experiment, dissolved Al, As, Cd, Fe, Mn, Pb and Zn 

concentrations were consistently decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9 and 

73.4%, respectively, pH increased to 6.8 ± 0.1, and net acidic influent was converted to 

net alkaline effluent.  PO4
-3 and NH4

+-N were decreased to <0.75 and 7.4 ± 1.8 mg/L, 

respectively.  BOD5 was generally decreased to below detection limits.  Nitrification 

increased NO3
- to 4.9 ± 3.5 mg/L NO3

--N, however relatively little denitrification 

occurred.  Sulfate reducing bacteria were able to maintain a relatively high level of 

sulfate reduction (0.56 mol/m3-d) despite inhibitory pH and metals concentrations.  A 

100% reduction of all fecal indicator bacteria (FIB) was observed.  However, FIB 

exhibited evidence of sub-lethal injury with slower colony formation rates on standard 

growth media.  At a wasting rate of 0.69% of total influent flow, the system produced 

sludge with total Al, As, Cd, Cr, Cu, Fe, Pb and Zn concentrations at least an order of 

magnitude greater than the theoretical influent mix, which presents a possible 

environmental liability if not sustainably recovered or disposed.  Results suggest that the 

nitrogen processing community may require an extended period to mature and reach full 
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efficiency.  Overall, results indicate that passive AMD and MWW co-treatment is a 

viable ecological engineering approach for the developed and developing world that can 

be optimized and applied to improve water quality with minimal use of fossil fuels and 

refined materials.   
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5.2 Introduction 

 Acid mine drainage (AMD) and municipal wastewater (MWW) are common 

environmental liabilities for which sustainable treatment is central to maintaining global 

water resource quality and conserving energy resources.  Untreated AMD degrades water 

resources in coal and metal mining regions globally (Salomons, 1995; Wolkersdorfer and 

Bowell, 2004a, 2004b, 2004c; Bell and Donnelly, 2006).  Discharges of untreated MWW 

degrade water resources in many developing nations (Gadgil, 1998; Kivaisi, 2001, 

Nelson et al. 2001).  In developed nations, where MWW is generally addressed actively, 

treatment consumes substantial fiscal, material and energy resources (Muga and Mihelcic, 

2008).  Compared to passive methods, conventional active MWW and AMD treatment 

are energy-intensive with higher operational and maintenance costs (Nelson et al. 2001; 

Younger et al. 2002; Mannino et al. 2008; Muga and Mihelcic, 2008).  Passive methods 

can be considered an application of ecological engineering, which entails “the design of 

sustainable ecosystems that integrate human society with its natural environment for the 

benefit of both” (Mitsch, 1996). Renewable energy and natural unprocessed material 

flows must outweigh those of fossil fuel and refined material in ecological engineering 

applications (Mitsch and Jorgensen, 2004).   

  The passive co-treatment of AMD and MWW is a nascent application of ecological 

engineering that blends aspects of passive AMD treatment and conventional active 

MWW treatment.  The passive treatment of AMD often requires suitable organic 

substrate electron donors for dissolved oxygen (DO) stripping, bacterial sulfate reduction 

(BSR) and the bacterially-mediated reduction of metals, such as Fe.  Conventional active 

MWW treatment can require electron acceptors for bacterial oxidation of carbon 
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substrate, chemicals for pathogen removal, and physical or chemical filtration or 

flocculation for solids or P removal.  In theory, the requirements of both AMD and 

MWW treatment can be met within the same system, as each effluent possesses 

properties and constituents that can be passively utilized by the other.   

The possibility of using sulfate reducing bacteria (SRB) to treat AMD by BSR to 

generate alkalinity via bicarbonate production and remove metals from solution via 

sulfide precipitation was first suggested by Tuttle et al. (1969).  The reactions can be 

generally expressed as follows (Neculita et al. 2007):   

2CH2O + SO4
2- → 2HCO3

- + H2S  (1) 

H2S + M2+ → MS + 2H+  (2) 

where  CH2O is a simple sugar and M2+ is a metal ion such as Pb or Zn.   

 Numerous carbon sources, including horse and cow manure, chicken litter, ethanol, 

methanol, municipal sewage sludge, and municipal compost, have been successfully 

applied to encourage BSR (Waybrant et al., 1998; Tsukamoto and Miller, 1999; Younger 

et al., 2002; Benner et al., 2002; Cocos et al., 2002; Watzlaf et al., 2000; McCullough et 

al., 2006; Zamzow et al., 2006; Kaksonen and Puhakka, 2007; Luo et al., 2008).  MWW 

contains a wide variety of organic compounds ranging from simple sugars to more 

recalcitrant compounds, such as cellulose (Metcalf and Eddy, 1991).  Generally, BSR is 

coupled with limestone dissolution in passive treatment cells such as vertical flow 

bioreactors (VFB) to maximize alkalinity generation and metals retention.  However, 

BSR alone can be effective as Benner et al. (2002) and Cocos et al. (2002) have 

demonstrated.   



107 
 

 Sewage sludge has been used as a BSR carbon source to treat AMD.  Waybrant et al. 

(1998) observed sewage sludge to encourage higher levels of sulfate reduction than seven 

other commonly used organic carbon sources.  However, several studies have noted that 

mixtures of sludge with multiple organic carbon sources generally promote higher sulfate 

reduction rates than single sources (Waybrant et al., 1998; Harris and Ragusa, 2000; 

McCullough et al., 2006).  MWW contains a mix of labile and recalcitrant organic 

substrates (Metcalf and Eddy, 1991) which indicates that it should be able to support a 

rich and diverse community of preferential microbes.   

Metals and acidity can also be abiotically removed from solution by sorption to the 

organic substrates in AMD passive treatment system unit processes (Neculita et al. 2007).  

Organic substrates such as peat (Champagne et al. 2008), algae (Rose et al. 1998; Van 

Hille et al. 1999), dead algae and duckweed (Darnall et al. 1989; Jeffers et al. 1989), 

fungi (Subudhi and Kar, 1996; Delgado et al. 1998), seaweed (Aderhold et al. 1996), 

biosolids (Norton et al. 2004) and many of the aforementioned SRB carbon sources have 

demonstrated promise for abiotic AMD treatment via metals sorption.  Relative to co-

treatment, elevated concentrations of bacteria in raw MWW are present within activated 

sludge.  Utgikar et al. (2000) demonstrated that non-viable activated sludge from 

conventional MWW treatment could be an effective abiotic biosorbent for metals in low 

pH AMD.  

 Effective MWW treatment is required to safeguard receiving water bodies from 

eutrophication and subsequent environmental degradation.  Generally, MWW treatment 

must address suspended solids, P, N, oxygen demand and fecal indicator bacteria (FIB) 

concentrations.  Suspended solids can be removed by biodegradation, flocculation, 
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settling or filtration (Rebhun and Streit, 1974; Metcalf and Eddy, 1991).  P and 

suspended solids concentrations can be decreased by flocculation with free Al(III) and 

Fe(III) ions (Metcalf and Eddy, 1991; Omoike and Vanloon, 1999; Parsons and Smith, 

2008).  In addition, Adler and Sibrell (2003) and Wei et al. (2008) demonstrated that 

soluble phosphorus will sorb to pre-existing AMD floc.  MWW nitrogen processing 

generally requires sequential nitrification and denitrification (Metcalf and Eddy, 1991).  

Bacterial populations central to AMD treatment, such as aerobic heterotrophs, iron 

reducing bacteria (IRB), and sulfate reducing bacteria (SRB) as well as their associated 

supporting communities require sufficient nutrients for optimum operation (Neculita et al. 

2007).  Often, BSR substrate is supplemented with N and/or P to encourage greater SRB 

activity (Kaksonen and Puhakka, 2007).  Oxygen demand is a function of the 

concentration of biodegradable organic matter, nutrients and readily oxidized constituents.  

Oxygen demand can be lowered by bacterial respiration or reaction of labile organic 

matter and nutrients.  For example, aerobic heterotrophs, SRB, IRB and denitrifying 

bacteria utilize short-chain labile organic carbon thus lowering oxygen demand.   

Pathogen removal is a key aspect of MWW treatment.  Total coliform (TC), fecal 

coliform (FC), fecal streptococci (FS) and E. coli are typical FIB monitored to detect 

pathogenic risk. TC, FC and FS concentrations in untreated MWW are generally 105-106, 

104-105 and 103-104 CFUs/mL respectively (Metcalf and Eddy, 1991).  Pathogens are 

typically removed from MWW by chemical agents (e.g., chlorination), physical processes 

(e.g., heating), mechanical means (e.g., sedimentation), or radiation (e.g., ultraviolet 

disinfection) (Metcalf and Eddy, 1991).  However, pathogens can be removed by 

exposure to other unsuitable growth circumstances, such as elevated concentrations of 
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dissolved metals and extreme pH (Hackney and Bissonnette, 1978; Wortman and 

Bissonnette, 1985; Wortman et al., 1986; Wortman and Bissonnette, 1988).   

The disinfection of domestic sewage by AMD was first documented in the 1930s.  

Roetman (1932) noted this phenomenon, specifically suggesting that wastewater 

treatment facilities take advantage of the observed deleterious effects of AMD on fecal 

indicator bacteria (FIB).  Joseph and Shay (1952) found that populations of E. coli were 

rapidly decreased when exposed to AMD.  Rogers and Wilson (1966) manipulated pH of 

water samples from the Monongahela River in West Virginia containing domestic 

sewage-related microorganisms, finding a marked decrease in microbial concentrations in 

low pH samples.  More recent studies have noted that exposure to AMD causes death or 

widespread structural damage to E. coli and that extended incubation periods in 

specialized enriched medium are necessary to repair surviving cells (Hackney and 

Bissonnette, 1978; Wortman and Bissonnette, 1985; Wortman et al., 1986; Wortman and 

Bissonnette, 1988).  Carlson-Gunnoe et al. (1983) determined TC, FC, and FS counts to 

be decreased by orders of magnitude within two hours following in-stream exposure of 

sewage to AMD.  Keating et al. (1996) noted all strains of enteric bacteria tracked in a 

sewage-contaminated stream to be significantly and rapidly decreased to varying degrees 

during in-situ and laboratory bioassay exposure to AMD.   

 Although Roetman (1932) first suggested mixing AMD with MWW for pathogen 

removal, and despite the amount of aforementioned peripheral research, only a few 

systems have been intentionally constructed to simultaneously co-treat these effluents.  

McCullough et al. (2008) documented fortuitous water quality improvement and BSR in 

an evaporation pond in which high-strength AMD was accidentally introduced to 
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secondary MWW.  Johnson and Younger (2006) built a field scale single-stage 

constructed wetland treatment system that successfully improved the water quality of 

weak secondary MWW effluent (5-day biochemical oxygen demand (BOD5) of ~14 

mg/L) and relatively weak (net-alkaline with ~3 mg/L Fe) AMD.  Rose et al. (1998) 

developed algal based systems in waste stabilization ponds that treated synthetic AMD 

and organic-rich tannery effluent to achieve relatively high metal removal efficiencies.  

Despite promising short term performance, these mixed effluent systems failed after a 

few months due to algal metal toxicity.  In promising laboratory microcosm studies, Van 

Hille et al. (1999) initially separated the waste streams, using MWW to create algae-rich 

high pH effluent before mixing with AMD.  However, the author is not aware of any 

high-strength AMD and raw MWW co-treatment investigation, which is essential to 

addressing the approach’s feasibility and applicability.  To ascertain the promise of co-

treatment, the objectives of this study were to determine removal efficiencies of 

constituents of interest and concentrations of metals in the sludge produced.   

 

5.3 Methods 

5.3.1 Experimental Design 

 The experimental setup involved four serial unit processes in quadruplicate (Figure 

5.1).  The first unit processes were primary clarifiers for MWW and AMD mixing to 

raise AMD pH to that less inhibitory to BSR, complex metals with organic ligands, 

flocculate Fe and Al with P and suspended solids, reduce Fe(III) and SO4, strip DO, and 

process BOD via heterotrophic bacterial activity and solids settling.  The second and third 

unit processes together emulated a vertical flow bioreactor (VFB), which are common 
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unit processes in AMD treatment.  The upper column sections of the VFB emulation 

columns, which were filled with inert biomedia, were designed to encourage further DO 

stripping, BOD5 processing, Fe(III) reduction and BSR.  The bottom of the columns was 

filled with limestone for abiotic alkalinity generation via calcite dissolution and to 

encourage further BSR.  The final unit processes were aerobic wetland mesocosms for 

further BOD processing via the activity of aerobic heterotrophic and denitrifying bacteria, 

sequential Fe then Mn oxidation and precipitation, as well as the removal of remaining 

As, Cd, Pb and Zn via sorption to Fe oxyhydroxides.  Each unit process was connected to 

the next via clear vinyl tubing and sampled at its outflow. 

 

 

Figure 5.1  Conceptual experimental layout.  Blue dots indicate sampling points.  C1-4, 

K1-4, L1-4 and W1-4 represent the clarifiers, Kaldnes, limestone and wetlands of the 

four treatment trains, respectively.   



112 
 

 The primary clarifier unit process was sized for a relatively high retention time of 32 

hr for more complete mixing through passive diffusion, and to encourage bacterial 

activity and thorough solids settling of the light flocculant created.  Retention times of 1.5 

– 2.5 hr are typical for MWW primary clarification systems (Metcalf and Eddy, 1991; 

Frigon et al. 2006).  However, retention times of around 6 hr or greater commonly exist 

where further sedimentation or biological activity is desired (Anderson, 1981; Gernaey et 

al. 2001).  Four-cm deep single transverse baffles and 2.5-cm radius semi-circular weirs 

served as the physical structures in the LDPE basins that comprised this unit process.  

Sludge was wasted from the bottom of the clarifiers under gravity flow with a barbed 

HDPE T-connector attached to a HDPE valve and clear vinyl tubing.   

 The VFB emulation columns were 91.5 cm in height and 12.5 cm in diameter.  The 

bottom 38 cm of the columns were filled with high quality (>90% CaCO3) limestone 

washed of all fines and separated by sieve analysis adapted from ASTM D422 with the 

fraction passing a 2.54-cm sieve yet retained by a 1.27-cm sieve.  The remaining top 53.5 

cm of the columns were packed with Kaldnes K3 biofilm media to provide bacterial 

biofilm attachment surface.  Kaldnes K3 media are polyethylene high surface area (500 

m2/m3) components that are typically used in moving bed biofilm wastewater and 

drinking water treatment (Rusten et al., 2006).  Following Pruden et al.’s (2007) findings 

of the importance of inoculation to sulfate reducing bioreactor performance, the Kaldnes 

zone was inoculated with 100 mL of VFB substrate from two mature passive coal mine 

AMD treatment systems in Pittsburg and Latimer Counties, OK.  Each column was 

wrapped in aluminum foil to emulate the lightless conditions in VFB substrate.   
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 The aerobic constructed treatment wetland mesocosms were two shallow LDPE 

basins.  Each basin was bisected longitudinally with plastic to create the necessary four 

treatment trains.  Wetland soil was collected from an existing constructed mitigation 

wetland at the Midwest City, Oklahoma MWW Treatment Plant.  The surface flow 

mesocosms were planted with Hydrocotyle verticillata and Nasturtium officinale from 

nursery stock.  The wetlands were placed under timed grow-lights on a 12 hr/d cycle.   

