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Abstract

During the past century, impacts of climate change on both natural and human

systems have been observed worldwide. Numerous scientific investigations suggest

a strong correlation between the global warming and greenhouse gas (GHG)

emissions. CO2 emission accounts for 78% of the GHG emissions, and 35% of

this CO2 comes from electricity generation. Reduction of GHG emission from the

electricity generation would therefore be beneficial to decrease global warming.

As a renewable energy source, in comparison with conventional fossil fuels,

solar energy has limitless supply, is accessible in most geographic locations, and

is much cleaner. Currently, solar energy is economically viable in areas where

the infrastructure is limited, or the GHG emissions are restricted by policy. To

further facilitate the ubiquitous deployment of solar energy on a tera-watt utility

scale, further increases in power conversion efficiency and reductions in cost are

still required of solar cell technology.

Third generation solar cells are emerging solar cell technologies, which are

predicted to operate beyond the Shockley-Queisser limit for single bandgap

cells. Nanostructured materials are under investigation as potential candidates

for next generation photovoltaic technologies. In this dissertation, one type of

nanostructured material, semiconductor quantum dots (QDs), were studied for

their potential applications for next-generation photovoltaics.

Epitaxial self-assembled InAs/GaAsSb QD solar cells are investigated for

applications as intermediate band solar cells. These systems have a theoretical

xii



efficiency of ∼ 50% with a simple single junction design. Two sets of optical

InAs/GaAsSb QD samples grown by Molecular Beam Epitaxy (MBE), one set with

various InAs deposition thicknesses, and the other set with different percentages

of Sb composition in the barrier, were studied to determine the optimal growth

conditions in terms of QD density and uniformity. A deposition thickness of 3

monolayers (ML) and 14% Sb matrix composition were shown to yield uniform

QDs with the highest QD density ∼ 3.5 × 1011 /cm2 and a quasi-flat valance

band alignment.

Four p-i-n GaAs solar cells with different intrinsic region designs were then

grown by MBE. An unusually large reduction of the Voc and a complex behavior

of Jsc were both observed. A detailed experimental investigation of these de-

vices supports the hypothesis that thermal activation of defects or ionization of

impurities in the lattice induces a transition from that dominated by radiative

recombination to non-radiative processes. This results in a quenching of the

photoluminescence and electroluminescence intensity and a decrease the z-factor

from 2 to 1, with increasing temperature. The 1.1% lattice mismatch between the

GaAs substrate and GaAsSb matrix contributes to the defect formation, which

serves as the main limitation of the performance of InAs/GaAsSb quantum dot

solar cells presented in this work.

PbS/ZnO colloidal QD solar cells are investigated for thin film solar cell

applications. A suite of transport characterization techniques including current-

voltage, capacitance-voltage, and impedance spectroscopy were used to study the

effect of the interfaces and intrinsic surface states in a standard ITO/ZnO/PbS/Au

xiii



colloidal quantum dot solar cell, without any passivation. An unintentional

Schottky barrier formed at the PbS/ZnO interface results in Fermi level pinning

and induces a non-linearity in the diode characteristic of this solar cell. Losses

associated with Shockley-Reed-Hall recombination processes through interfacial

and midgap states associated with the surface states on the PbS QDs contributes

to a low minority carrier diffusion length, serving to inhibit the performance of

the CQD solar cells.
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Chapter 1

Introduction

1.1 Solar Energy and Solar Cell

During the past century, impacts of climate change on both natural and human

systems have been observed worldwide. Especially for the last few decades,

substantial impacts for physical and biological systems, such as: the shrinkage of

glaciers, rising sea levels, and an increase in frequency of severe tropical storms

have been attributed to global warming with (high) confidence, based on numerous

scientific investigations [1]. The influence of human activities is found to account

for much of the dramatic changes of the climate, where greenhouse gas (GHG)

emissions are considered likely to be the main reason for global warming since

1950s [1].

According to the Intergovernmental Panel on Climate Change (IPCC)’s Fifth

Assessment Report (AR5), “Emissions of CO2 from fossil fuel combustion and

industrial processes contributed about 78% of the total GHG emissions increase

from 1970 to 2010, with a similar percentage contribution for the increase during

the period 2000 to 2010 (high confidence) [1].” In 2016, the U.S. Energy Informa-

tion Administration (EIA) reported that 35% of the total U.S. CO2 emissions can

be attributed to electricity generation [2]. Unlike conventional fossil fuels, which

take several millions of years to form, have limited reserve, and are geographically

concentrated in limited regions, renewable energies such as the sun, wind, rain,

1



and geothermal heat are accessible in most geographic areas and have limitless

supply. Renewable energy is also much cleaner, because of less GHG and pollu-

tant emission. Through incorporation of more renewable energies into electricity

generation, better control of GHG emissions is expected, which will benefit the

whole world.

1.1.1 Solar Energy Market

Apart from the advantages of less GHG and pollutant emissions, the need for

alternative sources of power generation in areas with limited infrastructures or

restriction of GHG emissions also makes solar energy potentially economically

viable. In 2016, new Global investment in renewable power and fuels was an

estimated 241.6 billion USD [3], solar and wind power accounted for 90% of the

total investment [3]. Solar energy is the most abundant, renewable, and free

energy resource on earth, which makes it a feasible and sustainable alternative to

fossil fuels. Compared with 2015, recent investment in solar has declined 34%;

however, a market increase of 50% was also observed because of the significant

reduction of the manufacturing cost of PV systems [3].

Levelized cost of electricity (LCOE) is a commonly used metric to check

the viability of an energy generation technology. It assesses the average total

cost per-kilowatthour to build and operate a power generation plant over its

lifetime [4]. According to the EIA Levelized Cost and Levelized Avoided Cost of

New Generation Resources in the Annual Energy Outlook 2017, the estimated U.S.

Capacity-Weighted LCOE for Solar PV plants ($ 58.1/MWh) entering service in

2



2022 is competitive with conventional fossil fuels (minimum $ 53.8 /MWh) [4].

In some countries, the actual price of electricity generated by PV is as low as ∼

0.03/kWh [5]. The total deployment of PV is expected to reach at least ∼ 3 TW

by 2030 [5].

The solar industry is not only becoming a big challenger in the power generation

industries, but is also the second highest job creator (373,807) among the whole

energy sector in the U.S. at 2016 [6]. The number of new job positions created

in the solar industry during 2016 was 737,878 [6] [7], which is close to the total

employment of the coal industry for both coal mining and electricity power

generation [6].

To increase solar energy accessibly to more areas and population, as well as

facilitate the multi-TW scale deployment of PV, it is of great importance to know

what limits the achievable efficiency of solar cells to further reduce the cost and

increase efficiency. This is the fundamental vision of the work undertaken in the

body of the research presented in this thesis. However, the operation principles

and efficiency loss in solar cells are briefly explained in the next two sections.

1.1.2 Solar Cell Operating Principles

Photovoltaic (PV) devices convert energy stored in electromagnetic waves into

electricity. A solar cell is one type of photovoltaic device which harvests the light

from the sun to generate electric energy. The basic operating processes of a simple

p-n junction solar cell is shown in Figure 1.1. The majority electrons (holes) in

the n-type (p-type) material will diffuse into the p-type (n-type) material and
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Figure 1.1: (a) Schematic plot of a p-n junction solar cell structure;

(b) band diagram of a simple p-n junction solar cell.

recombine with the holes (electrons), introducing negative (positive) charges in

the p-type (n-type) material. Those charges will create a electric field and prohibit

further diffusion of majority carriers. The region near the interface of the p-n

junction, where the concentrations of the mobile carriers are limited due to the

electric field, is defined as the space charge region or depletion region.

There are several requirements for an efficient light-electricity conversion of a

solar cell:

Charge generation - photons absorbed by the semiconductor material transfer

their energy to the electrons in the valence band, excite electrons to the conduction

band, and create electron-hole pairs.

Charge separation - photogenerated electron-hole pairs are separated into

electrons and holes through the drift of carriers driven by the electric field in the

space charge region (depletion region).

Charge transport - the separated electrons and holes travel in the semiconductor
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materials to the opposite terminals.

Electricity output - the electrons run through the external load, recombine

with the holes, and return to the ground state.

Figure 1.2: Dark, light J-V and output power curves for an example

single junction solar cell.

Figure 1.2 shows a plot of dark, light current-voltage (J-V ) and output power

curves for an example single junction solar cell. Four important parameters

open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF ), and power

conversion efficiency (PCE) associated with solar cell operation are directly

extracted from J-V measurements.

As shown in Figure 1.2, Voc represents the voltage where the net current flow

across the cell is zero and Jsc is the current where the voltage across the device is
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zero. The maximum output power is determined as

Pmax = Jmax × Vmax. (1.1)

FF is used to characterize how well the rectification of the tested solar cell is in

comparison with an ideal rectangular J − V curve, and it is determined by

FF =
Jmax × Vmax

Jsc × Voc

. (1.2)

Finally, the most important parameter PCE (η) is given by

η =
Jmax × Vmax

Pin

= FF × Jsc × Voc

Pin

,

(1.3)

where Pin is the total power per unit area illuminating the solar cell.

1.1.3 Efficiency loss in solar cells

Both the solar spectrum and the semiconductor materials determine photon

absorption. Photons with hνtr < Eg transmit through the material and introduce

the transmission loss (red arrow in Figure 1.3). Photons with hνex > Eg will create

carriers above the bandgap, those carriers will lose the excess energy to the lattice

and generate heat (thermalization loss (yellow arrow) in Figure 1.3). Typically,

semiconductors with larger (smaller) bandgaps have larger (smaller) open circuit

voltages, but have smaller (larger) photocurrents because of the transmission loss.

In order to optimize the performance of a solar cell, the transmission loss and

thermalization loss have to be balanced. According to Kirchhoff’s law of thermal

radiation, the photogenerated carriers in the semiconductor materials will also
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recombine and result in the spontaneous emission of photons with hνem = Eg

(re-emission loss (green arrow) in Figure 1.3). The maximum efficiency as a

function of the bandgap of semiconductor that considers these processes is based

a the detailed balanced model known as the Shockley-Queisser limit [8].

Figure 1.3: Thermalization loss (yellow arrow), transmission loss (red

arrow), and re-emission loss (green arrow) in a single p− n junction

solar cell.

Apart from these three loss processes, there are two further fundamental losses:

a solar cell can be treated as a heat engine doing work between a hot reservoir

(the sun) and a cold reservoir (ambient temperature). The maximum efficiency

for such a heat engine is determined by the Carnot efficiency (1 − Tc/Th), this

will introduce a Carnot loss to the solar cell. The entropy generation during

the absorption, conversion, and emission processes will also limit the highest

7



achievable efficiency (Black-body limit [9]). The five losses mentioned above are

considered as the fundamental losses of a solar cell [10]. In a practical solar

cell, extrinsic losses, such as series resistance, parasitic loss, and non-radiative

recombination will further reduce the device efficiency, limiting their performance.

1.1.4 Three generations of solar cell technologies

PV devices are generally classified into three generations [11]:

First generation solar cells - wafer based solar cells - were first introduced by

Bell Labs in 1954 [12]. Si wafer based solar cells (monocrystalline Si (mono-Si) and

multicrystalline silicon (multi-Si)) are the most successful photovoltaic technology

for residential electricity generation due to the abundance of Si in Earth’s crust

and low manufacturing costs; even though the bandgap of Si is not optimum

based on Shockley-Queisser limit [8] in comparison with for example GaAs. The

best cell efficiencies for mono-Si and multi-Si are 26.7% [13,14] and 21.9% [14,15],

respectively. When integrated into modules, the highest efficiencies for mono-Si

and multi-Si are reduced to 24.4% [13,14] and 19.9% [14], respectively. These two

technologies accounted for more than 90% of the total PV production in 2016 as

reported by the Fraunhofer Institute of Solar Energy in Germany [16]. Figure 1.4

(a) shows a SunPower mono-Si solar cell module. The price of multi-Si cells has

seen a significant reduction for the past few years, which has allowed them to

obtain 70% of the PV production and become very competitive with conventional

fossil fuels.

Second generation solar cells generally refer to thin film solar cells using
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Figure 1.4: (a) SunPower SPR-X21-345 solar panel (first generation),

(b) Hanergy Headquarters Building Integrated Photovoltaics (BIPV)

project using CdTe thin film solar panel (second generation), (c) AZUR

SPACE TJ 3G30C triple junction GaAs Solar cell (third generation).

material systems such as Cu(In,Ga)Se2, amorphous Si, CdTe, etc. Compared

with Si wafer based solar cells, thin film solar cells could potentially offer price

reductions in material costs. However, the majority cost of solar panels has shifted

to the balance of system (BOS) and inverter technology. For a current commercial

rooftop multi-Si solar system, the raw Si and module fabrication now cost less
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than 50% of the total system cost [16]. Therefore, module efficiency is of great

importance, as higher efficiency means less total solar modules are required (for

compatible power output) and therefore, lower installation costs. Thus, the low

cost of materials is not an advantage for thin film solar cell anymore.

Currently, the market share for thin film solar cells is less than 10%. Instead,

flexible substrates, which along with the capability of being semitransparent and

colorful, make thin film solar cells suitable for specific applications such as windows

and decorative solar panels. An example of building integrated photovoltaics

(BIPV) using semi-transparent CdTe solar cells is shown in Figure 1.4 (b).

Third generation solar cells are generally referred to as emerging solar cell

tehcnologies which are predicted to operate beyond the Shockley-Queisser limit

for single bandgap solar cells [8]. The most successfully commercialized third

generation technology is multijunction solar cells, which stack several materials

with different energy gaps to increase the total absorption of the solar spectrum

and reduce thermalization and transmission losses. Figure 1.4 (c) shows a AZUR

SPACE TJ 3G30C triple junction GaAs based solar cell. By using concentrators,

the efficiency loss related to the entropy generation in absorption and emission

processes may also be reduced. The highest achieved efficiency record for a

multijunction solar cell is 38.8% under 1 sun [17], 46% under 508 suns [18], and

38.9% for modules under 333 suns [19]. However, due to the use of expensive

materials and synthesis equipment costs incorporated in the production process,

multijunction solar cells are predominantly used in places where the priority is

efficiency rather than unit cell price such as, space applications and concentrator
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PV (CPV) systems.

Emerging techniques for solar cell applications focus on delivering high effi-

ciency solar cells at relatively low cost. Several developing techniques including

multi-exciton generation (MEG), hot carrier solar cells, and intermediate band

solar cells (IBSC) could potentially offer much higher power conversion efficiencies

at less cost.

Nanostructured materials have been investigated extensively for third gener-

ation photovoltaic applications [14, 20]. Multiple quantum wells (MQWs) have

been successfully used in 4 junction solar cells, achieving a 46% efficiency un-

der 508 concentration [18]. In this dissertation, another type of nanostructured

material, quantum dots (QDs), are studied for their potential applications for

next-generation photovoltaics. Since this dissertation focuses on QD solar cells,

the concept of QDs will now be briefly introduced and discussed.

1.2 Quantum dots

1.2.1 Introduction

Quantum dots (QDs) typically refer to semiconductor materials with excitons

confined in all three spatial dimensions (on the order of the bulk semiconductor’s

Bohr exciton radius, i.e. 10’s of nm). The band structure of QDs is analogous

to the simple quantum mechanics model - “a particle in a box”, where the

electron wave is confined in a 3-dimensional infinitely deep potential well. By

solving the Schrödinger equation, the density of states (DOS) in QDs is a δ-
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Figure 1.5: Density of states (DOS) for electrons in bulk semicon-

ductors (3-D, blue), quantum wells (2-D, red), quantum wires (1-D,

green), and quantum dots (0-D, black). Reprint from Nanomaterials,

pages 457-583. Springer Netherlands, Dordrecht, 2011. [21].

function [22], which leads to quantized and discrete energy levels similar to that

of atomic and molecular energy states (see Figure 1.5 black line). The optical and

electric properties can be therefore finely controlled by simply varying the spatial

dimensions of QDs [23].

1.2.2 Colloidal quantum dots and epitaxially self-assembled quantum

dots

Typically, there are two techniques in QD synthesis: chemical synthesis and self

assembled epitaxy, which is most often Stranski-Krastanov (SK) growth [23].

Based on the different synthesis routines, QDs can be divided into two broad
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Figure 1.6: (a) Cross-section TEM image of the relaxed InSb quantum

dot; (b) TEM images of CdSe/ZnS quantum dots. Reprinted from

Thin Solid Films, 543:74-77, 2013 [24] and Sensors and Actuators B :

Chemical, 126(1):187-192, 2007 [25].

categories: colloidal QDs (CQDs) and epitaxially self-assembled QDs. Examples

of self-assembled QDs and colloidal QDs are shown in Figure 1.6.

CQDs are synthesized by injecting cation and anion precursors (typically

metal-organic reagents) to an organic coordinating solvent. The anion/cation

precursors decompose at relatively high temperature, and after reaching the

supersaturation state, they will react to form nuclei. The nuclei keep growing

into small crystallites until the cation/anion precursors are used up or stopped by

rapid cooling below the reaction temperature [23].

Self-assembled QDs are usually grown by molecular beam epitaxy (MBE).

In this systems, a lattice-mismatched material is deposited on top of another

material, a uniform layer whereby a 2D strained epilayer referred to as a wetting

layer is formed. As the thickness of the wetting layer reaches a critical thickness,
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the strain energy built up between the two lattice-mismatched materials triggers

the spontaneous nucleation of island-like QDs (see Figure 1.6(a)) [23].

