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PREFACE

The material presented in this thesis is the out-growth of the
seminar lectures presented by Professor Jan J. Tuma in Spring 1959,
The Literature Survey and the general theory recorded in the introduc-
tion and Parts 1, 2, 3, and 4 were prepared by Professor Tuma. Ap-
plication of this general theory to the rectangular towers was reported
by Heller (29).

The writer's contribution is the derivation of carry-over con-
stants for eight special cases and preparation of numerical examples.

The writer wishes to express his indebtedness and gratitude to
Professor Jan J. Tuma for his invaluable aid and guidance in preparing
this thesis and for acting as the writer's major adviser.

The writer also expresses his appreciation to Dr. K.S, Havner
for his advice and thorough reading of the manuscript, to Mr. Glenn
D. Houser for his kind help in preparing the sketches and tables, to
Mr. Jorge H, Tolaba for his help in checking the numerical examples

and to Miss Willie Cannaday for her careful typing of the manuscript,
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NOMENCLATURE
. Height of story i-j

. Length of column i-j

dj e« csoese. One-half of length of girder j-j?
S One-half of the difference in length between girders
J i-i! and j-j’
Tj"" .« s ... Length of tie j
aj ........ « - Inclination of tie j
wj’ s e s « « « « Inclination of column i-j

. Slope of members at j due to symmetrical system load

. Slope of members at j due to anti-symmetrical sys-
tem leoad

. Relative displacement between points i and j

. Relative d’isplacement between points j and j¥

A, A,
. —L-l for trapezoidal panels or h—l for rectangular panels
] "]
A,
K]
t2d,

. . One-half of external, horizontal panel load at j

»

.

. End shear of member i-]j
« Story shear due to one-half of the loads at j
. Axial force of tie j

. Horizontal (Vertical) component of Rj.

. End moment of member i-j due to symmetrical sys-
tem load :

. End moment of member i-j due to antisymmetrical
system load
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Stiffness factor of member i-j

Modified stiffness factor of member i-j for anti-
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Starting moment for symmetrical system at joint j
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. Static load moment about Oj
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Horizontal (Vertical) spring constant of tie j



INTRODUCTION

The analysis of multi-story, one bay, symmetrical frames with
vertical or inclined legs by means of energy or slope deflection methods
isalengthyand laborious procedure. The main difficulty lies in the geo-
metry of deformation, preparation of a system of simultaneous equa-

tions and solution of this system for a large number of unknowns.
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_ Fig. 0+1 Fig. 0-2
Multistory Two Column Symmetrical Multistory Two Column Sym-
Frame with Rectangular Panels. Basic metrical Frame with Trape-
Structure - Simple Two-Legged Frame. zoidal Panels. Basic Struc-
ture - Simple Two-Legged
Frame.

The energy solution of rectangular frames was introduced by
Muller-Breslau (1) and extended to trapezoidal frames by Beyer (2).
Both investigators took advantage of the symmetry and antisymmetry
of the loaded frame and used two-legged, simple frames as basic

structures (Figs. 0-1,2).



Parcel and Moorman (3) taking also advantage of symmetry and anti-

symmetry selected normal forces and shearing forces at the center of

each girder (Figs. 0-3,4) as unknowns and developed deformation equa-

tions in terms of these forces,

The application of slope deflection method was discussed in de-

tails by Mann (4), Kruck (5)! Amerikian (6), BaZant (7) and others.
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Multistory Two Column Symmetri- Multistory Two Column Sym-
cal Frame with Rectangular Panels. metyical Frame with Trape-
Basic Structure - Cantilever Beam zoidal Panels. Basic- Struc-

ture - Cantilever Beam.

The 'modern.philosophy of structural analysis was introducéd to
the solution of this problem by (\Z/alié'ev (8), Cross (9), and Grinter (10). :
Although these methods are powerful tools in solution of frames with
sway prevented, they offer new difficulties when applied to frames with

tran‘sllating joints. The influente of sidesway must be either assumed



in terms of independent A's and calculated by means of shear equations
as shown by Maugh (11) or corrected by combined procedure of balanc-
ing moments and shears in alternate cycles as recommended by Morris
(12).

Independent contributions to the numerical solutions of highly
indeterminate frame structures with joints free to rotate and translate
have been presented by Kloucek (13), Dasek (14), Kani (15), Moliotis
(16) and others. An excellent comparative study of methods for analy-
zing frame structures was prepared by Bazant (17) and Worch (18).

In studying the elastic instability of multi-story frames Perri
(19) and Kavanagh (20) developed a new form of moment distribution
procedure which includes the balancing of moments due to rotation and
translation and represents an importantinnovation in this field. Inde-
pendently Kupferschmit (21), Grinter and Tsao (22) developed the same
procedure which became gradually known as "the cantilever: moment
distribution method." Parcel and Moorman (23), Kazda (24), Cook
(25,26), Heller (27,28) and others applied this method to a large num-
ber of problems. The advantages and limitations of the cantilever mo-
ment distribution method have been summarized by Pei (29).

Goldberg (30) suggested a solution of one-bay, multi-story, rec-
tangular, symmetrical frames by means of three-slope equations and
proposed two iterative procedures for the solution of the slope matrix,
Modifications and some other possibilities were demonstrated in dis-
cussion to Goldberg's paper by Nubar (31), Sobotka (32) and Chang (33).

Cross (34) in reviewing various techniques of moment distribu-
tion observed that:

"To one who is familiar with the process of moment distribution



it soon becomes evident that it is not necessary to write the dis-

tributed moments each time. We may write only the moment

carried over, and at the end of the procedure we may find the
totals of the original fixed-end moments and the moments car-
ried over, and distribute the unbalanced total. The physical
significance of the procedure is somewhat obscured, but time

is saved in the computation. "

Dasek (35, 36) simplified and improved this special form of mo-
ment distribution and demonstrated its application on many examples.

The extension of the carry-over moment procedure (37, 38, 39,
40, 41, 42) to the analysis of multi-story, one bay, symmetrical frames
with vertical or inclined columns, with or without ties and acted upon
by a general system of loads is introduced here. The initial structure
is resolved into symmetrical and anti-symmetrical systems and general
three-slope equations for each system are derived. The slope equations
are then transformed into joint moment equations from which the carry-
over functions are developed.