 

5.3.2 Data Collection 

 Temperature, pH, and specific conductance (SC) were determined using an Orion 

1230 multimeter.  An Accumet AR60 multimeter was used to determine temperature and 

DO concentrations.  BOD was determined using the 5-day BOD test following standard 

methods (APHA, 1998).  Alkalinity titrations were conducted in accordance with 

standard methods (APHA, 1998) and Hach Method 8203 (Hach, 2002).  Dissolved metals 

samples were filtered through 0.45-µm nylon filters prior to preservation.  Total and 

dissolved metals samples were preserved with concentrated trace metal grade nitric acid 

and stored at 4°C until microwave acid digestion following EPA method 3015.  Digested 

total metals samples were filtered through 0.45-µm nylon filters prior to analysis.  Total 

and dissolved metals samples were analyzed via a Varian Vista-Pro® simultaneous 

inductively coupled plasma-optical emission spectrometer following EPA method 6010.  

Samples for anion (Cl-, F-, NO2
-, NO3

-, PO4
3- and SO4

2-) analyses were stored at 4°C until 

filtered through Dionex OnGuard® II H cartridges and 0.2-µm nylon filters.  NH4 

samples were immediately processed using the Hach® Company high range Test ‘N 

Tube® salicylate method (Hach, 2002). A MetrOhm® 761 compact ion chromatograph 
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unit was used to quantify anion concentrations following EPA method 300.  Following 

Sharp et al. (1995), water samples for dissolved organic carbon (DOC) and dissolved 

total nitrogen (DTN) were immediately filtered through 0.45-μm nylon filters and stored 

at <0 °C in 40-mL amber glass EPA vials with polypropylene caps and Teflon septa until 

quantification with an Analytik Jena multi N/C 2100 Analyzer.   

 Biological activity reaction tests (BART™) by Droycon Bioconcepts Inc. (DBI) and 

the MPN (most probable number) technique were applied to estimate non-indicator 

bacterial populations.  BART™ tests were conducted to determine estimates of 

fermentative, sulfate reducing, Fe-related, nitrifying and denitrifying bacteria 

concentrations.  BART™ tubes were incubated at ~22 ˚C and read every 12 or 24 hr.  

DBI QuickPop software was used to estimate populations.  The MPN technique for 

enumeration of fermentative bacteria followed Pepper et al. (1995) using test tubes with 

Durham tubes containing phenol red broth with lactose from Becton Dickinson 

Diagnostic Systems.  The MPN technique for enumeration of Fe reducing bacteria used 

test tubes with Durham tubes following Standard Methods (APHA, 2005) with a slight 

growth media modification following Viswanathan (2007).  For fermentative bacteria, 

triplicate test tubes were inoculated in an anaerobic nitrogen-filled chamber for a dilution 

range of 10-1 to 10-8 and incubated for 24 hr at 37°C.  For Fe reducing bacteria, triplicate 

test tubes were inoculated in an anaerobic nitrogen atmosphere for a dilution range of 

1:102 to 1:106 and incubated at 25°C for 14 d.  MPN results were interpreted using 

guidance and tables from Woomer (1994).  

 Raw MWW collected after grit screening at the City of Norman, Oklahoma Water 

Pollution Control Facility and synthetic high-strength AMD approximating that found at 
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Cerro Rico de Potosí, Bolivia were introduced to the system at a 1:2 ratio (AMD:MWW).  

The system was gravity flow from the first (clarifier) to the last (wetland) unit processes.  

MWW was collected weekly, homogenized during pumping and refrigerated at 4°C 

before introduction to the system.  AMD was prepared weekly and stored at room 

temperature (20°C) until use.   The AMD and MWW were introduced with peristaltic 

pumps at a combined flow rate (3.8 L/d) to produce an 18-hr residence time in the 

limestone stage, which is greater than the recommended minimum 15-hr design residence 

time suggested for anoxic limestone drains and the limestone drain components of VFBs 

(Younger et al., 2002; Table 5.1).  All unit processes were maintained at room 

temperature throughout the experiment.  Percent coverage of each plant species in the 

wetland mesocosms was estimated at days 29, 75, 94, 99, 112, 130 and 133 using digital 

photography.  Sludge was wasted from the clarifiers in varying amounts at irregular 

intervals to average 0.69% of the combined inflow over the duration of the experiment.   

 

Table 5.1  Design details and residence times for each unit process 

Unit Process 
Surface 

Area 
Total 

Volume Porosity
Void 

Volume 
Residence 

Time 

cm2 cm3 cm3 hr 

Clarifier 405 5,020 1 5,020 32 
Kaldnes 154 8,230 0.82* 6,750 42 
Limestone 154 5,850 0.5α 2,920 18 
Wetland 5,100 10,600 1 10,600 67 
Overall 5,813 29,700 25,290 159 

  * Value obtained from Saliling et al., 2007 
  α Value obtained from Younger et al., 2002 
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The membrane filter technique (APHA, 1998) was employed to estimate TC, FC, FS, 

and E. coli concentrations in water samples.  Sterilized lab-grade glassware was used to 

obtain samples that were analyzed upon collection.  Samples from each location were 

replicated once for FIB analyses and examined at varying dilutions during each sampling 

event.  DifcoTM growth media was prepared according to the manufacturer’s instructions 

in sterile, 47-mm Millipore® disposable culture dishes prior to filtration.  MI agar was 

used in culture dishes for TC and E. coli. FS and FC culture dishes used m-Enterococcus 

and m-FC media, respectively.  As per manufacturer’s instructions, rosolic acid salt 

reagent was mixed into the FC growth media.  Water samples were filtered through 

sterile, 47-mm Millipore® 0.45-µm membrane filters.  Following the designated 

incubation period, colony forming units were counted on each culture dish and recorded.  

In addition, culture dishes were incubated past their prescribed incubation periods.  

Rompré et al. (2002) suggest traditional membrane filter technique methods may not 

accurately assess FIB counts in the prescribed incubation period.  Because sub-lethal 

damage to bacteria cells was suspected, colony forming units were counted and recorded 

after the prescribed incubation period every 24 or 48 hours for up to 244 hours.  Since 

FIB in most treatment stages were exposed to extremely stressful conditions, some 

bacteria may have been non-culturable, yet viable in the environment (Maier et al., 2000). 

 The experiment consisted of two treatment regimens.  First, during Treatment 

Regimen 1 (TR1) each treatment train continuously handled influent for 135 d.  Sampling 

generally occurred bi-monthly during this standard operational run for a total of ten 

sampling events.  BOD5, dissolved metals and anion samples as well as pH, SC, DO, and 

alkalinity measurements were taken throughout the entire experiment.  Total metals 
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samples were only taken during the final two sampling events.  Sludge metal samples 

were taken each time sludge was wasted.  NH4 samples were taken for the last five 

sampling events.  FC and FS were examined throughout the experiment.  TC and E. coli 

were examined for the last five sampling events.  DOC and DTN samples were only 

taken during the final two sampling events.  Water samples for MPN tests were taken 

from the columns on the final sampling event (day 133).  BART tests were initiated on 

days 85, 112, 123, 130.  At the conclusion of the standard operational run the VFB 

emulation column ports were sealed to begin Treatment Regimen 2 (TR2).  For TR2, the 

columns remained sealed at room temperature for 91 d until sampling for dissolved and 

total metals, anions, FIB, pH, SC, DO, and alkalinity. 

 

5.3.3 Data Analysis 

 Because direct sampling of the clarifier influent mix was impossible due to the 

experimental design, the theoretical influent mix (TMix) chemical composition was 

calculated using the ratio of AMD to MWW.  To account for dilution, Tmix 

concentrations were used to calculate processing efficiencies and rates.  Net acidity and 

acidity were calculated following a modified version of that presented by Younger et al. 

(2002), which accounted for the acidity from the substantial Cd2+, Cu2+and Zn2+ 

concentrations present in these unique waters.  For acidity calculations, all Fe was 

assumed to be Fe(II) when pH > 3 and Fe(III) when pH < 3, because Fe(III) predominates 

for most solutions with pH < 3 (Kirby and Cravotta, 2005).  This assumption generally 

follows empirical observations (Younger et al. 2002; Watzlaf et al. 2004; Kirby and 

Cravotta, 2005).   
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To facilitate the calculation of means and application of statistical tests, metal and 

anion concentrations below detection limits were assigned one half the value of the 

detection limit.  All statistical testing was completed with Minitab® version 15 or with 

Microsoft Excel employing a type I error rate of α = 0.05.  Prior to means or median 

testing, all data sets were tested for normality with the Anderson-Darling test and 

similarity of variance.  Due to the prevalence of normality and unequal variances, two-

tailed, unpaired, heteroscedastic Student’s t-tests were applied for total dissolved metal, 

clarifier sludge total metal, DTN, DOC, standard incubation period FIB and all TR2 data 

comparisons.  FIB concentration means after extended incubation periods were compared 

between treatment stages at each colony enumeration.  One-tailed unpaired 

heteroscedastic Student’s t-tests were applied to test FIB means between treatment stages 

after each incubation period because only the FIB concentrations in a treatment stage that 

decreased from the previous stage were of interest.  The nonparametric Kruskal-Wallis 

Multiple Comparisons test was used to determine statistical difference between the 

medians of the remaining data sets due to the prevalence of unequal variances and non-

normality.  Because estimated plant coverage and NO3
- were not measured on the same 

days, a second order polynomial mathematical model of percent estimated coverage was 

created for each wetland to enable Pearson product moment correlation tests.   

 

5.4 Results and Discussion 

5.4.1 Influent Characteristics   

 The high strength synthetic AMD was similar in composition to that generated in the 

base/precious metal mining district of Cerro Rico de Potosí, Bolivia where untreated 
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high-strength AMD and raw MWW pollute the headwaters of the Rio Pilcomayo 

(Strosnider et al. 2007, 2008; Tables 5.2 and 5.3).  The AMD had 0.41 mg/L NO3
--N, 

<0.4 mg/L NH4
+-N, 0.29 mg/L DTN, and 0.0 mg/L DOC.  The mean alkalinity, BOD5 

(265 ± 94 mg/L) (mean ± standard deviation), Cl- (69 ± 3.8 mg/L) and SO4
2- 

concentrations place the MWW used between the “medium” and “strong” designations of 

MWW established by Metcalf and Eddy (1991).  MWW DOC and DTN were 42 and 30 

mg/L, respectively.  Although the AMD influent characteristics were consistent, some 

MWW influent characteristics, such as BOD5 and PO4
3- (11.5 ± 5.3 mg/L), varied 

somewhat throughout the experiment.  This variance is to be expected and is typical of 

loadings experienced by conventional wastewater treatment plants (Metcalf and Eddy, 

1991).  However, MWW alkalinity, Cl-, F- (1.0 ± 0.09 mg/L), NH4
+-N (20.8 ± 1.8 mg/L), 

NO2
--N (<0.08 mg/L), and NO3

--N (<0.11 mg/L) were relatively consistent.  MWW FC, 

FS, E. coli and TC concentrations were 106.37, 105.67, 106.58 and 106.97 cfu/100mL.  AMD 

FIB concentrations were consistently 0 cfu/100mL.  

  

Table 5.2  Mean influent AMD and MWW physiochemical properties and sulfate 

concentrations; n=10 for all except where noted. 

 pH DO SC Alkalinity Net Acidityδ Net Acidityτ SO4
2- 

 s.u. mg/L uS/cm mg/L as CaCO3 equivalent mg/L 

MWW 7.67 0.98 951 288 -287 -268 70 

s.d. 0.12 0.49 66 20 20 - 16 

        

AMD 2.60 7.69 3010 0 1,870 1,810 1,920 

s.d. 0.04 0.64 112 0 91 - 140 
   δ Calculated with dissolved metal concentrations 
   τ Calculated with total metal concentrations (n = 2) 
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Table 5.3  Mean influent AMD and MWW dissolvedδ (n=10) and totalτ (n=2) metal 

concentrations. 

MWWδ MWWτ AMDδ AMDτ 

mean s.d. mean mean s.d. mean 

mg/L 

Al 0.108 0.018 0.692 45.8 3.2 46.3 

As <0.022 - <0.022 0.25 0.14 0.38 

Ca 39.6 4.5 40.5 82.8 3.5 90.6 

Cd 0.0010 0.0003 0.0009 2.02 0.08 2.29 

Cr 0.0036 0.0045 0.0066 0.027 0.034 0.012 

Cu 0.0067 0.0021 0.029 0.0052 0.0028 0.088 

Fe 0.315 0.091 0.719 292 23.8 268 

K 16.3 0.58 16.6 0.46 0.62 0.02 

Mg 21.1 2.99 18.2 26.1 1.3 26.5 

Mn 0.056 0.010 0.063 54.6 3.0 54.4 

Na 73.7 3.25 66.9 <0.0006 - <0.0006 

Ni 0.0103 0.0017 0.0048 0.145 0.026 0.192 

Pb 0.015 0.0051 0.014 1.21 0.10 1.25 

Zn 0.045 0.0402 0.526 391 21.6 388 
 

5.4.2 MWW Constituents 

5.4.2.1 Phosphorus 

 PO4
-3 was decreased from the theoretical influent mix 7.7 ± 3.5 mg/L to <0.75 mg/L 

by the clarifier outflow, producing a removal rate of 5.6 g m-3d-1.  Flocculation with 

Al(III) and Fe(III) (e.g., Omoike and Vanloon, 1999; Parsons and Smith, 2008) or 

sorption to pre-existing AMD floc (e.g., Adler and Sibrell, 2003; Wei et al. 2008) were 

the likely primary removal mechanisms.  Stoichiometrically, more than enough Fe and Al 

were removed from solution in the clarifier to account for the observed PO4
-3 removal.  

The thorough and rapid PO4
-3 removal observed indicates that higher removal rates may 

be possible in an optimized system.   
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The multi-stage co-treatment system removed PO4
-3 as well as conventional MWW 

treatment plants and better than conventional treatment wetlands and the single-stage co-

treatment system described by Johnson and Younger (2006).  The extent and rate of PO4
-3 

removal noted in the clarifier is similar to that observed in conventional MWW treatment 

plants that incur significant costs via additional intensive treatment steps or flocculant 

dosing (Metcalf and Eddy, 1991; Parsons and Smith, 2008).  Assuming that influent P 

was primarily in the form of PO4
-3, the PO4

-3 removal rate in the clarifier was greater than 

90% of FWS wetlands (Kadlec and Wallace, 2009).  The Johnson and Younger (2006) 

single stage co-treatment system treated MWW with 39% less PO4
-3 yet removed 10-50% 

of PO4
-3, a much lower removal efficiency and rate than was observed in the multi-stage 

co-treatment system clarifier.  Results indicate that PO4
-3 removal is enhanced by co-

treatment with higher strength AMD that contains greater concentrations of Al and Fe.   

 

5.4.2.2 Nitrogen 

 The multi-stage co-treatment system demonstrated promising nitrification rates yet 

underperformed with regards to denitrification.  NH4
+ and NO3

- concentrations were 

statistically unchanged until the wetlands, where nitrification occurred (Figure 5.2).  NO3
- 

concentrations increased to a mean 4.94 ± 3.49 mg/L NO3
--N in the wetlands, for a mean 

rate of 0.036 g N m-2d-1.  Extended column residence time (TR2) NO3
- concentrations 

were driven to below detection limits (< 0.11 NO3
--N) in the Kaldnes and limestone 

stages, indicating that denitrification could occur in this setting.  TR2 NH4
+ was not 

significantly different.  For the final five sampling events, mean wetland NH4
+-N removal 

(7.76 mg/L) compared well with NO3
--N increase (6.95 mg/L), indicating that minimal 
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denitrification occurred for this period on average.  However, the DTN data taken for the 

final two sampling events indicated that N-removal, and hence denitrification, eventually 

occurred (Table 5.4).  DTN was significantly unchanged until it decreased within the 

wetlands.  BART results indicated that nitrifying bacteria were not aggressive until the 

wetlands as well, where 103 cfu/mL were detected.  Denitrifying bacteria concentrations 

were 101-6 cfu/mL throughout the first three unit processes, however there was little NO3
- 

available.  Denitrifying bacteria ranged from 102-5 cfu/mL in the wetlands.  Overall, data 

indicate that the denitrifying bacterial community was still developing by day 133 and 

that greater denitrification, and hence overall N removal, efficiency would eventually be 

better in a mature system. 