In comparison with epitaxially grown self-assembled QDs which are typically

produced by MBE in an ultra-high vacuum environment, chemically synthesized

CQDs have larger production yields and higher impurity tolerances. The free-

standing CQDs are easy to apply post-treatment and purification processes upon

to further enhance the spectral purity through improvement of both the size and

shape uniformity. Moreover, CQDs have high photoluminescence quantum yields

(ηpl). All these advantages have led to the commercialization of CQD based tele-

vision displays [26]. Compared with CQDs, the crystal quality of self-assembled

QDs is higher, which results in better electrical and optoelectrical performance,

making them suitable for laser applications [27].

In this dissertation, two different types of QDs were investigated for photo-

voltaic applications; epitaxially grown QDs for high efficiency IBSCs and low cost

colloidal QDs for quantum dot thin film solar cells. In both cases, there are plenty

of issues limiting the applications of the technologies. The focus is to study the

complementary physics behind those limiting factors, in both systems.

1.3 Intermediate band solar cells

1.3.1 Basic concept

The concept of IBSC was first introduced by Antonio Luque and Antonio Mart́ı

in 1997 [28], where an intermediate energy level is introduced into the bandgap
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Figure 1.7: (a)Schematic band diagram of an IBSC. Two sub-bandgaps

within the bandgap Eg, EH and EL, are created by the IB. EH (EL)

generally refers to high (low) energy gap, and represents the energy

seperation between CB and IB (IB and VB) in this plot. Absorbed

photons pump carriers from VB to CB (blue arrow), from IB to CB

(green arrow), from VB to IB (red arrow). The quasi-fermi level (QFL)

separation between the CB and VB determines the output voltage

(V ). (b) Circuit diagram of an IBSC.

of a conventional single junction solar cell. The schematic band diagram of an

IBSC is shown in Figure 1.7(a). A half filled intermediate band (IB) lies between

the valence band (VB) and the conduction band (CB), and introduces two sub-

bandgaps EH and EL (Figure 1.7); where EH and EL represent the larger and

smaller energy separations, respectively. In addition to absorption of photons

with hν (> Eg), sub-bandgap photons with hν > EH or > EL, are also absorbed

through a transition from the IB to CB (green arrow in Figure 1.7) or from the

VB to IB (red arrow in Figure 1.7). The concept of IBSCs is analogous to 3-stage

multijunction solar cell, which uses semiconductors with 3 different energy gaps

to absorb a larger range of the solar spectrum. Unlike the 3-stage multijunction

15



solar cell acting as a 3 solar cells in series, IBSC works as a solar cell in parallel

with 2 solar cells in series (Figure 1.7(b)).

There are two important characteristics for IBSC operation:

Two-step photon absorption (TSPA) - The IB materials are sandwiched by

two conventional n- and p-type semiconductors, which serve as selective contacts

to electrons and holes in the CB and VB. The IB is isolated from the contact,

therefore no sub-bandgap photocurrent will be generated from a single transition

VB to IB or IB to CB unless a two-step transition occurs. TSPA occurs when a

sub-bandgap photon pumps a electron from VB to IB and subsequently another

sub-bandgap photon pumps a electron from IB to CB. Thus, the total generated

photocurrent is a combination of photocurrent from the direct VB-CB transition

and photocurrent from the TSPA.

Voltage preservation - For conventional single junction solar cells, the pho-

tocurrent can be increased by choosing the semiconductor materials with smaller

bandgaps, but with a trade-off of low output voltage (typically ∼ Vmax). However,

the output voltage in an IBSC remains determined by the quasi Fermi level

separation between the n- and p- type materials, since the IB is isolated from

VB and CB; therefore, for an IBSC, the voltage is preserved with an increased

photocurrent.

The optimum theoretical efficiency of an ideal IBSC is 63% under a concentra-

tion of 46,050 suns based on a detailed balance model [28], which is significantly

higher than the Shockley-Queisser limit of 41% for a conventional single junction

solar cell under the same concentrated illuminations [28–30].
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1.3.2 Candidate material systems for intermediate band solar cell ap-

plication

The techniques that have been applied to create the IBSC can be divided into

three broad categories [29–32]: QDs, highly mismatched alloys (HMAs), and bulk

semiconductors with deep level impurities (DLI).

Quantum dots - QDs are a candidate system for an IBSC because of the

discrete energy levels introduced by the 3-dimensional quantum confinement

effects; and semiconductor QDs are the most well investigated technologies for

IBSC applications [33–47]. As the most well-established material systems for IBSC

application, InAs/GaAs QD solar cells (QDSCs) have been used to demonstrated

the existence of sub-bandgap transitions (EH and EL) [43–45] and the photocurrent

enhancement related to TSPA [39, 46, 47]. However, the TSPA process is very

weak (< 1%) at room temperature and voltage preservation [48] is only achieved

at low temperature [31,32], due to the efficient carrier escape processes (tunneling

and thermal escape) at relatively high temperatures (> 70K) [32].

Highly mismatched alloys - HMAs refer to semiconductor alloys composed of

semiconductor materials with distinctly different electronegativities. Normally,

the bandgap of semiconductor alloys can be estimated by the linear interpolation

of the compositions of the endpoint materials A and B based on the virtual crystal

approximation (VCA) as described in reference [49]. However, due to the dramatic

mismatch of HMAs containing component elements, the standard VCA theory

deviates from the experimental results. For instance, incorporating 1% N into
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GaAs will reduce the bandgap by more than 0.1 eV [50].

A band anticrossing (BAC) model is used to explain the band structure of

HMAs, where the conduction band is reconstructed into E+ and E− because of

the anticrossing interaction between the extended states of the host materials and

the highly localized states introduced by the substitutional atoms (eg. N in GaAs,

and O in ZnTe) [51,52]. The resulting energy state E− will serve as the IB. TSPA

process has been observed in both GaNAs [53, 54] and ZnTeO [55, 56] material

systems.

Bulk semiconductors with deep level impurities - In general, deep levels intro-

duced by normal impurities will serve as non-radiative channels (eg. Shockley-

Read-Hall recombination). The increased dark saturation current in terms of

non-radiative recombination current reduces the open-circuit voltage and elimi-

nates the benefits of improved photocurrent related to absorption of sub-bandgap

photons. Dilute magnetic semiconductors (DMS), which have been investigated

extensively for spintronics applications have been proposed for IBSC applications

since, the recombination through the IB formed by the spin-degeneracy is forbid-

den by the spin selection rules. Both GaN with Mn impurities [57] and GaAs with

implanted Ti [58] show photocurrent from the sub-bandgap transition. Voltage

preservation has also been seen in a GaAs:Ti IBSC prototype [58].
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Figure 1.8: Photoluminescence of CQDs with varying size and compo-

sition. Reprint from Nat Photon, 7(1):13-23, 2013 [59].

1.4 Colloidal quantum dot solar cells

An alternative technology utilizing QDs for solar cell applications is CQD thin film

solar cells. Incorporation of solution and low temperature synthesis techniques

could significantly decrease the manufacturing cost of solar cells. CQDs have been

studied extensively for solar cell applications due to their exceptional bandgap

tunability from quantum confinement effects. Chemistry fabrication allows easy

manufacture of CQDs without the requirement of expensive techniques such as:

high temperature processes and ultra-high vacuum environment. The absorption

and emission of CQDs can be easily tuned during the synthesis process by

controlling reaction time and temperature. Figure 1.8 shows the photoluminescence

of CQDs with different compositions and sizes, illustrating the large bandgap
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tunability of these systems.

Among the many CQD material systems, lead chalcogenide QDs (PbS [60–63],

PbSe [64, 65]) represent a promising candidate for solar cell applications for their

capability of optimized solar spectra overlap and incorporation of multiple exciton

generation (MEG) [66, 67], as well as, a tandem structure [68].

Multiple exciton generation is a process that one absorbed photon gener-

ates two or more electron-hole pairs in nanostructured materials, which is similar

as the impact ionization in wide bandgap bulk semiconductor materials. MEG

processes in QDs occur at the photon energies of ∼ 3 eV [67], which is considerably

lower than the typical impact ionization process (∼ 7 eV) [67]; this is due to the

atomic like energy levels of QDs decoupling of phonon processes, and their superior

bandgap tunability. The Beard-group at NREL has demonstrated a PbSe QD

solar cells achieving a peak external quantum efficiency (EQE) over 110% [67], via

MEG suggesting this process could potentially enable power conversion efficiency

(PCE ) in excess of the Shockley-Queisser limit.

Multijunction solar cells, despite being the most efficient solar cells in the

market, have high fabrication costs limiting their mass production and deployment.

Solution processed CQDs with size-tunable bandgaps offer another approach to

break the Shockley-Queisser limit by incorporating tandem multijunction

structures. By utilizing multiple absorber layers with cascading energy gaps,

researchers have demonstrated CQD solar cells with enhanced open circuit voltages

[69]. This can be done in several ways, for example: using different CQD materials,

the same CQD material with various sizes, or a combination of the two. Intensive

20



research efforts continue to make CQD solar cells more efficient. Currently, the

best power conversion efficiency (PCE ) for a CQD solar cell has reached 11.4%

with good stability using PbS [70].
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Chapter 2

Characterization Techniques and Experimental

Setup

In this chapter, a suite of experiments used in this research is described in

detail. First, transport measurements including: current-voltage measurements

(J-V ), external quantum efficiency (EQE ) measurements, capacitance-voltage

(C-V ), and impedance spectroscopy (IS ) measurements are introduced. Then,

the basic theory and experimental setup for both photoluminescence (PL) and

electroluminescence (EL) measurements are presented.

2.1 Transport Characterization

2.1.1 Current-Voltage Measurements

J-V measurements are one of the most well used and important techniques for solar

cell characterization. As is described in Chapter 1, several important parameters

including Voc, Jsc, FF , and PCE associated with a solar cell’s operation can be

directly extracted from J-V measurements.

To make the performance of various solar cells comparable, a well defined solar

spectrum is needed to determine the Pin. The standard solar reference spectra

for solar cells and modules characterization is documented in ASTM E-490-00

(AM 0) [71] and ASTM G-173-03 (AM 1.5G and AM 1.5D) [72] and shown in

Figure 2.1.

The Air Mass (AM) 0 spectrum represents the solar spectrum outside the
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Figure 2.1: AM 0 (black line), AM 1.5G (red line), and AM 1.5D

(green line) reference solar spectra.

atmosphere and is used for satellite applications. AM 1.5G and AM 1.5D are

standards for terrestrial applications, where AM 1.5G includes both direct and

diffuse light, and AM 1.5D spectrum only includes direct light. The total power

Pin per unit area for AM 0, AM 1.5G, and AM 1.5D are 1366.1 W/m2, 1000

W/m2, and 888 W/m2, respectively. The AM 1.5G standard is used throughout

the light J-V measurements in this dissertation.

The light J-V characteristic of an ideal single junction p-n solar cell (see black

line in Figure 2.2) is a superposition of an ideal dark J-V curve and constant
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Figure 2.2: Ideal light J-V (black), light J-V with smaller shunt

resistance (red), and light J-V with larger series resistance (green).

current source JP . It is written as:

J = J0 · [exp (
qV

nkBT
)− 1]− JP , (2.1)

where J0, n, q, kB, and T represent dark saturation current density, ideality factor,

unit charge, Boltzmann constant and temperature, respectively.

If parasitic resistances, for instance, series and shunt resistances are taken into

account, Equation 2.1 is re-written as:

J = J0 · [exp (
q(V − JRs)

nkT
)− 1] +

V − JRs

Rsh

− JP , (2.2)

where Rs and Rsh are the series and shunt resistance, respectively. An equivalent
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Figure 2.3: Equivalent J-V circuit including series and shunt resistances.

circuit describing the operation of a solar cell and incorporating parasitic losses is

shown in Figure 2.3.

Parasitic resistances dissipate the solar energy into heat instead of electricity

and reduce the PCE of the solar cells. The influence of the shunt resistance is

illustrated in Figure 2.2 (red line). The shunt resistance will introduce a leakage

path and affect the collectable current throughout the whole range of the working

bias. For an ideal solar cell, the shunt resistance is close to infinity. In reality, the

smaller the shunt resistance, the larger the leakage current.

The series resistance, which reflects the opposition to current transport through

the device, will result in a voltage drop across the output terminals due to the

voltage division of this resistance, which is reflected in a reduction of the operating

voltage and FF as shown in the Figure 2.2 (green line). However, the series

resistance will not affect Voc due to the lack of current running through the

terminals. The photocurrent JP compensates the diode dark current, therefore

no reduction of the Voc.
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Current-Voltage Experimental Setup

Figure 2.4: J-V experimental setup.

The experimental setup for J-V measurements is shown in Figure 2.4. A

Keithley 2400 multimeter is used to apply a bias and measure the resulting current.

Current density is calculated from the measured current I divided by the device

area or illuminated area through the mask (eg. the mask used in Chapter 5).

A Newport Oriel Sol2A (model 94022A) solar simulator is used to provide an

AM 1.5G solar spectrum. The illumination power density is calibrated with a Si

reference cell. The InAs/GaAsSb QD solar cells described in in Chapter 3 & 4 and

the PbS/ZnO QD heterojunction discussed solar cells in Chapter 5 were mounted

and connected in the Linkam THMS600 cryostat. For temperature dependent

measurements from 77 K to 350 K, a Linkam LNP95 cooling system including a

liquid nitrogen dewar, a liquid nitrogen pump, and a T95 temperature controller

were used. The cryostat is sealed tight at first; then, N2 was used to purge air

out of the cryostat and attain an oxygen- and moisture-free environment; after

the purging process, the sample is cooled down to 77 K to begin the temperature
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dependent measurements.

2.1.2 External Quantum Efficiency Measurements

External quantum efficiency (EQE ) of a device is written as:

EQE(λ) =
current /e

incident power/photon energy
(λ)

=
collected carriers (device)

collected carriers/ Spectral response (detector)
(λ),

(2.3)

which is determined as the ratio of the collected photogenerated carriers to the

number of incident photons as a function of wavelength. If one incident photon

gets absorbed and one carrier is extracted, the resulting EQE is 100%. Since

EQE is also directly related to the absorption spectrum, it can also be used to

determine the bandgap of the solar cell and the contribution of the photogenerated

current from different materials in the device.

In J-V measurements, Jsc is photogenerated current per area at zero bias.

Therefore, the equivalent Jsc can also be extracted from the EQE measurements

across the solar spectrum at zero bias by:

Jsc = q

∫
Φ0(λ)EQE(λ)dλ, (2.4)

where q and Φ0 represent the charge and photon flux, respectively.

External Quantum Efficiency Experimental Setup

The EQE experimental setup is shown in Figure 2.5. A Quartz Tungsten Halogen

(QTH) lamp (model Oriel 66884) and a Xenon arc lamp (model Oriel 66092) are

used as light sources to cover visible and infrared spectrum. An Oriel Merlin

27



Figure 2.5: EQE experimental setup.

Digital Lock-in radiometry system, including a filter wheel with three long pass

filters (305, 550, and 1000 nm), a chopper (1 - 200 Hz) and an Oriel Cornerstone

260 monochromator, are used to provide chopped monochromatic light. Two

lenses are used to collimate and focus the light onto the sample. Two detectors,

Si detector (model Oriel 71650) and Ge detector (model Oriel 71653), are used to

measure the reference spectrum from 400 nm to 1100 nm and from 700 nm to

1700 nm, respectively. For temperature dependent EQE measurements, the same

Linkam system used in temperature dependent J-V measurements is used.
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2.1.3 Impedance Measurements

The concept of impedance was first introduced by Oliver Heaviside in 1886 [73].

In analogy to resistance under DC conditions, impedance reflects the ability of a

component to inhibit the current flow with given AC bias. The impedance of a

system is defined as applied AC voltage V (t) divided by the resulting current I(t):

Z =
V (t)

I(t)
. (2.5)

By measuring the amplitude and phase of the response of a small modulation signal,

the impedance Z is determined as Z = |Z|ejωφ, where j is the imaginary unit, ω

is the angular frequency, and φ is the phase angle. For three ideal fundamental

components: resistor R, capacitor C, and inductor L, each impedance is defined

as ZR = R, ZC = 1
jωC

, and Z = jωL, respectively.

2.1.3.1 Capacitance-Voltage measurements

The C-V measurements described in Chapter 4 are also referred to as Mott-

Schottky analysis. The capacitance of a Schottky junction is analogous to the

capacitance of a parallel-plate capacitor, with capacitance given by:

C =
Aεs
ω

, (2.6)

where ω is the depletion region formed by the diffused minority carriers, and the

associated built-in potential is Vbi. The depletion width of a Schottky junction is

given by [74]:

ω =

√
2εs(Vbi − V )

qND,A

. (2.7)
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Parameters ND or NA represent the donor or acceptor concentration in the

semiconductor, respectively. Combining Equation 2.6 and 2.7, the capacitance of

a Schottky junction can be written as:

C = A

√
qεsND,A

2(Vbi − V )
, (2.8)

or

1

C2
=

2(Vbi − V )

A2qεsND,A

. (2.9)

By plotting 1/C2 - V , the doping concentrationND orNA and built-in potential

Vbi can be determined from the slope and intercept of a linear fit, respectively. For

heterojunctions, if the doping concentration on one side of the interface is much

higher than the other, the capacitance can still be approximated by Equation 2.9.

2.1.3.2 Impedance Spectroscopy

A Nyquist plot, is used to interpret the impedance spectroscopy (IS) in which the

imaginary part of impedance Z
′′
is plotted against the real part of the impedance

Z
′
, as a function of modulation frequency ω. The minority carrier lifetime and

diffusion length can therefore be determined from the recombination resistance,

transmission resistance, and chemical capacitance, which are all extracted directly

by fitting the Nyquist plot with an appropriate equivalent circuit model model.