The frame members may be of constant or variable cross-sec-
tion and the deformation of the frame may be caused by transverse loads,
change in temperature, displacement of supports or applied couples.

The numerical procedure has following characteristics:

a) One assumed starting moment is computed at each joint.

b) Omne final joint moment is obtained at each joint.

c) No distribution of unbalances is required during the carry-

over procedure,

d) The successive approaching to the final values is performed

by means of carry-over factors only.



e)v The procedure is self checking.
This study‘is restricted to planar frames and the customary assump-
tions of the rigid frame analysis atre introduced. The deformations of
frame members due to shear and axial forces are assumed to be small
and are neglected. The ties are elastic ties, resisting tension only and
unable to resist bending or compression. The deformations of these ties
are very small. Thus it may be assumed that the initial slope of the
tie remains the same after the displacement of the joint takes place.
The sign convention of the slope-deflection method is adopted. All
forces and displacements acting to right and upward are positive. All
clockwise moments and angular rotations are positive. The subsequent
discussion is divided into six parts. The statement of the problem and
the derivation of the fundamental functions are presented in the first
four parts. Special cases are defined and tabulated in Part V. Two
numerical problems are introduced in Part VI. The physical interpre-

tation and algebraic procedure are discussed in the last parts.



1. STATEMENT OF PROBLEM

A multi-story two column symmetrical frame, with inclined
legs and diagonal flexible ties, acted upon by a general system of loads
is considered (Fig. 1-1). The cross-sections of the members are sym-~
metrically variable with respect to the axis of symmetry of the frame. -
Since the structure is symmetrical but unsymmetrically loaded, .‘the
re.solution of loads into symmetrical and antisymmetrical system offers
many advantages; as has been shown by Andreé (43), Miller-Breslau (1),

Beyer (2), Newell (44), Naylor (45), Pei (46) and others.
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Fig. 1-1

Multistory Symmetrical Frame with Flexible Ties
and Inclined Legs, Unsymmetrically Loaded
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2. SYMMETRICAL SYSTEM -- TRAPEZQIDAL

OR RECTANGULAR PANELS
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Fig. 2-1

Multistory Symmetrical Frame with Flexible Ties
and Inclined Legs, Symmetrically Loaded
Due to the symmetry of the system the joint rotations of the
left side are symmetrical with their right side counterparts and no
translatibn takes place, The slope deflection equations in terms of
the moment distribution nomenclature for the portion_ij_k— (any portion)

are:
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M, Ky 03 + CKy 0}

MI - k. el + ck . e
j kj

jk ik k
I )
S0o= Ko (1-C.) 6% + FM)\ -
3] i % 9 ji f (2-1)
o . 1 '
Mji Kji 9j + CKij Gi
D - k. et + CK. 6. . ’
1) 1 1 ]
Where
CK. = CK_. = C.K, = C K
ik S Kk kj Tk ]
f (2-2)
CK,, = CK,, = C,.K,, = C,K,
1] J1 1] 1 1
From the equilibrium of joint j:
1) (0 €y .
M.(. + MY + M. = 0 2-3
i 33 Jk (2-3)
or ‘in terms of equations (2-1)
6" CK . + 0'rK, + 6. CK. = - FMm{D) 2-4
k KkJ I 1] 33 (2-4)
where
K., = K., + K..(1-C..) + K.,
o Jk J 33 Ji
Equation (2~-4) is the three-slope equation for a symmetrical
system.
With new notation:
@ _ I + - ; -
IMT = 0 | Ky F K (G ) Kkj} (2-5a)
\ _/
EKk_
am® = ¢ [k, + K. (1-C..) + K.. J (2-5b)
J j Lk 33 3] i
V
K.

Ji



N R _ |
= ey | Ky o+ Ky (1-Cpp) + Ky (2-5)

\ y /
LK.
i
and
3 N ¢ _
mj Fij (2-86)
r.(_I) _ CKi' X
ij EKj
(2-17)
CK, .
L@ - By

kj ’"EKk

the three-slope equation (2-4) becomes the three-joint-moment equation:

JlV[j(I) = I'(D JM(..I) + m.(I) + r.(.I) JM ()

kj k j ij i (2-8)

This new form of equation (2-4) consists of the starting moment

I 1 @O

m.( » the carry-over factor rij 5 rkj and the redundant moments
k o
(11) of Tuma's recent papers (37,41) is well apparent. The physical

interpretation of parameters mj(‘JL), ri(jI) and rlg) follows:

JMi(I), JMj(I) and JM (D The similarity of equation (2-8) with equation

D

is the moment at j due to loads, required

a. Starting Moment mj

to hold the joint j in equilibrium, if the joints i and k are fixed.

b. Carry-over Factor ri(jI) (rlg_)_) is the moment at j due to JMi(I) =

+1 (ME =+ 1), if the joint k (1) is fixed.
k ‘

The slope deflection equations (2-1) in terms of equations

(2-5, 6, 7)and with similar notation become:
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3. ANTISYMMETRICAL SYSTEM --

TRAPEZOIDAL PANELS

Fig. 3-1

Multi-Story Symmetrical Frame with Flexible Ties
and Inclined Legs, Antisymmetrically Loaded

Due to the antisymmetry of the system the joint rotations and
translations of the left side are antisymmetrical with their right side
counterparts. The slope deflection equations in terms of the moment

distribution nomenclature for the portion ijk (any portion) are:

11



(H) - 11 + 6”
M Ky + CKR 0 + S v .
I _ " t
M s
) " (I1)
vI) - g (1+c.) 6" - s.p.. + MU 3-1
i] 3 (7€) ] 1151 i] g (3-1)
I - g e + cK..6" + S.u.
ji Ji ] ij i i’
v - gk 6" + cK.6" + S .y, . )
ij ij i e ij" ]
Where
Skj = Kkj + CKjk
= v+
S = Ky T Ky
s.. = K,. + CK,, > 3-2
i] ii ij (3-2)
S.. = K.. + CK..
ji ji i
s.. = K,. + CK.. )
ij i i

FM%I) = fixed end moment due to loads.