 

 

Figure 5.2  Mean NH4
+-N concentrations from the TMix to the system outflow for each 

sampling period.  Error bars represent one standard deviation above and below the mean.   
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Table 5.4  Mean DTN and DOC concentrations for the TMix and throughout the system 
Site DTN DOC 

  mg/L mg/L 

Tmix 20 28 

C 16 5.1 

K 18 3.6 

L 18 6.2 

W 12 2.5 
 

 Conventional MWWTPs (municipal wastewater treatment plants) and treatment 

wetlands generally process N better than the multi-stage co-treatment system.  

Conventional MWWTPs generally nitrify and denitrify more effectively with less 

retention time than the multi-stage co-treatment system (e.g., Koivunen et al., 2003; 

Tandukar et al., 2007).  FWS (free water surface) and HSSF (horizontal subsurface flow) 

treatment wetlands have been found to process TN and NO3
- effectively (Kadlec and 

Wallace, 2009), unlike the multi-stage co-treatment system.  The wetland unit process 

nitrification rate was an order of magnitude less than the mean FWS and HSSF wetland 

rates (Kadlec and Wallace, 2009) indicating that nitrification may have been substantially 

inhibited.  Because AMD generally limits bacterial activity (Niyogi et al., 2003), 

microbial nitrification and denitrification as well as nitrogen assimilation could be 

relatively decreased in populations exposed to AMD.  Stone et al. (2006) found that 

elevated Zn can inhibit denitrification.  Although pH was circumneutral and the other 

AMD metals were decreased to below concentrations of concern, Zn was orders of 

magnitude above typical background concentrations from the wetland inflow to outflow.  

In addition, denitrification may have been limited by DO concentrations which averaged 

4.4 mg/L and/or the lack of labile carbon substrate because BOD5 was often driven to 

below detection limits by the wetland outflow.  Johnson and Younger (2006) documented 
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nitrification and denitrification within their single-stage co-treatment wetland where Zn 

concentrations were less, another indicator that Zn concentrations were likely an 

inhibiting factor for nitrification and/or denitrification.  However, the multi-stage co-

treatment system did not appear to have reached N treatment equilibrium. 

 The nitrification rate increased over the duration of the experiment from 0.012 g NO3
-

-N m-2d-1 at day 20 to 0.091 g NO3
--N m-2d-1 at day 133, indicating that the nitrifying 

community was maturing throughout the experiment and likely not reached maximum 

efficiency (Figures 5.3 and 5.4).  Wetland outflow NO3
- concentrations were positively 

correlated with time after experiment initiation (Pearson’s correlation coefficient 0.859, p 

< 0.001) as well as modelled estimated plant coverage (Pearson’s correlation coefficient 

0.636, p = 0.001) (Figure 4).  In a FWS wetland treating NH4
+ and Fe-rich AMD, Demin 

et al. (2002) noted no NH4
+ treatment for the first three years and that six years were 

necessary for removal optimization.  Demin et al. (2002) posit that the buildup of Fe 

oxyhydroxide floc in their wetland created more suitable nitrifying community substrate 

and approximately 0.3 cm of Fe oxyhydroxide floc was noted to cover the multi-stage co-

treatment wetland substrate by the conclusion of the experiment.  However, nitrification 

can be enhanced by aquatic macrophyte oxygen transfer to substrate (Faulwetter et al. 

2009; Kadlec and Wallace, 2009).  The lag in nitrification performance may also be 

attributed to the time necessary for natural selection and horizontal gene transfer (e.g., 

Baker-Austin et al. 2006) to shape an efficient nitrifying community suited to the unique 

setting and stresses of the wetland.  Regardless, the findings of Demin et al. (2002) 

buttress the supposition that the multi-stage co-treatment nitrification performance had 

not reached optimum efficiency by the termination of the experiment. 
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Figure 5.3  Mean NO3
--N concentrations from the TMix to the system outflow for each 

sampling period.  Bars are shaded according to the days elapsed from experiment 

initiation to the sampling event.  Error bars represent one standard deviation above and 

below the mean.   

 

 

Figure 5.4  NO3
--N concentrations with respect to modelled estimated plant coverage 

days after experiment initiation for each wetland in the treatment train 
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5.4.2.3 BOD5 

 The system demonstrated consistently highly efficient BOD5 processing (Table 5.5).  

Although BOD5 could not be tracked throughout the entire system due to highly elevated 

concentrations of chemical oxygen demand unrelated to the MWW, DOC can be a 

suitable proxy for tracking BOD5 (Khan et al., 1998; Servais et al., 1999).  DOC was 

most dramatically and significantly decreased in the clarifier (Table 2).  A further 

significant DOC decrease was noted in the wetlands.  Sedimentation aided by 

flocculation with Al(III) or Fe(III) likely decreased BOD5 and DOC in the clarifiers (e.g., 

Rebhun and Streit, 1974; Metcalf and Eddy, 1991; Omoike and Vanloon, 1999).  The 

activity of various heterotrophic microbes (i.e., SRB, denitrifiers, fermenters, IRB, and 

aerobic heterotrophs) likely served to decrease BOD5 and DOC throughout the system.  

BART results indicated that gram-negative fermenting bacteria were present in 

concentrations of 102-3 cfu/mL in the limestone and wetlands.  MPN results were lower, 

with 101.83 and 101.76 cells/mL of fermentative bacteria present in the Kaldnes and 

limestone unit processes, respectively.  The aforementioned mechanisms resulted in 

BOD5 processing to below detection limits and an overall systemic removal rate of 1.14 g 

m-2d-1 or 22.3 g m-3d-1.   
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Table 5.5  BOD5 concentrations in the influent MWW, TMix, and each treatment train’s 

wetland outflow (W1-4).   

Day 

MWW TMix W1 W2 W3 W4 

mg/L 

20 472 311 3.49 1.92 1.50 3.24 
34 296 195 1.24 <1.24 <1.24 1.63 
55 236 156 2.10 2.30 2.40 2.50 
69 148 97 <1.42 2.06 3.10 2.11 
83 227 150 <1.35 <1.35 <1.35 <1.35 
90 251 166 <1.16 <1.16 <1.16 <1.16 
98 256 169 <1.04 <1.04 <1.04 <1.04 
111 320 211 2.38 2.22 <0.98 1.15 
118 302 199 <1.03 1.31 1.27 1.47 
133 141 93 <1.47 <1.47 <1.47 <1.47 

 

However, BOD5 exertion can be decreased by elevated concentrations of heavy 

metals.  Mittal and Ratra (2000) noted that Zn in concentrations of 20 and 50 mg/L 

decreased BOD5 exertion by 28.7 and 37.5%, respectively.  Because the wetland outflow 

BOD5 was below or near detection limits, the mean 34.3 mg/L Zn present would not 

substantially impact overall removal performance.  It appears as though BOD5 was 

successfully processed despite concentrations of Al in the clarifiers and Kaldnes as well 

as Zn throughout the system that Mittal and Ratra (2000) found to be inhibitory to BOD5 

exertion.   

 The multi-stage co-treatment system processed BOD5 as well or better than 

conventional MWWTPs, treatment wetlands and the single-stage wetland co-treatment 

wetland.  BOD5 processing was more complete than is often documented in conventional 

MWWTPs, which often produce effluent with BOD5 of 5-30 mg/L (e.g., Koivunen et al. 

2003; Tandukar et al. 2007; Jamwal et al. 2008).  However, conventional MWWTPs 

often have much lower residence times (Metcalf and Eddy, 1991).  The BOD5 processing 
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of the multi-stage co-treatment system also outperformed the three primary types of 

MWW treatment wetlands; FWS, HSSF and vertical flow (VF).  Compared to the annual 

mean treatment performance of 136 FWS wetlands, the system produces influent with 

BOD5 less than the vast majority treating tertiary MWW (influent BOD 0-30 mg/L) and 

all FWS treating primary and secondary MWW (Kadlec and Wallace, 2009).  Compared 

to the annual mean treatment performance of 202 HSSF wetlands, the system produces 

influent with BOD5 less than the vast majority treating tertiary MWW (influent BOD5 0-

30 mg/L) and all HSSF wetlands treating primary and secondary MWW (Kadlec and 

Wallace, 2009).  The system produces influent with BOD5 less than the annual mean 

treatment performance of the vast majority of 62 VF wetlands, (Kadlec and Wallace, 

2009).  The system actually drove BOD5 to below typical background concentrations in 

natural or treatment wetlands (Kadlec and Wallace, 2009).  Johnson and Younger (2006) 

reported 20-75% removal in their single-stage co-treatment wetland with a mean 

residence time of 14 hr receiving secondary MWW with only ~14 mg/L BOD5.  

Although the residence time of the multi-stage co-treatment system was 10 times that of 

the Johnson and Younger (2006) system, the multi-stage system demonstrated much 

more complete BOD5 removal while handling MWW with a BOD5 concentration 

approximately 19 times greater.    

 

5.4.2.4 FIB 

5.4.2.4.1 Treatment Regimen 1 

Co-treatment resulted in 100% removal of FIB in the last two stages of treatment 

(Figure 5.5).  There was no significant difference between the limestone zone in the 
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column (L) and wetland (W), for FC, FS, or E. coli.  A significant difference between the 

treatment means of the L and W stages occurred for TC.  Significant differences existed 

between all other stages of each FIB as exponential decreases in concentrations were 

observed through each stage prior to stage W. 

 

 

Figure 5.5  Indicator bacteria concentrations means in each treatment stage.  TheoMix 

refers to the 2:1 ratio of MWW to AMD in the system influent.   Standard errors of the 

means were too small to be perceptible on this figure and thus excluded.  The number of 

samples for each treatment stage and indicator bacteria was highly variable.  

 

The observed removal efficacy shows that this system had the ability to decrease FIB 

concentration by 100% during the first three treatment stages of this system.  This 

reduction occurred within 81 hours of the introduction of AMD and MWW to the 

treatment system, prior to the wetland (W) treatment stage.  The significant increase in 
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TC from stage L to the outflow of W indicated coliforms may proliferate in the wetland, 

despite close proximity to UV light from the grow lights, which has been shown to 

destroy FIB (Metcalf and Eddy, 1991; Chrtek and Popp, 1991).  However, the other FIB 

tracked did not exhibit a significant increase in the wetland during standard incubation in 

culture dishes.  

Most FIB removal occurred in treatment stage C.  FIB were exposed to low pH and 

high metals concentrations (Figure 5.6).  These stressful conditions can cause death in 

bacteria lacking proper adaptations (Maier et al., 2000).  Oxidized iron bound to organic 

material settled in treatment stage C.  It is likely FIB were bound to this flocculated 

material and removed by wasting the sludge.  Vigneswaran and Visvanathan (1995) note 

the effectiveness of FIB concentration decrease via flocculation.  In subsequent treatment 

stages, microorganisms present in the inoculants in the filter media could have 

outcompeted FIB for dwindling resources (Almasi and Pescod, 1996).  In treatment stage 

K, low pH could have aided in the removal of FIB. Zn toxicity (Zn > 65 mg/L) could 

have also contributed to the death of FIB in treatment stages C and K (Nies, 1999).  In 

treatment stage L, resource competition is likely the main removal mechanism.  However, 

low biochemical oxygen demand (BOD) can affect FIB removal as well (James, 1987).  

Although the BOD at the effluent of treatment stage L was not determined, BOD in the 

effluent of treatment stage W was consistently less than 3 mg/L.  James (1987) found that 

BOD concentrations less than 20 mg/L could starve FIB to the point of rapid die-off.  In 

addition to this starvation, ultraviolet light irradiation was likely the main FIB removal 

mechanism in treatment stage W, but this treatment stage primarily served to keep 

concentrations of FIB low. 
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Figure 5.6 Zn and dissolved oxygen concentrations and pH for all treatment stages. 

Error bars represent standard errors of the means.  

 

Many MWWTPs discharge treated effluent with substantial concentrations of FIB 

(e.g., Rose et al., 1996; Koivunen et al., 2003; Zhang and Farahbakhsh, 2007; Kay et al., 

2008; Suh et al., 2009).  In a study of 12 WWTPs across the United Kingdom, Kay et al. 

(2008) document no statistically significant elimination of FC or TC in primary 

clarification.  However, Kay et al. (2008) noted FC decreases from 107.23 to 105.63, 105.45, 

and 105.20 and TC decreases from 107.59 to 106.15, 105.89 and 105.83 cfu/100mL as MWW 

flows through primary clarification and trickling filters, activated sludge, or rotating 

biological contactors, respectively.  Ultraviolet light irradiation decreased FC and TC 

concentrations to 102.45 and 103.18, respectively.  This study shows FIB removal in passive 
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co-treatment systems may be higher than removal in active municipal wastewater 

treatment systems.   

This co-treatment system outperformed other passive MWW treatment systems, such 

as free-water surface (FWS), subsurface flow (SSF) constructed wetlands, and soil filters 

(Table 5.6).  In a compilation of FWS constructed wetland treatment data from several 

systems across the globe treating secondary and tertiary MWW, many of which have 

residence times days greater than the co-treatment system, Kadlec and Wallace (2009) 

document FC, FS, E. coli, and TC reductions in the approximate range of 105 to 103, 104 

to 102, 105 to 101, and 107 to 105 cfu/100mL, respectively.  Co-treatment achieves more 

complete and rapid removal of FIB than that documented in SSF constructed wetlands 

(Ottová et al., 1997; Green et al., 1997; Vymazal et al., 2005; Meuleman et al., 2003, 

Garcia et al., 2008; Kadlec and Wallace, 2009).  The constructed soil filters examined by 

Kadam et al. (2008) removed FIB more rapidly, yet less completely than co-treatment.  

 

Table 5.6 Passive MWW treatment system mean influent (I) and effluent (E) indicator 

bacteria concentrations (in log10 cfu/100mL) for systems handling primary, secondary 

and/or tertiary MWW.   

 Primary/Secondary/Tertiary Secondary/Tertiary 

 Co-Treatment FWS SSF Soil Filter 

 I E I E I E I E 

FC 6.19 -A 5.21B 3.28B 6.04B 3.72B 7.70F 4.76F 

FS 5.49 - 5.01C 3.62C 5.27D 2.27D   

E. coli 6.40 - 5.14C 3.72C 7.67E 1.27E   

TC 6.79 1.60 6.76C 4.91C 6.35B 4.23B 8.44F 6.41F 
A “-” indicates 0 cfu/100mL detected. 
BKadlec and Wallace (2009) (7.7- and 5.8-d residence time for FC and TC, respectively) 
C Molleda et al. (2008) (312-hr residence time) 
D Garcia et al. (2008) (3-d residence time) 
E Meuleman et al. (2003) 
F Kadam et al. (2008) (0.5-2.0 hr residence time)   
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Extended incubation of culture dishes may have given evidence of sub-lethal damage 

to FIB cells (Figure 5.7).  Although average concentrations of FS in AMD, MWW, and 

treatment stages C and K did not exhibit significant differences (p > 0.05) between 

incubation periods of 48, 72, or 120 hours, FS concentration in treatment stage L 

significantly increased from 3.2 ± 1.4 to 11 ± 2.5 cfu/100mL (mean and S.E.) in the 

standard incubation period of 48 hours to an extended incubation period of 120 hours.  