2.1.3.3 Impedance Experimental Setup

Capacitance and impedance measurements were taken with Hewlett Packard

4192A LF impedance analyzer. This impedance analyzer is capable of bias and
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Figure 2.6: C-V and impedance spectroscopy (IS) experimental setup.

oscillation frequency dependent measurements. The impedance measurements

setup is shown in Figure 2.6. The AC oscillation voltage amplitude is set to

20 mV root-mean-square (on the order of kT/e) to achieve an approximate

linear response Z(ω) = V (ω)/I(ω) [75] for both C-V and IS measurements.

The sweeping frequency range for IS measurements was set from 10 Hz to 13

MHz. However for the C-V measurements discussed in Chapter 4, a relatively

low frequency range of 80 Hz to 1000 Hz was chosen due to the relatively slow

response of the devices.

2.2 Photoluminescence and Electroluminescence Spectroscopy

Luminescence spectroscopy is a powerful technique for semiconductor charac-

terization. This non-destructive technique is used to study band structures of

the materials and defects that have an energy that is close to the band edge.

After exciting the carriers above the bandgap, the excited carriers will eventually

relax back to the valence band states through multiple processes. Luminescence

spectroscopy is used to study the radiative recombination of the excited carriers
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in the semiconductor material.

Based on different excitation methods, the luminescence spectroscopy includes

photoluminescence, electroluminescence, cathodoluminescence, thermolumines-

cence, etc. In this dissertation, photoluminescence and electroluminescence were

used to characterize and investigate the fundamental properties of the quantum

dot solar cells.

2.2.1 Photoluminescence

Photoluminescence (PL) measures the light emitted from the radiative recombi-

nation of photo-excited carriers in a material. PL is a non-destructive optical

measurement and therefore doesn’t need a full electrical device architecture. The

excitation source is typically a laser that has a photon energy larger than the

bandgap of the probed material. The semiconductor material will absorb the pho-

tons, pump the electrons above the conduction band, and generate electron-hole

pairs. The photo-excited electrons and holes will relax rapidly to the local extrema

of the energy states (typically the CB and VB band edge for bulk materials)

within the conduction and valence bands, then subsequently recombine through

radiative or non-radiative processes. The radiative portion is measured by the

photodetector, yielding information about bandgap of materials and defects.

By investigating the shape, peak position, and intensity of the PL spectra at

various temperatures (TD PL), additional information of the material such as:

the nature of the optical transition (bandgap or defects induced localized states),

activation energies, relative strength of non-radiative recombination, etc. can be
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determined. By varying the excitation power, information related to the band

alignment can be evaluated by studying the behavior of the peak energy shift.

Photoluminescence Experimental Setup

The PL experimental setup used in this work is shown in Figure 2.7. A Thor-

Figure 2.7: PL experimental setup.

labs HNL210 10mW HeNe laser (632.8 nm) was used as the excitation source.

Borosilicate Crown Newport lenses and Borofloat 33 flat mirrors are used to
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focus the laser onto the sample in a He cooled closed-cycle cryostat. The light

emitted from the sample is then collected/collimated and focused into a Princeton

Instruments Acton SP2500 spectrometer fitted with a Roper Scientific liquid N2

cooled Princeton Instrument InGaAs linear array photodetector. For PD PL

measurements, a neutral density filter wheel is used to reduce the laser power

incident onto the sample. A heater inside the cryostat is controlled by a Lakeshore

331 temperature controller to vary the temperature of the sample for TD PL

measurements. WinspecTM data acquisition software is then used to control and

record the PL measurement data.

After loading the sample into the cryostat, a turbo molecular pump is used to

pump down the cryostat to below ∼ 10−5 torr. A He compressor is then turned

on to cool the whole system to 4.2 K, which eventually cryo-pumps the whole

system to below 10−6 torr. The optical path is aligned to maximize the QD signal

(∼ 1060 nm). The exposure time constant is chosen to produce a peak intensity

of ∼ 60,000 counts (or 30s if the PL signal is really low).

For PD PL, a combination of neutral density filters are used to achieve a laser

power range from 0.05 mW to 10 mW. For TD PL measurements, the temperature

range is set from 4.2 K to 300 K, with 5 K step size below 100 K and 10 K step

above 100 K.

2.2.2 Electroluminescence

Unlike the PL probing the radiative recombination of the photo-excited carriers,

electroluminescence (EL) measures the spontaneous emission of electrically injected
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carriers in the semiconductors. In contrast to PL, EL requires full electrical devices

Figure 2.8: EL experimental setup.

to inject the carriers into the active region. The direct injection of carriers into

the active region in EL allows the radiative recombination to be probed directly

in the active medium without attenuation of the signal from the emitters (which

is common in PL measurements). EL provides similar information to PL such

as the bandgap, activation energy, etc. Furthermore (in addition), injection

level dependent EL measurements allow the determination of the nature of the

recombination processes that occur in the system directly.
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Electroluminescence Experimental Setup

The EL experimental setup is shown in Figure 2.8. A ILX Lightwave LDP 3840B

pulsed current source is used to inject the current into the solar cells. The pulse

width and duty cycle are set to 100 ms and 10%, respectively. The injection level

is varied from 1 mA to 200 mA for injection level dependent EL measurements.

A set of two Borosilicate Crown Newport lenses is used to collect and focus the

EL into a SPEX 270M spectrometer fitted with an Edinburgh Instruments liquid

N2 cooled Ge detector. The DC signal from the Ge detector is then sent to an

analog lock-in amplifier and recorded by a Keithley 2400 multimeter.
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Chapter 3

Optimization of Growth Conditions for

InAs/GaAs1−xSbx Quantum Dots and Devices

The InAs/GaAs quantum dot (QD) system is one of the most well-studied material

systems for intermediate band solar cell (IBSC) applications [33–35,39]. Despite

successful demonstration of the fundamental operating procedures of IBSCs, the

InAs/GaAs QD system has several drawbacks including having a poor solar

spectrum overlap and limited absorption, which inhibit its potential application

in PV. The InAs/GaAsSb QD system, however, has been proposed as a promising

alternative for QD IBSC applications [42]. This system has several advantages

compared with conventional InAs/GaAs QDs such as: (1) a quasi-flat valence band

(VB) offset, which facilitates the carrier extraction; (2) a reasonable solar spectrum

overlap, which suggests a higher theoretical efficiency [42]; (3) significantly higher

QD density, therefore higher absortpion [76].

In this chapter, growth conditions for InAs/GaAs1−xSbx QDs were optimized

in terms of QD density and uniformity. Atomic force microscope (AFM) was

used to measure the QD density. Power dependent (at 4.2 K) and temperature

dependent PL were performed to characterize the optical properties of the QD

samples. Then, a set of three InAs/GaAs1−xSbx QDSCs with the optimal growth

conditions for QDs and a control cell were studied using complementary PL,

EL, J-V, and EQE measurements. Those electrical device measurements will be

discussed in the next chapter, here only the PL measurements will be presented.
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Figure 3.1: Schematic plot of optical InAs/GaAsSb QD sample with

various InAs deposition thickness.

All the QD samples described were grown by molecular beam epitaxy (MBE)

in the Department of Physics and Astronomy at University of Oklahoma by the

Santos-Group. AFM images were captured and analyzed by our collaborators at

Amethyst Research Inc. All solar cell structures were processed using standard

III-V wet-etch procedures at University College London.

This chapter is partially based on results described in Debnath, Yang et

al.’s paper published in the Journal of Applied Physics 119.11 (2016): 114301.

and Yang et al.’s paper published in Solar Energy Materials and Solar Cells 147

(2016): 94-100.

3.1 Growth of InAs/GaAs1−xSbx Quantum Dots

3.1.1 Experimental Details

All the optical QD samples were grown on semi-insulating GaAs (001) substrates

in an Intevac Gen II MBE system. Figure 3.1 is a schematic plot of the optical
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sample structure depicting a variable InAs deposition thickness - as there are

several different configurations investigated. First, a 250 nm GaAs buffer layer

was grown on top of the GaAs substrate at a growth rate of 0.8 monolayer (ML)/s

with a substrate temperature (Tsub) of 580
◦C. Then, a 10 nm GaAs1−xSbx buffer

layer was grown at a rate of 0.39 ML/s with a reduced Tsub = 510− 520◦C. After

that, InAs was deposited at a slower growth rate of 0.1 ML/s under an As2/In

beam equivalent pressure ratio between 25 and 35 with Tsub = 500−520◦C. When

the deposition thickness of InAs reached the critical thickness ∼ 1.65 ML, the

Stranski-Krastanov growth mode was triggered and facilitated the direct formation

of InAs QDs. The total InAs deposition thickness is varied from 1.75 ML to 4

ML. Then, another 30-50 nm GaAs1−xSbx cap layer, which also served as the

buffer layer for QD growth, was grown using the same conditions for GaAs1−xSbx

buffer layer [76]. Finally, another uncapped InAs QDs layer were grown for AFM

evaluation of the QD size and density.

Two sets of optical InAs/GaAsSb QD samples were investigated in this chapter.

One set was designed to find the optimal InAs deposition thickness (by varying

the number of MLs from 1.75 to 4 ML) for the highest QD density and narrowest

QD size distribution; the other set was designed to observe the band alignment

transition from type-I to type-II by varying the Sb composition in GaAs1−xSbx

matrix material.

The areal density and QD size for uncapped InAs QDs were analyzed using a

Bruker AFM in contact mode [76]. PL measurements were performed using the

PL setup described in Chapter 2.
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Figure 3.2: (a) Schematic band diagram of InAs QDs in a

GaAs0.86Sb0.14 matrix; (b) AFM image (1 μm × 1 μm) of an un-

capped QD layer with 3.0 ML InAs deposition thickness and 13% Sb

composition in GaAsSb.

3.1.2 Experimental Results and Discussions

3.1.2.1 Optimization of InAs Deposition Thickness

A schematic band diagram of the optical InAs QD samples is shown in Figure 3.2.

At low temperatures, most of the photogenerated carriers are captured and frozen

in the QDs due to the large CB offset between the InAs and GaAs1−xSbx. Since the

confinement energy levels in QDs are much lower than the bandgap of GaAs and

GaAs1−xSbx, the QD transition (red arrow) serves as the most efficient pathway

for carriers to recombine. Thus, the PL signal is dominated by QDs which is

consistent with our PL measurements.

PL measurements were performed at 4 K on a series of QD samples where

the total InAs deposition (ML) has been varied to investigate its effects. A 13%
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Figure 3.3: 4 K (a) PL spectra and (b) normalized PL spectra of

optical QD samples with 1.5 ML (black), 1.75 ML (red), 3.0 ML

(green), and 3.5 ML (blue) InAs deposition thickness.

Sb composition was chosen for the GaAs1−xSbx matrix, based on a theoretical

prediction of a quasi-flat VB for the InAs/GaAs0.87Sb0.13 system [42]. PL and

normalized PL spectra are shown in Figure 3.3. The PL intensity increases steadily

with increasing deposition thickness from 1.5 ML (black) to 3.0 ML (red) as shown

in Figure 3.3 (a), which indicates a higher material quality for 3.0 ML QD sample.

The 1.5 ML deposition thickness is close to the critical thickness of the wetting

layer to QD formation transition [76]. Apart from the improved PL intensity, the

41



narrowest full width at half maximum (FWHM) of the PL spectra suggests that

a more uniform QD size distribution is achieved for the 3.0 ML sample. However,

as the InAs thickness is further increased, though the PL spectra is still narrow, a

dramatic reduction of PL intensity is observed for the 3.5 ML layer sample. Such

a reduction is most likely attributed to plastic relaxation and defect formation

with increasing InAs deposition and the formation of larger QDs as QDs coalesce.

We have seen some high quality 3.5 ML QDs but all the 4 ML samples have been

poor due to the transition back to 2-D growth.

In Figure 3.3, a red shift of the PL peak position is also observed with increasing

thickness. The peak position for the 3.5 ML sample shifts by ∼100 meV with

respect to 1.5 ML sample. Such a change indicates the formation of larger QDs

since, the confinement energy is inversely proportional to the size of the QDs; the

increasing QD size is as expected - with an increase in InAs ML deposition.

Figure 3.2 (b) shows an example AFM image (1 μm× 1 μm) of an uncapped

QD layer after 3.0 ML InAs deposition on a GaAs0.87Sb0.13 epilayer. The QD areal

density as a function of InAs deposition thickness is summarized in Figure 3.4.

Varying the deposition thickness from 1.5 ML to 3.5 ML results in an areal density

that increases from 6.5 × 1010/cm2 to 3.5 × 1011/cm2 and then decreases to

2.3 × 1011/cm2; where, the 3.0 ML thickness gives the highest areal density of

3.5 × 1011/cm2, providing an average height and diameter of the InAs QD islands

of ∼ 2 nm and ∼ 15 nm, respectively [76, 77]. This areal density is almost one

order magnitude higher than conventional InAs/GaAs QDs [76]. The AFM results,

along with the 4 K PL measurements suggest that 3.0 ML is the optimal deposition
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Figure 3.4: The QD areal density as a function of InAs deposition

thickness. Reprint from M. C. Debnath, Yang et al. published paper

Journal of Applied Physics 119.11 (2016): 114301.

thickness for the growth of high quality and dense InAs QDs on GaAs0.87Sb0.13.

3.1.2.2 Optimization of Sb Composition in GaAs1−xSbx Matrix

Four InAs/GaAs1−xSbx QD samples with various Sb composition in GaAs1−xSbx

matrix were investigated to find a quasi-flat VB alignment which is preferred

for IBSC applications. A schematic plot of the sample structure is shown in

Figure 3.5 (a). Figure 3.5 (b) illustrates the two different band alignments for

InAs/GaAs1−xSbx QD heterojunctions. For a type-I band alignment: electrons

and holes are both confined in the InAs QDs; in contrast, for a type-II band

alignment: electrons are confined in InAs QDs while the holes are excluded into

the GaAs1−xSbx matrix. Radiative recombination is generally less efficient in
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Figure 3.5: (a) Schematic plot of optical InAs/GaAs1−xSbx QD sample

with various Sb composition in GaAs1−xSbx matrix; (b) Type-I and

type-II band alignments.

type-II structures than type-I structures, since the electrons and holes are spatially

separated in different materials, which reduces the oscillation strength. According

to the literature [42, 78–81], the band alignment of InAs/GaAs1−xSbx QDs is

predicted to change from type-I to type-II as the Sb composition increases above

13-14%.

4 K PL and normalized PL spectra for various Sb compositions (10%, 12%,

16%, 18%) samples are directly compared in Figure 3.6, with a 50 mulitiplier and
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Figure 3.6: (a) PL spectra for QD samples with different Sb com-

positions in the GaAs1−xSbx matrix. A 50 and a 100 multiplier are

applied to the 16% and 18% Sb data; (b) Type-I and type-II band

alignments. Reprinted from [77].

a 100 multiplier applied to the 16% and 18% Sb data for an intuitive comparison.

As shown in Figure 3.6 (a), the PL signals from 10% and 12% samples are much

brighter than the 16% (two orders of magnitude) and 18% samples (three orders of

magnitude). The significant reduction of PL intensity when the Sb composition is

increased is consistent with the band alignment transition from type-I to type-II,

since the spatially separated electrons (in InAs QDs) and holes (in the GaAs1−xSbx
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matrix) in type-II structures will reduce the radiative recombination efficiency

dramatically [42, 78–81].

A red shift of the PL peak is also observed in Figure 3.6 with increasing

Sb composition in the GaAs1−xSbx matrix. This red shift is attributed to the

reduction of the effective bandgap, since the increasing Sb composition decreases

the barrier heights and therefore reduces the confinement energies. The effective

bandgap is given by a combination of bandgap of the materials, confinement

energies, and exciton binding energy. Apart from this process, the formation

of defects also plays a role in the reduction of the PL intensity. Since the

lattice mismatch between the matrix and substrate will increase when the Sb

composition increases, the density of the defects in the matrix will also increase.

This is evidently reflected in the PL spectra for the 18% sample, where a strong

tail that is even brighter than the QD peak is observed on the low energy side of

the PL spectra.

TD PL spectra of 12% and 16% QD samples are shown in Figure 3.7. Both

samples demonstrate a reduction of the PL intensity with increasing temperature.

However, the 16% sample quenches more rapidly than the 12% sample (see

Figure 3.7 (c)), and the PL from QDs diminishes when the temperature reaches 95

K. The more rapid quenching of the PL intensity can be attributed to the spatial

separation of electrons and holes for the type-II band alignment, which results in a

smaller overlap between the electron and hole wavefunctions limiting the radiative

recombination efficiency. Moreover, signals related to the lower energy defects

that are more evident in the 16% sample (see Figure 3.7 (b)) also contribute to
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Figure 3.7: Temperature dependent PL at 4 K from a 3.0 ML

InAs/GaAs1−xSbx QD structures with Sb compositions of (a) 12%

and (b) 16%. (c) PL peak intensity for the 12% (black symbols) and

16% (red symbols) structures as a function of temperature..
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the reduction of the PL; the lower energy peak related to the defects dominates

the PL spectra when the temperature increases to 95 K. In contrast, the 12%

sample starts to see the defect states above 160 K.

The increased lattice mismatch between the GaAs1−xSbx matrix and the GaAs

substrate with increasing Sb composition in the matrix may explain the formation

of the defects; more Sb in the matrix will reduce the critical thickness and facilitate

defect formation. Those defects will capture the thermally activated carriers and

reduce the radiative recombination.

Figure 3.8: Power dependent μPL at 77 K from a 3.0 ML

InAs/GaAs1−xSbx QD structures with Sb compositions of (a) 10%

and (b) 14%.