From the equilibrium of joint j:

VSRR v GO Vi CE R} (3-3)
ik 3] Ji

or in terms of equations (3-1)

1 1 1
6k CKkJ + GjEKj + 6i CKij

an

0‘. 3-4
i3 (3-4)

+ S, - S..0.. + S..¥. + FM
kak JJwJJ leJ

12
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Where

K. = K, + K., (1+C..) + K.,
j jk 3] Ji ji

The six-slope equation (3-4) contains reduhdant slopes (6'')'s and ¥'s.

First the relationship of ¢'s to the deformation of flexible ties must

be determined. Then the elimination of ¥'s and transformation of the

six-slope equation into a three-slope equation is shown. Finally the

three-joint moment equation similar to equation (2-8) is derived.
The deformation curve of a typical panel (iji'j') is shown in a

- very exaggerated shépe (Fig. 3-2). The translation of joints j and j'

is defined by displacements Aj and Ajj' The elongation of the elastic

tie j,
= EJE:L = )y 3-5)
ATj Aj B Rj 3 (

Where

Rj = Axial force

Tj = Length

Aj = Cross-sectional area

E = Modulus of elasticity

A, = Axial flexibility.

L Py

The relationship between the translatory displacement 'Aj and the

elongation of the tie _ATj is given by the geometry of Fig. (3-3).

Zh.di
R, = — ' 3-6a
ST (3-62)

T. . si LT ow,
A ; AJ sin (ozJ wJ)
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0 Fig. 3-2

Translocation Diagram

0 —

Fig. 3-3
Equivalent Spring
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From which the axial force in tie j,

R, = —4ly. . (3-6b)

In the derivation of equations (3-6a) following identities are used:

Ei ij_ 2d, + e, E]_
sin (¢ T e) = (gl -+ —p—1 $h)
‘ J J J J
\__\/___/ N —
sina.cosw, cosa.8inw.,
J J J J
and A, = L.y, .
" j i¥3

The active tie j is replaced by an elastic spring, with spring force

. The compqnent forces of the spring j are

J
then from equation (3-6b)

Rj and spring constant Q

2d,
R. = R,cosa, = (-~— sina.cosa.) ¢, ,
jx j J (Kj T :JWJ N
\ ‘VV /
P S (3-7)
Zdi. 2
R. = R.sina, = (== sin a.) ¥, .
iy jsinag = X i ¥ ’
-
Q.



Fig. 3-4
Free Body Above i-i!

From Fig. 3-4

d, d,
eMy, = sl - av @ A g I gine,
J 0j ij coswj ix coswj '

R, d. + o = 9
iy % ij

where

SM(%'I) = Static load moment about Oj

' g (IL) (1)
any | Mgt Mg
A = JL
i3 ”

(3-8)
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and M.(.H), M..II), R. and R._ are as given by equations (3-1) and (3-7)
1] Ji X 7y
respectively. Equation (3-8) is expressed in terms of 9"i, 6"3. and wj,

from which,

d. e,
.= - =L (S..0" +°8.6") + < (K..0". + CK..0"
wJ Nj ( ij i ji J) Nj( ij 1 ji J)

i g (I

+ SM .\ 3-9
2Nj 0j (3-9)
in which
1. d,.
N, = S+ dS; o o @ Sine;

+ . COSw,) .-
QJY J

Similarly
- _(_ij_ S. 6" + s ") +EE(K ', + CK,.6")
Yy NGNS I SIS U K% x
e -
II
+ o sm i) (3-10)
k
in which
L d

From Fig. 3-2

e.
U = -y (3-11)
j
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With notations assembled in Table 5-1 the six slope equation (3-4) be-
comes

6" CK* . + " LK * + 0" (CK*, + CK*.) = - *
k™ kj i j i ) LM i

. . . 3-12
1] 1J] ( )

This equétion is the three-slope equation for an antisymmetrical system.

s (II) = " * + 5k + %
Denoting J Mk ] Xk ‘(K ) Kkkj Kkj ) -
\ v /
IK}
JM.(E) = @ (K*¥ + KX, + KX) (3-13)
i ]k jit it f
N /
—V
TK*
i
o () o e % * A
JM;T = 6 (RS + KRG+ Kh)
\ /
'
LK *
1
and
mj(m = EFM:}" _ (3-14)

CK *
am _ K
Tk —E——*L )
i (3-15)
X + CKX,
e It Bl ¢
ij - T EK].)_F

“the three slope equation (3-12) becomes a three-joint moment equation.

@ - @@ rnj(II). ey (3-16)

j kj ij

This new form of equation (3-4) consists again of the starting

moment mj(ﬂ), the carry-over factor r.(H). r (D

', r.. ' and the redundant
ij ji



moments JM.(H), JM.(II) and JM (II)~. The similarity of equation (3-16)
i j k Yy q
with equation (11) of Tuma's recent papers (37, 41) is also well appa-

rent.. The physical interpretation of these parameters follows:

a. Starting Moment mj(Ez is the moment at j due to loads, required

to hold the joint j in equilibrium, if the joints i and k are fixed

against rotation but free to translate.

b. :Carry-over Factor ri(4II) (rlgl_)_ is the moment at j due to JMi(II)
J

(JMlim) =+ 1, if the joint k (i) is fixed against rotation but free

to trar;sla’ce.