Although increasing incubation periods in treatment stage K did not increase FIB counts, 

significantly higher average concentrations of FS were observed in the K stage than in the 

L stage at all incubation period enumerations.  Because a layer of biofilm was present on 

the Kaldnes K3 media in the K stage, it is possible this stage promoted higher microbial 

activity and higher tolerance of FS to metals.  Staphylococcus epidermidis has been 

observed proliferating in biofilms in industrial, clinical, and environmental settings 

(Baker-Austin et al., 2006).  Additionally, Baker-Austin et al. (2006) indicate that 

biofilms may encourage the co-selection of resistance to antibiotics and tolerance of 

metals.  It is possible these biofilm communities amplified the resistance of FS.  When 

allowed to mature in treatment stage L, FS cells were able to recover from the stressful 

environment on the culture plates in extended incubation. 
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Figure 5.7 Average concentrations of E. coli in treatment stages L and W after extended 

incubations. Error bars show standard error of the means.  Average concentrations after 

standard incubation were significantly different in both treatment stages after 72 hours of 

incubation. 

 

Extended incubation of E. coli culture dishes also resulted in increased concentrations.  

Average E. coli concentrations in treatment stages L and W significantly increased after 

extended incubation from 0 cfu/100mL each to 1.4 and 6.8 cfu/100mL, respectively (1:1 

and 1:2 dilution for treatment stages L and W, respectively; Figure 5.4).  Because the 

residence time is over 4 times as long in treatment stage W than stage L, there may be 

greater potential for metal tolerant bacteria to recover in the wetland through increased 

exposure to resistance genes.  Metal tolerant E. coli has been found to proliferate in 

municipal wastewater at circumneutral pH (Gikas, 2008).  Perhaps, after the limestone 
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treatment increased the pH of the system, E. coli cells were impeded in growth rather 

than destroyed. E. coli is typically suppressed by aerobic conditions, since it is 

accustomed to growth in the gastrointestinal tracts of warm-blooded animals (Maier et al., 

2000).  Treatment stage W exhibited higher dissolved oxygen concentration than 

treatment stage L, yet E. coli colonies increased in number after extended incubation in 

treatment stage W.  Increased E. coli concentrations at extended incubations periods in 

the W treatment stage may be due to horizontal transfer of metal tolerance genes (Baker-

Austin et al., 2006; Abskharon et al., 2008).   

Nies (1999) presented minimal inhibitory concentrations (MIC) of metals that depress 

the growth of E. coli. Only Zn exceeded the MIC of E. coli (65.4 mg/L) in this system 

and did so in all treatment stages except L and W.  Although the MICs from the Nies 

(1999) study were determined for single metals (i.e., not in combination), it is possible 

the lower Zn concentrations in the L and W treatment stages allowed sub-lethally 

damaged E. coli to survive.  All ecotoxic metal concentrations decreased from the 

influent to treatment stages L and W. In the presence of metals, E. coli has been shown to 

produce metallothionein, a protein that has a high affinity for some metals and tends to 

detoxify them with regard to the bacteria cell (Maier et al., 2000).  Additionally, plasmid-

encoded mechanisms, such as metal efflux systems, can physically remove metals from 

the bacteria cell through an efflux pump (Maier et al., 2000; Baker-Austin et al., 2006).  

Co-selection of metal tolerance and antibiotic resistance genes may explain the observed 

metal tolerance of FIB in this study.  Because many of these bacteria may have been 

exposed to antibiotics in the wastewater conveyance system, they could be inclined to 

tolerate metals.  The same genes that promote antibiotic resistance may also promote 
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metal tolerance and may be passed to cells via horizontal gene transfer prior to 

introduction to the co-treatment system (Baker-Austin et al., 2006).  

 

5.4.2.4.2 Treatment Regimen 2 

In Treatment Regimen 2, FIB concentrations were determined at days 1 and 91 in the 

column.  No significant changes occurred in the L treatment stage for any FIB during the 

91-day incubation period in the columns.  Coliform concentrations were not affected to a 

large extent by extended residence time in the sealed columns.  Only TC exhibited 

significantly higher average concentrations over the extended residence time in the 

column (in treatment stage K).  E. coli and FC concentrations showed no significant 

difference at days 1 and 91 in K and L treatment stages after standard incubation in 

culture dishes.  TC concentrations increased significantly, yet marginally, from an 

average of 0 ± 0 to 0.75 ± 0.1 cfu/100mL in the K treatment stage over the 91-day 

incubation period in the columns.  Although E. coli concentrations did not significantly 

differ under standard incubation periods (24 hrs), significant increases in bacterial counts 

were seen after 120 hours of incubation on culture dishes (Figure 5.8).  This delayed 

growth of E. coli could have been caused by sub-lethal damage done to cells exposed to 

metals in the column.  
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Figure 5.8 Average E. coli concentrations at treatment stages K and L at days 1 and 91 in 

extended incubation of culture dishes from the extended column incubation period. Data 

points with values labeled indicate a significant difference existed between E. coli 

concentrations at days 1 and 91. P-values for the difference in E. coli concentrations in 

the K treatment stage between days 1 and 91 for extended incubation in culture dishes at 

120 and 144 hrs were 0.042 and 0.020, respectively. Error bars represent standard error of 

the means. 

 

In treatment stage K, FS decreased from 21 to 0 cfu/100mL.  Previous studies have 

documented greater AMD resistance by FS than by coliform bacteria (Hackney and 

Bissonnette, 1978; Carlson-Gunnoe et al., 1983; Keating et al., 1996).  This suggests FS 

was less impacted by continuous exposure to AMD in the column.  However, when the 

columns stopped receiving effluent on day 1, perhaps TC and E. coli were able to grow in 

lieu of FS as pH and alkalinity increased and Al, Mn, and Zn decreased in the columns 
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over time.  TC and E. coli increased over the extended residence time, which may 

indicate sub-lethal cell damage by the high metals concentrations and low pH described 

in the following pages.  Over time, without perpetual exposure to the waste stream from 

the clarifiers, some coliform bacteria were able to proliferate in the columns, perhaps by 

outcompeting FS in the absence of high-strength AMD.  Although this system removed 

FIB more efficiently than other passive treatment systems, the impacts of sub-lethal 

damage to these cells should be further investigated. 

 

5.4.2 Alkalinity Generation 

 Alkalinity was generated via abiotic and biotic processes from the clarifier to the 

limestone stages (Figure 5.9).  Dissolved Ca remained statistically unchanged until the 

limestone stage where it increased from a mean 57.4 to 183 mg/L which was calculated 

to correspond to generation of 314 mg/L of alkalinity as CaCO3.  This corresponded 

relatively well with the mean 285 mg/L drop in net acidity in the limestone.  The pH in 

the clarifier and Kaldnes stages was sufficiently high to permit bacterial activity.  This 

pH allowed for DO stripping via bacterial activity, as well as other desirable abiotic and 

bacterially-mediated reactions, such as metals sorption and BSR.  BSR was the primary 

biotic alkalinity generating process.  The alkalinity produced by the limestone stage was 

representative of real-world ALD performance (Cravotta, 2003; Watzlaf et al., 2004).  

The alkalinity provided by the MWW and generated by BSR and limestone dissolution 

was sufficient to produce net-alkaline effluent and buffer pH in the wetland, where H+ 

liberating reactions such as Fe, Mn and NH4
+ oxidation occurred.   
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Figure 5.9  Mean of all sampling events (n=40) for pH, alkalinity and net acidity 

throughout the system.  Error bars represent one standard deviation above and below the 

mean and are not visible when bars are smaller than the symbol. 

 

5.4.3 AMD Constituents 

5.4.3.1 Aluminum 

 Al was primarily removed from solution in the clarifier and limestone stages of the 

VFB emulation unit process (Figure 5.10).  At the pH in the clarifiers, Al can combine 

with phosphate to form a relatively stable solid, complex with particulate organic matter, 

precipitate as alunite (KAl3(OH)6(SO4)2), and react with dissolved organic carbon (DOC) 

and precipitate (Omoike and Vanloon, 1999; Munk et al. 2002; Wilkin, 2008; Parsons 

and Smith, 2008).  It is likely that all of these removal mechanisms were occurring to 

varying extents in the clarifier.  However, the mean 46.3 mg/L total vs. 7.66 mg/L 

dissolved Al in the clarifier effluent was indicative of inefficient sedimentation.  The Al 

floc did not pass through the Kaldnes stage as there was no statistical difference between 
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dissolved and total Al in the Kaldnes effluent.  The lack of Al, K, or SO4 removal in the 

Kaldnes stage indicates that alunite formation was likely an insignificant removal 

mechanism in the clarifier because the bulk of particulate organic matter settled and 

phosphate was decreased to below detection limits (<0.75 mg/L) in the clarifier, leaving 

alunite formation the most plausible removal mechanism in the Kaldnes.  In addition, 

dissolved K concentrations were unchanged in the clarifier and K was not concentrated in 

the clarifier sludge, where aluminum-related precipitates settled.  In the limestone stage 

pH increased to 6.72, which dramatically decreased Al solubility, likely forming 

insoluble amorphous Al(OH)3 (e.g., Munk et al. 2002; Wilkin, 2008).  This solid was 

flushed from the limestone during standard sampling events, resulting in a mean 77 mg/L 

total vs. 0.053 mg/L dissolved Al, indicating the potential of flushing for metal recovery 

and to retain long term hydraulic conductivity.   
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Figure 5.10  Mean of all sampling events for dissolved Al, Fe, Mn and Zn concentrations 

(bars) with respect to DO (line).  Error bars represent one standard deviation above and 

below the mean. 

 

5.4.3.2 Arsenic 

 Due to the rapid removal of As to below detection limits (< 0.022 mg/L) in the 

clarifier (Figure 5.11), the full extent of removal is unknown throughout the remainder of 

the system.  The clarifier likely had a gradient of DO concentrations decreasing from the 

surface to the organo-metallic sludge at the bottom.  This gradient would allow for 

aerobic (i.e., Fe(II) oxidation) and anaerobic processes (i.e., BSR).  It is likely that As 

sorbed to Fe oxyhydroxides formed in the clarifier.  Extensive research has documented 

the affinity of As for Fe hydroxides.  Amorphous Fe oxyhydroxides such as would be 

formed in the clarifier have the highest adsorption capacity (Mohan and Pittman, 2007).  

It is also likely that As2S3 or AsS formed from BSR (e.g. Luo et al. 2008). 
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Figure 5.11  Mean of all sampling events for dissolved As, Cd and Pb concentrations.  

Error bars represent one standard deviation above and below the mean.   

 

5.4.3.3 Cadmium 

 Cd was removed in the clarifier (Figure 5.11), likely from sulfide formation via BSR 

and complexation with organic matter.  Fristoe and Nelson (1983) demonstrated that 

between pH 4-5 Cd has a high affinity for organic ligands with which it will complex as 

well as adsorb to bacterial solids.  As in the case of Al, the mean 0.16 mg/L total vs. 

0.059 mg/L of dissolved Cd in the clarifier effluent was indicative of inefficient 

sedimentation.  The Cd-enriched floc did not likely pass through the Kaldnes stage as 

there was no statistical difference between dissolved and total Cd in the Kaldnes effluent.  

Although Cd can complex with Fe oxyhydroxides (Olivie-Lanquet et al., 2001; Carroll et 
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al., 1998), Cd increased slightly within the wetland, likely due to evapoconcentration and 

the lack of aerobic removal mechanisms.  Zn sorption can suppress Cd sorption to Fe 

oxyhydroxides (Carroll et al., 1998) and significant Zn sorption likely occurred in the 

wetlands.  Therefore, it is unlikely that sorption to Fe oxyhydroxides was an important 

Cd removal mechanism in the clarifier as well, where Zn concentrations were 

approximately 3 times higher than in the wetland.   

 

5.4.3.4 Iron 

 Fe was removed from solution via multiple means in the clarifier and wetland unit 

processes (Figure 5.10).  Flocculation with phosphate (e.g., Omioke and Vanloon, 1999; 

Parsons and Smith, 2008) likely removed some Fe from solution in the clarifier.  

Combination with organic ligands (e.g., Fletcher and Beckett, 1987; Machemer and 

Wildeman, 1992) and the formation of Fe sulfides (e.g., Kolmert and Johnson, 2001) also 

likely decreased Fe concentrations in the clarifier.  Aqueous Fe is primarily trivalent at 

the influent AMD pH (2.60) (Kirby and Cravotta, 2005).  The increase in pH to 4.47 

likely caused some remaining Fe(III) precipitation by oxyhydroxide formation because 

Fe(III) is rapidly hydrolyzed and precipitated from solution in waters with pH > 4 

(Younger et al., 2002).  These conditions favored the formation of the oxyhydroxide 

schwertmannite.  Minimal Fe(II) oxidation is likely to have occurred in the clarifiers due 

to low DO concentrations.  The mean 94.7 mg/L total vs. 56.3 mg/L of dissolved Fe in 

the clarifier effluent was indicative of inefficient sedimentation.  Oxidation, hydrolysis 

and sedimentation were the likely mechanisms of Fe removal in the wetland due to the 

high DO and pH.  The SRB throughout the first three unit processes and the limestone 
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stages produced sufficient alkalinity which buffered pH through the wetlands during Fe 

oxidation and hydrolysis, a [H+]-producing process.   

 Key to the performance of the system, dissolved Fe remained unchanged through the 

Kaldnes and limestone unit processes and therefore did not armor the limestone.  This 

indicates that the remaining Fe(III) was reduced to Fe(II) in the clarifiers and/or Kaldnes 

stages, which allowed it to pass through the limestone without forming Fe(OH)3 solids.  

Fe reducing bacteria (IRB) can use simple sugars (Lovely, 1991) which are present in 

substantial concentrations in MWW (Metcalf and Eddy, 1991).  IRB populations were 

estimated at 250,000 and 40,000 cells/100mL in the Kaldnes and limestone stages 

respectively, indicating that they were especially active in the Kaldnes stage where 

reduction of any remaining Fe(III) is crucial.  The lower IRB concentrations in the 

limestone stage are possibly due to the efficiency of clarifier and Kaldnes IRB at 

depleting Fe(III) concentrations.  Additionally, Stone et al. (2006) demonstrated that Zn 

concentrations > 8.5 mg/L can severely inhibit some IRB (Stone et al. 2006).  The 

persistence and activity of IRB in the presence of Zn concentrations nearly an order of 

magnitude greater may indicate that Fe reduction primarily occurred in the relative 

protection of biofilm communities in the Kaldnes stage (e.g. Stone et al. 2006). 

 Aerobic heterotroph bacterial activity is the likely mechanism by which DO was 

driven below the suggested anoxic limestone drain design parameter of < 1 mg/L DO in 

the Kaldnes stages to limit the oxidation of Fe(II) within the limestone stages.  Limestone 

in the presence of Fe(III) or Fe(II) and DO > 1 mg/L will become coated with Fe(OH)3, 

dramatically lowering alkalinity production and porosity (Younger et al., 2002) which 

can dramatically reduce the effective lifetimes of passive treatment systems (Watzlaf et al. 
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2004; Santomartino and Webb, 2007).  The combined activity of heterotrophic and Fe 

reducing bacterial activity allowed Fe removal to be isolated in the clarifier and wetland 

stages where precipitate accumulation is preferred while protecting the VFB emulation 

stages from limestone armoring or clogging.   

  

5.4.3.5 Manganese   

 Mn remained unchanged throughout the system until the wetland stage, where it 

decreased by 13.6% (Figure 5.10).  The oxidation and hydrolysis of Mn was possible 

because pH was greater than 6 (6.95) and Fe was driven to such low concentrations (to 

0.18 from 45 mg/L) by the outflow of the wetland.  It is likely that Mn removal primarily 

occurred by the wetland outflow where Fe concentrations were lower because Fe (II) will 

reduce oxidized forms of Mn when present (Watzlaf et al., 2004).  In addition, Mn 

removal would be slightly greater (20.8%) if accounting for wetland evapoconcentration, 

which was estimated at 8.4%, assuming that Ca, Cl, and Na were conservative ions. 