77 K power dependent micro photoluminescence (μPL) was performed to

further investigate the contribution of the band alignment transition (from type-I

to type-II) to the intensity reduction. A blue shift is expected for type-II systems

with increasing excitation power [79, 81, 82]. In type-II heterojunction structures,

the electrons and holes are spatially separated into the two different materials.
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With continuous photo-excitation, the accumulated photoexcited carriers electrons

and holes at the interface will introduce an electric field that will bend the energy

band edge. As the excitation power increases more carriers will accumulate near

the interface, where band bending will occur and push the confinement states to

higher energy levels. The PL peak energy is proportional to the cubic root of the

excitation power [79, 81, 82]. In contrast, the photoexcited carriers are confined in

the same material for a type-I structure; thus, there will be no such shift in the

PL measurements with increasing excitation power.

77 K power dependent μPL for 3.0 ML InAs/GaAs0.88Sb0.12 and InAs/GaAs0.86Sb0.14

QD samples are shown in Figure 3.8. Both samples exhibit a blueshift as the

exciation power increases. However, the ∼ 3 meV (1.113 - 1.116 eV) blueshift of

the peak energy for InAs/GaAs0.88Sb0.12 QD sample ( which is predicted to have

a type-I band alignment) is significantly less than the ∼ 10 meV (1.115 - 1.125

eV) shift of the InAs/GaAs0.86Sb0.14 QD sample as the excitation power increases

from 0.05 to 10 mW.

Figure 3.9 compares the peak energy vs. cubic root of excitation power plots

of InAs/GaAs0.88Sb0.12 and InAs/GaAs0.86Sb0.14 QD samples, where the 14% QD

sample exhibits a clearly linear trend indicating a type-II band alignment as

predicted [42,81]. The linear excitation power dependence of the 12% sample may

be partially explained by the alloy fluctuations in this material system, where the

localized states can trap and spatially separate the photoexcited carriers.

AFM is used to analyze the quality of the uncapped InAs QDs on a GaAs1−xSbx

surface. The QD areal density as a function of the Sb composition is shown in
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Figure 3.9: PL peak positions are shown for the QD structures with

12% (green symbols) and 14% (red symbols) as a function of the cubic

root of the excitation power. Reprint from Yang et.al. Solar Energy

Materials and Solar Cells 147 (2016): 94-100.

Figure 3.10: The QD areal density as a function of Sb composition

in GaAs1−xSbx matrix . Reprint from M. C. Debnath, Yang et al.

published paper Journal of Applied Physics 119.11 (2016): 114301.
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Figure 3.10. The areal density reaches its maximum of 3.5 × 1011/cm2 with 14%

Sb in the matrix. The initial increase in areal density can be explained by the

suppressed coalescence of some neighboring QDs [76]. By introducing Sb into the

matrix, Sb atoms serve as a surfactant and lower the surface energy; therefore,

prohibiting the nearby QDs from coalescing together to form larger QDs and

decreasing the areal density. As the Sb composition goes above 14%, the smaller

critical thickness will trigger dislocation formation in the QDs, resulting in larger

relaxed QDs and a reduced areal density.

In summary, the 3.0 ML InAs deposition thickness and 14% Sb composi-

tion in the GaAs1−xSbx matrix are chosen as the optimal growth conditions

for InAs/GaAs1−xSbx QD structures. Full solar cell structures with embedded

InAs/GaAs1−xSbx QDs will be introduced and investigated in the next section.

3.2 Photoluminescence Characterization of Multilayer

InAs/GaAs1−xSbx Quantum Dot Solar Cells

As shown in the previous section, high QD areal density and good uniformity

have been demonstrated for optical InAs/GaAs1−xSbx QD reference samples. A

3.0 ML InAs deposition thickness and 14% Sb composition in the GaAs1−xSbx

matrix are determined as the optimal growth conditions for InAs/GaAs1−xSbx

QDs based on the AFM and PL measurements. However, a full solar cell structure

with embedded InAs/GaAs1−xSbx QDs was not implemented.

In this section, four p-i-n GaAs solar cells with different intrinsic region
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designs grown by MBE are discussed. Power and temperature dependent PL

measurements are presented as a means to evaluate the material quality of these

solar cells.

3.2.1 Experimental Details

Figure 3.11: Schematic plot of p-i-n GaAs solar cell structures with

four different intrinsic region designs: (a) 3 multi-layers, (b) 5 multi-

layers, (c) 7 multi-layers of InAs/GaAs0.86Sb0.14 QDs, (d) 170 nm

GaAs0.86Sb0.14.

A schematic plot of four comparative structures investigated in this section

is presented in Figure 3.11. Four p-i-n GaAs solar cells with different intrinsic
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designs were grown by MBE. The n-type base region of theses solar cells consists

of 250 nm of n+-type GaAs (1× 1018 cm−3) deposited on top of a n-type GaAs

(001) substrate. A 30 nm n-Al0.30Ga0.70As (5 × 1017 cm−3) layer is introduced as a

back-surface field layer. This is followed by a 300 nm n-type GaAs (2 × 1017 cm−3)

buffer layer, which completes the base region of the solar cell. The p-type emitter

on top of the intrinsic region consists of a 200 nm p-GaAs (5 × 1017 cm−3) and a

30 nm p+-Al0.25Ga0.75As (1× 1018 cm−3) window layer. The whole structure is

then capped with 250 nm of p++-GaAs (1× 1019 cm3) for a low resistive p-type

contact. For the QD containing structures, the intrinsic region consists of two 50

nm GaAs layers sandwiching 3 (a), 5 (b), and 7 (c) periods of InAs QD layers

in a GaAs0.86Sb0.14 matrix. Each individual period has a 20 nm GaAs0.86Sb0.14

layer upon which 3.0 ML of InAs is deposited to form the QDs. The final period

of the QD stack is capped with a 30 nm GaAs0.86Sb0.14 layer; the total thickness

of the intrinsic region is ∼ 230 nm, ∼ 250 nm, and ∼ 270 nm, respectively. The

intrinsic region of the control cell (d) has two 50 nm GaAs layers sandwiching

170 nm of GaAs0.86Sb0.14. Temperature dependent and power dependent PL were

performed using the experimental setup described in Chapter 2.

3.2.2 Experimental Results and Discussions

Normalized 4 K PL spectra of all four samples from 750 nm to 1450 nm are shown

in Figure 3.12. Multiple transitions are observed in these samples. Peaks related

to the GaAs-related transitions (∼830 - 870 nm) are more pronounced in the

control cell as compared with the QD cells. A broad low energy band is also seen
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Figure 3.12: 4 K Normalized PL spectra of the 3 (black symbols), 5

(red symbols), 7 (green symbols) periods QD samples, and the control

sample (blue symbols). Peaks related to QD transition and GaAs are

labeled.

in the control cell, which is related to defect formation due to the lattice mismatch

between the GaAs and GaAs0.86Sb0.14 matrix. The dominant peak (∼1050 - 1060

nm) seen in the three QD samples is related to InAs/GaAs0.86Sb0.14 QD transitions

(VB to IB). The QD peak shows an asymmetric shape (a high energy shoulder)

indicative of a multimodal behavior that is due to inhomogeneities in the QDs.

The multimodal behavior is more pronounced in the 3-layer sample than the

other samples. As the number of stacked QD layers becomes larger, the tensile

strain between the InAs and GaAs0.86Sb0.14 tends to relax [83,84]; which results
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in a formation of larger and more uniform QDs, thus a lower energy PL. The

GaAs0.86Sb0.14 PL signals (∼ 910 nm) are limited in the QD samples compared

with the control cell, because of the fast relaxation of photoexcited carriers into

the QDs which have a lower energy transition than the matrix material.

By comparing all the QD samples, it is clear that the FWHM of the QD peak

decreases as the period of QD layer increases. For the 3-layer QD sample, the

variation of the QD size is directly reflected in the strongest multimodal behavior,

where two PL peaks are clearly observed. As more and more QD layers are

introduced, the homogeneityof the QDs improves and is better in the 5-layer and

7-layer QD samples relative to the 3-layer sample. The narrowest linewidth is

evident for the 7-layer sample, indicating the formation of the most uniform QDs

in this sample. However, the number of QD layers cannot be increased infinitely,

since the lattice mismatch between the substrate and matrix will introduce defects,

which serves as recombination centers and reduce the performance of the solar cell

efficiency in terms of increased recombination losses and degradation of the Voc.

4 K PD PL measurements were used to probe further the multimodal behavior

in the QDSCs. The log intensity as a function of wavelength for all samples

is shown in Figure 3.13. The asymmetric shape of the QD samples indicates

the existence of more than one PL peak (for convenience, labeled as high and

low energy peak). Different subsets of QDs with various size, composition, and

strain result in this multimodal behavior. As the excitation power increases, the

high energy peak of the 3-layer sample is saturated, most likely due to the low

QD density and limited distribution of small (high energy peak) QDs compared
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Figure 3.13: Power dependent PL measurement results of the (a)

3-layer, (a) 5-layer, (a) 7-layer QD cell, and (d) the control cell.

with the large (low energy peak) ones in the QD ensemble being probed. The

high excitation power generates more photoexcited carriers which laterally diffuse

into a larger area, therefore sampling a more meaningful statistical ensemble of

QDs. With increased period of QD layers, the low energy peak dominates the PL

spectra; This suggests the formation of more uniform QDs at upper QD layers,

which is consistent with narrowest FWHM of 7-layer shown in Figure 3.12.

PL peak energies vs. the cubic root of the excitation power are shown in

Figure 3.14 for the 5-layer and 7-layer samples (the 3-layer sample is excluded due

to the strong bimodality, which perturbs the extracted peak energy positions). The

peak energy increases when the excitation power increases. A linear relationship
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Figure 3.14: PL peak energies are shown for 5-layer (blue symbols)

and 7-layer (red symbols) QD samples as a function of the cubic root

of the excitation power.

between the peak positions and the cube root of the excitation power is observed,

which is consistent with a type-II band alignment due to the 14% Sb composition

in the matrix, as discussed in Chapter 3. The deviation of the peak energy

from the linear trend at low excitation may be the result of the poor signal to

noise ratio at such low excitation levels. Another possible reason may be alloy

fluctuations, which introduce localized states in the samples that compete with

the QD confinement states at low excitation power.

Figure 3.15 shows TD PL measurements of all samples from 4 K to 200 K.

Peaks related to the GaAs-related transistion(s) seen in all three QD samples and

the control sample show a red shift as a function of increasing temperature (830 -
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Figure 3.15: Temperature dependent PL measurement results of the

(a) 3-layer, (a) 5-layer, (a) 7-layer QD cells, and (d) the control cell

from 4 K to 200 K.

850 nm), which follows a standard Varshni shift [85]. The InAs/GaAs0.86Sb0.14

QD peak is seen in all three QD samples as expected (Figure 3.15 (a), (b), and

(c)) similarly displays a red shift (1080 - 1120 nm) with increasing temperature.

The peak intensity of the QD PL as a function of temperature is shown in

Figure 3.16. The PL signal from GaAs0.86Sb0.14 is limited (not well-resolved) in

the QD structure at low temperatures and becomes nonexistent with increasing

temperatures; in comparison, the GaAs0.86Sb0.14 signal in the control cell displays

a red shift and quenches quickly (Figure 3.15(d) 910 - 975 nm) due to the type-II

band alignment. The broad defect-related band (950 - 1500 nm) seen in the 4 K

measurement is evident in the control cell across the whole temperature range. In
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contrast, the defect peak is relatively weak in the QD samples until 150 K.

The multimodal behavior in the QD samples is more prevalent at low tem-

perature (4 - 120 K). At elevated temperatures (120 - 150 K), the extra thermal

energy helps to redistribute the carriers among different subsets of QDs to the

lowest energy levels, where the PL spectra are then dominated by the lower energy

peak from the larger and more uniform QDs, which serve to reduce the FWHM

with increasing temperature. As the temperature increases above 150 K, the

FWHM broadens due perhaps to thermal broadening. The rapid quenching of

the PL signal at high temperature is related to enhanced carrier escape processes

at elevated temperatures. In addition, a broad peak related to defects becomes

more evident for 5-layer and 7-layer samples at elevated temperatures (Figure 3.15

(b) and (c)). This defect band is attributed to dislocations in the GaAs0.86Sb0.14

matrix since the thickness of the intrinsic region exceeds that of the critical

thickness (∼10 nm based on theoretical calculation [86]) for strain relaxation in

this system. In comparison, the defect band in the 3-layer sample (Figure 3.15

(a)) is not as pronounced (as in the other two QD samples), presumably due to

the thinner intrinsic region, which will therefore contain less defects.

Figure 3.16 summarizes the PL peak intensity and peak energy as a function

of temperature for all the samples. The 3-layer sample shows a ∼30% increase in

peak intensity up to 100 K and then the PL signal quenches rapidly (Figure 3.16 (a)

black symbols). In comparison, the 5-layer and 7-layer samples remain relatively

stable in terms of intensity (Figure 3.16 (a) red and green symbols). This difference

further supports the suggestion that there is more inhomogeneity in the 3-layer
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Figure 3.16: (a) Peak intensity and (b) peak energy as a function of

temperature for the 3-, 5-, and 7-layer samples from 4 K to 200 K.

sample as compared to the other two QD samples, and is consistent with previous

low temperature PD PL measurements; where the relative ratio of the high and

low energy peak intensity only changes in the 3-layer sample. For the 3-layer

sample, below 25 K, the low energy peak has the highest intensity. Afterwards the

high energy peak becomes the brightest peak resulting in a jump in peak energy

as shown in Figure 3.16 (a). As the temperature increases, the thermal energy

enables thermal redistribution of carriers among the QDs to the most populated
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QDs (smaller QDs) we are sampling. The deviation of the 3-layer sample from

the other two samples suggest the inhomogeneties are clearly greater than for the

rest.

This hypothesis is confirmed in the peak energy vs. temperature plot in

Figure 3.16 (b). At low temperatures (4 - 25 K), the peak energy for all three

samples are close to 1.17 eV. However, the peak energy of the 3-layer sample

increases first and then decreases instead of following normal Varshni behavior.

This “s-shape” behavior again indicates strong multimodal behavior. The initial

increase in the peak energy with increasing temperature suggests enhanced thermal

redistribution of carriers from larger QDs to smaller QDs with higher energy; the

latter decrease just follows a normal Varshni trend due to the thermal expansion

of the lattice. In contrast, the other two samples follow the Varshni trend with a

slight “s-shape” evident in the 5-layer sample. This agrees well with the argument

that the 7-layer sample has the most uniform QD distribution.

An Arrhenius fit is used to extract the activation energy related to the QD

transition in the three QD samples. The fitting equation is given as:

I =
I0

1 + a ∗ exp(−Ea/kbT ) + b ∗ exp(−Eb/kbT )
, (3.1)

where I0 represents the integrated PL intensity at 4.2 K; a, b, Ea, and Eb are the

coefficients and activation energies associated with various activation processes.

kb and T represent the Boltzmann constant and temperature, respectively.

An example of two activation energy Arrhenius fit is shown in Figure 3.17. The

extracted activation energies and standard errors for all samples are summarized
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Figure 3.17: Example of two activation Arrhenius fit for 3-layer QD sample.

in Table 3.2.2.

The larger activation energy Ea1 (∼ 100meV) is very close to the conduction

band offset between the QDs (1050 - 1060 nm ∼ 1.17 eV ) and GaAs0.86Sb0.14

matrix (910 - 950 nm ∼ 1.30 eV ). The slightly smaller Ea1 for 7-layer sample may

be related to the strain relaxation in the sample due to the thicker intrinsic region

which results in a smaller energy gap for GaAs0.86Sb0.14, or a slight difference in

composition as a result of non-uniform growth.

3-layer 5-layer 7-layer

Activation Energy Value (meV) Standard Error (%) Value (meV) Standard Error (%) Value (meV) Standard Error (%)

Ea1 112.78 0.447 124.85 0.543 95.82 0.297

Ea2 15.36 1.657 11.09 0.312 4.68 0.125

Table 3.1: Activation energies extracted from two activation energy

Arrhenius plot fitting of three QD samples.
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The origin of the activation energy Ea2 is not well understood but may be

associated with the energy barrier for photoexcited carriers that escape through

defect-mediated mechanisms or may be due to the localization of photogenerated

holes in alloy fluctuations. The reduction of Ea2 indicates the difficulty for carriers

to escape is as follows: 3-layer > 5-layer > 7-layer sample. This is consistent with

the much faster quenching of the PL spectra for the 7-layer sample than the other

two samples. As the thermally assisted escaped carriers see the defect-related

recombination centers in the GaAs0.86Sb0.14 matrix, the defect band emerges and

the radiative recombination from the QDs decreases as the non-radiative losses

dominate. However, the QD transition in the 3-layer sample remains relatively

bright even at 200 K; the larger Ea2 prohibits the carriers from communicating

with the defects in the matrix until a higher temperature is reached. This also

suggests that more defects form in the matrix with increased period of the QD

layer, since the intrinsic region exceeding the critical thickness results in the strain

relaxation and the formation of dislocations in the GaAs0.86Sb0.14 matrix.

3.3 Conclusion

Two sets of optical InAs/GaAs1−xSbx QD samples were grown by MBE. Comple-

mentary AFM and PL measurements were used to characterize the quality of the

QDs and to track a band alignment transition from type-I to type-II. By increasing

the InAs deposition thickness, a maximum areal density of ∼ 3.5 × 1011/cm2

is achieved for the 3.0 ML InAs/GaAs0.86Sb0.14 QD sample, along with good
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uniformity in both size (∼ 2 nm) and shape (∼ 15 nm). 4 K PL measurements

show that the 3.0 ML sample also has the brightest PL and the narrowest FWHM,

which are consistent with our AFM results that the 3.0 ML deposition is optimized

in terms of material quality.

