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PREFACE

The material presented in this thesié is a continuation of the Carry-
Over Joint Moment Method to cover Vierendeel trusses with inclined menbers.
The method was introduced originally by Professor Jan J. Tuma.. Others have
applied the method to many types of structures.

T wish to express my indebetedness and gratitude to Professor Tuma, not
only for his invaluable aid and guidance in preparing this thesis, but also
for his kind guidance as my major advisor.

T a;so wish to thank the staff of the School of Civil Engineering for
the valuable instruction given me.

I furthermore wish to express gratitude to Mrs. Virginia Schenandoah
for her careful typing of the manuscripf, and to Eldon J. Hardy fdr his

kind help in preparing the sketches.
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NOMENCLATURE

hyn Height of vertical member jn
Lj Length of chord i-j
dj Length of panel jimn
& Amount of rise in chord n-p
w . Inclination of chord 1-J from vertical
J
aj : Inclination of chord j-k from horizontal
QJ : Slope of members at J
Aj Relative displacement between points J and k
Aj vRelative displacement between points J and n
“Jn
Ac
‘l!j i
L+
: J
Y By
 Lgm
Vij End shear of member i-3 at i
Vj Shear in Panel just left of member j-n
Fvij Fixed end shear of member i-j at i
Kij Stiffness factor of member i-j at i
¥*
Kij Modified stiffness factor of member i-j at i
CKij = cinij Carry-over stiffness factor of member i-j at i
.
QGKiJ Modified carry-over stiffness factor of member i-j at i
cij Carry-over factor of member i-J at i
Dis Modified distribution factor, —=%—
ij ZKy
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Csz;j Modified carry-over distribution factor

Tyj Joint moment carry-over factor from i to J
Mij End moment of member i-j at 1
FMy 3 Fixed end moment of member i-j at i
FMY ; Modified fixed end moment of member i-j at i
m Starting moment at Jjoint J
JM 5 JQ;ntbmoment at joint j
SMQJ Static load moment about 0J
Nij Normal force on member i-j atli
SIGN CONVENTION
Forces.............. .. positive T —— negative l —

Moments................... positve <::::j negative
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CHAPTER I

INTRCODUCTION

<

The Vierendeel truss was introduced to the engineering world by
Arthur Vierendeel, a University of Louvain professor in Louvain, Belgium.
The engineers at that time thought such a truss was of no value; howsver,
Professor Vierendeel proved the usefulness of the truss to the engineering
world. The first Vierendeel trusses were bridge trusses built in Belgium
and her territories. As soon as the usefulness of the truss became evi-
dent, the popularity of the truss began to spread among the engineers
throughouﬁ thewworld. The Vierendeel truss was first introduced in the
United States about 1930 in building foundations.

The first Vierendeel truss was an gxperimental bridge truss built at
Tervueren, Belgium in 1896 and 1897. The bridge was tested to complete
failure to confirm Professor Vierendeel's stress analysis theory. The
method of analysis is known as Vierendeel's rigid-joint principle (7)1.

After thirty years of usage Professor Vierendeel changed his method
of calculation because it was too laborious and involved (7). There has
been numerous methods of analyses derived singe Professor Vierendeel's

first method, and some are mentioned in the following paragraphs.

lNote: Numbers in parantheses, refer to numbered references in
Selected Bibliography.
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The method of successive eliminations of unknowns in slope deflection
procedure was extended to Vierendeel trusses by Wilbur (8), Maugh (1),
éﬁd others;

A mathematical theory of design was discussed by Batemen (10}, Sakei
(11), Muls (12), and others.

The method of using the points of contraflexure as a means of stress

N

5,

analysis was discussed by Frocht and Leven (13), Bzles {14}, deMeding {15),
Decarpentrie (16), and others. Photoelasticity was one method used %o

find the point of contraflexure.

ntro-

o

The method of moment distribution for solving rigid frames was
duced by Cross (17). The modified form of moment distribution was applied
to Vierendeel trusses by Wix and Dornau (19), Lightfoot (2), Krausche (34},
Naylor (4), Mijling (20}, Matheson {5), Orinter and Tsao {21), and cthers.

The extension of the carry-over moment procedure (22, 23, 24, 25, 26,
27, 28, 29) to the analysis of Vierendeel trusses with inclined chord
members is introduced in this paper. Tﬁe study is restricted to ome =zpan,
planar truss and to the customary assumptions of rigid frame analysis.

The assumptions are: deformations of frame members due to axial and
shear forces are small and neglected, all displacements and forces acting
to the right or upward are positive, all clockwise gngular rotations and
moments are positive and all joints are fixed against rotation but fres
to translate.

The paper is divided inte three parts. The first part defines the
problem. The second part with the derivation of fundsmentzal fTunctions. A4
numerical problem demonstrated the procedure in the third part. Finally,

the results are discussed, and a conclusion is drawn.



CHAPTER II
DEFINITION OF PROBLEM

The problem is defined as a Vierendeel truss with inclined chords
acted upon by a general system of loads (Figure 2-1). The truss is
analyzed as a rigid frame by panels ip which each member is considered
as a primary structural unit as has been shown by Wix and Dornsu (20),
Lightfoot (2), Matheson (5), Naylor (4), Tsac (6), Grinter and Tsac (21),

and others.

Pm Pn Pp
Pa { Ps
/n

d; d; dy dy dg.

Figure 2-1. Vierendeel Truss with Inclined Members--General
System of Loads. '
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CHAPTER III
INCLINED MEMBERS - TRAPEZOIDAL PANELS

The carry-over joint moment equations are derived for the general
case. A Five panel Vierendeel truss with unsymmetrical loading is used

in the derivation of the carry-over joint moment equation as shown in

Figure 3-1.

dl d] » di dy dB

.

Figure 3-1. Vierendeel Truss with Inclined Members-~Unsymmetrical
Loading,



In the case of moment distributicn there is a distributipn and
carry-over procedure for every independent displacement pluawa dis-
tribution and carry-over procedure for the losds on the truss. There
is also the problem of analyzing properly the sloped members fpr
moment distribution, and various methods are in existance to make
structures aptable to moment distribution.

In the carry-over joint moment analysis there is only one carry-
over procedure and the effect of the sloped members on other members in
the truss is included in this analysis; thereby, eliminating any ap-
proximations to compensate for the deflections caused by sloped members
in the truss. The elimination of the displacement terms fromﬁthe slope
deflection equations simplifies the analysis and reduces the analysis
time.