 

5.4.3.6 Lead   

 Pb was removed in the clarifier and remained unchanged throughout the subsequent 

unit processes (Figure 5.11).  In the clarifier Pb likely complexed with particulate organic 

matter (e.g., Fletcher and Beckett, 1987; Aderhold et al. 1996), formed galena (PbS) (e.g., 

Younger et al. 2002), and/or sorbed to Fe oxyhydroxides (e.g., Carroll et al., 1998; 

Wilkin, 2008).  The mean 0.14 mg/L total vs. 0.069 mg/L of dissolved Pb in the clarifier 

effluent was indicative of inefficient clarification.  Although Pb can sorb to Fe 

oxyhydroxides at the pH range found within the wetlands and should not be precluded by 



146 
 

Zn sorption (Carroll et al., 1998), no significant difference was noted between dissolved 

Pb in the limestone and wetland effluent.   

 

5.4.3.7 Zinc 

 Zn was primarily removed from solution in the clarifier and wetland (Figure 5.10).  In 

the clarifiers, sphalerite (ZnS) formation, and complexation with organic ligands present 

in the MWW likely served as the primary Zn removal reactions.  BSR can remove Zn 

from solution via sphalerite formation (Younger et al. 2002).  Zn can have a relatively 

high affinity for abiotic and biotic organic ligands (Fletcher and Beckett, 1987; 

Machemer and Wildeman, 1992; Norton et al., 2004; Gibert et al., 2005).  Although 

significant concentrations of Zn were removed from solution in the clarifiers there was no 

significant difference between total and dissolved concentrations in the clarifier effluent, 

which implied efficient clarification of Zn solids and is contrary to the trend noted in Al, 

Cd, Pb and Fe.  This may also indicate that Zn removal was primarily a result of BSR 

because the majority of Zn removal occurred at the bottom of the clarifiers in the organo-

metallic sludge where SRB activity is thought to have been concentrated.  In the wetland 

stage, Zn removal was likely due to sorption to Fe oxyhydroxides.  Zn has a high affinity 

for Fe oxyhydroxides, especially at the pH present in the wetlands (Dzombak and Morel, 

1990; Carroll et al. 1998; Mayes et al. 2009).   

 

5.4.3.8 Minor Metal Constituents 

 Cr, Cu and Ni were present in low concentrations in the AMD and MWW (Figure 

5.12).  Cr and Cu were concentrated in the clarifier sludge and a significant decrease was 
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noted between the TheoMix and the wetland effluent.  Although there was no significant 

difference between the TheoMix and wetland effluent, Ni was concentrated in the 

clarifier sludge which indicates marginal removal.  Possible removal mechanisms are Cr 

reduction and subsequent hydrolysis, Cu sulfide formation or sorption to Fe 

oxyhydroxides, and Ni sulfide formation and sorption to organic solids and/or Fe 

oxyhydroxides (e.g. Younger et al. 2002; Wilkin, 2008).   

 

Figure 5.12.  Mean of all sampling events for dissolved Ni, Cu and Cr concentrations.  

Error bars represent one standard deviation above and below the mean.   

 

5.4.3.9 Sulfate   

Sulfate concentrations decreased from 680 to 610 mg/L from the TheoMix to the 

clarifier effluent but did not vary statistically throughout the remainder of the system.  

BSR was identified as the primary sulfate removal mechanism.  However, the formation 

of schwertmannite, alunite and gypsum are other possible sulfate removal mechanisms.  

Schwertmannite (Fe8O8(OH)8-2x(SO4)x), where 1 ≤ x ≤ 1.75, was likely formed in the 
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clarifiers to some extent and will remove sulfate from solution upon formation (Brady et 

al. 1986; Bigham et al. 1996).  However, if one assumes that all dissolved Fe was 

removed from solution by schwertmannite formation, which is highly unlikely because of 

the other aforementioned plausible removal mechanisms, it could only account for a 

maximum sulfate removal of 15.1 mg/L (21.4% of the total clarifier removal).  As 

previously discussed, alunite formation was likely not a substantial removal mechanism.  

Sulfate removal was not noted in the limestone stages, which is where gypsum formation 

could have been favored due to the elevated Ca concentrations.  All sulfate removal was 

assumed to be via BSR despite the marginal error likely inherent in this assumption.   

 BART tests indicated the presence of SRB in the influent MWW (106-7 cfu/mL), 

clarifiers (100-2 cfu/mL), clarifier sludge (100-4 cfu/mL), Kaldnes stage (100-3 cfu/mL), 

limestone stage (101-3 cfu/mL), and wetlands (100-2 cfu/mL).  The wide range of values 

may be explained by the limitations of the BART method, which does not directly 

measure bacterial concentrations, but the black metal sulfide product of SRB activity.  In 

addition, SRB populations are generally associated with biofilms or biocolloids of which 

water column samples may not exhibit representative bacterial concentrations (DBI, 

2002).  The supernatant from clarifier sludge samples was used in the BART tests, while 

the bulk of SRB were likely bound to the sludge solids.  Although the MWW contained 

high concentrations of organic particulates upon which SRB likely congregated, the very 

high concentrations of SRB in the MWW and low concentrations in the clarifier water 

columns suggest die-off of substantial proportions of SRB upon exposure to AMD.  The 

clarifiers may have acted as a species filter or sieve, building a more resistant SRB 

community throughout the system as non-AMD-resistant SRB perished.  Overall, BART 
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tests suggested that SRB were present throughout the system which is evidence of SRB 

tolerance to low pH (clarifiers, Kaldnes stage), aerobic waters (wetlands) and highly 

elevated Zn and other metals (entire system).  

 The substantial concentrations of simple to complex carbohydrates present in MWW 

(Maki, 1953; Metcalf and Eddy, 1991) likely either directly or indirectly supported SRB 

populations.  SRB require simple sugars or alcohols as substrate, which would have been 

gleaned from the MWW directly or created by other microbial consortia, such as 

cellulolytic and fermentative bacteria, breaking down more complex carbohydrates 

(Pruden et al. 2007). 

 The mean clarifier sulfate removal rate was 0.56 mol/m3-d, which is greater than the 

approximate 0.3 mol/m3-d found under optimal BSR field conditions (Neculita et al., 

2007) yet less than the ~3 mol/m3-d that Tsukamoto et al. (2004) and Kolmert and 

Johnson (2001) found under laboratory conditions at similar pH.  However, Tsukamoto et 

al. constructed their reactors with sand and horse manure substrate, and fed those reactors 

with high quality refined electron donors (methanol and ethanol) and synthetic AMD 

only containing Fe (100 mg/L) and sulfate (900 mg/L).  Kolmert and Johnson (2001) fed 

ethanol, lactic acid, and glycerol to bioreactors treating nutrient-augmented AMD with 

acidity and metals concentrations orders of magnitude less than the AMD used in the co-

treatment study.  The co-treatment clarifier more rapidly reduced sulfate than the various 

mixes of bark, post peel and compost tested by McCauley et al. (2009) (0.28-0.38 

mol/m3-d) and the pilot-scale bioreactors of spent mushroom compost of Dvorak et al. 

(1992) (0.214 and 0.333 mol/m3-d), of which both studies employed AMD with lower 

concentrations of acidity and most metals of interest.   
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 The BSR rate is unexpectedly high when considering the toxic Zn concentrations, 

elevated overall metal concentrations and suboptimal pH affecting the SRB.  The 

concentration of Zn present in the clarifiers (78.6 mg/L), Kaldnes (80.9 mg/L), and 

limestone (64.7 mg/L) unit processes likely limited BSR rates.  Zn concentrations ranging 

from 13 to 65 mg/L have been found to be toxic and severely inhibitive to SRB 

(Kaksonen and Puhakka, 2007; Neculita et al., 2007).  In addition, studies have suggested 

additive individual metal toxicity (Neculita et al., 2007), indicating that the other toxic 

metals within the system could have had an additive inhibitory effect on SRB.  BSR rates 

also begin to decline at pH < 5 (Neculita et al., 2007; Koschorreck, 2008), which likely 

slowed BSR in the clarifier and Kaldnes stages where effluent pH was 4.47 ± 0.61 and 

4.42 ± 0.17, respectively.  It is assumed that BSR could have been greater if the AMD Zn 

concentrations were less and/or the ratio of MWW to AMD was increased to raise pH.  

Because much of the organic solids provided by the MWW settled within the clarifier, 

BSR in the Kaldnes and limestone stages was possibly also limited by lack of suitable 

electron donors.   

 Despite the factors limiting SRB activity, BSR rates were relatively high, suggesting 

that a rich and diverse SRB community was supported by the electron donors supplied by 

the MWW.  It is likely that microenvironments with elevated pH in the organic and 

metal-rich sludge at the bottom of the clarifiers supported increased BSR rates (e.g., 

Fortin et al. 1996; Stockdale et al. 2009).  Koschorreck (2008) disputes the feasibility of 

microenvironments to support BSR at low pH due to the very high sulfate reduction rates 

that may be required to produce the necessary proton gradient.  However, Koschorreck 

(2008) does not account for diffusion retardation from biofilms and associated metal 
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sulfide precipitates.  The capacity of particle enclosures, biofilms, and associated metal 

sulfide precipitates to allow for suitable SRB microenvironment formation is unknown, 

yet inferences can be made from the literature.  Studies have documented the protective 

capacity of sheltered attachment surfaces and biofilms, demonstrating that biofilms bind 

aqueous heavy metals, accumulate metal sulfides, and retard diffusion of hydrogen ions 

and other toxic species (Keweloh et al. 1989; Vroom et al. 1999; Labrenz et al. 2000; 

White and Gadd, 2000; Beyenal and Lewandowski, 2001; Wolf et al. 2002; Ito et al. 

2002; Teitzel and Parsek, 2003; Curtin and Cormican, 2003; Stone et al. 2006; Kaksonen 

and Puhukka, 2007).  Vroom et al. (1999) documented pH gradients of > 3 units in fewer 

than 10 µm in heterotrophic biofilms.  Teitzel and Parsek (2003) noted that bacteria 

embedded in biofilms were up to 600 times more resistant to heavy metal stress than 

planktonic cells.  Stone et al. (2006) attributed increased Zn tolerance of the SRB 

Shewanella putrefaciens to the protective capacity of biofilms and related attachment 

surfaces.  Also, researchers have solid evidence of metal sulfide precipitation within and 

overlying SRB biofilms (White and Gadd, 2000; Labrenz et al. 2000).  The activity of 

acid and metal tolerant SRB, many species of which have been recently isolated (Kolmert 

and Johnson, 2001; Koschorreck, 2008; Muyzer and Stams, 2008; Winch et al. 2009) and 

less metal tolerant or neutrophilic SRB embedded in suitable biofilm microenvironments, 

is likely responsible for the relatively high BSR rates observed.   

 

5.4.3.10 Treatment Rates   

 Treatment rates are presented in Table 5.7.  Johnson and Younger (2006) reported 40-

80% Fe removal in a single-stage constructed co-treatment wetland with a mean 
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residence time of 14 hr receiving AMD with ~3 mg/L Fe.  The residence time of the 

multi-stage co-treatment system was approximately 10x that of the Johnson and Younger 

(2006) system.  However, the multi-stage system demonstrated much higher % Fe 

removal while handling AMD with a Fe concentration approximately 100x greater.  The 

multi-stage co-treatment system performed well with respect to conventional AMD 

passive treatment systems (Younger et al. 2002; Watzlaf et al. 2004), despite treating 

AMD that was generally more acidic and metals-rich than that for which passive 

treatment systems are generally applied.  Wetland evapoconcentration likely decreased 

overall removal performance.  It should also be noted that the multi-stage co-treatment 

system was not optimized for maximum sustainable loading rates and its full potential is 

unknown.  Although 99.6% of Fe was removed from solution in the wetland stage, there 

was not sufficient Fe loading (0.34 g/m2-d) to reach typical (10-20 g/m2-d) aerobic 

wetland design removal rates (Younger et al. 2002).  Overall, the high % removal of key 

ecotoxic elements indicates that greater removal rates are likely achievable in an 

optimized system.  Additionally, the removal of metals initially at relatively low 

concentrations (Cr, Cu and Ni) indicates that co-treatment may also be an effective 

polishing tool for AMD with lower metals concentrations and acidity. 
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Table 5.7.  Removal performance for key dissolved species.  Unit process removal is the 

percent difference between unit process inflow and outflow. 

  AMD TheoMix Wetland 
Overall 

Removal 

Primary 
Removal 

Unit 
Process 

Unit 
Process 

Removal 
Unit Process Treatment 

Rate 

mg/L mg/L mg/L % % % g/m2-d g/m3-d 

Al 45.8 15.2 0.034 99.8 C / L 49.5 99.5 0.71 2.5 5.7 6.6 

As 0.25 0.090 <0.022 87.8 C 87.8 0.007 0.060 

Cd 2.02 0.67 0.015 97.7 C / K 91.1 85.0 0.06 0.01 0.46 0.02 

Cr 0.027 0.011 0.0011 90.4 C 66.2 0.0007 0.006 

Cu 0.005 0.006 0.0019 68.3 C 77.8 0.0004 0.004 

Fe 292 96.4 0.18 99.8 C / W 41.6 99.6 3.8 0.34 30 16 

Mn 54.6 18.0 15.5 13.9 W 13.6 0.02 0.88 

Ni 0.145 0.051 0.039 23.2 C 21.4 0.001 0.008 

Pb 1.21 0.40 0.049 87.9 C / K 83.0 32.2 0.03 0.01 0.25 0.01 

Zn 391 129 34.3 73.4 C / K 39.1 47.0 4.8 0.23 38 11 

SO4 1920 680 650 4.5 C 10.4 6.6 54 
 

5.4.3.11 Temporal Variability 

 Treatment efficiency was relatively stable throughout the duration of the standard 

operational run of the experiment.  The relatively quick realization of peak performance 

and stabilization exhibited by each unit process and the whole system are exemplified by 

pH and Zn behavior (Figures 5.13 and 5.14).  Metals, FIB, BOD5 and nutrient processing 

as well as alkalinity generation performance generally displayed a similar lack of 

substantial temporal variability.  The aforementioned N processing variability was the 

only constituent that deviated from this pattern.   

 



154 
 

 

Figure 5.13  Mean pH for each sampling event (n=4).  Bars are shaded according to the 

days elapsed from experiment initiation to the sampling event.  Error bars represent one 

standard deviation above and below the mean.  There are no error bars for AMD and 

MWW because each bar represents a single number. 
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Figure 5.14  Mean dissolved Zn concentrations for each sampling event (n=4).  Bars are 

shaded according to the days elapsed from experiment initiation to the sampling event.  

Error bars represent one standard deviation above and below the mean.  There are no 

error bars for AMD and MWW because each bar represents a single number. 

 

5.4.3.12 Sludge Generation 

 Approximately 0.69% of the total flow entering the clarifiers was wasted throughout 

the experiment.  This wasting rate led to sustainable metals removal that did not 

compromise clarifier residence time.  Sludge total Al, As, Cd, Cu, Mn, Ni, Pb and Zn 

concentrations were negatively correlated with wasting rate (Figure 5.15).  The sludge 

contains concentrations of total Al, As, Cd, Cr, Cu, Fe, Pb and Zn at least an order of 

magnitude greater than the dissolved TheoMix.  Sludge concentrations of total Mn and Ni 

were also greater than the dissolved TheoMix, indicating that some degree of Mn and Ni 

removal was occurring in the clarifiers which could not be concluded from solely 
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analyzing the TheoMix and clarifier outflow data.  Mn and Ni removal was likely due to 

sorption to organic matter (e.g. Machemer and Wildeman, 1992; Aderhold et al. 1996) 

 

 

Figure 5.15  Total metals concentrations in sludge with respect to % clarifier outflow 

wasted.  Red bars frame the 95% confidence interval constructed with the t statistic of the 

dissolved metals in the TheoMix.  