The slope deflection equations ('3—1) in terms of equations (3-13,

14, 15) and Wlth similar notation become:

@ L @i 0, ()@

19

¥
kT P Mk Cik Dji IM + FMy,
I . (II) (I (I (I1) (II) *
My DJk IMT 4+ CpDpIME 4 FMA
v - D(H)JM (m . o(m (II)JM(H) + FMX (3-17)
i] it o 1:1:1 1j] 3]
I = p@yy IO C(H)D(II)JM(H) + FMX
i i ij 71 i
D = pEgy (D C(H)D(II)JM(H) + FM¥ .
1:1 1 1 i J ij
Two hew symbols in equations (3-17)are:
KX CK.*.
p@ o i (MpIh _ 4 N
Diji = f%* “i53 Dijj TRF (3-18)

251 {



4. ANTISYMMETRICAL SYSTEM --.
RECTANGULAR PANELS

In the case of a multi-story symmetrical one-bay frame with

vertical columns and antisymmetrical load

90>

1t
B

L, h I @
J 3

>
i

¥.h

Fig, 4-1

Translocation Diagram

The relationship between Aj and ATj is given by the geometry of

Fig. 4-1 (compare with Fig. 3-3 and equation 3-6a). |

20
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AT = Ajcosa/.
— —— (4- Ta)
RT 2
j S
From which
2h.d
Bj —-J—Tj % by (4- 1b)

Because there is no vertical displacement of joint j, the horizontal

component of the spring force Rj is the only action to be considered

4n.d?

R, = —b— y. . (4-2)

[~ s ] —]
N

| 2
@ /// s @ 2Py —]
k\ ><—-— — 4 -
“ / e
> by —
RjX @ '// \\\ @ ZPJ' e

O) ® R
(II)'é—'(II) o@D L1 B R
M \I/Vij V35 My } ;
2d |
\ g k4
Fig. 4-2
Free Body ii'

-



For the elimination of q[/j, the typical story shear equation may be

used (Fig. 4-2).

—— ———

SFE. = 0 . 2vj(m + 2v§1) + R, = 0, (4-3)

.

ix
Where Vj is the story shear due to one half of the horizontal load.

From equation (4-3)

21 (IT) 1 T
. B o= 2 h, - S,.8, - S..6, 4-4
w:] Nj (VJ j ij- i i J) (4-4)
and
1 .
= -+ § = -
Nj Sij Sji + 3 Qthj . (4-5)

Similar is the derivation of q[/k and N The constants for this type of

K
frames are recorded in Part 5, Tables 4-5, 6, 7. 8.
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5. TYPICAL CASES

Constants for eight special cases are recorded in the following

tables:

Table

Table

Table

Table

Table

Table

Table

Table

5-1:

5-2:

5-3:

5-4:

5-5e

5-63

5-7:

5-8:

Constants for Trapezoidal Panels,

Cross-Section, with Ties;

Constants for Trapezoidal Panels,

Cross-Section, without Ties;

Constants for Trapezoidal Panels,

Cross-Section, with Ties;

Constants for Trapezoidal Panels,

Cross-Section, without Ties;

Constants for Rectangular Panels,

Cross-Section, with Ties;

Constants for Rectangular Panels,

Cross-Section, without Ties;

Constants for Rectangular Panels,

Cross-Section, with Ties;

Constants for Rectangular Panels,

Cross-Section, without Ties.
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Variable

Constant

Constant

Variable

Variable

Constant
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Table 5-1

Constants for Trapezoidal Panels,
Variable Cross-Section, with Ties

"TYPICAL PORTION:

FIXED END MOMENTS:

M = (D
i i

3
MF = AR ;v (D
Mg = N, %k "Mok
* 545 fj an (I
FMY = - smbH 4 Fall
i 2Ny d; T i
S TR, 0
FMji 2Nj ej bMOj
e d
1 1
T
CONSTANTS: \

m .
%k 7 Gy

(n
Kix

il

Kjk

kO -k (1-c.
ij i i

K(I) -

s K.,
i 3

O
CRy; CyKy

Nk 73k k
K e,
(X, = [1+ 1l a.c,, + 4
it Ji d, Vit

EQUIVALENTS:
dy
= B + 22 + s
N ® 48 T 48y T Ohy Qs | N
3 = + C. S.. K..(1+C,,
S Ky 1+ Cyd bl i { i
Sy = Ky (1F Cyy)
2d, 2d,
Quy ° «J-kk singy cosay Qky ”“]‘)k sin- o
2d, Zd1
= _Lgi . ~— sin
ij Y smajcosaj QJy )‘j ]

J

d,
£ d8., +.d48,, * 5 (Q.h +t Q, e,
48 2 (QJX j QJ}’ J)

3713 i7ji
8. = K. (1+C..)
hj! ji ji
S.. = K., (1+C.)
] 13 1]
X, o= x
k Akb

CoT,
A, o= L
j AE
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Table 5-2

Constants for Trapezoidal Panels,

Variable Cross-Section, without Ties
TYPICAL PORTION: FIXED END MOMENTS:
() zp,
- T Fv D - ey D
ii ii .
by
@ 2P,
-4———-L‘ —4—
i (an
h FMY = i e SMy
J ] =Ny
@ 2Pi S 2
- T My = - ok sl 4 pm D
ii ZN]. d 0j ij
h,
' 5y an
MK = bl
® R
el 4,
J i
G
CONSTANTS:
T M H'k :

- CK* = K, . [C < (@, Cpp + d)]
CEG Sy W Kj [ K TN, (4 Cyj ;)
M EJE ]

. * = -
K = Ky KA = Ky [1 i (@.C + 4]
M Kl& %
. i ¥ =95 [1-_ d.C,, + d.)
ij KJ‘J’(1 cjj) it Ji [ Nj dj (J i 1:|
o
(S ¥ = K, |[1--=& (d.C,. + d,
Kji Kji KJ] ji Nj ( i 1)]
) :Jl_
= ¥ = K. |C.. - d.C.. + d,
CKij - cinij CKi] KlJ [ ij Nj ( i7ij c_)]:l
= RN . + d,
CK;(jj SJJ[ 3 d, (dlcl] ])]
EQUIVALENTS:
- 5 S N, = 4.8, + d.5
Nk dk&'jk * djskj j Y] 175
= 5. 0= K, (1+C,, S, = K. {(1+C..)
Sjk Kjk S Cjk) ij 3 ( JJ) . i i ¢ i
- ! S,. = K,,(1+C,.
Sk Ky (14 ckj) i 1 ( 13)
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Table 5-3 Constants for Trapezoidal Panels,
Constant Cross-Section, with Ties