The elimination of the displacement terms from the slope deflection
equations is accomplished by means of the geometry of the structure and
of the equilibrium equations. . The displacement equations are derived
in terms of Joint rotations and are subsequentiy substituted into Joint
moment equation which is the summation of the moments at any Jjoint on
the truss. This new equation is termed the joint moment equation which
defines the starting moments and the carry-over constants. Subkstitution
of the displacement equations into the slope deflections equations
determines the new modified slope deflection equations which defines
the modified distribution factors and the modified carry-over distri-
bution factors.

After the derivation is complete there are physical interpretations

of each new term in the Joint moment equations.



In order to facilitate the derivetion of the joint moment equation,

the slope deflection equations

nomenclature for panels 1ijkmnp

are:

The S's terms
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are written using moment distribution

The equations



The FM's terms are defined as:

FMkj = fixed end moment due to loads at k in member kj
FMjk = fixedbend moment due to loads at J in member kj
FMji = fixed end moment due to loads at j in member Ji
FMij = fixed end moment due to loads at i in member Ji
FMpn = fixed end moment due to loads at p in member pn
Fan f fixed éq@ moment Que to loads at n in member pn
M © fixed end moment due to loads at n in member Tm

Myn = fixed end moment due to loads at m in member mm.

The third term in the cross-member end moment equation contains
deflections from other cross-members. This makes the solubility of
the cross-member end moment equation very difficult owing to the lack
of knowledge which cross-member deflection influences the cross-
member jn. The influence of the deflection in cross-member jn on the
deflections of crossfmembers im and 1n is shown in Figure 3-2. From
Figure 3-2 it is apparent that the amount of deflection of any cross-
member caused by the deflection of any one of the other cross-members
- is very difficult, if not impossible, to determine.

In Figure 3-2 the Joints are assumed fixed against rotation, and
the‘deflections are greatly magnified to show the effects of the dis-
placements. The Vierendeel Truss is shown as a tower rather.than a
simple span truss because the translaﬁion of a tower ghows more clearly
the deflections ceused by the cross-members. ’

There are many methods in existanc¢ to combét the redundant de-

flections. However, this thesis used the method that gives the same
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DEFLECTION OF VIERENDEEL TRUSS
q, @® WITH JOINTS FIXED AGAINST ROTATION



accuracy as the moment distribution methed., In using this method
the cross-members are held rigid and not allowed to deflect, but the
sloped-members are allowed to defleét due to lcad and to absorb the
rotation caused by the displacement of the cross-member.

To help visualize what is occurring in the truss, three diagrams
are used--Figures 3-3, 3-4, and 3-5.

While holding the cross-members rigid and applying a load to
panel jknp only, the truss is deflected as shown in Figure 3-3. Re-
cause cross-member 55 is held rigid, there are no deflecﬁions in any
members in the other panels of the truss; only an angular rotation of
¢jn of the panels abpve cross-member jn. Because the two side members
EE and EE are sloped, the cross—memberljg is rotated through an angle
of wdn due the nature of the trapezoidal panel. The two éloped members
3k and np absorb the angular rotation ¥;, of cross-member 3n in ad-
dition to angular rotation ¢j and ¢p respectively.

Again holding the cross-members rigid and applying a load to

panels ijﬁn and jknp such that the load in panrel jknp is the same as
loaded previously, the truss is deflected as shown in Figure 3-4.
Again, there are no deflectiocns in any member of the top two panels

owing to the deflection of panel jknp. Also, there are no deflections

in any members of panel hilm owing to the deflection of panel ijmn
for reasons previously stated for panel jknp. There are no deflections
in any members in panel jknp owing to deflection of panel 1jmn because
cross-member jn is kept rigid; thereby, preventing any rotation of
joints § and n to cause any carry-over of any defliesctions from any

member in panel 1jmm to any mewmber or members in panel jkop.
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Figure 3-3

DEFLECTION OF TRUSS DUE
TO LOADS ON PANEL jknp
WITH RIGID MEMBER jn.
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Figure 3-—4

DEFLECTION OF TRUSS DUE

- TO LOADS ON PANEL ijmn
& WITH RIGID MEMBER im AND
MEMBER jn FIXED IN PLACE




Figure 3-5

DEFLECTION OF TRUSS DUE TO
LOADS WITH CROSS-MEMBERS jn, ®
im, AND hl HELD RIGID.
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The drawing in Figure 3~5 is the general shape of the truss if
a1l cross-members are rigid and if all panels are loaded. With cross-
member EE anchored in position, the cross-members have the previous
angle of rotation for the preceding cross-member as well ag its own.

To include this method in the analysis it is necessary to change
one of the original assumptions stated in the introduction which is all
Joints are fixed against rotation but free to translate. The new as-
sumption is that all cross-members are completely rigid but free to
translate. Releasing the cross-members from the rigid state causes
the'joints of the truss to rotate and to carry-over the deflections
and rotations from one member to the cther members which is accomplished
in the carry-over procedure.

This action eliminates the third term in the end moment equations
of the cross-members and adds one term to the end moment eguations for

the sloped members. Equations (3-1 and (3-2) now become:

My = Ky 85 + CKyyBy + Kyppsy + Sypby + FMyy

My, = K305 + CKpy8, + FMy, > (3-4)
My, = Kyp85 + CKpj0y + CKyyyyp o+ Syiyy + FMyy

Mij = Kijei + CKjiej + ‘Kijwim + Sijwj + FMij J

Moy = Kop@y + CK 8+ CK sy + S, 0 + FM h

Mpp = Knp®pn + CKpnBp +  Knp¥in + Spplp + FMup

My = Ky30p + CKj 04 + FM, ; (3-5)
Mnm * Kppfn + cKmnem + CEypV¥im * Spm¥n + FMpp

Myn = Kpnfp + CKpp®y + Kn¥in + Sppbn + Fliyy



that
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From the geometry of Figure 3-6 and Figure 3-7, it is evident

VT b (3-6)

Figure 3-6. Deformation of Panel jknp due to
Displacements.
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Figure 3-7. Enlargement of the Deflectilons
of Joints j and n in Panel Jknp.