Percent clarifier outflow wasted Percent clarifier outflow wasted
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 The sludge data indicate that the “more conservative” metals did not all behave 

conservatively within the clarifiers (Figure 5.16).  K was the only metal tracked for this 

study that behaved conservatively in the clarifier.  The data indicate that Na appears to be 

dissociating from the sludge for the aqueous phase.  Conversely, Mg and Ca appear to be 

complexing with the sludge. 

 

 

Figure 5.16  Total metals concentrations of possible conservative ions in sludge with 

respect to % clarifier outflow wasted.  Red bars frame the 95% confidence interval 

constructed with the t statistic of the dissolved metals in the TheoMix.  

 

 The high concentrations of multiple ecotoxic metals of interest in the sludge present a 

possible reclamation opportunity or, if mishandled, an environmental hazard.  Fe has 

been economically recovered from oxidation ponds of standard passive treatment systems 

for years (Hedin, 2003).  Mn has been recovered from horizontal flow limestone beds 

(Denholm et al. 2008).  It is important to note that the sludge was not dewatered prior to 

sampling.  It may be possible to drive concentrations of many reclaimable metals from 

Percent clarifier outflow wasted Percent clarifier outflow wasted
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parts per million to per thousand by dewatering.  Subsequent smelting or sequential 

extraction by acidification may be a sensible reclamation approach.  Reclaimed metals 

could be a continual source of revenue for future large-scale passive co-treatment systems.   

 

5.4.3.13 Extended Column Residence Time 

 Extended column residence time resulted in a pH increase from 6.73 to 7.02 and 

31.7% more alkalinity in the limestone stage.  There was little evidence of further BSR.  

Following the limestone exposure results of Watzlaf and Hedin (1993) and Cravotta 

(2003) the 266 mg/L as CaCO3 was likely near the maximum alkalinity possible with the 

combination of limestone and mixed effluent present.  Limestone dissolved Ca 

concentrations rose to 319 from 183 mg/L, indicating that the increased alkalinity could 

be entirely abiotic via limestone dissolution.  In the Kaldnes stage, alkalinity rose to 49.1 

mg/L as CaCO3 and pH increased to 6.09, either the result of diffusion from the 

underlying limestone layer, or BSR.  However, Kaldnes sulfate concentrations were not 

significantly different and dissolved Ca concentrations increased to 98.7 from 57.4 mg/L, 

indicating that substantial diffusion occurred between the stages because there was no Ca 

source in the Kaldnes.   

 Unexpectedly, sulfate concentrations in the limestone stage were greater after the 

extended residence time.  This may indicate that some sulfate was released to solution by 

schwertmannite washed to the Kaldnes via biodegradation or transformation to goethite.  

Under most conditions, schwertmannite will transform to goethite over time, releasing 

sulfate and consuming alkalinity (Jönsson et al. 2005).  The rate of schwertmannite 

transformation increases with increased pH (Bigham et al. 1996; Jönsson et al. 2005; 
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Knorr and Blodau, 2007).  Schwertmannite’s affinity for sulfate generally decreases with 

increasing pH as well (Jönsson et al. 2005).  The increased pH in the Kaldnes likely 

accelerated sulfate release which diffused throughout the columns.  Depending upon the 

schwertmannite chemical composition, the transformation of 3.6-5.9 g of schwertmannite 

would account for the observed sulfate increase.  Due to the amount of floc observed in 

the Kaldnes stage, this is thought to be possible.  Cutting et al. (2009) demonstrated that 

IRB can reduce the Fe in various oxyhydroxides, including schwertmannite, at 

circumneutral pH in the presence of suitable electron acceptors, which could also add 

sulfate to solution.  It is possible that the decreased sulfate concentrations that would be 

indicative of further BSR in the Kaldnes or limestone stages were masked by sulfate 

reintroduction via the aforementioned means.   

 Removal performance of a few key metals (Al, Mn and Zn) was enhanced with 

extended residence time.  However, dissolved Fe dramatically increased in the Kaldnes 

stage from 45.3 to 147 mg/L, which may be attributed to IRB activity.  Aside from 

possibly catalyzing schwertmannite and other Fe oxyhydroxide dissolution, IRB and their 

supporting communities may have utilized Fe(III) sorbed to organic solids protected in 

biofilms from elevated Zn concentrations (e.g., Stone et al. 2006) where their preferred 

electron donor is in close proximity to their preferred terminal electron acceptor.  IRB 

activity is the likely reason for increased dissolved Fe because the increased pH boosted 

the stability of Fe oxyhydroxides and Fe sorbed to organic solids.  Mn concentrations 

were unchanged in the Kaldnes stage, yet dissolved Mn decreased from 18.0 to 14.3 

mg/L in the limestone.  Mn carbonate formation is a possible removal mechanism (e.g., 

Waybrant et al. 1998; Bamforth et al. 2006).  The extended residence time resulted in 
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more thorough Al removal in the Kaldnes stage.  Kaldnes dissolved Al decreased from 

10.1 to 0.21 mg/L due to the pH increase which rendered it insoluble.  Dissolved Al was 

unchanged in the limestone and 41.8 mg/L of total Al was flushed from the limestone 

during sampling, indicating the stability of the Al solid that had been previously formed.  

Dramatically enhanced Zn removal was noted as dissolved Zn decreased from 80.9 to 5.2 

mg/L in the Kaldnes and 64.7 to 17.3 mg/L in the limestone.  The increased residence 

time may have allowed for further Zn sorption to the Fe oxyhydroxide floc.  Although 

evidence of Zn removal in the limestone during standard operation was not previously 

confirmed by statistical comparisons (i.e., the 84.6 total and 64.7 mg/L dissolved Zn 

concentrations in the limestone effluent were not statistically different), the extended 

residence time revealed that a Zn solid was forming within and could be flushed from the 

limestone in concentrations of 69.2 mg/L.  A carbonate mineral, such as smithsonite 

(ZnCO3), was likely formed (e.g., Nuttall and Younger, 2000).  Extended residence time 

total and dissolved As, Cd, Cr, Ni and Pb concentrations were neither statistically nor 

substantially different than standard operational concentrations.  Although metals sorbed 

to Fe oxyhydroxides (i.e., As, Pb, Zn, etc.) may be released to solution via IRB activity 

(Wilkin, 2008), results indicate that metals sorbed to Fe solids washed to the columns 

were stable or that they had sufficient alternative re-sorption sites available.  Overall, the 

data indicate that Al, Mn and Zn processing and alkalinity generation may be enhanced 

by increasing residence time.  Accumulated Fe can be remobilized and flushed to the 

subsequent aerobic unit process, which could serve as a unit process regeneration 

technique to decrease the buildup of solids and avoid clogging.   
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5.4.4 Plant Community 

 The wetlands were initially dominated by Nasturtium officinale (60-85% at day 29) 

which quickly became stressed, exhibiting chlorosis, and died off by day 75 to remain 

<4% coverage throughout the remainder of the experiment.  Hydrocotyle verticillata, 

which displayed no stress throughout the experiment, replaced the Nasturtium officinale 

to increase from 10-35% at day 29 to 72-95% by day 133.  The second order polynomial 

model created for estimated total plant coverage of each wetland from days 75-133 had 

R2 values of 0.98, 0.89, 0.91 and 0.95, for wetlands 1-4, respectively.  Few wetland plant 

species are tolerant of highly elevated metals concentrations (Younger et al. 2002), and it 

appears Nasturtium officinale was not.  However, Hydrocotyle verticillata was tolerant of 

the highly elevated Zn (64.7 to 34.3 mg/L) and Fe (45.1 to 0.18 mg/L) concentrations 

present from the wetland inflow to outflow.   

 

5.5 Conclusions and Recommendations 

 The efficient AMD and MWW constituent removal indicate that multi-stage passive 

co-treatment is capable of effective synergistic performance.  In the passive co-treatment 

system described above, the stage was set for a self-designed microbial ecosystem to 

develop and take advantage of the available energy flows for preferential biochemical 

reactions (e.g., sulfate and Fe reduction, FIB disinfection) as well as create suitable 

conditions (e.g., anaerobic zones) for important abiotic geochemical reactions (e.g., 

calcite dissolution, phosphate/organic flocculation, metals sorption).  Results indicate that 

high-strength AMD previously suitable only for energy-intensive active treatment can be 

passively co-treated with MWW.   
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 Due to the promise of passive co-treatment demonstrated in the previous pages, 

multiple research avenues are recommended.  The effect of varied loading rates, 

improved clarification, inclusion of further unit processes, varied AMD to MWW mixing 

ratios, and the extent to which BSR can proceed in the presence of more commonly 

encountered Zn concentrations should be investigated to develop design guidance for full 

scale co-treatment systems.  The relatively quick treatment stabilization to peak 

performance indicates that full-scale multi-stage co-treatment systems may reach 

maturity weeks after construction.  The lack of denitrification may be addressed by a 

return loop to increase denitrification such is applied in conventional MWW treatment for 

enhanced denitrification (e.g. Metcalf and Eddy, 1991).  Because the true nitrification 

potential was not yet observed, longer-term experiments to determine the maximum 

steady-state nitrification rate may be necessary.  There is also the possibility of 

combining aspects of co-treatment with conventional MWW treatment, such as the use of 

AMD as a flocculant-source for PO4
-3 removal, to create more efficient hybrid facilities.  

As high-strength AMD and MWW passive co-treatment has proven a viable approach 

backed by theory and experimental results, field pilot studies are a logical next step.  The 

sludge produced can have concentrations of ecotoxic elements orders of magnitude 

greater than is present in the mixed influent, which presents a likely reclamation 

opportunity that should be investigated. 

Because co-treatment systems could be used to treat waste streams in communities in 

developing countries, it would be useful to track specific pathogens through these 

systems.  These pathogens could be tested for expression of metal tolerance and antibiotic 

resistance genes.  The link between antibiotic resistance and metal tolerance has been 
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shown in several studies (Timoney et al., 1978; Foster, 1983; Baker-Austin et al., 2006; 

Wright et al., 2006; Dib et al., 2008).  Although it is unknown whether these systems 

have the potential to increase the transfer of resistance genes to antibiotics and heavy 

metals, they may provide a means to consolidate genetic material in order to remove 

them before they enter the environment.  This phenomenon may be tested using bio-

assays exposing MWW to AMD in varying proportions to determine the extent of 

AMD’s ability to fully destroy FIB.  Additionally, alternative microbiological laboratory 

techniques, such as direct viability counts, may better estimate the viability of FIB and 

pathogens in co-treatment systems like the one presented in this study. 

 Co-treatment augments the affordability and applicability of passive treatment 

approaches.  The Kaldnes biomedia could be substituted with any high surface area 

naturally occurring material, such the nonreactive river rock used in conventional MWW 

treatment trickling filter systems.  Without the use of plastic in the Kaldnes stage, field-

scale co-treatment systems with the same unit processes could be constructed with 

unrefined low embodied energy (emergy) materials.  Aside from low emergy 

construction, these systems could be operated as gravity flow without ongoing energy 

inputs.  A field-scale passive co-treatment system could use commonly engineered 

structures, such as ponds, aerobic wetlands, clarifiers, and vertical flow cells, which 

could decrease engineering costs.  Significant cost savings would result from eliminating 

the need to purchase and transport organic substrate, which can be a major cost of passive 

AMD treatment.  In addition, the use of MWW as a substrate consumes an item with 

negative societal value in the place of valuable organic substrate, such as compost.  Raw 

MWW and high-strength AMD are often not addressed with passive methods because of 



164 
 

the limitations of conventional passive treatment technologies and/or the lack of locally 

available suitable substrate.  The efficiency and rate of which both waste streams can be 

treated within the same system will determine the extent of savings from reduced system 

footprint.   
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CHAPTER VI 

Effects on the Underlying Water Column by Ecologically Engineered 

Floating Vegetation Mats 

 

Portions of this chapter are included in: 

Strosnider, W.H., Nairn, R.W.  In Review.  Effects on the underlying water column by 

ecologically engineered floating vegetation mats.  Proceedings of the American Society 

of Mining and Reclamation National Conference.   

 

6.1 Abstract 

Engineered floating vegetation mats are an emergent application of ecological 

engineering that have promising water quality improvement and habitat creation 

applications.  However, relatively little research has been published regarding their 

construction or effects on the underlying water column.  The objectives of this study were 

to determine appropriate design characteristics and the effect of ecologically engineered 

floating vegetation mats (EFVM) on the underlying water column.  Four EFVM designs 

were constructed of drainpipe, burlap, mulch, utility netting, and reused polyethylene 

bottles then planted with Typha spp. and Juncus effusus.  The water column beneath 

EFVM in two test ponds was compared to that in an open water control pond.  Dissolved 

oxygen concentrations and pH were lower, diurnal temperature range was dampened, and 

sulfate/nitrate reduction was greater under the EFVM with respect to the control.  

Alkalinity was also greater under EFVM.  Results reinforced previous findings indicating 

that Typha spp. is a suitable species for EFVM creation.  However, a more robust 
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planting matrix is necessary to encourage faster growth and protect against wind and 

wave action damage.  Although plant propagation was limited, results suggest that EFVM 

may be applied to encourage reducing, thermally insulated conditions for passive 

treatment of acid mine drainage a wide range of other pollutants.  Specifically, they may 

be employed to improve immediate and long-term performance of vertical flow 

bioreactors for acid mine drainage treatment by lowering dissolved oxygen 

concentrations in the water column and providing a continual source of organic carbon to 

the underlying substrate.   
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6.2 Introduction 

Naturally occurring floating vegetation mats (NFVM) are relatively common in 

various climates and settings (Hunt, 1943; Mitsch and Gosselink, 2000; Mallison et al., 

2001; Scheffer et al., 2003; Somodi and Botta-Dukat, 2004; van Duzer, 2004; Kadlec and 

Wallace, 2009).  NFVM often develop as the rhizomes of wetland plants colonize 

horizontally from the shoreline, from masses of vegetation delaminated from the 

underlying substrate or via colonization of floating organic substrates (Somodi and Botta-

Dukat, 2004; Kadlec and Wallace, 2009).  Examples of NFVM range from free-floating 

Typha spp. tussocks in Florida (Mallison et al., 2001), floating sedge fens in Alaska 

(Racine and Walters, 1994), Panicum hemitomon-dominated floating marshes of the 

Mississippi River Delta Plain (Sasser et al., 1996), floating Cyperus papyrus L. marshes 

of equatorial Africa (Gaudet, 1977; Boar et al., 1999), to boreal quaking bog vegetation 

(Mitsch and Gosselink, 2000).  Typha spp. can form stable, buoyant and productive 

NFVM in a wide variety of climates and hydrogeochemical settings (Hunt, 1943; Racine 

and Walters, 1994; Sasser et al., 1996; Mallison et al., 2001).  Typha spp. NFVM are 

resilient and can recover quickly from drying and even burning regimes (Krusi and Wein, 

1988).   

NFVM have demonstrated effects on water quality that may be conducive to treating 

certain types of effluent.  NFVM can create anoxic conditions in the water column below 

them (Mallison et al., 2001; Scheffer et al., 2003).  Vascular plants with photosynthetic 

tissue above the water’s surface often deplete dissolved oxygen (DO) in the underlying 

water column (Kadlec and Wallace, 2009; Janse and Van Puijenbroek, 1998; Caraco et 

al., 2006).  Dense growth of floating vegetation reduces the water surface available for 
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oxygen diffusion as well as lowers turbulence in the neighboring uncovered water surface 

(Scheffer et al., 2003).  NFVM can also decrease DO levels in the water column by 

shading submersed vegetation (Janse and Van Puijenbroek, 1998; Mallison et al., 2001).  