TYPICAL PORTION: FIXED END MOMENTS:

vl - D
i il

3EI

_ SEL ()
n * =
FM;i N.T, SM gy

e (1)
* = - 3 .
FM, NT. gb smy;) + FMy
71T ]
: 3EI
arr = BN D
FMji NI, & ‘SMOj
73
e. d.
1 1 1
t
CONSTANTS:
2E1 4ET 8EL  d
oK) = ot gy - (3w (25 + 9]
J k J k k' i
4EI 4E1 6EI, d,
S koo [ w2 9]
k Ly J “k Kk
EI 3EIL, 4FI, e, d,
no. o ) N R R |
KJ§ Y K a [1+ gk g (4 + 9]
i -5 715
4E1 4EI, 6EI, d
n _ j = _ ] 1
Kj(i =T K [ NI, (4« ap]
j
o | 2EL 4EI, _, GBI 4
CK{; o CKY = L3 " T (T+d3)]
j
WL, BT e d
CKE = T (gt & (2 * dj)]
i i
EQUIVALENTS:
6L, d BEL 4y
= 7 - — = .+ d)y+ . h, + Q. e.
L v S LI QP + Vuey i) Ny L (dy +dp) + 5 (Qyhy + Q)
2d, 2d, 5 T,
R S A .k
Qkx Kk smakCObak Qky Kk sin ak‘ k‘k AkE
2d 2d, T,
Q = —= ging, cosa. Q. = 1 sinza. A, = ~—1E
x A i i v A i i A,

j j




Table 5-4

Constants for Trapezoidal Panels,
Constant Cross-Section, without Ties

‘TYPICAL PORTION;

FIXED END MOMENTS:

(. [49]
® = ek SM(H)
FMg = ICIT R

I.ez

L
wv*=-1 4 d (I (In
FM.. = -3 LA (dj_l+d'i) SMpy " + FMy
" €4 {113
My sz“Lj a) My
e,
o dl
T
CONSTANTS:
2ET d,
ek} - 2Phe CKY = - RS S -
Ky T, j L, (a A
4EI 2EI d,
1) k x k
S — Kf = __k
1k o & T T ’“‘Lcl—(dj+ )
EI 2EL. (d2+d.d, +di2)
@ - il KY. = il ‘-J(d ;g)
i3 dy it % ALY
@ 4B ,  2EL  d,
Ksg  ® L_jL Ky = L @ 3 8]
o 2EL . 2EI,  d,
CKyy * T et PR GREAC A
i J 3
EL, (d.2+dd, - 2d2%)
CK = —3 N CRET W
N e it
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Table 5-5 Con§tants for Rectan.gular Pane%s,
Variable Cross-Section, with Ties
TYPICAL PORTION : FIXED END MOMENTS :
Ol T T T9E® o
— - i8) (I)
vl = vl
i b
By
2P
i g
s,
h N F = K
i FM g X, v, h,
2p
L —
A
rvx = FmiD
i hb
h,
; S..
M., = =3-V.,h
, N,
R i g 4
1
d d
CONSTANTS:
M i
= * = K . |C C .+ 1
CKiy = CrSyg CKE ki [ G~ W O ]
%D S
Kjk N Kjk ik Kk [1 N Nk (Cjk+ 1)]
I) * =
kD - x. 0-c, K* S
3 ji { iy 3 ii
1y . ¥ = 1 - 2 (., + 1
K K K& = Ky [ N (Cy; )]
M i
= K* = c,. - C,,+ 1)
CKij Cij i] ¢ ij ij [ 1j Nj ( ij ]
EQUIVALENTS:
1 Ca 1
= 1 N, = 8§, + 8., + 5 Q._h,
N o= St S T3 Qe P % T Sy T T Yy
3, = L= K. (1+C,, S, = K, (1+C..)
Sk Kjk (e Cjk) SJJ i3 ( JJ) k i i ¢ jt
= S.. = K, (1+C.0)
Skj Kkj 1+ ij) ij i ( ij
h T n
k cos? = K v, = &P
Q. = <—— CO8 = N
e T X % M AE koox
21 os? 0 TP
= _1 &~ X = v, =
ij Aj cos Qj i KJ% i i
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Table 5-6

Constants for Rectangular Panels,

Variable Cross-Section, without Ties

TYPICAL PORTION:

o Eesnninns SR

© L
-

®

®ﬁm@ 2Py —

e

FIXED END MOMENTY:

g (I) a g (I)
.T"M,,l FMJJ

il

M¥ = K
FMx T * B Vi

v = v D
3

FMX = b V.oh,
ji SotS.. i

I O i
A
CONSTANTS:

S .C,, -8,
ek - ¢ Kk, . cK ¥ = K., (KK ik
kj kj ki . kj kj E'jk + bkj

S .- 5. C.
n . ki~ S
kD - x K, K, (X L
jk ik jk ik Sk + bkj
Ty ) ¥ ooQ
g -k, (1-c, KX = S,
1 1 (.\ i 4 4
K o= K., K* = K. (———%& )
ji ji ji Sj'i K By
o . 8.Cy: - S,
O L ook CKX = K., (& _dl
€ 13 ClJ 1] i Dji + Si'
EQUIVALENTS:
, L (1+C, S, = K, (1+C., S, = K. (1+C..)
S % Ky (17 Cyl) 33 i | i it i { 3
5 = + 5.+ K. (L+C.,
Sy = Kig (1 G "1 i ( i)
n n
vV, = £ P V.= P
k J j
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Table 5-7

Constants for Rectangular Panels,
Constant Cross-Section, with Ties

TYPICAL PORTION;

FIXED END MOMENTS:

Full) = pu{®
i

3
COET,
T * =
Mg N, Vi

rv* = pmid
i il

6EI,
MY = L v
ji Nj

CONSTANTS:
cx® - 2EL CK.* = Py (Il_k - ﬁ)
kj i kj hzk 2 Ny
4E1 E
L@ 4EI, —_ ~‘2—k o 9 Ik)
ik e ik h" k Ny
kD = K* = By
i d 3 d
o 4TI, . 4RI, 9ET,
Ki' ° H i Tz My
i i ) i
! i
2E1, 4FI, h, 9FI
CKQ) S CK* = —1 (-—J- - el )
ij h. ij h2 2 N,
i j J
EQUIVALENTS:
_ k 1 = 1 4 1
Ny B "2 Tk Ny > U
h h,
.k = L
Qe = 5% 08 ¢ ij Aj cos“ea
n n
v, =L P v, =P
k & J ]
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Constants for Rectangular Panels,
Table 5-8 ‘ Constant Cross-Section, without Ties

TYPICAL PORTION: i FIXED END MOMENTS:

@ | @ Py

i
h
]

* 1
| n, FMy = 5 Viby
O O =
“ T Fvt = FmlD
t i3 AN
h,
1
1
FM* = L vh
® @ iz Vi
! —
e
CONSTANTS:
2E EI
ex® . 2 CK* = . _k
kj -hk kj hk
; EI
Lo 4mTy e
ik hy kT Ohy
M I, _— 3EI,.
Kyo o= i 5
4ET1. . EI,
g® - K* = i
i h, i h.
i i
2EL El
ex® - 1 CK} = - L
ij h, ) ij h,
] ]
EQUIVALENTS:




6. NUMERICAL PROCEDURE

The application of the ¢arry-over joint moment procedure to
the analysis of one-bay multi-story frames is illustrated by two
numerical examples, All values are given in feet, kips and kip-feet.
Example 1, A four story, one-bay, symmetrical frame with inclined

columns and loaded as shown is analyzed (Fig. 6-1).

45!

157

®

157 .

1.51

15°%

®
1. 51

© ' ©
| 14 { 14'
» T
Fig. 6-1
. Four Story Symmetrical Frame
with Bottom Fixed

Y N—

——

15t

—4

e
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The given system of loads is resolved into a symmetrical and antisym-

metrical system (Fig. 6-2a, b)

.3 k/ft. -k
—
lOk
—— e
!
k
10
.3 k/ft./ 1 k
'IENEEERREERY <10
Fig, 6-2a Fig. 6-2b
Symmetrical System Antisymmetrical System

(I) Symmetrical System

(a) Carry-over constants are calculated bymeans of formulas shown
in Table 5-4, Their numerical values are recorded in Table

6-1.

(b) Carry-over procedure is performed in Table 6-2by means of
carry-over factors. Each final moment is equal fo the sum of

all values in the respective column.



-

Carry-Over Constants

Table 6-1 Symmetrical System Example 1
memBer | kT ex® p{! ck® cptl 0 Fm{D m
44 _167EI 386 ~083EI 736
. 432E1 +3.6
43 .265EI 614 J132EI. | 307 - 307
34 . 265EI 404 . 132EI .202 - .202
33 . 125EI .655EI . 192 . 062EI 6.4 + 6.4
32 . 265EI . 404 . 132EI . 202 - 202
23 . 2651 290 132E1 145 <145
22 , 250E1 .911EI .274 . 125E1 -10,0 +10,0
21 . 396EI 436 . 108EI 218 - 218
12 . 396EI . 396 . 198EI . 108 - . 108
11 .208EI | 1.000EI . 208 . 104E1 -14.4 +14.4
10 . 396EI . 396 . 198EI . 198 - .198
Carry-Over Procedure
Table 6-2 Symmetrical System Example 1
JOINT 2 3 4
r M T198 | T.218 T 145 | TTz02 T.208 | <307
mD +14. 4 +10.0 +6.4 +3.6
S~ - 1.29 / T~ 129
- 2.85
S12s TN L es
-
v o2 TN+ a2
+ .25
T el Y -
- .10
v oa I 1
+ .02
L +13.00 + 6.49 +4, 66 +2. 67
, Distribution Table
Table 6-3 Symmetrical System . Example 1
JOINT 0 1 2 3 4
M . 000 +13. 00 6. 49 74,66 72,67
ENDS 01 10 | 11 12 | 21 22 23 | 32 a3 34 | 43 24
D 000 | .396 | .208 | .396 | .436 | .274 | .200 | .404 | .102 | .406 | .614 | .386
CD —E(‘)—- +.-.]E— . 000 +.._EB’ *".-21_8‘ . 000 ;Eg_ +.—2-0—2—- . 000 +..-E],2— ”‘3-07 . 000
(D) (IM) +5.15 |+2.70 |+5.15 |+2.83 [+1.78 |+1.88 |+1.88 |+.89 |+1.89 [+1.64 |+.03
(CD) (IM) |+2.57 +1.41 |+2,57 + .94 [+ .94 4 82 [+ .04
FM -14.4 -10,0 -6.4 -3.6
M +2.57 145,15 |-11.70|+6.56 [+5.40 |-8.22 {+2.82 |+2.82 |-5.51 [+2.71 |+2.58 |-2.57

34



(c) Numerical control is performed by means of equation (2-8).

JM4

JM3

JM2

J'Ml

1]

.202 (4. 66)

[

. 307 (2.67)

i

. 202 (4. 66)

.218 (6. 49)

+ 3.6 = + 2,66

+ 6.4 - .145 (6.49)

+ 10 - .198 (13.00)

i

i

+ 14,4 = + 13.00

(d) Final moments are obtained from equations (2-9).