Enlarging the deflections as shown in Figure 3-7 and using the

sine law, the following relationship is derived:
b = ¢ (3-7)

Using trigdnometry and Figure 3-7 the following relationship is

derived:

£
¥ = wk L_Q_iﬁfﬁl ‘ (3-8)

hjn
Now substituting Equations (3-7)and(3-8) into Equations (3-4)and (3-5),

the following equations are derived:

- + "k
ij = Kkjek + CKjkeJ + [Skj + ijk L—‘thz—l:] ‘l’k + FMkj
: g g '
5 ("o + "k
Mjx = Kjkej + CKkjek + [Sjk + Kjk iﬁ )] P + Fﬂbk
; “Ju
M,jn = anej + CKnjen + FMjn - (3.—9)

- (& + &%)
gi T Kyaly * 0Ky 4 ESJ:'; * Oy “““’5‘;;‘3“] Vs * e

=
"

| - . N {g g .
' Mij = KiJei + CKjiej + [Sif + Kij amgﬁ?;_glj ¢j + FMij
i im »
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Mon = Kpp®p + CKypby [spn + Ckpy, LE__..J::.] Yy + Py

Jn
- [ , (8p * gk)]

Mup = Kppn + KB + [ S0+ Ko - by + PN
Jn

Mpy = Kpj8pn + CKjp8y + FMp, - (3-10)

(8n + 8

Mom = KomPy + X + [Snm + S by ] ¢j T M

L R S S 0. ] W * M
im /

In order to eliminste the displacement terms ¢'s from the slope-
deflection eguations, the end moments and shesrs are summed about 0]
in Figure 3-8. The following equation ig derived from the summation

of moments about 0J.

SMOj o ijfok - VW"I op 4 Mkd B =0 (3“11)

where

St e, FVy -
L J

k

Von - --——£;--——— PV,

Before substituting the end moments into Equation (3-11), the f ok and
fop terms are eliminated by usling geometry and trigonometry in Figure
3-8 to derive the following equation.

- :_ﬁ_}___m
{3-12)
h, L
e . k0 "p
TP T Bk 4 8
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n kp

Figure 3-8. Free Body Left of kp.

' The end moment Equations (3-9) and (3-10) and Equation (3-12) are
substitued into Equation (3-11). After collecting terms and solving

for the diéplacement term ¢k’ the following equation is derived.

K K.
- kJ Jk
Kﬁn,

- éi L(FMkj + FMpn)hgn + (FMjk + Fan)hkp

+ (FVky Ly + FVpn I iy - SMgjlep + gk)] (3-13)
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where
Qy © .(skj + Spn)hjn + (s:jk + Snp)hkp

g, + 8
B

By

\ -1
- [(cxjk + Cth>th + (xjk + Knp)hkp] (3-1%)
Now taking a free body through panel Tjmn and using the previous
reasoning used in solving for ¥y to solve for ¢3, the following equation

is derived.

Ky K,
= i ) i ~
‘i'J - bzgus (him + Cji hjﬂ)'ej - E:n‘l (hjn + ﬁ‘”i_‘: him>ei
J =
. Kmn
nm ¢,
- Ié——- (him + Cnm hjn)en - "é‘-’- (hjn + Cmn him)em
J 3
- é%[(FMji + FMpp )y + (FMiJ + Fan)hgn
J
e [
+ (FVyy Ly + FVpy L)hy, - SM, (g, + gj)] (3-15)
where
Q5 = (855 *+ 8 )y + (84, *’Smn>hgn
# B BL T(ok,, + 0Ky )hyy + (Kyy + Kby | (526)
Rim i Kmn im KlJ Kml’l In {

Now the displacement terms are derived in terms of jolnt rotations
and are substituted into Eguations {3-9) and (3u10)n Subsequently, the

following equations are derived.

+ CKpy 8y + Fiigy {3-17)

=
&

. H# o
Mkj - Kkj ej + CKj.k ej + Cka’ 8



where

Kij = Kkj [1 - (hjn 4 de hkp) TkJ:I
Cng = Kjk [Cjk - (hkp + Cjk hjﬂ) Tkj]

H -
CKnk = Knp (byp + Cnp hyn) Tyy

' FM§J = - Ty [(FMjk + FMpp by + (FMkj + FMpn)th

+ (FVyy Ly + FVpy Loy, - SMgy (8, + gk)]

L s FMkJ

- L[
Thy = ao L Sy ¥ Oy

) - ¥* ¥* 3 H *
Mg = Kjk 03 + CKyy Oy + CKngw 8y + CKpy 0p + FMJy

where

Kok = Ky [1 - (g + Oy i) Ty

CKii_j Ky [ckj - (hyp + Cyy hip) Tjk]

H

CKp;

- Kpn (Byn + Cpn Bp) Tk

LI
FMsx = - Tyx [(FMJk + Fan)hkp + (FMkj + FMpn)hjn

+ (FVigy Ly + PV Lo, - SMog (8 + ) |

+ FMjk

(3-25)

(3-26)

(3-28)

(3-29)



* H*
8; + CK,f 0 + CKy. 8, + FM;

1 [sj?+ Ké# ﬁn-i;ék]

hjn -

*
Jn

1

- 8¥, (& + &3) |

. - +#* ¥*
Msn = Kyn 85 + CFp; 8, + M
where |
* -
* = C *
CKJn = CKjp
3¢
FMjn = FMJn
#* * *
Myr = Ky1 85 + CKyy
where
¥ ' .
Kji = Kji [1 - {bipy + Cji hjn) Tji]
¥*
CKij = K13 [Cij - (hjn + Ciy hym) T3y
*
CKnJ = Koo (hym + Cp hjn) Tji
* '-
CKny = = Kun(byn + Cpp him) Tyy
* -
FMji -
' L
+ (FVJi Ij +FV_ n)hjn
+ FMjq
b -y [S'i + CKy §E~t_§l]
Q3 L ¢ Bim
3 . ¥ * ¥ 3
Myjy = Kyy 64 + CKyy @5 + CKpuow @ + CKyy € + FMy
where
¥ _ ) p i
¥ - + , ’
CKjy = Kyp [ Cyt - (bam * Cpq by T |
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(3§36)
(3-31)
(3-32)

(3-33)
{3-34)

(3-k2)

(3-43)

(3-44)



e .
Ckn{ = - Kpn (hjn + Cop By Ti§

CKR1 = - Kpp (hyy + Cpm Byn) Tig

*
FMi)

Ty [(FMij + FMpp) hyp + (FMJi + FMyp) by
+ (iji Ly + FMpy L,) Byg = SMgy (g, + gj)]
+ FMy,