Decaying plant material forms loose layers or organic sludge beneath NFVM 

(Swarzenski et al., 1991) and Alam et al. (1996) found water below NFVM to have 

depressed DO levels and higher organic matter concentrations when compared to nearby 

open water.  Generally, previous findings indicate that NFVM can help create anaerobic, 

organic-rich systems in the underlying water column.  Similar to NFVM, floating aquatic 

plant systems of Eichhornea crassipes and Lemna, Spirodela and Wolffiella spp. have 

been successfully established for municipal wastewater treatment (Kadlec and Wallace, 

2009).  Like NFVM, these systems of free-floating aquatic plants are generally anaerobic 

because photosynthesis occurs above the water’s surface while oxygen diffusion is 

limited by vegetative cover (Kadlec and Wallace, 2009).   

EFVM (Ecologically-engineered floating vegetation mats) take advantage of the 

properties of NFVM to provide a desired water quality effect and/or habitat improvement.  

EFVM are generally constructed of a framework promoting the growth of emergent 

macrophytes, such as Typha spp., suspended in the water column.  Although tests and/or 

full-scale applications have been few, EFVM have been applied to treat meat processing 

effluent (Van Oostrom, 1995), improve lake water quality (Boutwell, 2001), and treat 

dilute de-icers from airport runoff (Revitt et al., 2001; Richter et al., 2003).   

However, EFVM have been applied in multiple instances to treat AMD by providing 

a continual carbon source to bacteria in systems dubbed ARUM (Acid Reduction Using 

Microbiology) (Smith and Kalin, 2000; Kalin and Caetano Chaves, 2003; Kalin, 2004).  
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These systems have been primarily applied to either flooded pits associated with mining 

disturbances or in treatment wetlands.  Canada hosts EFVM wetlands treating zinc/lead 

rich contaminated open pits in Buchans, Newfoundland, nickel/copper tailings runoff in 

Sudbury, Ontario, nickel/arsenic waste rock runoff in Northern Saskatchewan, and 

aqueous aluminum oxide and coke particles in Kitimat, British Columbia (Smith and 

Kalin, 2000).  Anaerobic conditions beneath the EFVM are reported to enable sulfate and 

iron reduction reactions that remove acidity and metals from solution while increasing 

alkalinity (Kalin et al., 2006).   

Nevertheless, comprehensive EFVM performance data and design specifications are 

lacking in the refereed literature, information that is necessary to determine their 

suitability to treat AMD as well as other effluents.  Beyond the exploration of the 

structural stability and maturation of four EFVM designs, this experiment allowed the 

comparison of water quality parameters between control and test ponds to provide 

indications of how passive treatment cells with EFVM may perform.   

 

6.3 Methods 

6.3.1 Experimental Design 

EFVM trials occurred in newly HDPE-lined ponds cleared of any debris and filled 

with well water at the University of Oklahoma Aquatic Research Facility.  Three 

approximately 200 m2 University of Oklahoma Aquatic Research Facility ponds, one 

control and two experimental, were used (Figure 6.1).  The open water control pond had 

the same general dimensions and volume, approximately 140 m3, as the test ponds.  The 

ponds were each a closed controlled hydrologic system, receiving very little surface 
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runoff.  All ponds were periodically refilled with approximately equal volumes of well 

water to offset losses from evapotranspiration not compensated by precipitation.   

 

 

Figure 6.1 Experimental pond layout 

 

Four EFVM designs were installed in the test ponds (Figure 6.1, Table 6.1), each with 

four replicates.  Designs were designated “E”, “H”, “B” and “N”.  EFVM “H” had the 

most intensive planting medium, with cornstover hydromulch sandwiched by burlap 

accompanying the mulched Typha spp. that all designs shared.  The “B” design had a 

medium-intensive planting media.  The “E” was a minimalist low embodied energy 

design defined by a frameless bed supporting minimal planting media overlain by burlap.  

“N” had the least intensive planting media, with no supportive burlap.  Each EFVM had 

one water sampling unit aligned in its center with fixed sampling ports located 10 cm 

below the water surface, 40 cm below the water surface and 10 cm above the bottom of 

the pond.   
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Table 6.1 EFVM design descriptions 

Design Feature Design 
   H N E B 

15 x 17 ft ABS drainpipe frame X X X
15 x 17 ft 3/4 in utility net X X X X
7oz untreated burlap - over rhizomes X X X
7oz untreated burlap - under rhizomes X 
45 kg cornstover hydromulch X 
1.5 x 6 ft access slot centered and perpendicular to long axis X X X X
7 kg of long cut Typha spp. shoots X X X X
4 kg of mulched Typha spp. shoots and seed heads X X X X
2 sealed 16oz float bottles placed at each corner X X X X
4 sealed 16oz float bottles placed around central access slot X X X X
1 sealed 16oz float bottle placed at each edge midpoint X 
Tension applied at corners directed away from the center     X   

 

On June 13-16, 2006 the EFVM were constructed and initially planted with 52 Typha 

spp. rhizomes (~7.6 g dry weight each) at regularly spaced intervals and four Juncus 

effusus culms, one at each corner.  Locally harvested rhizomal plantings were chosen 

following the observations of Mitsch and Gosselink (2000) that this is a viable planting 

method and Kadlec and Knight (1996) that locally harvested plants may have a more 

fitting genotype for the applied setting.  All EFVM were designed to support the 

plantings at water depths between 5 and 30 cm following the findings of Grace (1989) 

that Typha spp. have higher productivity in this range.  High winds and multiple storm 

events blew over and killed some of the established vegetation.  Therefore, following the 

findings of Van Oostrom (1995) that interlocked emergent macrophytes patches can be 

separated from terrestrial substrate and successfully set upon floating frames, seven (10 x 

10 cm, 54 g dry weight each) sections and one large (~60 x 60 cm, 1500 g dry weight 

each) section of rhizomally interlocked Typha spp. were added to each mat on May 20-21, 



184 
 

2007. The EFVM were qualitatively and quantitatively monitored until deconstruction on 

October 10, 2008.   

 

 6.3.2 Data Collection 

Vegetation growth and any structural degradation were monitored monthly by 

elevated photography using a 3.6-m stepladder and digital camera.  Diurnal DO, pH, Eh 

and temperature (T) were continuously logged for an average of three days in duration at 

two or five minute intervals using YSI 600QS multiparameter sondes and YSI 650MDS 

displays.  Diurnal data were gathered by hanging the sondes at the middle of a randomly 

determined EFVM with sensors located approximately 35 cm below the water’s surface.  

Control diurnal data was gathered by hanging sondes in the same fashion at the center of 

either half of the control pond.   

Waters were sampled from the fixed sampling ports for 13 monthly sampling events.  

The same sondes and displays were coupled with a peristaltic pump and flow-through 

cell for the monthly sampling events.  Sampling generally occurred from 11:00 to 17:00 

over consecutive days.  One level of all stations (all EFVM replicates and both control) 

was sampled a day, over the three day sampling event.  The order of sampling was 

randomized to avoid systemic error due to the diurnal range of various parameters.  

Alkalinity titrations were conducted with samples from the fixed sampling ports 

following standard methods (APHA, 1998) and Hach Method 8203 (Hach, 2006).  

Following Sharp et al. (1995), water samples for dissolved organic carbon (DOC) and 

dissolved total nitrogen (DTN) were gathered from the fixed sampling ports, immediately 

filtered through 0.45-μm nylon filters, then stored at <-4°C in 40-mL amber glass EPA 
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vials with polypropylene caps and Teflon septa until quantification with an Analytik Jena 

multi N/C 2100 Analyzer.  DOC and DTN samples were processed from five events that 

were evenly spread among the 13 overall sampling events.   

Grab samples for anion concentrations were taken from the well heads and the center 

of each pond at irregular temporal intervals throughout the experiment using 250-mL 

HDPE containers.  These samples were stored at 4°C until filtered through Dionex 

OnGuard® II H cartridges and 0.2 µm nylon filters.  A MetrOhm® 761 compact ion 

chromatograph unit was used to quantify anion concentrations following EPA method 

300.     

 

6.3.3 Data Analysis 

Due to the non-normality yet relatively similar distribution and equal variances of the 

diurnal data sets, the Mann-Whitney test was applied for statistical comparisons of 

diurnal DO, pH and T.  A one-tailed homoscedastic Student’s t-test was applied to 

compare the diurnal T range differences between the control pond and under the EFVM.  

To do so, the absolute value between each sequential daily maximum and minimum T 

during diurnal sampling periods were compiled.  Prior to statistical analysis, each 

monthly sampling event’s alkalinity, pH, DO, Eh and T of the control and each EFVM 

type were averaged, pooling each level and replicate.  As the reduced data sets were 

normal with similar variances, each EFVM was tested against the control using two-

tailed homoscedastic Student’s t-tests.  Due to the small size of the DOC and DTN data 

sets from the monthly sampling events, they were not reduced and medians of the full 

non-normal data sets were compared with the Mann-Whitney test.  One-tailed 
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homoscedastic Student’s t-tests were applied to means test anion data.  All statistical tests 

employed an alpha of 0.05.   

 

6.4 Results 

6.4.1 Structural Performance 

Various design lessons were learned from qualitative observation of each EFVM 

(Figures 6.2 and 6.3).  From observation of EFVM “H”, it was deduced that a stronger, 

more buoyant frame was necessary to support the mass of more intensive planting 

medium.  From observation of the other EFVM, more durable finer mesh netting is 

recommended to allow vegetation to firmly establish.  Plant survival and propagation was 

limited.  However, interlocked continual rhizomes were more productive, and are thus 

preferable over singular separated Typha spp. rhizomes.  Juncus effusus displayed 

survivability yet remained isolated at the corners of the mats and did not propagate.  The 

depth of planting should be kept at a minimum to avoid any additional unnecessary 

vegetative stressors.  All designs suffered damage from high winds, and consequential 

wave action, that frequent central Oklahoma.  Boutwell (2001) observed the same 

difficulty with EFVM in Nevada.  More robust planting matrices to firmly root plantings 

are suggested for applications in regions commonly experiencing high winds.   
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Figure 6.2  The central pond with EFVM set “E” in the foreground and “B” in the 

background 

 

 

Figure 6.3  EFVM “E” approximately one year after construction and installation 

 

6.4.2 Anions 

Well water (influent) NO3 concentrations averaged 11.5 ± 1.0 mg/L, yet NO3 was 

consistently below detection limits (<0.5 mg/L) in the EFVM ponds.  In the control pond, 

NO3 was greater than detection limits (0.65 and 0.67 mg/L) for two out of the six anion 

sampling events.  Well water SO4 averaged 59 ± 5.5 mg/L and was significantly less in 

the EFVM and control ponds.  However, control pond SO4 (28 ± 2.1 mg/L) was found to 

be significantly greater than the ponds with EFVM “E” and “B” (24 ± 2.0 mg/L) and “N” 
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and “H” (20 ± 2.8 mg/L).  Phosphate was consistently below detection limits (<0.75 

mg/L) in the well water and all ponds.   

Denitrification and SO4 reduction are the likely mechanisms for the observed 

decrease of NO3 and SO4 concentrations within the test and control ponds.  Dilution is 

unlikely because the only possible pond outflow was evapotranspiration, which would 

serve to concentrate dissolved constituents.  Denitrification and SO4 reduction require 

labile organic electron donors and reducing conditions to proceed.  Van Oostrom (1995) 

observed that his EFVM successfully encouraged denitrification as well.  The likely 

occurrence of these processes to a greater extent in the EFVM ponds indicates that 

EFVM can help create more reduced organic-rich conditions beneath them.   

 

6.4.3 Diurnal Results 

Median diurnal T was significantly greater in the control than the EFVM ponds, 

except for the diurnal sampling period during the coldest period of the study (Table 6.2).  

DO was significantly less under the EFVM for the majority of diurnal logging periods 

(Table 6.3).  The pH was also significantly lower under the EFVM for most periods 

(Table 6.4).  Eh was consistently significantly less under each EFVM than the control 

(Table 6.5).  Although the differences are not large in magnitude, the DO, pH and Eh data 

combine to indicate the presence of less oxidizing conditions with lower oxidation 

reduction potential under the EFVM than in the control pond.  It can be expected that 

greater differences would be noted for mature EFVM with more intensive planting media, 

established root mass, and productive emergent vegetation.   

 



189 
 

Table 6.2  Median T (°C) for each diurnal sampling period.  EFVM values are bolded or 

underlined where statistically less or greater than the control, respectively.  Mean air T 

data are from the Oklahoma Climatological Survey (2010).  The “-“ denotes that no data 

were taken at this station. 

Logging Period Station 

  Air Control "N" "B" "E" "H" 

04/25/08 - 04/27/08 18.83 20.36 18.94 19.50 - - 

03/20/08 - 03/22/08 21.28 15.07 - - 13.99 14.18 

12/28/07 - 12/30/07 0.89 4.17 - - - 4.44 

10/26/07 - 10/29/07 11.47 15.42 - - 14.27 14.43 

10/18/07 - 10/21/07 18.47 19.64 - - 18.61 - 

09/28/07 - 10/01/07 17.04 25.10 - 23.42 - - 

09/18/07 - 09/21/07 25.13 27.06 - - - 25.19 

08/21/07 - 08/24/07 27.88 31.41 - - 29.06 29.22 

08/10/07 - 08/13/07 29.76 33.83 31.17 30.88 - - 

07/21/07 - 07/23/07 26.39 33.07 - 30.49 30.42 - 

07/08/07 - 07/11/07 25.63 31.10 - 27.88 27.90 - 

06/30/07 - 07/01/07 23.58 26.98 - - - 25.53 
 

Table 6.3  Median percent saturation of DO for each diurnal sampling period.  EFVM 

values are bolded or underlined where statistically less or greater than the control, 

respectively.  The “-“ denotes that no data were taken at this station. 

Logging Period Station 

  Control "N" "B" "E" "H" 

04/25/08 - 04/27/08 102.2 77.3 103.5 - - 

03/20/08 - 03/22/08 99.0 - - 101.3 96.2 

12/28/07 - 12/30/07 91.0 - - - 96.4 

10/26/07 - 10/29/07 85.6 - - 93.1 100.2 

10/18/07 - 10/21/07 102.0 - - 88.2 - 

09/28/07 - 10/01/07 124.6 - 94.4 - - 

09/18/07 - 09/21/07 134.1 - - - 83.3 

08/21/07 - 08/24/07 119.6 - - 99.9 66.0 

08/10/07 - 08/13/07 125.5 52.2 98.0 - - 

07/21/07 - 07/23/07 102.4 - 94.2 96.1 - 

07/08/07 - 07/11/07 94.1 - 74.7 74.1 - 
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Table 6.4  Median pH for each diurnal sampling period.  EFVM values are bolded or 

underlined where statistically less or greater than the control, respectively.  The “-

“ denotes that no data were taken at this station. 

Logging Period Station 

  Control "N" "B" "E" "H" 

04/25/08 - 04/27/08 8.64 7.95 9.11 - - 

03/20/08 - 03/22/08 8.51 - - 8.46 8.46 

12/28/07 - 12/30/07 8.13 - - - 8.45 

10/26/07 - 10/29/07 8.71 - - 8.47 8.10 

10/18/07 - 10/21/07 8.99 - - 8.35 - 

09/28/07 - 10/01/07 8.77 - 8.23 - - 

09/18/07 - 09/21/07 8.12 - - - 7.63 

08/21/07 - 08/24/07 9.22 - - 8.81 8.05 

08/10/07 - 08/13/07 9.22 7.73 8.72 - - 

07/21/07 - 07/23/07 8.94 - 8.59 8.60 - 

07/08/07 - 07/11/07 8.93 - 8.28 8.34 - 

06/30/07 - 07/01/07 9.17 - - - 7.66 
 

Table 6.5  Median Eh (mV) for each diurnal sampling period.  EFVM values are bolded 

or underlined where statistically less or greater than the control, respectively.  The “-

“ denotes that no data were taken at this station. 