I)
““é4

= (D
Mys3

@8
Mgy

M
Mg

(1)
Mgy

I)
]Mzg

(1)
Mgy

(1)
Myt

()
M2

¢8)
My

(1)
Mo

6]
Moy

=

i

1

it

it

i

H

it

. 386 (2. 67)
614 (2.67) +
. 406 (4.66) +
.192 (4.66) -
. 404 (4.66) +
.290 (6. 49) +
.274 (6. 49) -
;436(6.49) +

.396 (13.00)+

= ,208 (13.00)-

)

34

. 396 (13.00)

. 198 (13. 00)

3, 60
. 202 (4.66)
. 307 (2.67)
6. 40

. 145 (6. 49)
.202 (4.66)

10. 00

[

"

1]

]

. 198 (13.00)=

.218 (6. 49)

14.40

i}

i

[

i

- 2,57

- 5.51

+ 2.82

+ 2,82

- 8n 22

+ 5.40

+ 6.06

- 11.70

+ 5,15

+ 2,57

+ 4.64

+ 6.49

(e) Alternate calculation of final moments may be performed in

tabular form as shown in Table 6-3 .
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Carry-Over Constants,

Table 6-4 \ . Example 1
b Antisymmeirical System: P
MEMBER K* £K * D* CK* CD* r (I FM * m D
44-3 | .s587EI 911 - 6.75
. 644EI - 9.32
43 . 057EI . 089 -.0T6EI | -.118 +. 118 +16, 07
3-44 +, 078EI +. 141
-, 039
34 _OT6ET .136 -, 057EI | -.102 » +186. 07
33-2 | .424EI . 559E1 .758 -10; 84 - 51,06
32 . 059ET . 106 -, 073EI | -.131 +.131 +45.83 .
2-33 +,045ET | +. 045
+. 015
23 . 073EI . 074 -.059EI | -,060 +45,83
. 990EI - . 99,37
22-1 | .827EI .835 -18. 05
21 . 090EI . 091 - 108EI | -.109 +.109 +71. 59
1-22 +.073EI +, 083
+, 019
12 . 108E1 . 123 -, 080EI -.102 +71. 59
11-0 . 678EI .878E1 L1722 ~-16.67 -150. 11
10 . 092ET . 105 - 107EI | -.101 +95. 19
Carry-Over Procedure
&
Table 6-5 Antisymmetrical System Example 1
JOINT 1 2 3 4
0 + 019 +.108 +. 015 +, 131 -. 039 ¥ 118
o -150.11 -99, 37 -51, 06 -9. 32
™ 985 TN 4199
- 6.69
T -
1187 - .88
\ - 1,63
T
- .23 + ,10
- .33 /
_ .08 - e + .01 )
- .01
-162.04 -109.47 53,55 -7.23
. Distribution Table, ‘
Table 6-6 f : AR Example 1
Antisymmetrical System
JOINTS 0 1 2 3 4
IM . 000 -162. 04 -109.47 -53.55 -7.23
ENDS 01 10 11 12 21 22 23 32 33 34 4‘3 44
D 000 | .105 | .772 | .123°| .001 | .835 | .074 | .106 | .758 | .136 | .089 | .911
cD 500 | =101 | +.083 |-, 107 |-.I00 | +.045 | —. 080 |- 131 |+.141 |-.10% |--1i8-| . 000
(D) (IM) -17.01 {-125.09[-19.93 |-9.96 {-91.41| -8.10 |-5.68 |-40.59 |-7.28 |-.63 | -6.59
(CD) (JM) +16, 37 +11,93 |+16,531-13.454{ +7.02 |+6.57 -4,93 + .85 |-5,46 -7.5b6
FM +95,19 {+95,19 |~ 16.67 +71,59|+71.59 | -18, 05 {+45.83 |+45.83 {-10.84 | +16,07|+16,07 | -6.75
M +111. 561 +78.181-141, 76/ +63, 59 |+78,15 }-122, 91} +44, 75|+46.72 | -56.36 |+ 9.64 +20.90) -20,89
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(II) Antisymmetrical System

(a)

(b)

(c)

Carry-over constants are calculated by means of formulas as-
sembled in Table 5-4. Their numerical equivalents are recorded
in Table 6-4.

Carry-over procedure is performed in Table 6-5 by means of
carry-over factors, KEach final moment is equal to the sum of
all valugs in the respective column. » |

Numerical control is performed by means of equation (3-16).

.J'M4 = - 9,32 - .039 (-53.55) = - 7.23

.J'M3 = +,118 (-7,23) - 51,06 + ,015 (-109,47) = - 53.55
JM2 = +,131(-53.55) - 99,37 +.019 (-162,04) = - 109, 46
JM1 = + ,109 (-109.47) - 150,11 = - 162,04

Final moments are obtained from equations (3-17).

MU = 911 (-7.23)+ . 141 (-53.55) - 6.75 = - 20.89
Mg) = ,087 (-7.23) - . 102 (53, 55) + 16.07= + 20.90
M{D) = 136 (-53.55) - . 118 (-7.23) + 16.07= + 9.64
M{D = . 758.(-53.55) +.045 (-109.47) - 10.84 = - 56.36
M) = 106 (-53.55) - . 060 (-109.47) + 45.83 = + 46,72
Mg) = .074 (-109.47) - . 131 (-53.55) + 45,83 = + 44,75
M{D) = .835 (-109.47) + . 083 (-162.04) - 18.05 = - 122,91
M{D) = 001 (-109.47) - . 102 (-162.04) + 71.59 =+ 78.15



()

(L) = 123 (-162.04) - .109 (-109.47) + 71.59 = + 63.59
M{D = 772 (-162.04) - 16,67 = - 141.76
M7 = 105 (-162.04) . + 95.19 = + 78.18
M{T = - 101 (-162.04) + 95.19 = +111.56

(e} Alternate calculations of final moments may be performed in

tabular form as shown in Table 6-6 ..

(I11) Initial System

4

The final moments due to the initial system are obtained by

superposition of final moments (I} and (II).