.7 Lls, én * 8&j

TlJ Qj[slj + Kij him :l

. . 3 G
Mpn = K 6p + OKpp 8 + CK» 0, + CKi_ 64 + FMp,

np “n
where
KEn = Kon [ 1 - (nyy + Con hkp) Tpn]
L .
CKnp = Knp [ Cpp = (hyp + Cpy byp) Tpn]
OKiy = = Kyy (Bgn + Oy by Ty
*
FM, = - Tpn [(ijk *FMp) by 4 (FMyg + FMpp) by
+(FVicy Iy + FVpy L)) by - SMyy (Sp.+gk)]
+ FMpp
- 1 Sy + By
N
1) : J1
- 3 * * 63
Mup = Knp 8n + CKpp Op + CKje@y+ CKpy O + FMy,
where

I - /s s
Kop © Kpp [ 1o By + Cpy hﬁn) Tnﬁ]

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)



where

where

oKy T i [

n " (hjn + Cpn | KP) Tn

7

CKgn”:: - KJk (‘hkp - Cjk l’ljn) T

CKin

"

il

FMpp

‘ Yo -
+ (FVyy Ly + PV L) by, - 8M, (8, + gk)]

+ FM

" Kigy (Byn - Ciy i) Tmp

np
_ 1 Sp + By
T =2Als & ___m]
np Qp[ np Knp hjn

¥ 3k
= Kiy 8p+ CK3n 84 + FMp,

% -
¥n3 = Knj
CKjn = CKyn

* -
FMps = FMp,

R *
Mnm = Kom O + CKmn em

+ CK'jnlej + CKin 9 + FM

Km = Koy [1 - (b, +C

K")‘n = K [Cmn h
ngn’z B (him +

* .
CKipn = - KIJ (hjn +

(hyn

Cji h

nm hgn) Thm

+ Cppn Byp) Tnm]

STap [P+ PN b (B 4 P By

nm

(3-58)
(3-59)

(3-60)

(3-61)

(3-62)

(3-63)

(3-64)
(3-65)
(3-66)

(3-67)

(3-68
(3-69)
(3-70)

(3-71)
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¥ . \ R - ,
FMpm = = Tom [(FMij + FMpyy) bap F (FMji + M) by
+ (iji LJ + Fvnm Ln) hjn - 8Myy (.g;m + gj)]
+ FMp (3-72)
g + g
T, = L [ Spm + CK., _ur_l__.i‘..__tj.:] (3-73)
) Qn ) hipm
3 3 5 3 # ¥
Mpn = Kmn 8, + CKpp On + CKjpe®y + CKyy 8, + FMp, (3-74)
where
* -
I{Tﬂn - Kﬂm [l - (hjn + cmﬂ hlm‘) Tmn] (3’75)
%
CKD.H‘ Knm [Cnm - (hlfﬁ + crm hﬁn) fﬂﬂ] (3“’76}
CK’;m#: Kij (th + Clj nlm) Tmn (3-773
% - -
CRim = - Ky1 (hyp + Css th) Tum (3-78)
* -
M, % - Tpp [ (FMij + Fan) hyp + (FMJi + FMnm) Bym
+ (FVj3 Ly + FVpy Ly) by - Moy {8y + gj)]
+ FMpy (2-79)
= 1 gn + gs! . . =R
Tmn 6; [Smn + Knn hyp ] (3-80)

The task of eliminating the displacement terms is accomplished,
and the end moment equations are now in terms of Jjoint rotations and
fixed end moments. The next step is to devise a2 method to solve the
end moment equations for rotations - 8's. This is accomplished in the
same manner as has been done in previous papers on carry-over joint

moment analysis for other types of structurses.
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The first step 1s the derivatibn of the joint-moment equation.
The purpose of the derivaﬁion is to define the carry-over values and

the starting moments.

Njn

hﬂjn
Mji, =T

M

Vii

®

Figure 3-9. Free Body of Joint j.

The summation of moments about joint J under.static loads is

equal to zZero.
Myg + Mgp + My = 0 (3-81)

Substituting Equafions (3-24), (3-31), and (3-35) into Equation (3-81)

glves the following equation.

P ' % hid ¥
CKyy Ox + CKpy 85 + CKyj 03 + CKyy O

% ¥ T S B
+ ICKyj 6 + TKy 05 + ZFMy = 0 (3-82)
where
TCKnj = CKnj + CKnj + CKnj’
2 % 3 #
‘ ZKJ = KJi + _an + KJJ’&
¥ ¥ e 3
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Equation (3-82) is sufficient to determine the carry-over values and
starting moments, but the value of any joint rotation is minute and is
very awkward to use in the carry-over procedure. Multiplying the joint
rotation value by a large number such as the summation of a new modifiled
stiffness factors for that specific joint deces accomplish this purpose.
The new term is named Jjoint moment whence this type of analysis derived

its name. The joint moment equaticas are:

IMy = By EKY
JMJ = Gj ZKE
= %

JM, = By ZK@
%

IM, = 6, ZK,
- *

Jb&m - Gm ZKHL

Substituting Equations (3-83) into Eguation (3-82) gives the follow-

ing equation

JMj = r 5 JMk + mj 4 r JMi + rp4 JMP

o

X
+rpg M b My (3-84)

13

where

(3-85)

Tky =" oKX

R (3-86)

Ty =T —e (3-87)



-l (3-88)
mj EK%

: 05*.
I‘pj :-21(-)5

m'j :-EFM?JS'

The joint mement Equation {3-84) is similar to the joint moment

equations in other apers on carry-over joint moments for other types

of structures.

The end moment equations are still
thereby creating the necessity fo
in terms of joint moments.

Equations (3-83) into Equations (3-17},

(3-49), (3-56),

equations.