With a fixed 3.0 ML InAs deposition thickness, the Sb composition in the

GaAs1−xSbx matrix was varied to probe the band alignment transition from

type-I to type-II. A red shift of the PL peak is observed when increasing the Sb

composition from 10% to 18%. Temperature dependent PL measurements of 12%

and 16% samples show a much faster quenching of the PL for 16% sample, which

suggests a transition to a type-II band alignment for the 16% sample. Moreover,

a broad and dominant defect peak is seen at high temperatures. The formation

of defect states at a higher Sb composition also results in a quenching of the PL

signal.

To reduce the influence of defect states, the 12% and 14% Sb samples were

studied using power dependent PL measurements. In type-II structures, the PL

peak energy is proportional to the cube root of the excitation power as a result of

escalation of band bending with accumulation of carriers near the interface. A

blue shift is recognized in both 12% and 14% samples when the excitation power

increases. However, the the blue shift for the 12% sample is three times smaller

than for the 14% sample; this small blue shift is related to alloy fluctuations

and inhomogeneities in the 12% sample. These results strongly indicate a band

alignment transition from type-I to type-II around 14% Sb composition in the

matrix. AFM results also indicate that the 14% sample has the highest areal
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density and best uniformity.

Four p-i-n GaAs solar cells with different intrinsic region designs were grown

by MBE. The material quality of these four solar cells were investigated using

PL measurements. Inhomogeneities induced multimodality was found to account

for the observed “s-shape” of the QD peak energies as a function of temperature.

Faster quenching of PL spectra for devices with a thicker intrinsic region samples

indicates the formation of more defects in these structures. These behaviors

qualitatively suggest the defect states associated with the lattice mismatch be-

tween GaAs0.86Sb0.14 and GaAs account for the degradation of the quality of the

materials.
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Chapter 4

Electrical Characterization of InAs/GaAs1−xSbx

Quantum Dots Solar Cells

In Chapter 3, we presented InAs/GaAs1−xSbx quantum dot optical samples with

high QD areal density and reasonable uniformity. A 3.0 ML InAs deposition

thickness and a 14% Sb composition in GaAs1−xSbx matrix are determined as the

optimal growth conditions for a reference InAs/GaAs1−xSbx QD sample. Here,

four GaAs p-i-n solar cells with different intrinsic region designs grown by MBE

are presented. Power and temperature dependent PL measurements are used to

evaluate the material quality and performance of these devices.

Defect states associated with the lattice mismatch between the GaAs0.86Sb0.14

layers and the GaAs substrate strongly affect material quality. In this chapter, we

use a suite of experimental techniques including current-voltage (J-V ), external

quantum efficiency (EQE ), and electroluminescence (EL) to investigate the influ-

ence of these defect states on the performance of the solar cell. Using a simple

analysis, injection level dependent EL is used to probe the recombination losses in

such a system with respect (and in parallel) to conventional PV characterization.

This chapter is partially based on Yang et al.’s paper published in Solar Energy

Materials and Solar Cells 147 (2016): 94-100. and Yang et al.’s manuscript under

review in IEEE Journal of Photovoltaics.
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4.1 Experimental Details

Detailed structures of the investigated samples were illustrated in Chapter 3 (see

Figure 3.11). All solar cell structures were processed following standard III-V

wet-etch procedures at University College London. The processed solar cells were

then mounted on top of a copper plate using silver epoxy. Finally, indium was

used to bond Au wires onto the p-contacts. Temperature dependent J-V, EQE,

and EL were performed using the experimental setups described in Chapter 2.

4.2 Experimental Results and Discussions

4.2.1 Current-Voltage Measurements

To better understand the quality of the devices with respect to the photovoltaic

behavior, J-V measurements were performed. 77 K and room temperature J-V

measurements for all four devices are presented in Figure 4.1. At 77 K, the control

cell has a Voc of ∼ 1.2 V under 1-sun illumination. In comparison, all of the

QD samples have smaller Voc with ∼ 1.14 V,∼ 1.14 V, and ∼ 1.10 V for the

3-layer, 5-layer, and 7-layer devices under 1-sun illumination, respectively. The

reduction of the Voc is related to a combination of the fundamental nature of the

additional recombination path introduced by the QDs in the active region [31] and

a reduction of the bandgap. Also, all three QD samples show strong inhomogeneity,

where multiple slopes around the inflection point are observed; however, this is

not observed in the control cell due to the absence of the QD layers. At 77 K, the

7-layer QD sample has a fairly large series resistance (Figure 4.1 (a) black arrow),
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Figure 4.1: (a) 77 K and (b) room temperature J-V measurements;

solid lines and open symbols represent the light and dark measurements

respectively.

which significantly affects the overall fill factor and efficiency. Such a large series

resistance is due to the inhibited carrier transfer at low temperature, whereby
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photogenerated carriers are strongly localized in the QDs.

At 300 K, a dramatic reduction of Voc is seen across all four devices with a

larger reduction for samples with thicker intrinsic regions (5- and 7-layer samples).

The thinnest QD sample (3-layer) has the largest Voc - ∼0.67 V. In contrast, both

the control and 7-layer QD cells display the smallest Vocs of ∼ 0.55 V and ∼ 0.57

V, respectively. This is consistent with the trend of the activation energy Ea2

extracted from table 3.2.2, where the greater number of the stacked QD layers

corresponds to a smaller the activation energy. A smaller activation energy allows

for easier escape of carriers from the QDs, which can be subsequently captured by

defects in the matrix material. This results in an increase of the recombination

current and a decrease of the Voc. The effects of the non-ideality or parasitic

resistance also disappear at 300 K (Figure 4.1 (b)), which is attributed to the

thermally enhanced carrier escape process from the QDs at higher temperatures.

Figure 4.2 (a), (b), (c), and (d) compare the J-V measurements for the three

QD and control cells under illumination as a function of temperature. As seen in

the 77 K and 300 K measurements, there are two main features evident in these

data as the temperature increases: (1) a large reduction of Voc; (2) the vanishing

of series resistance and multimodality in the QD cells (Figure 4.2(a), (b), (c)).

At low temperatures (77 - 150 K), the effect of series resistance and the

multimodal behavior is more pronounced in the QD cells, which reflects the

increased carrier localization in the QD samples. This is consistent with TD

PL measurements (see Figure 3.15 and 3.16 (a)) where the PL peak intensity

remains relatively stable due to the isolation of photogenerated carriers in QDs
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Figure 4.2: Temperature dependent J-V measurements for (a) 3-layer,

(b) 5-layer, (c) 7-layer, and (d) control cell from 77 K to 350 K.

at lower temperatures. As the number of QD layers increases, the inflection

point attributed to the higher series resistance induced by carrier localizations

becomes more apparent. This is attributed to enhanced photon absorption in

the sample with more QDs resulting in a larger portion of frozen photogenerated

carriers. Although not dominant, localization in defects at lower temperatures also

contributes to the resistance, which can be seen at low temperatures for the control

structure in Figure 4.2 (d). As the temperature continues to increase, a dramatic

reduction of Voc is observed for all cells, which is much larger than the expected

temperature dependent Varshni trend. A dVoc/dT plot is a commonly used metric

70



to compare the Voc reduction as a function of temperature. In comparison with

other types of solar cells including Si, GaAs, CdTe, etc. [87], the slope extracted

for all four devices has a gradient above 250 K close to 2.7 mV/K, which is

significantly larger than typical values of 1.6 - 2.3 mV/K seen in other cells [87].

Such a massive reduction of Voc is directly related to a significant increase in

the dark current and a reduction in the quality of the diode. This rising dark

saturation current is attributed to increasing non-radiative recombination currents

and results in the significant decrease in Voc. The origin of the dark current losses

is related to the defect and dislocation formation due to the lattice mismatch

between GaAs and GaAs0.86Sb0.14.

The TD J-V measurements are summarized in Figure 4.3. Figure 4.3(a)

compares the Voc of the three QD (black squares, red circles, and green triangles)

and control (blue triangles) cells. At low temperatures, the Voc recorded for QD

cells is smaller than the control cell under 1-sun illumination, which is expected

due to a combination of the fundamental nature of the additional recombination

path provided by the QDs in the active region [31] and a reduced bandgap as

mentioned previously. However, the Vocs for the control and 7-layer cells quench

more rapidly than the 3-layer and 5-layer QD cells with increasing temperature.

The Voc reduction is proportional to the thickness of the intrinsic region, which

reflects the increased dark current loss with thicker intrinsic region. This is

consistent with the longer minority carrier transport required and the idea that

the strain relaxation and dislocation density of the GaAs0.86Sb0.14 matrix and

p-GaAs emitter increase due to the intrinsic region exceeding the critical thickness
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Figure 4.3: Extracted J-V parameters (a) Voc, (b) Vmax, (c) Jsc, (d)

Jmax as a function of temperature; black, red, green, and blue symbols

represent the 3-layer, 5-layer, 7-layer and control cells respectively.

(estimated to be 10 nm based on a theoretical calculation for a 1.11% lattice

mismatch between the GaAs and GaAs0.86Sb0.14 [86]) of the system.

Figure 4.3 (b) and (d) compare the Vmax and Jmax for the control and QD

cells as a function of temperature, respectively. The Vmax and Jmax corresponds

to the coordinates of the maximum power point of the illuminated J-V. For the

QD cells, as the temperature increases from 77 K to 150 K (region I), a smaller

reduction of Vmax (∼0.02 - ∼0.09 V) is observed compared with the control cell

(∼ 0.16 V). This difference in the behavior of the Vmax and Voc (77 - 150 K region

I) with increasing temperature reflects the improvement in FF (see Figure 4.2),
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since the introduced thermal energy at elevated temperatures enables thermal

redistribution of carriers among the QDs and decreases the series resistance as

observed at T < 150 K (Figure 4.3 (b) and (c)).

As the temperature keeps increasing above 150 K (region II), the thermally

activated carriers are captured by the defect states in the GaAs0.86Sb0.14 matrix

that are activated by the ionization of impurities at elevated temperature, and

result in the recombination current loss. Now, the Vmax for QD samples is similar

to that of the control cell and all follow the steady decreasing trend of the Voc.

These data indicate that at T < 150 K, where photogenerated carriers are

localized in the QDs, the properties of the QD samples are mainly determined

by carrier transport within the QDs. Above 150 K as carriers redistribute and

escape the dots, the J-V characteristics are determined by the quality of the

matrix, base, and emitter materials. This is consistent with the Jsc, Jmax, Voc,

and Vmax data from the QD samples in Figure 4.3 above 150 K. This also strongly

correlates to the rapid quenching of the PL at T > 150 K (see Figure 3.16) due

to the increased thermal activation of carriers from the QDs and a subsequent

increase in the strength of Shockley-Read-Hall (SRH) recombination (as seen in

the EL section).

In contrast, the Vmax for the control cell follows the same trend of the Voc at

low temperatures, which suggests the absence of a strong localization of carriers;

Thus, carriers in the control cell interact with non-radiative centers (defect states)

more readily and the maximum power point decreases monotonically (reduction

of the Vmax) as more defect states become activated with increasing temperature.
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Typically, a small increase in Jsc and Jmax is expected due to the reduction

of the effective bandgap of the solar cell structure. However, we’ve observed a

complex behavior for Jsc and Jmax (Figure 4.3 (b) and (c)), where Jsc/Jmax has

a local minimum around ∼ 170 K and then fluctuates with an increasing trend.

This is a result of the competing process between the increased non-radiative

recombination loss at higher temperatures (due to the deleterious defect states

in the GaAs0.86Sb0.14 matrix [88]) and thermally escaped carriers from the QDs.

Above 240 K, where the thermal escape takes the lead over the the non-radiative

recombination, the Jsc/Jmax keeps increasing.

The unconventional TD J-V measurement - where the Voc decreases signif-

icantly without a noticeable enhancement of the Jsc - is consistent with the

hypothesis that there is a thermally mediated transition from radiative to non-

radiative processes in PL measurements above ∼ 120 K; at T > 150 K, SRH

processes completely dominate the recombination processes.

4.2.2 External Quantum Efficiency Measurements

Unlike the PL measurements that probes the radiative recombination of pho-

togenerated carriers, EQE measurements reflect the absorption of photons and

extraction of photogenerated carriers. Figure 4.4 shows the EQE results for the

3-layer (black line), 5-layer (red line), 7-layer (green line), and control (blue line)

samples at 77 K, respectively. Carrier extraction from the GaAs (400 - 830 nm)

layer and the GaAs0.86Sb0.14 matrix (830 - 930 nm) is present in all samples. The

absorption edges (Figure 4.4) for these transitions are in good agreement with
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Figure 4.4: 77 K (a) linear scale and (b) log scale EQE measurements

for the 3-layer (black line), 5-layer (red line), 7-layer (green line), and

control cells (blue line).

the TD PL measurements where the GaAs and GaAs0.86Sb0.14 peaks are clearly

evident in the control spectra (see Figure 3.15 (d)). The maximum EQE observed

for all samples is around ∼ 40%, which is significantly lower than for the high

quality GaAs materials even without anti-reflection coatings (around ∼ 65% [89]).
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This reduction of the EQE is attributed to the poor quality of the intrinsic and

p-emitter regions, due to the formation of defects and dislocations induced by the

1.11% lattice mismatch between the GaAs substrate and GaAs0.86Sb0.14 matrix.

From Figure 4.4 (a) the carrier extraction from the GaAs0.86Sb0.14 matrix

increases as the period of QD layers increases (black → green); such an increase

is related to the thicker GaAs0.86Sb0.14 material in the 5- and 7-layer QD samples.

The degradation (green → black) in the bulk GaAs region with thicker intrinsic

region is consistent with more defects and dislocations in the matrix, which

propagate into the GaAs emitter.

Despite bright PL indicating strong confinement of carriers in the QDs, all

three QD samples show additional carrier extraction above ∼930 nm, which is

not observed for the control cell. The enhanced extraction correlates to the QD

transition (VB → IB). However, in order to preserve the Voc the IB should not be

coupled to CB continuum; thus, there should not be any carrier extraction in an

ideal IBSC unless the two step photon absorption (TSPA) criteria is met. Since

we have been using a “monochromatic” light, the carrier extraction from the QDs

indicates that the IB is not isolated from the CB. The lack of an isolated IB is not

a fundamental limitation of this system, but rather reflects the ability for carriers

to escape from the QDs through either defect-mediated or tunneling processes.

As shown in Figure 4.5, TD EQE measurements were performed on all samples

between 77 K and 350 K to further investigate the carrier extraction mechanisms.

The absorption edge for both the GaAs and GaAs0.86Sb0.14 has a red shift which

follows Varshni’s relationship between the bandgap and the temperature. Apart
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Figure 4.5: Temperature dependent EQE measurements for (a) 3-layer,

(b) 5-layer, (c) 7-layer, and (d) control cells from 77 K to 350 K.

from the red shift, carrier extractions from QDs for all three QD samples also

have a small enhancement (above ∼ 1040 nm). The possible explanation for

this enhancement is the thermally assisted escape process, where the elevated

temperature gives carriers sufficient thermal energy to escape from the QDs.

Figure 4.6 compares the EQE (black) and PL (red) spectra for the (a) control

cell and (b) the 7-layer QD cell at 150 K. The correlation between the EQE

and PL of the control cell indicates that the photogenerated carriers are indeed

related to the GaAs (blue arrow) and GaAs0.86Sb0.14 (green arrow) transitions.

Defect states observed in the PL measurements suggests the prevalence of defects

in the control sample. As mentioned before, the intrinsic region of the control
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Figure 4.6: PL (red line) and EQE (black symbols) measurements for

(a) control cell and (b) 7-layer QD cell at 150 K; GaAs, GaAs0.86Sb0.14,

and QDs are labeled as blue, green, and red arrows respectively.

cell is GaAs0.86Sb0.14, which is 1.11% lattice mismatched with GaAs; without

employing any strain balancing techniques, the matrix material contains many

defects since the total thickness of the intrinsic region ∼ 270 nm is in excess of

the critical value 10 ∼ 30 nm; these defects serve as non-radiative recombination

centers (SRH recombination centers). As the temperature increases, the signal

from GaAs0.86Sb0.14 quenches quickly; thermal broadening of both the GaAs peak

and the defect band is also noted.

In comparison, the slight enhancement of the EQE related to the QD transition

is observed in the 7-layer QD sample from ∼ 970 to 1100 nm. As the signal from

the QDs dominate the whole PL spectra (Figure 4.6 (b)), both the GaAs0.86Sb0.14

and defect transitions are overwhelmed and therefore not as pronounced as in the

control cell PL (Figure 4.6 (b)).

The noticeable mismatch between the absorption edge of the EQE and emission
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edge of the PL for both cells may be explained by a slight temperature difference

between the two cryostats we performed our EQE and PL measurements or that

the PL reflects the lowest energy state while the absorption reflects the density of

states.

Figure 4.7: Temperature dependent PL (lines) and EQE (symbols)

measurements for 7-layer QD sample.

To investigate the correlation between the recombination and collection of

photogenerated carriers as a function of temperature, a comparison of the TD PL

and the TD EQE data recorded between 77 K and 270 K for the 7-layer QD sample

is shown in Figure 4.7. The QD transitions are evident in both measurements

with a strong correlation between the two spectra. The red shift of both PL peak

and EQE signals related to the GaAs and QDs is a result of the reduction of
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the energy gap due to the thermal expansion of the lattice. The enhancement

of EQE with increased temperature is driven by the thermally assisted carrier

escape process and coincides with the rapid quenching of the PL signals at high

temperatures. The carriers gain enough energy (> Activation energy Ea2) to

overcome the barriers within the QDs, and escape into the GaAs0.86Sb0.14 to be

collected as photocurrent or recombine in the defect channels.

4.2.3 Electroluminescence Measurements

In addition to PL measurements, EL measurements were performed on the cells.