M44l= - 2,57 - 20,89 = - 23,46 M4/4 =+ 2.57 - 20,89 = - 18. 32
M43 =+ 2,58 + 20,90 =+ 23,48 M4’3’= - 2,58 +20.90 =+ 18, 32
M34=+2,71+ 9.64 = + 12, 35 M3’4l=-2,71+ 9,64 =+ 6.93
1\/[33'== -5.51~- 56,32 =~-61,83 M3’3 =+ 5,51 - 56.32 =- 50.81
M32 =+ 2,82 +:l6.71 =+ 49,53 M3’2’= - 2.82 +46.71 = + 43,89
1\/[23 =+ 2,82 + 44,75 =+ 47,57 M2’3l= - 2.82 +44,75 =+ 41,93
M22’ = - 8,22 -122,91= - 131,13 Mz'2 =+ 8,22 -122,91= - 114,69
le =+ 5,40 + 78,15 = + 83. 55 1\/[2’1’?—’= - 5,40+ 78.15 =+ 72,75
1\/[12 =+ 6,56 +63.59 =+ 70,15 M1’2'= -~ 6.56 +63.59 =+ 57,03
Mll’g - 11,70 - 141.76 = - 153.46 Ml’1 =+ 11,70 - 141.76 = - 130. 06
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M, =+ 5.15 + 78.18 + 83.33 M=~ 5.15 + 78.18 + 73,03
My, =+ 2.57 +111.56 +114.13 Mgy= - 2.57 +111.56 +108.99

Example 2, A four story, one-bay, symmetrical frame with vertical
columns and flexible ties with horizontal loads applied at joints is
analyzed (Fig. 6-3). The loaded frame forms an antisymmetrical

system and no resolution is necessary.
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Table 6-17

Carry-Over Constants Example 2
MEMBER K* CK* D* CK* CD* S0 FM* m
44 12, 12EI 722 :
16, 8EI -28.28 -
43 4.68EI 278 .616EI 037 -.037 28,28
34 4,68EI 218 .616EI 029 -. 029 28, 28
33 12, 12E1 | 21.48E 564 -113.12
32 4, 68EI ,218 LBI6EI | .029 -, 029 84,84 !
23 4, 68EI . 174 ,616EI | .023 -, 023 84.84
22 16,04E1 | 26,97E | .594 -224.20
21 6.25E1 .232 .875EI | .032 -.032 | 139.36
12 6.25E1 .219 .875B1 | .031 -.031 | 139,36
11 16, 04EI | 28.54E 562 -334. 46
10 6.25E1 219 . 875E1 . 031 -.031 | 195.10
Table 6-8 Carry-Over Procedure Example 2
JOINT 1 2 3 4
(D -, 031 =032 - 023 . 029 - 029 . 037
mD -334. 46 -224.20 -113.12 -28.28
7T TN 4 516
~_ + 1,05 ;
+ 10,14 7 ™ 413,10 .
+ 3,10
- a2 T T~ . /
\ - .30
‘ + 01 7 T~ 4 Lol
N + L 01
2 -327,71 -210. 94 -107.32 -25. 17
Table 6-9 Distribution Table Example 3
JOINTS 0 1 2 3 4
M . 000 -327.1 -210, 93 -107.34 225,17
ENDS 01 10 11 12 21 22 | 23 32 33 34 43 a4
D 000 | .219 |.s62 |.219 | .232 | .504 | .174 | .218 | .564 | .218 | .278 | .722
cD 000 |+.031 [+ 000 |+ 031 |+ 032 | .000 |+.023 |+ 029 | .000 |+.029 |+ 037 | .000
(D) (IM) -71.77}-184,17-71.77|-48. 94|-125.30 - 36. 70| - 23. 40| -60. 53| -23. 40| -7.00 |-18. 17
(CD) (JM) -10.16 - 6.75(|-10, 16 - 3.11]- 4.85 - .93 -3.11
FM 195, 101195, 10 " 14139, 3614139, 36 +84.84/+84. 84 +28.28(+28. 28
M +184.94]/+123.33]-184.17 +60, 84{+80, 26 |- 125.30| +45. 03[ +56. 59| -60, 53] +3. 95| +18.17| -18, 17
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The numerical procedure is the same as in the preceding example.

(a)

Carry-over constants (Table 5-7)): Table 6-7.

(b) Carry-over procedure: Table 6-8.
(c) Numerical control (Equétions 3-16):
JM, = - 28.28 - .029(-107.32) = - 25.17
JM, = - .037(-25.17)- 113,12 - .023 (-210.94) =
JM, = - .029(-107.32) - 224,20 -.031 (-327.71) =
JM, = - .032 (,’210‘ 94) - 334,46 = - 327.71
(d) Final moments (Equations 3-17)
M, = My, =.722(-25.17)
My, = My =.278 (-25.17) + 28.28 + .029 (-107. 32)
Mg, = Mgy =.218 (-107.32)+ .037 (-25.17) + 28.28
Mgy = My = . 564 (-107, 32)
Mg, = Mgy =.218 (-107.32) + .023 (-210.94) + 84,84
My, = My =.174 (-210,94) + .029 (-107.32) + 84.84
Mgy = My =.594 (-210.94)
M,, = My =.282 (-210.94) + .031 (-327.71) + 139.36
My, = Mgy =.219 (-327.71) + .032 (-210. 94) + 139. 36
M, = My =.562 (-327.71)
M, = Mg =.219 (-327.71) + 195. 10

]
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107, 34

210, 93

- 18,17

+ 18. 17

- 60,53

+ 56, 59

+ 45,03

- 125.30

+ 80. 26

+ 60. 84

- 184,17

+ 123,33
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Mgyq = Mo'l' = ,031(-327.71) + 195,10 = + 184.94

(e) Alternate calculation of final moments may be performed in

tabular form as shown in Table 6-9.
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7. PHYSICAL INTERPRETATION

The numerical procedure applied in the two preceding examples

may be interpreted in terms of the physical action of the frame as

follows:

(1)

(2)

(3)

(4)

(5)

All joints are fixed against rotation but free to translate.

Fixed end moments due to loads create at each joint an un-
balance EFMj which is counteracted by a joint starting moment
of equal value and opposite sense mj.

The starting joint moment at j cause simultaneously new un-

balances at the adjacent joir!.ts'(.--rjimj and —rjkmj) which must

“be counterbalanced by new joint moments at those joints (rjimj

and rjkmj).

Because of the nature of the carry-over factors, the carry-over
joint moments (rjimj and rjkmj) are at the same time new
starting moments,

The step (3) is repeated in a number of cycles till the continuity

of the elastic curve is established.
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8. ALGEBRAIC CARRY-OVER PROCEDURE

When the convergency of the numerical carry-over procedure
is too slow orvwhen various load conditions must be considered, the
numerical labor‘can be reduced by using the rhethod of moment coef-
ficients in algebraic form. The theory of algebraic carry-over proce-

dure is discussed elsewhere (37).
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