Mkj =

where
Dy =
Cgk ng £
Cgko D* X
Cix gk N

(3-63), (3-67), and {3-72) creating the followirg

* * ¥
D M, + Cfy DY oM,

* ¥* %
+ Cpx Dpx JM, + FMkj

in terms of

3-24), (3-31},

*
+ 0%

r expressing the end moment egua

This is accomplished by substituting

¢ D* 4 IM
P

ok

Joint rotations

"\u

~h2},

i3

F



. Wwhere

%
Djk

"

i

* ¥*

o/ D* ”

14

nJ

i3

¥* %*
Cpd Dpd

where

L=
K
t

*

where

- ¥ ¥ L3 * : %
- Djk JMj o+ ij ij JMk + ana Dnj JMn

+ Oy M+ FMyy

pJ pJ

F

Q
vk
e

Q ™~
g@ A
\Y

- ok % p* * ¥
Mj Dji JM'j + Clj D JM +Cp /D /JM

* K *
+ ij ij IM, + FMji

27

(3-96)

(3-97)

{3-98)

(3-99)

(3-103)

(3-104)
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M. = Dj; M, + cjl i1 JMJ +c¥,

mi” :1” My,

M. + FMY

where

197 oy

1
C_.
e

¥ 3%
Cy1 Pyi -

CK:;“’/
cX op* wz 1
ml “mi

CXs DX, = b 5|

* *  TE
Mp D JMp+C’pD JMp

* * %
+ ij Djp JM‘j + FMpn
where
K*
22

pn 5
EKY

)
%
it

CK*
C%, DX, = —BE
EKy

CK%E,

C kp/ D‘\ s

+C

kn JM

(3-107)

{3-108)



CKﬁ
Clp Dyp = (3-118)
Py
* * % * %
an = an JMn + Cpn Dpn JMP+ an"Djn//JMJ
* % *
+ Cin Dyp M, + Fan (3-119)
where
K*
* o _ .np -
Dpp = - (3-120)
* ¥ % ( )
C¥ D = 3-121)
pn pn ZKE
CK* ~
an"D* #= el (3-122)
In gk
J
CKn
Cx¥ Dx = {3-123)
ko ke g l
= ¥ ~¥ * ¥* 2.120%
Myj DnJ M+ “jn Djn JMj + FMI_IJ (3-124}
where
* K;‘
Dnj s —=d (3-125)
Ky
CK*
* % ogn
Cjn Djn = N (3-126)
EKJ
Y * ¥ X, K .
Mom = Dnm JMn + Cmn Dmn .J'Mm + c,jn’ Dan JMj

* ¥* ¥*
+ Cyp Dy Mg + FM (3-127)
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where
K#
D*r‘;m = _nm (3-128)
ZKn
c
Cx DX = zggn (3-129)
cx,/ D%, - Sl (3-130)
TK* ‘
J
CK*
Cip DIy = ..,.._ZKin (3-131)
5
M F Dnn M, + Chp Dy IMp + C3,#D37aM,
* % * .
+ Cyp Djm IMy + FM_ (3-132)
where
¥
D = EKE‘I% (3-133)
CK}
* ok - _nm
Cnm Dnm EK; (3-134)
cx¥
CF#DY = zx*l*m (3-135)
i
+* ¥ = __.i:m -

Ths completes the derivation for Vierendeel truss with sloped menbers
by carry-over Jjoint moments .
The physical interpretation of each new parameter in the joint moment

and end moment equations is given in the following two paragraphs.
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Th¢ starting moment mJ is the Jjoing moment at j due to loads on
the truss, if the joints 1, k, m, n, and p are fixed against rotations
but free to translate. The carry-over factor Tkj is the joint moment
at J due to My = 1 and no applied loads on panels TjEmmp; if
Joints i, m, n, and p are fixed against rotation but free to trans-
latef The carry-over factor rij is the joint moment at i due to
JM; = 1 and no applied loads on panels EEEEEET if joints k, m, n, and
p are fixed agéinst rotgtion but free to translate. The carry-over
factor Tmj is the joint moment at J due to JM,; = 1 and no applied
loads on panels EEEEEE; if Jjoints i, k, n, and p are fixed agalnst
rotat;on_bﬁﬁ free to translate. The carry-Over factor rnj is the
Joint moment at J due to JMpy = 1 and no applied loads on panels
EEEEHB; if joints, i, k, my, and p are fixed against rotation but
free to trans;ate The carry-over factor T'pj ié the joint moment at

J due to JM, = 1 and no applied loadé on panels ijkmnp; if Joints i,

P
k, m, and n are fixed against rotation but free to translate.

The térms in the new modified end moment equations are defined '
in thils paragraph. The modified distribution D;k is the end moment
of member jk at j due to JMj = 1 with all other 5oint moments equal
to zero'and'with no loads on fhe truss. The modified carry-over
distribution Cyj; Dyj 1s the end moment of member jk at j due to
dMx = 1 with all other jgf%t moments equal to zero and with no loads
on the truss. The modified carry-over distribution Cpy” Dps” is the
end moment bf member jk at j due to JM, = 1 with all other joint

moments equal to zero and with no loads on the truss. The carry-

over distribution Cpy D;j.is the end moment of jk at J§ due to JM, = 1
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with all other Joint moments equal to zero and with no loads on the
.truss. The modified fixed end moment FM;k is the end moment of
member Jk at J due to loads on the truss and all joint moments equal
to zero.

With the completion of the derivation and physical interpretation
of the cérry-ovér Joint moment equations, the next step 1s to give the
analysis procedure.

- The first step is to determine the elastic constants-stiffness
factors, carry-over factors, and sidesway stiffness factors. The
second step is to determine the equivalent values - the derived terms
Q and T. The third step is to solve for modified stiffness factors
and modified carry-over stiffness factors. The fourth step is to
solve for modified distribution factors, modified carry-over distri-
bution factors, and joint momént carry-over factors. The fifth step
is to solve for fixed end wmoments, static load moments, and fixed
end shears. The sixth step is to solve for modified fixed end
moments and starting moments. The seventh step is:tﬁe carry-over
procedure. The eighth step is the numerical check. The ninth and
last step 1s to solve for the end moments of every member in the
structure. The above précedure is 1llustrated in two examples in
the next chapter.

As noted in the two examples in the next chapter, the con-
vergency of the carry-over procedure is very rapid for the carry-over
Jjoint moment methcd as compared to the moment distribution method.
Considerable additiongl time is saved because only one carry-over

procedure is necessary in this analysis as compared to a carry-over
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procedure for each independent translation in the moment distribution
method.

There is no loss of accuracy in the carry-over joint moment
anglysis as compared to the moment distribution analysis because the
defivation of\the carry-over joint moment equafion used the moment
distribution;s slope deflection equations in deriving the carry-over
joint moment equa£ion. The derivation was accomplished solely through
algebraic and trigonometric means with the same assumptions used in the
moment diétribution method. There has been no simplifying assumpticn

used to make this analysis possible.