Logging Period Location 

  Control "N" "B" "E" "H" 

04/25/08 - 04/27/08 334 242 - - - 

03/20/08 - 03/22/08 332 - - 267 - 

12/28/07 - 12/30/07 367 - - - 309 

10/26/07 - 10/29/07 352 - - - 251 

10/18/07 - 10/21/07 369 - - 257 - 

09/28/07 - 10/01/07 348 - 247 - - 

09/18/07 - 09/21/07 440 - - - 242 

08/21/07 - 08/24/07 373 - - 205 - 

08/10/07 - 08/13/07 311 - 196 - - 

07/21/07 - 07/23/07 262 - 213 - - 

07/08/07 - 07/11/07 305 - 227 - - 

06/30/07 - 07/01/07 280 229 - - - 
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6.4.4 Diurnal Temperature Range 

Temperature profiles were dampened beneath the EFVM through all seasons with 

respect to the control.  Figure 6.4 presents a representative logging period.  EFVM 

designs “B” and “H” demonstrated statistically greater diurnal T range for all five and 

four of their diurnal logging periods, respectively.  EFVM “N” only displayed 

statistically significant dampening for one of three diurnal logging periods.  However, its 

T ranges were numerically greater, and a longer logging period would likely reveal 

statistical significance.  EFVM “E” demonstrated significantly greater T ranges for five 

of six logging periods.  Overall, it can be expected that greater differences would be 

noted for mature EFVM with more intensive planting media, established root mass, and 

productive emergent vegetation.   

 

Figure 6.4  Diurnal T variation August 8-13, 2007.  “C” is representative of the control. 
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6.4.5 Monthly Sampling Results 

There was no statistical difference in mean T between any of the EFVM and the 

control (Table 6.6).  Mean T was not significantly different between EFVM and the 

control possibly due to the small size of the data set (n = 13).  “N” and “H” had mean DO 

less than the control (Table 6.7).  However, “E” and “B” mean DO was not significantly 

different than the control.  “N” and “H” had mean alkalinity less than the control (Table 

6.8).  However, “E” and “B” mean alkalinity was not significantly different than the 

control.  Increased alkalinity under “N” and “H” was likely due to the increased presence 

of organic ligands in the pond from the hydromulch in the “H” design.  The hydromulch 

also likely helped further deplete DO in the water column.  The other EFVM may have 

shown statistically greater alkalinity and lower DO if the size of the data set was 

expanded.  All EFVM had mean pH less than the control (Table 6.9), generally reflecting 

the diurnal pH results.  Median DOC was not significantly different between EFVM and 

the control (Table 6.10).  It may be that the bulk of organic matter released by the mats 

was in particulate form.  Median DTN was slightly, yet significantly less under “N” and 

“H”.   
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Table 6.6  Mean T for each monthly sampling period.  Mean air T data are from the 

Oklahoma Climatological Survey (2010).  Note that air T is a daily mean, while water T 

was recorded only during the daytime/evening sampling windows. 

Sampling Period Air Control B N E H 

  Temperature (° C) 

10/7/2006-10/9/2006 18.4 23.2 21.4 20.7 21.5 20.6 

1/9/2007-1/11/2007 9.8 9.9 8.3 9.3 9.3 9.5 

2/10/2007-2/12/2007 3.6 5.4 4.5 5.2 5.0 5.3 

6/9/2007-6/11/2007 25.5 31.1 28.6 29.2 28.8 29.4 

7/21/2007-7/23/2007 26.4 33.5 30.6 30.6 30.7 30.4 

8/21/2007-8/23/2007 27.8 32.7 30.8 30.9 31.4 31.1 

9/29/2007-10/1/2007 23.2 27.1 25.6 25.9 25.9 25.8 

10/26/2007-10/28/2007 10.5 16.2 15.7 15.4 16.2 15.7 

11/29/2007-12/4/2007 6.3 10.6 9.9 9.5 9.8 9.9 

12/28/2007-12/30/2007 0.9 5.5 5.0 5.0 5.4 4.8 

1/26/2008-1/28/2008 9.0 8.0 7.1 6.5 8.4 7.0 

2/27/2008-3/1/2008 10.7 11.7 11.2 11.7 11.0 11.8 

3/20/2008-3/22/2008 14.1 17.0 16.5 16.0 16.5 16.5 

Mean 14.3 17.8 16.6 16.6 16.9 16.7 

Standard Deviation 9.1 10.5 9.8 9.8 9.7 9.8 
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Table 6.7  Mean DO for each monthly sampling period.   

Sampling Period Control B N E H 

  DO (%) 

10/7/2006-10/9/2006 142 151 101 153 92 

1/9/2007-1/11/2007 117 108 120 119 124 

2/10/2007-2/12/2007 95 90 90 93 84 

6/9/2007-6/11/2007 146 98 79 99 77 

7/21/2007-7/23/2007 120 96 68 98 46 

8/21/2007-8/23/2007 126 114 99 127 97 

9/29/2007-10/1/2007 142 113 108 112 105 

10/26/2007-10/28/2007 103 102 97 105 97 

11/29/2007-12/4/2007 96 93 93 92 95 

12/28/2007-12/30/2007 97 93 97 95 97 

1/26/2008-1/28/2008 100 98 103 100 104 

2/27/2008-3/1/2008 100 104 108 103 108 

3/20/2008-3/22/2008 103 115 107 113 105 

Mean 114 106 98 108 95 

Standard Deviation 19 16 13 17 19 
 

Table 6.8  Mean alkalinity for each monthly sampling period  

Sampling Period Control B N E H 

  Alkalinity (mg/L as CaCO3 eq.) 

1/9/2007-1/11/2007 179 214 218 214 220 

2/10/2007-2/12/2007 177 208 213 212 218 

6/9/2007-6/11/2007 136 167 176 166 179 

7/21/2007-7/23/2007 91 108 127 106 125 

8/21/2007-8/23/2007 73 88 109 87 109 

9/29/2007-10/1/2007 125 145 154 144 156 

10/26/2007-10/28/2007 114 137 167 141 168 

11/29/2007-12/4/2007 161 181 200 179 197 

12/28/2007-12/30/2007 154 169 179 169 179 

1/26/2008-1/28/2008 161 177 179 177 176 

2/27/2008-3/1/2008 171 181 171 180 169 

3/20/2008-3/22/2008 170 161 158 161 157 

4/25/2008-4/27/2008 161 116 173 115 173 

Mean 144 158 171 158 171 

Standard Deviation 34 38 30 38 31 
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Table 6.9  Mean pH for each monthly sampling period 

Sampling Period Control B N E H 

  pH (s.u.) 

10/7/2006-10/9/2006 8.11 7.91 7.36 7.93 7.32 

1/9/2007-1/11/2007 8.54 8.50 8.24 8.49 8.18 

2/10/2007-2/12/2007 8.05 8.00 7.99 8.04 7.92 

6/9/2007-6/11/2007 8.89 7.83 7.71 7.77 7.60 

7/21/2007-7/23/2007 8.72 8.16 7.70 8.27 7.63 

8/21/2007-8/23/2007 8.74 8.23 7.97 8.39 7.73 

9/29/2007-10/1/2007 8.52 7.70 7.45 7.57 7.51 

10/26/2007-10/28/2007 8.17 7.62 7.36 7.66 6.85 

11/29/2007-12/4/2007 7.62 7.52 7.54 7.58 7.31 

12/28/2007-12/30/2007 8.13 8.19 8.28 8.13 8.23 

1/26/2008-1/28/2008 7.98 7.99 8.20 7.90 8.18 

2/27/2008-3/1/2008 7.85 7.85 8.07 7.92 7.92 

3/20/2008-3/22/2008 8.16 8.18 8.17 8.19 8.13 

Mean 8.27 7.98 7.85 7.99 7.73 

Standard Deviation 0.38 0.28 0.34 0.30 0.42 
 

Table 6.10  Median DOC and DTN from monthly sampling 

  Control B N E H 

  mg/L 

DOC 15.4 14.1 15.6 14.3 15.5 

DTN 1.05 0.91 1.11 0.96 0.93 
 

6.5 Discussion 

EFVM have promising passive AMD treatment applications.  For example, organic 

carbon availability and temperature influence the effectiveness of vertical flow 

bioreactors (VFB), which are also known as reducing and alkalinity producing systems 

(RAPS) or successive alkalinity producing systems (SAPS).  VFB generally consist of a 

layer of limestone with drainage piping overlain by organic material with a ponded depth 

of approximately 1 m of overlying water (Watzlaf et al., 2004).  Influent flows vertically 

down through the water column, organic matter, and limestone sequentially.  The organic 
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material in VFB serves to deplete oxygen and fuel sulfate reduction, which generates 

alkalinity and removes metals from solution.  The limestone generates yet further 

alkalinity.  VFB are typically followed by oxidation ponds where Fe or Mn can be 

optimally removed from the buffered solution.   

Several studies have shown a sulfate reduction rate decline over time in treatment 

cells that rely on organic matter oxidation (Drury, 2000; Chang et al., 2000; Gibert et al., 

2003; Eger and Wagner, 2003).  VFB treatment efficiency decreases with age before 

organic carbon sources are fully depleted as the supply of short chain organics decreases 

and supplemental carbon is currently introduced to address this issue (Eger and Wagner, 

2003; Kalin et al., 2006).  Typha spp. and Juncus effusus contribute labile dissolved 

organic carbon to their surroundings during senescence or via root exudates which can be 

readily used by sulfate reducing bacteria and fermenters, key consortia of VFB (Mann 

and Wetzel, 1996; Johnson and Hallberg, 2002).   

Emergent macrophytes are among the most productive plant communities worldwide 

(Mitsch and Gosselink, 2000) and Eger and Wagner (2003) suggest that decaying 

wetland plants could provide a renewing carbon source to VFB.  Batty and Younger 

(2007) showed that wetland plant litter in AMD treatment systems can be a key source of 

organic and inorganic nutrients to bacterial populations, even under conditions of 

depressed pH (6.5-3.0).  Typha latifolia productivity ranged from 0.76 to 2.7 kg dry wt m-

2 yr-1 in data compiled by Cronk & Fennessy (2001).  Average Juncus effusus 

productivity is similar (Mitsch and Gosselink, 2000).  However, Typha spp. productivity 

is reported to be roughly halved in wetlands receiving mine drainage (Mitsch & 

Jorgensen, 2004).  Neculita et al. (2007) note optimal VFB field conditions at 0.3 mol 
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SO4/m
3-d and this comports well with data from Dvorak et al. (1992) and McCauley et al. 

(2009).  In sulfate reduction, for each mol of SO4 reduced, two moles of C are required 

(Neculita et al., 2007).  From samples of Typha spp. at an AMD passive treatment system, 

it was determined that 90% of dry wt. is organic matter (Nairn, unpublished data).  By 

halving the productivity of the range noted by Cronk and Fennessy (2001), applying the 

approximation from Mitsch and Gosselink (2000) that approximately 50% of the dry wt. 

of organic matter is C with the percent organic matter from Nairn (unpublished data) it 

was calculated that EFVM in AMD could provide 0.04-0.14 mol C/m2-d of the 0.6 C/m2-

d that an optimally functioning VFB of 1 m substrate depth would require.  EFVM as 

productive as Typha spp. in optimal growth settings could, in theory, fix half the C 

required by VFB.   

Aside from the organic matter contributions, EFVM ability to increase alkalinity, 

encouragement of reducing conditions, and temperature insulating effects could be a 

welcome addition to VFB.  Passive AMD treatment systems, such as VFB, require 

strategies to limit the impact of low ambient temperatures (Heal and Salt, 1999; Johnson 

and Hallberg, 2002; Watzlaf et al., 2004; Champagne et al., 2005; Gusek, 2005), 

especially in extreme latitudes or higher elevations.  The results suggest that in a colder 

climate, EFVM would insulate the underlying water column and substrate from the 

cooler temperatures that often limit the preferential biogeochemical reactions central to 

VFB performance.  VFB sizing is often based on the conservative expected cold-weather 

removal/processing rates.  The insulative effects of EFVM could inhibit bacterial activity 

during warmer periods when activity may otherwise be unnecessarily elevated, 

consuming more substrate than is needed and producing excess hydrogen sulfide gas, 
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which can be a nuisance odor and environmental toxin.  The reduction of the water 

column by EFVM would allow more of the organic substrate’s vertical profile to be 

allocated to sulfate reduction, other than oxygen stripping, which could increase sulfate 

reduction and therefore alkalinity production and metal removal rates.  Continual 

additions of organic matter and nutrients from the EFVM to the VFB would help renew 

essential labile substrate.  Increased sulfate reduction and hence alkalinity production 

before VFB waters contact the underlying limestone could decrease the reliance on 

limestone for alkalinity production, enabling cost-savings.  All these factors would 

combine to increase the lifetime, efficiency, and overall sustainability of VFB while 

decreasing necessary land footprint and seasonal odors with an aesthetically pleasing 

addition of floating emergent wetland vegetation.   

However, there is the possibility of creating a wildlife attraction that may increase 

exposure to whatever ecotoxic constituent is present.  Floating islands are an attractive 

habitat for many species (van Duzer, 2004).  For example, in Minnesota, floating Typha 

spp. mats are prime nesting substrate for red-necked grebes (Podiceps grisegena) because 

of their isolation from predators (Nuechterlein et al., 2003).  However, overall the 

selection of Typha spp. should decrease the chance of biomagnification because it is of 

limited value to wildlife when compared to many other macrophyte species (Mitsch & 

Jorgensen, 2004). 

There are a myriad of other possible EFVM applications.  EFVM could be 

incorporated into existing ecological engineering applications that require anaerobic 

and/or organic-rich conditions, like those described by Guterstam (1996) for aquaculture 

wastewater, Schaafsma et al., (2000), Pattanaik et al., (2007) and Travieso et al., (2006) 
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for distillery waste, Lansing and Martin (2006) for dairy effluent, and Kadlec and 

Wallace (2009) and Hamersley and Howes (2002) for municipal wastewater 

denitrification.  The dechlorination of chlorinated compounds, an application of 

ecological engineering proven viable by Kassenga et al., (2003) and Amon et al., (2007), 

could be enhanced by EFVM.  Also, EFVM could help create the reducing conditions 

noted to encourage the biodegradation of diesel fuel (e.g., Boopathy, 2003), ethanol (e.g., 

Zhang et al., 2006), other petroleum hydrocarbons (e.g., Hunkeler et al., 1998) and nitro-

aromatic compounds (e.g., Kulkarni and Chaudhari, 2007).   

 

6.6 Conclusions 

Results indicate that EFVM are a suitable ecological engineering tool for influencing 

water quality and temperature that may have a wide variety of applications.  EFVM can 

encourage more reducing conditions beneath them with greater alkalinity as well as 

provide insulation from extreme temperatures.  Better performing EFVM can be expected 

by employing more intensive planting media, joined rhizomal plantings, and stronger 

more buoyant frames than those presented in this study.  Future studies should investigate 

incorporation of EFVM into VFB for AMD treatment and other applications where 

organic-rich, thermally insulated, and reduced conditions are advantageous.  Pilot studies 

to investigate the possibilities of passively treating the constituents listed in the previous 

paragraph are also suggested.  Testing EFVM over flow-through systems is necessary to 

determine the rate at which EFVM can alter the underlying water column.   
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