An EL signal is not observed from 800 nm to 1700 nm for the control cell; the

lack of an EL signal suggests that the delocalization and spatial redistribution

of carriers in the intrinsic region and the efficient non-radiative recombination

dominates in this control cell. Low injection level EL measurements for the 3-layer

sample are also missing here due to poor contact issues after rebonding the Au

wire onto the sample. This section will therefore only focus on the 5-layer and

7-layer QD samples.

Figure 4.8 shows EL spectra with different current injection levels for the

5-layer QD cell at 77 K (a), 150 K (b), and 210 K (c). A blue shift is observed for

77 K and 150 K measurements as the current injection increases; which correlates

with the multimodal behavior of the QDs. As seen in the low temperature PL

measurements, the nonuniform InAs/GaAs0.86Sb0.14 QDs exhibit an asymmetrical

shape in the PL spectra due to competing subsets of QDs: a larger size has a

smaller energy and vice versa. By increasing the injection level, lower energy
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Figure 4.8: Current injection level dependent EL measurements for

5-layer QD sample at (a) 77 K (1 - 207 mA), (b) 150 K (1 - 207 mA),

and (c) 210 K (1 - 207 mA); (d) The EL intensity at 16 mA injection

level as a function of temperature.

states are saturated and the peak position reflects contributions from both the

small and large QDs. At higher temperatures (above 150 K), the additional

thermal energy redistributes the carriers among the QDs and results in a single

degenerate energy level. Thus, the peak position remains relatively constant at

the elevated injection level as evident in Figure 4.8(c), which shows the EL at 210

K. The peak intensity with a 16 mA injection level as a function of temperature

is summarized in Figure 4.8(d). The peak intensity is relatively stable below 150
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K; while quenching rapidly above 150 K.

Figure 4.9: Injection level dependent EL measurements for 7-layer QD

sample at (a) 77 K, (b) 150 K, and (c) 210 K; (d) The EL intensity at

123 mA injection level as a function of temperature.

In comparison, EL spectra with different current injection levels for the 7-layer

QD cell at 77 K (a), 150 K (b), and 210 K (c) are shown in Figure 4.9. At 77 K, a

blue shift is observed with increasing injection level similar to the 5-layer sample.

However, such a blue shift is not seen at 150 K, which indicates efficient carrier

redistribution and formation of degenerate energy levels at a lower temperature

than for the 5-layer sample. This is consistent with the lower activation Ea2 (see

Table 3.2.2) extracted from the TD PL measurements (Figure 3.15).

The EL intensity with a 123 mA injection level as a function of temperature is
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shown in Figure 4.9 (d). A fast quenching of the EL signal is observed above 120

K. This behavior, along with the rapid reduction of the PL intensity seen in TD

PL measurements (Figure 3.16 (a)) provides further evidence for efficient carrier

escape at elevated temperatures (> 120 K).

Figure 4.10: PL (red), and EL (green) spectra for 7-layer QD cell at 150 K.

Figure 4.10 compares the PL (red) and EL (green) spectra for the 7-layer QD

cell at 150 K. At 150 K, the QD transition seen in the EL agrees with PL spectrum.

However, the transitions related to GaAs (∼ 830 nm) and GaAs0.86Sb0.14 (∼ 910

nm) seen in the PL are absent from EL spectrum. The lack of these transitions in

the EL spectrum reflects the direct injection of the carriers into the QDs or active

regions. Since the wavelength of the excitation source used in the PL is 632.8 nm

(higher energy than the GaAs bandgap), the top p-GaAs emitter and QDs are
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probed simultaneously [31]; A large portion of the photons is absorbed within the

emitter, which coupled with the spatial separation of the electrons and holes in

the type-II QDs, contributes to PL from the continuum regions significantly.

Figure 4.11: PL (red), and EL (green) spectra for 7-layer QD cell at

(a) 77 K, and (b) 210 K. Reprinted from Yang et al. IEEE JPV (in

press).

A comparison of the EQE, PL, and EL of the QD cell at 77 K (a) and 210

K (b) indicates that the enhancement of the photocurrent as seen in the EQE

comes from the QD transition (above 950 nm) in the active region of the device.

The PL and EL spectra have been normalized to the QD peak. At 77 K, the
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QD transition dominates the PL spectra; the absence of GaAs and GaAs0.86Sb0.14

signals in the EL measurements suggests the QDs have more efficient radiative

recombination than the matrix and emitter materials.

At 210 K, the peak intensity of the QDs has a three orders of magnitude

reduction and the low energy defect states (950 - 1550 nm) become evident and

contribute to the PL spectra. As the temperature is increased above 210 K, the

defect band transition dominates the PL and quenches the QD transition. The

lack of the defect band in EL measurements is due to the direct injection and

relatively large carrier concentration in the active region.

Based on the PL, EL, and EQE measurements, the carrier recombination

processes are divided into two regimes: (1) a low temperature regime, where

the carriers are isolated in the QDs and the radiative recombination within the

QDs is more efficient; (2) a higher temperature (> 120 - 150 K) region, where

the elevated temperature introduces additional thermal energy which facilitates

carrier escape from the QDs, reduces radiative recombination, and increases SRH

recombination through thermally activated defect states or the ionized impurities

in the matrix material.

To further investigate this hypothesis of thermally mediated transition from

radiative to non-radiative processes, the spontaneous emission in EL measurements

is analyzed to determine the nature and dominant mechanisms of the recombination

processes at different temperatures. The current injected into an electrical device
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can be approximated by [90]:

I = eV (An+Bn2 + Cn3) + Ileak. (4.1)

Where A, B, and C are coefficients for single carrier recombination (n), radiative

recombination (n2), and Auger recombination (n3), respectively [90]. V is the

volume of the active region. A single carrier recombination is usually due to the

non-radiative recombination processes via traps and defects (SRH) [90]; radiative

recombination is associated with the spontaneous emission. Normally, spontaneous

emission is approximated by the EL (below the lasing threshold for laser devices).

The total integrated spontaneous emission rate L has a linear relationship with

the radiative recombination n2. Thus, the carrier concentration n is directly

proportional to L1/2. Then, equation 4.1 can be rewritten as [90]:

I ∝ nz ∝ L1/2z . (4.2)

When the current from the radiative recombination eV × Bn2 dominates, the

z-factor will be close to 2 (∝ n2). However, if z is close to 1 (∝ n), this indicates

the injected current is lost in terms of SRH recombination current eV × An. By

plotting ln(I) − ln(L1/2), the z-factor is extracted directly from the slope of a

linear fit to determine the nature of the dominant recombination processes.

The ln(I)−ln(L1/2) plots for the 7-layer QD sample at various temperatures are

shown in Figure 4.12 (a). The linear fits of the plots with increasing temperature

clearly display different gradients: a steeper slope reflects a larger z-factor. Figure

4.12 (b) summarizes the z-factors for the 5-layer and 7-layer QD samples as a

function of temperature. The difference of the slopes suggests different dominant
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Figure 4.12: (a) ln(I)− ln(L1/2) plots for the 7-layer QD sample at

various temperatures; (b) z-factors extracted for 5-layer and 7-layer

QD samples.

recombination process in different temperature regimes. At low temperature (T

< 150 K for 5-layer sample and < 120 K for 7-layer sample), z-factors of ∼ 2 are

observed, which indicates that the radiative recombination process is dominant.

Although a z-factor larger than 2 suggests a contribution of the non-radiative
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Auger recombination, which may be invoked at T < 100 K in Figure 4.12 (b),

such processes are not considered significant here. Auger processes are usually

problematic at high injection levels for small bandgap materials. However, Auger

processes are considered negligible due to the relatively large IB and VB separation

and high radiative recombination rate. Here, a value of z > 2 at T < 120 K

is rather attributed to multimodality in the QDs at lower temperatures (see

Figure 4.8 and Figure 4.9).

At the high temperature regime (T > 150 K for 5-layer sample and > 120 K for

7-layer sample), a rapid reduction of the z-factor towards z = 1 is evident. Such

a behavior indicates that SRH (non-radiative) recombination becomes dominant,

which is consistent with the rapid quenching of the EL and PL intensity and the

massive reduction of the Voc above 150 K. Compared with the 7-layer sample, the

relatively larger z-factor observed for the 5-layer sample reflects a larger activation

energy Ea2 (Table 3.2.2) which corresponds to a weaker thermally activated escape

process.

The temperature dependent z-factor behavior further supports the hypothesis

that there is a thermally activated transition from radiative to non-radiative

processes with increasing temperatures. Above 150 K, thermally activated carriers

from the QDs are trapped in SRH recombination centers in the matrix and

thus not collected effectively, similar to the limited performance of the control

cell. At higher temperature, higher injection currents are required to produce

reasonable EL. This behavior provides further evidence for the localization of

non-intentional impurities at lower temperatures; these activated impurities at
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higher temperatures increase the concentration of SRH recombination centers.

4.3 Conclusion

In this chapter, four p-i-n GaAs solar cells with different intrinsic region designs

were investigated using complementary EL, EQE, and J-V measurements. Defect

states associated with the 1.11% lattice mismatch between GaAs0.86Sb0.14 and

GaAs account for the limited performance of the solar cell. The hypothesis that

there is a transition from radiative to non-radiative dominant recombination is

proposed and supported by the rapid quenching of the PL and EL intensity, along

with a simultaneous decrease in the z-factor from 2 to 1 (above 150 K) in the

spontaneous emission analysis. Such a performance degradation with increasing

temperatures is a result of the thermal activation of the defects or ionization

of impurities in the lattice. These results further suggest the prevalence of non-

radiative processes at elevated temperatures in these systems, which qualitatively

correlates with the TD EQE and J-V data presented.
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Chapter 5

Investigation of the Non-linearity of the Diode

Characteristics in PbS/ZnO Quantum Dot Solar

Cells

Quantum dots have been suggested as promising materials for potential photo-

voltaic applications. The InAs/GaAsSb quantum dot solar cells studied in the

previous two chapters have been investigated to achieve higher efficiencies, but

are still relatively expensive. However, numerous groups have been working to

implement colloidal quantum dots for low cost thin film solar cell applications.

Lead chalcogenide quantum dots (such as PbS [60–63], PbSe [64,65]) have been

used to fabricate CQD solar cells and have shown improvement in both efficiency

and stability over the past few years. Dr. Sargent’s group has now achieved a

power conversion efficiency (PCE) more than 11.4% [70]. The relatively high

efficiencies and low cost solution synthesis techniques make lead chalcogenide

QDs a promising candidate for solar cell applications. Incorporation of MEG

processes [66, 67] and tandem structures [68] in lead chalcogenide QD solar cells

(referred as “CQD solar cells” later in this chapter) has the potential to further

improve the efficiency of these CQD solar cells.

However, several artifacts such as a strong leakage or reverse bias “turn

on” [91, 92] and a crossover characteristic when comparing dark and light J-V

measurements [91, 92] degrade the performance of CQD solar cells and result in a

PCE significantly lower than the Shockley-Queisser limit [8]. The defect states
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formed on the QD surface pin the Fermi level at mid-gap states [91,93,94], leading

to a formation of a Schottky barrier between the QD layer and the metal contacts;

such a non-ideal barrier hinders the carrier transport and induces a non-ohmic

transport behavior which deteriorates the performance of these solar cells.

In this chapter, the transport and optical properties of PbS/ZnO solar cells were

studied with current-voltage, external quantum efficiency, absorbance, capcitance-

voltage, and impedance measurements. A phenomenological description that

incorporates back-to-back diodes with leaky resistances [91] has been used to

model and qualitatively describe the non-ohmic behavior observed in both forward

and reverse bias from these solar cells.

This chapter is based on the Yang et al. published paper ACS Applied Materials

& Interfaces 9.15 (2017): 13269-13277.

5.1 Experimental Details

5.1.1 PbS/ZnO Quantum Dot Thin Film Deposition and Solar Cell

Fabrications

Colloidal PbS QDs synthesis. 0.46 g of lead oxide (PbO), 2.0 g of oleic

acid (OA) and 12.5 g of 1-octadecene (ODE) were added to a three-neck flask.

The mixture was heated to 120◦C while stirring under a N2 purge. 210 μL of

hexamethyldisilathiane [TMS], was mixed with 2 mL of ODE in a glove bag

over-pressured with N2. Then, using a syringe the TMS solution was rapidly

injected into the hot PbO/OA/ODE solution flask. Soon after the mixture turned
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Figure 5.1: Schematics of (a) photo-lithography mask for patterning

ITO substrate and (b) evaporation mask for thermal evaporation of

top contact.

black, by removing the heater and putting the flask in a cold water bath - the

reaction was ceased. The synthesized PbS QDs solution were cooled to room

temperature. Next, the reaction solution were precipitated with acetone and

then centrifuged. Afterwards, the clear supernatant was decanted. Hexane and

methanol were used three times for additional purifications. Finally, the QDs

capped with long OA ligand were suspended in toluene (70 mg/mL).

ITO prepattern. Photo-lithography was used to prepattern the indium tin

oxide (ITO) coated glass substrates. First, the ITO substrate was cleaned in each

solvent for 10 mins using an ultrasonic bath; the order of solvent used is Decon

Neutrad detergent, acetone, and isopropanol. The substrate was then baked at

150◦C for 10 mins to remove residue moisture. Photoresist AZ-5214E was then

spin-coated on the substrate at 4000 RPM for 40 seconds. The substrate was
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then soft baked for 60 seconds at 95◦C on a hot plate to remove the solvents and

harden the photoresist film. Next, the photoresist was exposed with ultraviolet

(UV) radiation for 2.5 seconds using a standard Xenon bulb (275 W) via a mask

as shown in Figure 5.1 (a) to define the ITO back electrodes. The substrate was

then baked on a hot plate for 90 seconds at 120◦C to activate the crosslinking

agent and create a pattern that is insoluble in etchant and developer. This process

was then followed by a flood exposure under UV radiation for 50 seconds without

the mask to make the previous unexposed photoresist soluble in developer. The

unwanted photoresist was then removed in MF-726 developer for 60 seconds.

The sample is then rinsed with deionized (DI) water for 2 minutes and dried

with N2 gas. The ITO substrate was then immersed in an etchant solution

composed of HCl:H2:HNO3 (with a volume metric ratio 4:2:1, respectively) for

10 mins to remove the unwanted ITO. The patterned substrate was sonicated

in acetone and isopropanol to remove the photoresist pattern. Finaly, Decon

Neutrad detergent, deionized water, 5% NaOH, deionized water, and isopropanol

were used in succession to clean the ITO.

Device fabrication. ZnO nanocrystals in n-butyl acetate (Sigma Aldrich Inc.)

were spin-coated on top of the prepatterned ITO/Glass substrate and annealed at

700◦C for 10 s. A PbS QD film was deposited onto the ZnO film via a standard

layer-by-layer spin-coating process: firstly, 200 μL of PbS QD solution (diluted

to 25 mg/mL) was spun at 2000 RPM; secondly, to exchange the long chain OA

ligand with a short chain ligand, 200 μL of 1,2-ethanedithiol (EDT short chain
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Figure 5.2: Schematic (a) Off-axis and (b) top views of the PbS/ZnO QD solar cells.

ligand)-acetonitrile solution was dropped on the film and then spun at 2000 RPM

to exchange the cap ligand; thirdly, acetonitrile and hexane solvents were spun

sequentially at 2000 RPM to wash away the excess QDs and EDT. This process

was repeated 10 times. Finally, a shadow mask (Figure 5.1 (b)) was used to define

four rectangular Au contacts; the Au deposition was accomplished at a deposition

rate of 2 Å/s and base pressure of 4 × 10−7 Torr using a Kurt J. Lesker Nano 36

thermal evaporator. The thickness of ZnO and PbS layers are 134 ± 4 nm and

185± 5 nm, respectively; based on cross-sectional scanning electron microscopy

carried out on similar structures. A schematic of the device architecture is shown

Figure 5.2. Four solar cells with four different areas (Figure 5.3 (b) red squares)
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were made at the same time.

Another graduate student M. D. C Whitaker in our lab and Prof. Lloyd Bumm

helped with the fabrication of PbS/ZnO CQD solar cells.

5.1.2 Characterization techniques

Figure 5.3: PbS/ZnO QD solar cells with exposure masks on for

electrical measurements.

J-V, EQE, C-V and impedance spectroscopy measurements were performed

using the setup described in Chapter 2. A mask with illuminated area smaller

than the actual device is used to minimize the edge effects. The final PbS/ZnO

QDSC is shown in Figure 5.3. A Cary 50 Conc UV-Visible spectrophotometer

was used for the PbS QD solution absorbance measurements.
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5.2 Experimental Results and Discussions

5.2.1 Absorption Measurements

Figure 5.4: PbS/ZnO QD solar cells with exposure masks on for

electrical measurements. Reprint from Yang et.al. ACS Applied

Materials & Interfaces 9.15 (2017): 13269-13277.

Figure 5.4 displays the absorbance measurements (red) of the PbS QD in

toluene and the EQE measurements (black) of the PbS/ZnO solar cells from 400

nm to 1100 nm. Both of these absorption measurements show a similar energy

spectra. The absorbance measurement (red) exhibits a well-defined excitonic peak

∼ 970 nm; in contrast, the photogenerated carriers extracted from the PbS QD

layer show an excitonic peak centered at 1030 nm in the EQE (black). Such an

offset of the excitonic peak position reflects a difference in confinement of the PbS

QD solution and the solar cell structure. As noted in the experimental details,

the PbS QDs in toluene are capped with OA ligands to protect the QDs while
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EDT is used in the PbS QD layer to enhance the conductivity of the PbS QD

film. OA is a longer ligand than EDT as such, it provides greater confinement

since the QDs are less coupled.