CHAPTER IV
NUMERICAL PROCEDURE

The numerical procedure of the carry-over Joint moment analysia
for the Vierendeel truss with inclined members is demonstrated in the
two examples in this chapter. All values are given in feet, Xkips,

and kip-feet.
Example No, 1

A five panel Vierendeel truss with inclined top chords (Figuré
4-1) is to be analyzed by the carry-over joint moment method. The
equations ﬁsed in determining the constants used in this e#ample are
referenced back tc the derivation. The equations for the parallel
portion CDJT, of the truss are referenced to Samuel's (29) Thesis.
The results of this example problem can be compared to Example No.
1l in S. L. Lee and F. P. Weisingef, "Veriendeel Bents with Nonpris-
matic Members," Proceedings, ASCE, Vol. 85, No. ST10, December, 1959,
pp- 55-Th.
1) Elastic Constants
a) Stiffness Factors
All stiffness facters are assumed to e LE K,
b) Carry-over Values
A1l carry-over values are assumed to be 0.5.

3k
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Figure 4-1. Single Span Vierendeel Truss with Inclined Chords.

c) Sideway Stiffness Factors
All sideway stiffness factors are assumed to
be 6.0° 07K,
2) Equivalents

a) Q Values
Qy= (Sy;+Som hyp + (5554 San) P jn

+ 5nhf & [<CKij + CKpp) himt (Kyy + ¥pn hjn)]

1m
(3-16)
Qg = 224.00 Qg = 22h.00
Qe = 24k.00 Qy = 2kk.00
Qp = 24k4.00 Qp, = 2kk.00
Qg = 22%.00 QM = 224.00
b) . T Values
- 1 < Epy + Y .
Tjk = % [Sjk + Kyx @;v "5] {3-30}

Jn



3) Modified

a)

*
Kjk

*
an

*
KaB
Kag

Kga

1, . Bn + &3
- — ] i + CK—i*
QJ [.j ‘d him ]
= 5/112 Top = 5/112
= 1/28 Tge = 1/28
= 7/224 Ty = T/224
= 65/24k0 Tyg = 65/2440
= 65/2440 B Ty = 65/2540
= 7/224 Tvr, = 7/224
= 1/28 Tyy = 1/28
= 5/112 Ty = 5/112

Stiffness Constants
Modified Stiffness Factors

1) Panels with inclined members

= I‘jk [1 - Tjk (hk‘p + C:jk hJP}
= Kin

= Ky [ 1 - Ty (him + Cyy hjnj

= 2.2143 Kpg = 2.2143
= 4.0000 Kry = 4.0000
= 4.0000 Kgp = 14.0000
= 2.2143 Kym = 2.2143
= 2.8572 Kpp - = 2.857é
= 4.0000 Kgy = %0000
= 2.393k  ¥gp = 2.393%
= 2.8572 | Ky = 2-8572
= 4.0000 Ky = .0000

36

(3-41)

(3-25)
(3-32)

(3-36)
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Kgg = 2.393%4 Kyp, = 2.393k
Kop = 2.6148 Kpg = 2.6148

2) Panels with Parallel Members

{;Equations from Samuel's Thesis (29).}

82
k¥, = Koo | Kjg = Kag - I
Jn Jn J SJ}.( + Sk\j + Snp + Spfl
* wr
Koy = 4.00 Kpp, = %.00
# #
Kep = 2.50 Kpg = 2.50
3* . *

Ko = 4.00 ‘ Kp = L.00
* p # .
K}y, = 2.50 K, = 2.50

3) Summation of K¥*'s
ZKy, = ZK; = 6.21h3
TKp - SK§ - 9.2506
EKy = Ky = 9.1148
EKy = DK = 9.1148
TKgp = TKy = 9.2506
TKp = TKy = 6.2143
b) Modified Carry-over Stiffness Factors
1) Panels with Inclined Members
F = - X 7 o I3 ~ 2

Cng = CKpj (3-33)



CKyy = Ty, [cIJ - Ty (Egy + Cy, him)] (3-37)
%
CKny’= - Knp (Byp + Cpp Byn) Tyx (3-27)
D
CKpj = - Kpn (kjn + C'pn ékp) T;}k (3-28)
CKng/' - Kom (him + Cpp Fsn Ji (3-38)
CKIBJ = - Kmn (hjn + Cmn him) Tgi (3-39)
CKpg = -57143 CKeg =  -571%43
CKpg = 2.000 CEgy = 2.0000
CKiy = -1.4286 CKy = -1.4286
CKpg? = -1.7857 CKpy? = -1.7857
CK$, = 2.0000 Ckp = 2.0000
CKyg = 57143 CKyw = 57143
* ®
CKgp = -1.4286 CKyp = -1.4286
CKga” = -1.7857 CKyp” = -1.7857
CKha = .57143 CKgp =  -57143
CKgy = 2.0000 CKgy = 2.0000
CKo = .50820 CKgp = 50820
CKgy = -1.4918 CKgy = -1.4918
CKpy” = -1.6066 CKiy” = -1.6066
CKrn/ = -1.1429 Cpy’ = -;.1&29 .
CKyg = -1.4286 OKpy = -1.4286
CKpe = 57143 ' c% T .57143
CKgp = 2.0000 CKyg = 2.0000

CKﬁJ = .50820 ckﬁL = .50820



m%C=Q1Amﬁ cKlp) =
cxgéf = -1.6066 CKR” -
CKyp” = -1.1429 Cyp! =
CKfp = -;.u286 CKip =
CKgﬁ = .50820 CK%E :
CKay’ = -1.3852 CKE” =
ckgﬂ z -1.4918 ‘ °K§M z
CKjg =  -50820 CK;M -
CKjo! = -1.3852 okt -
CKyp = -1.4918 K =

2) Panels with Parallel Members

Equations from Samuel's Thesis (29)