5.2.2 Current-Voltage Analysis

Figure 5.5: (a) Dark and Light J-V measurement results; (b) Zoom

in of Dark J-V measurement data, inset is the back to back diode

model used to predict this dark J-V behavior. Reprint from Yang et

al. ACS Applied Materials & Interfaces 9.15 (2017): 13269-13277

The J-V measurement results under both dark and illuminated (1-sun) condi-

tions are shown in Figure 5.5 (a). Three distinctive features are observed from

these data: first, a high leakage current under high reverse bias (light J-V ), which

results in a relatively low Jsc ∼ 7.4 mA/cm2; second, the dark and light J-V

curves crossover above the Voc ∼ 0.42 V (arrow in Figure 5.5 (a)); third, there

is rectification under both reverse and forward bias conditions (more noticeable

in light J-V curve). These behaviors suggest the existence of an unintentional
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barrier to carrier transport, which serves as a second diode in series to the main

p-n heterojunction: n-ZnO/p-PbS junction. The origin of the second diode is

most likely related to a Schottky barrier formed at the PbS/Au interface due to

Fermi level pinning. This second diode shifts the global dark operating voltage

of the device to a higher voltage. The 1-sun illumination helps to passivate the

trap states at the interfaces and recover the true operating voltage, resulting in a

crossover between the dark and light J-V curves. Such a crossover is not unusual

in these type of devices, it has also been reported by several other groups as

well [91, 92, 95].

Figure 5.5 (b) is a magnified plot of the dark J-V, which further illustrates the

leakage current that is evident at high reverse bias; the leakage current observed in

the dark measurement is similar to the illuminated measurement (Figure 5.5 (a)),

also indicating unintentional rectification of a second diode in the structure. Due

to the different polarity of the competing rectifications, a back to back diode model

(Figure 5.5 (b) inset) is used to develop a phenomenological description of the

ZnO/PbS solar cell J-V behavior. D1 and D2 represent the main heterojunction

(n-ZnO/p-PbS) and unintentional second diode, respectively; R1 and R2 are the

associated shunt resistances. Rs represents the series resistance of the whole

device. The shunt resistance R2 associated with this second junction (in reverse

bias) results in a loss of photogenerated current and therefore a smaller Jsc than

with a conventional ohmic contact.

Figure 5.6 shows the dark J − V measurement (black symbol) at 300 K and a
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Figure 5.6: One diode model fitting for dark J-V measurements (data

- black symbols, fitting - redline); inset is the semi-log plot of dark J-V

data. Reprint from Yang et al. ACS Applied Materials & Interfaces

9.15 (2017): 13269-13277

theoretical fit (red-line) based on Equation 5.1

J = J0 · [exp(q(V − IRs)

nkT
)− 1] +

V − IRs

Rsh

, (5.1)

is used to fit the data. J0, Rs, Rsh, n, k, and T represent the dark saturation

current, series resistance, shunt resistance, ideality factor, Boltzmann constant and

temperature, respectively. For an ideal diode, an ideality factor of n = 1 suggests

SRH (one carrier) or direct band to band (1 minority carrier) recombination in

the bulk region (not the depletion region); an ideality factor of n = 2 suggests

two-carrier recombination in the space charge region. The forward bias and reverse

bias regime are fit separately due to the existence of double diodes. The competing

processes between the carrier drift-diffusion and recombination in space charge or
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neutral region normally result in ideality factors between 1 and 2.

By fitting the dark J-V curve a value of n = 3.54 is extracted. Generally,

n > 2 is considered unphysical for a single homogeneous junction, but has

been attributed to the contribution of multiple rectifying diodes in series in

less homogeneous systems; it has been discussed extensively in the literature,

particularly for GaN-based LEDs [96,97]. The Shockley diode equation can be

rewritten as the summation of multiple Shockley equations:

V =
∑
i

Vi =
kT

q

∑
i

[ni(ln J − ln J0,i)], (5.2)

where, multiple diodes are denoted by index i; J0, k, and T represent the reverse

saturation current, Boltzmann constant, and temperature, respectively. ni is the

ideality factor for junction i. In structures that have multiple competing diode

behaviors, the effective n for the device is then [96,98–100]:

n =
∑
i

ni. (5.3)

The Voc extracted (∼0.41 V) is significantly lower than bandgap of the PbS

QDs (1.2 eV). Based on Equation 2.1:

Voc =
nkT

q
ln(

JP
J0

), (5.4)

the small Voc is attribute to a high dark saturation current J0. Such a reduction

of Voc can also be explained by an increase of the SRH recombination current.

The leakage of the dark J-V curve in the reverse bias regime (Figure 5.6) suggests

defect-assisted carrier tunneling directly across the junction which is often assisted

by defects [97, 101,102]. The high density of surface states of PbS QDs serves as
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a shallow tunneling channel; under reverse bias, the large electric field across the

PbS/ZnO interface facilitates defect mediated tunneling process and results in

large current transport analogous to the avalanche breakdown processes.

Figure 5.7: Schematic band alignments of both main junction (1) and

Schottky diode (2) at equilibrium

As has been described previously, a Schottky diode at the PbS/Au interface

accounts for the multiple diode behavior and high ideality factor. A schematic

band diagram of the PbS/ZnO solar cell in equilibrium is illustrated in Figure 5.7.

The main n-ZnO/p-PbS heterojunction and p-PbS/Au Schottky diode are labeled

as junctions 1 and 2. This unintentionally formed Schottky diode and the

main heterojunction operate in series. Ideally, the PbS/Au contact should be

ohmic allowing efficient extraction of photogenerated carriers. However, the

large surface to volume ratio of the PbS QDs and prevalence of surface states

in these nanostructures result in Fermi level pinning (Figure 5.7 black dots

101



) [91, 93, 94, 103] and a barrier to hole extraction from the active region in

equilibrium, as illustrated in Figure 5.7. Since the EDT capped PbS QDs are

nominally p-type, the consequent diode at the PbS/Au contact interface is a

p-type Schottky diode in a serial connection to the main heterojunction with the

opposite polarity as shown in the inset to Figure 5.5 (b).

Figure 5.8: Schematic band alignments of both main junction (1) and

Schottky diode (2) at forward bias.

Figure 5.8 shows the schematic band alignments for both the main hetero-

junction and the p-type Schottky diode under forward bias (reverse bias for

the Schottky diode). Under forward bias conditions, the depletion width of the

heterojunction (junction 1 in Figure 5.8) is reduced, while simultaneously - the

depletion width of the p-type Schottky diode (junction 2 in Figure 5.8) increases
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due to interfacial states present at this junction. As the applied forward bias

voltage increases to a critical level, the actual reverse bias across the Schottky

junction results in a narrowing of the Schottky barrier, allowing holes to tunnel

through the PbS/Au interface by thermionic field emission [104]. This results in

an excessive current across the device (shown in Figure 5.6 green square) in the

nominal forward direction of the PbS/ZnO heterojunction.

This hypothesis is consistent with the observed crossover (see Figure 5.5) of

dark and illuminated J-V curves, where the additional Schottky barrier is resistive

to the holes transport until a critical forward bias (actual reverse bias for Schottky

diode) which enables efficient thermionic field emission of holes. Those surface

states are passivated by the photogenerated carriers under illumination and reduce

the influence of Fermi-level pinning near the PbS/Au interface; therefore, effectively

lowering the Schottky barrier height in comparison with dark measurements. This

qualitative description also coincides with the lack of a natural logarithmic J-V

characteristics under illumination that has been observed by several groups [91–94].

To address the Fermi level pinning at the PbS/Au interface, MoOx has been used

to passivate the PbS/Au interface states, resulting in an improved quality of the

rectification [92], albeit with an increased series resistance.

The band alignment for the two junctions under reverse bias (actual forward

bias for the Schottky diode) is illustrated in Figure 5.9. Under reverse bias

conditions, the depletion width of n-ZnO/p-PbS junction increases, and the large

electric field across the active layer inhibits the majority carrier transport: the

device will be nominally off. In contrast, the reverse bias (actual forward bias)
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Figure 5.9: Schematic band alignments of both the main junction (1)

and Schottky diode (2) at reverse bias.

across the PbS/Au interface reduces the depletion width and the Schottky barrier

height at this junction, allowing efficient carrier injection from the contact. As the

reverse bias increases, the field across the main PbS/ZnO junction will increase

and offset the quasi Fermi level splitting to a critical level in which majority

carriers can directly tunnel through the main junction, resulting in a reverse

breakdown. Such a reverse breakdown is reflected in our J-V measurements

(Figure 5.5 (b)) with increasing reverse voltage, it is also seen even in those PbS

QD solar cells with high efficiencies; where, a relatively small (in comparison with

silicon solar cells and III-V solar cells) reverse bias (-1 ∼ -2 V) voltage results in
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a strong leakage current and an avalanche-type breakdown.

Figure 5.10: Schematic plot of defect mediated tunneling mechanism

across the PbS/ZnO heterojunction.

The origin of this breakdown is related to the midgap state assisted tunneling

process. Figure 5.10 illustrates the defect mediated tunneling mechanism across the

PbS/ZnO heterojunction. The combination of vacancies at the ZnO surface [105]

and unpassivated surface states of PbS QD surface contribute to a huge number

of midgap interfacial states at the PbS/ZnO junction [106]. When the reverse

bias is high enough to make the barrier thin enough, injected electrons and

holes will tunnel through the midgap states, resulting in a leakage current. Such
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a leakage current is evident in Figure 5.5 (a) and (b) with increasing reverse

voltage; this significantly degrades the PCE in terms of the reduced photocurrent

J that can be extracted (light J-V in Figure 5.5 (a)). Surface treatments for

ZnO [106–108] have been used to improve the photocurrent extraction and reduce

the shunting [92,109]. An UV photodoped ZnO layer sees an increase of doping

concentrations and helps push the depletion region more into the p-type PbS QD

layer [109], which facilitates the hole extraction through a improved electric field

within the PbS layer.

5.2.3 Mott-Schottky Analysis

Mott-Schottky (MS) analysis is used to further study the electrical properties of

PbS/ZnO solar cells. By measuring the response of C-V, the doping densities

and built-in potential can be determined by performing a linear fit of the MS

plot (1/C2-V plot). The depletion region has no free carriers and there are equal

number of diffused minority carriers in both the p- and n- portions of the space

charge region for a normal p-n junction in equilibrium. A variation of bias will

change the depletion width and total number of carriers in the space charge region,

this results in a change of capacitance behavior. Such a C-V characteristic can be

modeled by a parallel plate capacitor. The depletion width w of a parallel plate

capacitor is given by [110]:

w =
Aε

C
, (5.5)

Where C represents capacitance, ε and A are the permittivity and device area,

respectively.
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The depletion capacitance of a p-n junction is described by [110]:

C =
ε

w

=

√
qε

2ε(Vbi − V )

NaNd

Na +Nd

,

(5.6)

where Na, Nd, and Vbi are acceptor, donor concentration, and built-in potential of

the p-n junction. For semiconductor-metal junctions, Nd is typically >> Na thus,

the depletion width of the junction can be approximated by:

w =

√
2ε(Vbi − V )

qNa

. (5.7)

Combining equation 5.5 and 5.7, the C-V relationship is then expressed in terms

of the Mott-Schottky Equation:

1

C2
=

2(Vbi − V )

A2qεNa

. (5.8)

Electric properties such as Vbi and Na can be determined through a linear fit of

Mott-Schottky plot (1/C2-V plot).

C-V measurement data and corresponding 1/C2-V plots at five different

frequencies are shown in Figure 5.11 (a) and (b), respectively. The response

of C-V and MS plots are dependent on the modulation frequency. Both the

capacitance value and the shape of the C-V and 1/C2-V curves change with

increased frequency. Such a dispersion in the capacitance indicates that the

charging and discharging processes of carriers are affected by the modulation

frequency, which suggests trapping and detrapping of carriers related to the

localized states is introduced by the defects in these type of devices. Material

systems with prevalence of localized states, such as CQD [111] devices, organic
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Figure 5.11: (a) C-V and (b) corresponding 1/C2-V plot at different

sweeping frequencies (black (80 Hz), red (100 Hz), green (250 Hz),

blue (500 Hz), and cyan (1 kHz)). Reprint from Yang et al. ACS

Applied Materials & Interfaces 9.15 (2017): 13269-13277.

devices [112], nitrides [113], and CIGS [114] have also seen similar dispersive

behaviors.

In C-V measurements of CQD and organic solar cells, the depletion capacitance
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and the capacitance from the charging and discharging of defect states are probed

simultaneously. Since the typical response time of a solar cell is given by τ = RC,

the increased capacitance due to the defect states will limit the response time

[106,112]. At higher modulation frequencies, the carriers trapped in defects cannot

respond to the fast AC signals, therefore they do not contribute to the measured

capacitance, which allows only measurement of the bulk and depletion capacitance.

Figure 5.11 (a) shows the C-V at five frequencies. With frequencies above 250 Hz,

the normal shape of the depletion capacitance is recovered. The depletion width

of the heterojunction reduces as the applied bias voltage increases from negative

to positive (- 0.5 V to 0.5 V in Figure 5.11 (a)). Since the depletion capacitance is

inversely proportional to the depletion width, the total capacitance increases until

the external bias overtakes the built-in potential - where the depletion capacitance

rapidly quenches to zero. A peak at ∼ 0.25 V reflects the built-in potential of the

devices, which is consistent with value reported by other groups [95,103,106]. The

residual capacitance measured above built-in potential is related to the chemical

potential of the devices [115].

At frequencies below 250 Hz, the capacitance from the trapping and detrapping

carriers to or from the defects changes the shape of the C-V characteristics. The

quenching of the capacitance above Vbi is not observed. In contrast, the capacitance

continues to increase. The large defect and trap densities dominate the capacitive

behavior. Both the defects associated with the surface states of the QDs and ZnO

nanocrystals and the depletion capacitance due to the p-PbS/Au Schottky diode

contribute to the low frequency capacitance under forward bias.
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The MS plot shown in Figure 5.11 (b) deviates from a normal MS plot for a

Schottky diode. Based on equation 5.8, the depletion capacitance is proportional

to
√

(Vbi − V ) [110]. The Vbi is then extracted from the intercept of the x-axis of

a linear fit of the MS plot. A Vbi ≥ 0.85 V is observed, though very similar to

the data reported in reference [95]; the value is perturbed by the charging and

discharging of the defect states and voltage drop across multiple interfaces. These

effects can be treated as a constant capacitance across the device [106,111]. As

reported by S. Willis et al. [111], with a constant capacitance subtracted (in our

case 0.10 μF/cm2) from the C-V measurements, values of Vbi = 0.258 V and

Na = 1.2 × 1017 cm−3 are extracted. These numbers are consistent with those

reported elsewhere [95, 103,106,116].

Although MS analysis has been used successfully in PbS CQD solar cells

[117], the prevalence of deep traps [103] in the PbS QDs and ZnO nanocrystals

requires care when interpreting these data. The value of the background doping

concentration Na is bias dependent, since the applied bias will change the position

of quasi Fermi level enabling passivation of the the states responsible for Fermi-

level pinning by the injected carriers. Similarly, for the PbS/ZnO CQD solar

cells, the bias dependent doping concentration behavior is found to account for

the change of the gradient of the 1/C2 dependence with applied bias as seen in

Figure 5.11 (a) and (b) .

Frequency dependent EQE measurements for a ZnO/TBAI-PbS/EDT-PbS

quantum dot solar cell at high efficiency are plotted in Figure 5.12. The inset is

a magnified image in of the EQE spectra, where a low frequency measurement
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Figure 5.12: EQE measurements of a ZnO/TBAI-PbS/EDT-PbS

quantum dot solar cell at modulation frequencies (black (97 Hz), red

(157 Hz), and green (197 Hz); inset is a zoom in of the EQE spectra

enables a greater portion of the photogenerated carriers to be extracted rather

than being perturbed by traps, resulting in a higher EQE. The higher frequency

measurements lead to a lower EQE, which is attributed to the contribution of

traps that prevent carrier extraction at high frequency.

5.2.4 Impedance Spectroscopy Analysis

Impedance spectroscopy (IS) is used to further investigate the system response of

the PbS/ZnO solar cells as a function of AC signals. The impedance (inductance

and capacitance) of the system is probed by the a small oscillation signal (20

mV on the order of kT); the impedance has both magnitude and phase, which is
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dependent upon frequency. Since the dynamic of the diffusion and transport of

carriers in photovoltaic devices under AC signals can be modeled by capacitive

and resistive elements, IS has been used by several groups to investigate the

parasitic resistance and minority carrier lifetime in solar cells [115, 118–120].

Two RC equivalent circuits shown in Figure 5.13 are used to model the back-

to-back diodes as illustrated in the inset to Figure 5.6. R1 and R2 represent

Figure 5.13: Two RC equivalent circuits modeling the back-to-back diodes.

the recombination resistances which are associated with the carrier transport

losses in the device (generating heat), and C1 and C2 are related to the depletion

capacitance induced by the charging and discharging processes. Rs represent the

series resistance of the sample. The total impedance of this system is given by:

Z(ω) = Rs +
1

1
R1

+ jωC1

+
1

1
R2

+ jωC2

. (5.9)

The magnitude of the real and imaginary parts of the impedance are written

as:
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Z ′(ω) = Rs +
R1

1 + (ωR1C1)2
+

R2

1 + (ωR2C2)2
, (5.10)

and

−Z ′′(ω) =
ωC1R

2
1

1 + (ωR1C1)2
+

ωC2R
2
2

1 + (ωR2C2)2
, (5.11)

respectively.