*(3n) * _
Can =_Can = CK,jn
w7 _ ' Skqj, sjk

' Sk +8jx +Spn + Snp

-1.4918
-1.6066
-1.1429
-1.4286

. 50820
-1.3852
-1.4018

.50820
-1.3852
-1.4918

- *,. - <& Tpn
Hap " " 3 Syq + +
Jk * Fkj T “np T Tpn
o (P0) Lot . S5k Sap
n n
J Sax + S¢s + 5, + 8
dJ kJ np Pon
CKgy = 2.0000 QK%L = 2.0000
CKgp =  -50000 CKpo = -50000
CKGp, = -1.5000 CKjy = -1.5000
CKpg = -1.5000 - CKp = -1.5000



o

2.0000

CKjg = 2.0000 CKyp =
CK§L = 50000 CK%J % . 50000
CK§D = -1.5000 cxﬁc = -1.5000
CKje# = -1.5000 Ok = -1.5000
4) Modified Distribution Constants
| a) Modified Distributien Factors
c L
Dy _SL@r (3-97)
Dpp = -35632 Dgg = -35632
Dag = 64368 Dpy = - 64368
Doy = -64368 Dyp = 64368
Do = 35632 Dyy = 39632
DE, = 30887 Dgp = 30887
DRy = -U43240 Diy = 13240
DY, = .25873 Dip = -25673
Dk, = .30867 Dfy = -30887
Dfp = -h432k0 Dip = -k32k0
D¥; = 25873 Dy, = -25873
Dep = 28687 Dpp = -28687
Dgy = 43885 Dy, = 43885
Dop = 27428 Dp = -27428
Dyg = -28687 Dy = -28687
Dig = -43885 Dip = -43885
Dy = -27428 Di; = -27h28



Modified Carry-over Distributlion Factors

b)
*
¢ ZK;
¥*
—— CK*
SR
J
¢t o = i
Jp TIP T Gpw
J
ox 2Dx = CK""jn//
090 e
c* p*¥ = 4,001954
AB AB 9195
c* D¥ = -.,2298
AH AH 99
c* »D* 7. -,28735
> g
C* D¢ - 2184
AG AG
H* T3 _ [
Coy Doy = + 091954
C* D* = - 22 8
GB GB 999
¥* + -
CGK/DGK - -.28735
C*¥ D¥ . +.3218k4
GA GA
C* D¥ - +.054937
BC BC o493
Cx D¥* - -.16127
BJ BJ
* D* - -.17368
BH" BH"
* D¥ ,» -.12355
g T 70
C* D* = -.15hk
BG BG o3
C* D¥ . +.061772
o Dpa t 7T
c* D¥ . +t.21620
BH ~BH
c* D* = +.054937

HJ HJ

(3-93)

(3-111)

(3-118)

(3-122)

(9]
Corafl
o
Gk

* ¥
G2 D

“FE FE
c* p*

FM FM

N” FN
Cx_ D
FN FN
L ”‘G
Civ Prm

Cx D%
NE NE

C /.lDT NF

)
“NF DNF

C* D
ED ED

Cx D
EL EL

o
EM
*

q /
EM° EM

C* D¥
ER EN

O D#

g% Dx
EM EM

c*  p¥
ML ML

D*
"M’

¥t

11

1]

+*
CX3a
ZK]

CK*% .

+.091954

Ly



* o F
CrC DHC

O Dip”

»* ¢
Cn Dp
¥* */

Cn” DB

1]

¥* 3¢
Cra PHa

[ R

* ¥*
Cac DHe

¥* *
Cc Dcs
* %
Ccr Dex =
#* * 4.
Ccg'Dey'=
% E
Ccs Dy =

oY% g
C CJI/D C Joq

5% ¥
Cer Der

i

3 -3
Cop JCD

C?H D?H
C?BzDgB =
C3e?Dyc’ =
Cyc Dic *
C?q””?c”:
Cip Djp *

* ¥ -
Crr DL -

-.16127
-. 17368
+.21620
-.12355
-. 15443
+.061772
+-055755
-.16367
--151973
+.21942
- 16457
.16457

+.054856

+.055755
.16367

.15197
+.21942

1

-.16457

= -, 16457

+.054856

Cﬁb DﬁD % ;
CﬁE Dym =
: 112355
15443

C;El * {

¥ 3
“ur Pur
¥* *
Cuy D
* Gl
Che DDE
*
Com Dpm
3¢ ¥
Cpr’ Ppr
* i
Cor DoL

¥ _ s DE _n
®or"Por

-

13

11}

¥ ¥
Cps Dpg

]

3
Chc Db

it

% %
Cim DM
Cig Dig =
Crp’ Drp’ =
CiD!DED =

LF 3

CIp"DIp

¥% 36
Cic Pic

Ty DIg

¢) Joint Moment Carry-over Factors

¥

=-c.. T
J3

Ji

* / ¥ * e ¥
= y)
= -(Cjn Tjn + Cén rjﬁ + CénlD

Jn

L¥

M)

b2
16127

17368

21620

.061772

16367
151973
21942
L16457
.16457
054856
-055755
16367
15197
21942
16457
16457
.054856

(3-85,111)

(3-87, 99,
103, 107}
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BG

JL

1]

n

it

™

+

P

.09195L

22989

.03k4g
.09195h
.22989
.034k4g
.054937
16127
.08103

15443

ot )

09712

16367

055755
0514856
L16457
09712
16367

kg
Fy

[

NM

v

NE

w

BF

r
ED

DM

1t

i

- 055755

Lo



5)

Loed Constants
a) Fixed End Moments
All Fixed End Moments are zero.

b) Static Load Moments

04\/@

10’

0.6K

Figure 4-2. Free Body Left of BH.

SMop = SMog = -6.000

Py —

30’
| 0.6 K

Figure 4-3. Free Body Left of CJ.

SMOB = SMOH = ~'18.QOO

i

bl
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® ©® O

-
10’

0.4 K

Figure 4.4. Free Body Right of ME.

SMOF = SMON - +4.000

0.4 K

Figure 4-5. Free Body‘Right of ID.

SMop = SMpy = +11?..°OQO
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¢) Panel CDJL Shear

d) Fixed End Shears
All fixed end shears are zero.
6) Modified Fixed End Moment Constants
a) Modified Fixed End Moments

1) Panel with sloped members

FM,jk = FMjK = F’::‘K [(FMS}{ + FNZIQ" hkp + (FMkJ + FMPI:&) b(jlﬂ
+ (FVyg Ly + PV, 1) by - SMyy (8, + ak)]
(3-29)
¥*
FMyp = FMyy (3-2%4)

+ o an . ﬂ
(FV, Ty + PV D) by - SN (g + gJ)]
| (3-40)
FMpp = -1.071k FMig = -1.071k
FMys = O M, = 0
FMpa = - 8571k FMpg = - 85714
FMpg = O FMfp = O
FMpo = ~1.0328 ‘ FMi; = -1.0328
FMéB = - .95902 FMEH = - .95902
FMpp = + 63934 FMpy = + -6393%



FM

M

Jk

Jn

M.,

(1]