The Nyquist plots for IS measurements under reverse, zero, and forward bias

conditions are shown in Figure 5.14, which can be used to extract the capacitance

and system reponse from fitting the IS. The IS measurement is a frequency

dependent measurement, where the Z
′
is plotted counter-clockwise from low

frequency to high frequency against the Z
′′
. The frequency range probed here

is from 50 Hz to 13 MHz. Figure 5.14 (a) compares the IS data under zero

and forward bias. Increasing the forward bias from 0 V to 0.5 V dramatically

shrinks the Nyquist plot. The reduction in the magnitude of the impedance arc

in forward bias is consistent with the dark J-V curve (see Figure 5.5 (b)), where

0 V corresponds to high resistance - low current and 0.5 V low resistance - high

current (R = dV/dJ , where R ∝ 1/J). This indicates a reduction of the total

resistance, as expected in forward bias, where the decrease in the built-in potential

of the diode allows efficient transport of majority carriers. An increase in the

capacitance is also expected due to the reduced depletion width under forward

bias [121].

Typically, applying a reverse bias to the system will increase the depletion

width (w =
√

2ε(Vbi−V )
qNa

). The wider depletion width will serve as a barrier for
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Figure 5.14: Nyquist plots for impedance spectroscopy measurements

under (a) forward and zero bias, (b) reverse and zero bias. Black, red,

and green represent the zero, forward, and reverse bias data. Open

symbols and lines represent the measurement data and fitting data,

respectively. Inset to (a) is a zoom-in Nyquist plot under forward bias.

majority carriers and inhibit the carrier transport across the device. Thus, the

resistance of the whole device should be equal or larger than the resistance under

zero bias. However, it is clear that reverse biasing the sample at - 0.5 V also
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reduces the total impedance for the majority of the arc, which is clear from

the point where the two arcs separate (Figure 5.14 (b)). The reduction of the

impedance under reverse bias further supports the hypothesis of the formation of

a second diode in reverse, which is effectively “turned-on” when a forward bias is

applied across the PbS/Au Schottky junction, leasing to a break down of the main

heterojunction through midgap state mediated tunneling processes. This band

alignment under reverse bias is illustrated schematically in Figure 5.9 where the

applied field is opposing the built-in potential of the PbS/Au interface increases

and reflects the “effective turn-on” evident in the J-V measurements shown in

Figure 5.5 (b) under high(er) reverse bias conditions across the whole device.

This behavior reflects the combination of enhanced current injection from the

Au-contact and PbS film and the avalanche break-down through defect-mediated

tunneling at higher reverse bias.

An Electrochemical Impedance Spectroscopy (EIS) program [122] is used to

further extract physical information from the IS results by fitting the data with a

two RC circuit model. Figure 5.14 (a) and (b) shows the impedance spectra and

the EIS fits for biases of -0.5 V (green), 0 V (black), and 0.5 V (red), respectively.

The data is shown as symbols and the EIS fits as lines. Under forward bias, an

inductive behavior is observed (a strong roll over at low frequencies in Figure

5.14 (a) inset), which is attributed to the minority carrier injection from the

contact [123]. A similar inductive behavior has been observed in other devices

including p-n junctions [123] and organic photovoltaics [124].

The inductive behavior under forward bias is usually observed in the fourth
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Main Junction (n-ZnO/p-PbS) Schottky Junction (p-PbS/Au)

Bias(V) Rs(Ω/cm
2) C1(nF/cm

2) R1(Ω/cm
2) τ1(μs) C2(nF/cm

2) R2(Ω/cm
2) τ2(μs)

Reverse 331.9± 4.3 9.2± 0.2 71200± 3100 653.6 0.52± 0.02 425.9± 9.7 0.22

Zero 835.4± 1.5 10.50± 0.04 120700± 1300 1267.7 70.1± 3.6 358± 39 25.07

Forward 377.5± 1.1 12.90± 0.01 7157± 19 92.3 61.20± 0.46 254.3± 3.8 21.68

Table 5.1: Parameters extracted from IS fitting. Reprint from Yang et

al. ACS Applied Materials & Interfaces 9.15 (2017): 13269-13277.

quadrant in a Nyquist-plot. However, this behavior is not present in our samples.

There are possibly two explanations: First, the frequency dependent capacitance

under forward bias as shown in Figure 5.11 (a) leads to a reduction of capacitance

as a function of increasing frequency. This larger capacitance at lower frequencies

will decrease the real part of the impedance (see Equation 5.10). Second, in

comparison with other reports that the inductive element is in series with the RC

circuit, the inductive element in our model is more likely to be in series with the

main junction but in parallel with the Schottky diode. This could also decrease

the real part of the impedance without changing the sign of the imaginary part

(Equation 5.10 and 5.11). Further investigation is needed to fully understand this

behavior.

Table 5.1 summarizes the parameters extracted from the fitting. The Nyquist

plot at zero bias shown in Figure 5.14 is fitted with two RC circuits. The depletion

capacitance for p-n junction is given by Equation 5.6:

C =
√

qε
2ε(Vbi−V )

NaNd

Na+Nd
.
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The acceptor concentration Na for these two diodes is determined by the PbS-EDT

CQDs thus, can be treated as the same. Since the electron concentration in the

Au contact is larger than the ZnO NCs, the extracted capacitance of the Schottky

diode (C2) is larger (70.1 nF/cm2) than that of the main n-ZnO/p-PbS junction

(C1 = 10.5 nF/cm2). Due to the opposite polarities of these two junctions in the

device, a reverse bias across the main n-ZnO/p-PbS junction reflects a forward bias

across the Schottky diode (vice versa for forward bias across the main diode). For

the Schottky diode, a reverse (forward) bias will increase (decrease) the depletion

width and reduce (increase) the device capacitance. The behavior of C2 mimics

the Schottky diode capacitance behavior at these three bias.

As shown in Figure 5.14 (a), the forward bias with respect to the main n-

ZnO/p-PbS junction is in fact a reverse bias to the p-PbS/Au Schottky diode;

thus, the C2 extracted is smaller than the capacitance under zero bias. When

switching to a reverse bias across the whole device, a larger C2 is expected due to

the decreased depletion width. However, we have seen a much smaller capacitance.

The most likely explanation for such a behavior is related to the “turn on” of the

Schottky diode; such a “turn on” will close the depletion width and eliminate the

capacitance associated with the depletion region of the Schottky diode.

The depletion capacitance of the n-ZnO/p-PbS junction (C1) reduces under

reverse bias conditions, this reflects an increase in depletion width as expected.

Under forward bias conditions, an increases in capacitance (see Table 5.1) is

expected based on the MS description the p-n diode. However, if the applied

forward bias exceeds the built-in potential, a sudden reduction of the depletion
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capacitance is expected since the depletion region is closed. A forward bias IS

measurement at + 0.5 V is well above the built-in potential ∼ 0.25 V based

on the literature [95, 103, 106, 116] and our adjusted C-V results; however, the

expected loss of the depletion capacitance is not observed (see Table 5.1). A

possible explanation for this retention of capacity despite the absence of the

depletion region is that the capacitance C1 - rather than simply reflecting the

depletion capacitance of the main junction - is derived from a combination of both

n-ZnO/p-PbS depletion capacitance and a background capacitance associated

with the defects in the QD film and at the interfaces; which generates the constant

capacitance that also serves to produce the larger than expected Vbi as observed

in the C − V measurements (see Figure 5.11). At high biases above Vbi, the

capacitance is dominated by this bulk contribution, which also perturbs the

gradient of the 1/C2−V MS spectra (See Figure 5.11 (b)). A similar behavior in

terms of larger than expected Vbi and therefore background doping concentrations,

Na ≈ 1017cm−3, have been observed previously by several groups [95, 103, 106];

which is again consistent with a deep level in the QD films related to surface traps

in the PbS CQDs [103,125].

As stated above, the resistance associated with a normal p-n junction is

expected to remain constant or increase as a function of applied reverse bias.

However, the parallel resistance R1 for the main n-ZnO/p-PbS junction decreases

with increasing applied reverse bias, which is unusual but coincides with both our

J-V measurements (reverse bias “turn on” or rectification) and the shrinkage of

the Nyquist plot under reverse bias. The reduction of the effective resistance R1
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can be explained by the “leaky paths” introduced by the tunneling channels from

the midgap states.

The product R · C gives the time constant (τ) for the circuit. τ typically is

used to represent the minority carrier lifetime in forward bias, as carriers diffuse

through the QD film. Here, however, τ accounts more generally for the time

constant for charging and discharging of the defects or traps under different biases.

In Table 5.1, τ1 and τ2 represent the time constants for the main n-ZnO/p-PbS

junction and the Schottky diode produced at the PbS/Au interface, respectively.

Under reverse bias, the minimal value of τ2 suggests that the Schottky barrier has

a negligible effect on the dynamics of the of carrier transport across the PbS/Au

interface, since there will be no barrier for holes to cross the junction. At zero

and forward bias, a larger τ2 is evident, which is attributed to the limited hole

transport across the PbS/Au junction. Hole transport across the junction is

limited by the thermionic emission rate and Schottky barrier height under those

conditions.

For the main n-ZnO/p-PbS heterojunction, a combination of field-aided extrac-

tion and defect mediated tunneling that facilitates carrier (electron) extraction

contribute to the reduction of τ1 under reverse bias. Under forward bias, the

reduction of τ1 is related to the “turn-on” of the device and saturation of the

defect and interfacial states at higher injection levels. This description of the

temporal dynamics of the carrier transport extracted from the IS measurements

is supported by and consistent with the non-ideality of the C − V measurements;

as well as, the shunting and rectification observed in reverse bias in the J − V
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measurements.

5.3 Conclusion

In this chapter, a suite of transport characterization techniques including current-

voltage, capacitance-voltage, and impedance spectroscopy are used to investigate

the effect of the interfaces and intrinsic surface states in an ITO/ZnO/PbS/Au

colloidal quantum dot solar cell.

The low minority carrier diffusion length induced by losses associated with

Shockley-Reed-Hall recombination processes (through interface states and midgap

states associated with surface states on the PbS QDs) is the main factor limiting

the performance of the CQD solar cells [64, 70, 93]. The non-monotonic behavior

and dispersion in C-V measurements reflect the prevalence of these defect states.

The long response time of the system under different biases suggest the carrier

dynamics are dominated by these defect states. To further increase the performance

of the CQD solar cells, better engineering of the interface states and surface state

passivation are of great importance.
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Chapter 6

Summary and Future Work

For the last few decades, substantial impacts for physical and biological systems,

such as: the shrinkage of glaciers, rising sea levels, and an increase in frequency

of severe tropical storms have been attributed to global warming with (“high”)

confidence. Despite some remaining debate, numerous scientific investigations

suggest that there is a strong correlation between global warming and greenhouse

gas (GHG) emissions.

Emissions of CO2 have contributed 78% of the total GHG emission increase

over the past five decades. In 2016, 35% of the CO2 emission in the U.S. came

from electricity generation. As a renewable energy source solar energy has a

limitless and abundant supply, is accessible in most geographic areas, and much

cleaner as compared to conventional fossil fuels, which have limited reserves, and

require significant time to form. Therefore, incorporation of more solar energy

into the power grid will help to reduce total CO2 emissions, and reduce global

warming.

Currently, solar energy is economically viable in areas where the infrastructure

is limited, or the GHG emissions are restricted by governmental policy. To further

facilitate the deployment of solar energy at the Tera-watt scale, higher efficiency

and lower cost solar cells are still required. The efficiency of first generation - wafer

based solar cells, and second generation - thin film solar cells are limited by the

Shockley-Queisser limit for single bandgap solar cells. Third generation solar cells
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are emerging technologies, which have been predicted to achieve power conversion

efficiency beyond the Shockley-Queisser limit. Nanostructured materials have

been investigated extensively for the past few decades as candidate systems for

third generation photovoltaics. In this dissertation, nanostructured semiconductor

quantum dots are studied for their potential applications for next-generation

photovoltaics.

This dissertation specifically focused on the incorporation of InAs/GaAs1−xSbx

quantum dots in high efficiency intermediate band solar cells, and lower cost

PbS/ZnO thin film colloidal quantum dot solar cells. The operating principles

of these two types of solar cells were introduced in Chapter 1. The intermediate

band solar cell has the potential to improve the photovoltaic performance by in-

creasing the total photogenerated current through a two step sub-bandgap photon

absorption process. Solution synthesis techniques potentially give PbS/ZnO thin

film colloidal quantum dot solar cells the advantage of low manufacturing costs,

are of particular interest for building integrated-PV. Though these two types of

QDSCs fall into two different categories, they share some of the same physical

characteristics and therefore the same issues drive their operation and inhibit their

potential commercial viability e.g. the prevalence of non-radiative recombination

losses. The focus here was to study the physics behind those limiting factors, and

to determine the subtle role of impurity and defect related processes, radiative

and non-radiative losses, and their role on carrier extraction in theses systems.

In Chapter 3, two sets of MBE grown InAs/GaAs1−xSbx QD samples, one set

with various InAs deposition thicknesses and the other set with different percentage
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of Sb composition in the barrier materials were investigated, to determine the

optimal growth conditions in terms of QD density and uniformity. Complementary

atomic force microscopy (AFM ) and photoluminescence (PL) measurements were

used to characterize the quality of the QDs and to track the band alignment

transition from type-I to type-II. A maximal areal density of ∼ 3.5 ×1011 /cm2 was

achieved for the 3.0 ML InAs/GaAs0.86Sb0.14 QD sample, along with reasonable

uniformity in terms of both size and shape. A band alignment transition from

type-I to type-II is evident when the Sb composition in the matrix reaches 14%.

As such, 3.0 ML of InAs deposition and 14% Sb composition in the GaAs1−xSbx

matrix were chosen as the optimal growth conditions for InAs/ GaAs1−xSbx

QDSCs.

Four p-i-n GaAs solar cells with different intrinsic region designs were then

grown, also by MBE. The material qualities of these four solar cells were initially

investigated using PL measurements. Multimodal behavior due to sample inhomo-

geneities was observed via the appearance of an “s-shape” dependence of the QD

peak energy as a function of temperature. Fast quenching of the PL spectra for

samples with a thicker intrinsic region indicated the formation of a larger defect

density in those samples. These behaviors qualitatively suggest that the defect

states associated with the lattice mismatch between GaAs0.86Sb0.14 and GaAs

account for the degradation of the quality of the materials investigated.

In Chapter 4, electrical characterization techniques including electrolumines-

cence (EL), external quantum efficiency (EQE ), and current-density-voltage (J-V )

measurements were used to investigate the transport properties of the four solar
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cells. Defect states associated with the lattice mismatch between GaAs0.86Sb0.14

and GaAs were again proposed to account for the limited performance of these

solar cell devices. A hypothesis, that there is a transition from radiative to

non-radiative recombination with increasing temperature is supported by the

rapid quenching of both the PL and EL intensities, along with a simultaneous

decrease in the z-factor extracted from spontaneous emission analysis from 2 to 1,

above 150 K. It is suggested that such performance degradation with increasing

temperature is facilitated by the thermal activation of the defects or ionization

of impurities in the matrix and emitter regions of the solar cells. These results

further suggest the prevalence of non-radiative processes at elevated temperatures

in these systems, which are also qualitatively correlated with the anomalously

large reduction of Voc and appearance of unusual Jsc behavior in temperature

dependent J-V measurements.

A suite of transport characterization techniques including current-voltage,

capacitance-voltage, and impedance spectroscopy were used to investigate the

effect of the interfaces and intrinsic surface states in an ITO/ZnO/PbS/Au

colloidal quantum dot solar cell in Chapter 5. The negative influence on the

carrier transport, the operating conditions of the CQD solar cell, and mechanisms

therein, were also presented. The Schottky barrier formed at the PbS/Au interface

results in Fermi level pinning that induces a non-linearity in the diode characteristic

of this solar cell architecture. The low minority carrier diffusion length induced by

losses associated with Shockley-Reed-Hall recombination processes through the

presence of interface states, and via midgap states associated with surface states
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on the PbS QDs are the main factor limiting the performance of the CQD solar

cells. Non-monotonic behavior and dispersion in C-V measurements further reflect

the prevalence of these defect states, and the long response time of the system

under different biases suggest the carrier dynamics are dominated by trapping

and de-trapping processes related to the defect states. To further increase the

performance of the CQD solar cells, better engineering of the interface states and

surface state passivation are therefore of great importance.

For InAs/GaAsSb QDSCs, additional experiments including concentration

measurements and power dependent laser induced J-V measurements are currently

being performed to further probe the nature and role of the defect states in these

systems. These measurements will yield more information about the dynamics of

the defect states (e.g., defect mediated tunneling mechanisms and the prevalence

of thermal escape processes) as a function of the number of photogenerated

carriers. To improve the performance of the QDSCs, better strain engineering

is also required. Instead of using a GaAs substrate, an InP substrate has been

proposed, which would be preferred since its compressive strain with respect to

the GaAsSb could be engineered to compensate the tensile strain between the

GaAsSb and InAs, which potentially could resolve the issues induced by the defect

formation due to the lattice mismatch between the GaAs and GaAsSb. InP also

has an improved spectral overlap with the AM 1.5G solar spectrum.

PbS/ZnO CQD solar cells suffer from a significant performance loss due to

the surface and interfacial states. A better understanding of the ZnO is also

of great importance. The doping density of ZnO affects the properties of the
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main n-ZnO/p-PbS heterojunction interface and the depletion width in the PbS

CQD layer. A ZnO Schottky device would be useful to determine the doping

density by Mott-Schottky analysis. However, the sophisticated properties of ZnO

nanocrystals have so far resulted in unsuccessful Schottky devices, and further

work into the nature of these systems is required. Another area to be investigated

centers on the ligands used for the PbS QD thin-film, since these ligands affect the

surface passivation, doping concentration, and the band alignment with respect to

the ZnO and Au interfaces. As such, a better surface preparation would help to

reduce the negative effect of surface states and reduce the effects of the Schottky

junction near the metal contact. Future work focuses on the characterizations of

PbS QD solar cells with different capping ligands and advance chemical treatments

of the various interfaces in the system.
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