FMjk

k7

FMEn = + 68852 FMy = + .68852
Mgy = O Fifyg = O

FMpp = + .57143 | FMyy = + 57143
FME. =+ .T1429 | Mt -+ 71429
Vi M= 0

2) Panels with Parallel Members

{Equations from Samuel's Thesis (29)}

NFMjk+FMkj#FMpn+FMnP+(BVpn+Bij+Vk)Lk ]

- Sjk L
saka-swua-snp -
s [FMi}i-#-FMijM +FM +(BV +BVJ,.+Vni)LJJ
3i |
Sji+$ij+snm+smn
FMy; = O FMjg = O
* 3
FMgop = +1.000 FMyy, = +1.000
FMje = +1.000 FM{; = +1.000
FMpp = O FMip = O
b) Starting Moments
) ¥
my 3 - Z".FM'j _ . (3-90)
my = +1.0714 mg = +1.071k
m = +1.8899 | my = +1.8899
mg = - .04098 '  my z - .04098
my = -1.6393 my, = -1.6393
mgp = -1.2600 my = -1.2600
mp = - 71429 my = - -7T1429



7)

TABLE 4-1

CARRY-OVER PROCEDURE

Ma Ma Me | Mp Mg Mg Mg My My Mo M My,
091954 =|B |.054937 ~|C |.054856—~([D |.055755—~|E |.061772 —|F |.D3449 —|N | 091954 — 054937~ .054856 ~ 0557855~ OSITTZ =N F |=.03448
22989 —~|H |.16127 =4 |.16457 =—|L |.16367 —(M |.15443 —|N .22989 —|M B|—.,2298% cl=—16127 D|=—.16457 E|=—.16367 Fl=—.154432 E|=.22989
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8) Numberical Check
My = Ty My + 05 4Ty JNi +‘@pg‘?ﬁp + Tng My
+ Ty M, ' (3-84)
IJMp = (-.061772){2.2388) + (-.03449)(1.2363)
+ (.15&&3)(202388} + 1.0714

+ 1.2362

(-.091954)(1.2363} + (-.055755)(-.0276) + (.22989)(1.2363)

IMg
+ (.08103){2.2388) + (.16367)(-.0276) + 1.8899

2.2389

it

(-.0549373(2.2388) + (.054856)(-2.0235)+ (.161271(2.2388)

=

+ (.09712)(-.0276) + {.16457){-2.0235) - .0L10

-.0276

2

(-.054856)(-.0276) + (-.054937){-1.7357) + (.16457)(~.0276)
+(.09712)(-2.0235) + (.16127)(-1.7357) - 1.6393

-2.023h

o

(-.055755){-2.0235) + (-.091954)(-.8460) + (.16367){-2.0235)
+ (.08103) (-1.7357) + (.22989)(-.8460) - 1.2600

= ~1.7357



M, = (-.061772) (~1.7357) + (.15443)(-1.7357)

+ (-.03449) (-.B460) - .T143

. - .8k50

9) Final Moments

M. =T. J¥
Jk Jk

* * ke <
7
+ ij ij JMk+ an Dnj

e 3 N %
+CPJ EpJ uMp "@'FM&}{

W

. =D, JM, +C .
Jn 7 Ym0y T tng

=
1

JM  + FM.
1 Jn

s #* #* * *

.. = D.. . +C. ., + 4 S JN
MJl Dgl JMJ ClJ Di;g ;Mi Cn.,J Dng JMn

v

# #
+ C.mj ij IMH - Fy;l

Myp = =1.194 Mgy = -1.194
MAG': +1.19k Mgp = +1.19%4
Mpp = -0.613 Mge = -0.613
Mpg = +1.452 Mpp = +1.452
Mpc = -0.839 Mgy = -0.839
Mo = -1.201 My = -1.201

oy = ~0.018 Mo = -0.018
Mo = +1.219 My = 41.219
Mpo = +0.781 My, = +0.781
My = -1.332 M. o= -1.332
Mpg - +0.551 Mpy =+ 0.551
Mpp = +0.759 Myp, =+ 0.759

017
mn
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Mgy = ~1.126 Myg = -1.126
Mgy = +0.367 My = +0.367
Mpp = +0.817 Mym = +0.817
Mpy = -0.817 Myp = -0.817

Example No. 2

The structure ghown in Figure 4.6 is one truss in a.damu‘ Spacing
of the trusses is such that each resists a hydrostatic load of indi-
cated magnitude. The moments of interis for all members are ;hown
beside each respective member. The eguations used in determining
the constants used in this example are referenced to the corre-
sponding equation in the derivation. The results of this example
can be compared to Example No. 2 in J. J. Tuma and J T. Oden,
"String Polygon Analysis of Frames with Straight Members,”
Proceedings, ASCE, Vol. 87, No. STT, October, 1961, pp. 63-96

ﬁ 1) Elastic Constants
a) Stiffness Faetors_

]

Kio = Koy = 16000 EI
Kp3 = K3p = .1h667 EI
K3y = Kg3 - .13333 EI
Ko = Kgp = -13333 EI



K36 = Kgg = -20000
Kus = K5h = e 40000
K56 = K6r = 12650

Kgr = K76 - .13915
K78 = K87 = 13311

EI

EI

EI

ET

l AN\

6 K/er 110 10!

1o}

Figure 4-6. One Vierendeel Truss (Typical for Dam) .

]
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Carry-over Velues

54

All carry-over values are 0.5 because all

members are prismatic.

Sidesway Stiffness Factors

Spc = T (1 F G

= Sgi = .2kooo
z S3p = -22000
= Sj,3 = 20000
= S7p =+20000
= Sg3 = -30000
= 85), = 60000
= Sg5 = -18975
= S76 = .20873
= 887 = 19967

2) Equivalents

a)

%

"

111

Q Values

(Sji + 8,

EI

EI

EI

EI

EI

EI

EX

EI

EI

Dy + (Eij + g

}

fiika

Jn

gﬂ + 8' 4 T, s

him

180188 BEI

27s153 EI

{3-16)

[-»]
-3
1}
N
-l
[
N
(W]
i3
Hl



Qy = 47.875 EI
b) T Values
1 €p t+ Ex
T r = E.‘x': + K!" “i“_"‘_
k [ k k j ]
kg ld d hjn
Ti T oo [sug + CK, S0t 8 ]
J Q3 L~ LB Y,

3) Modified

a)

.0061270 T

= 21
= .0094527 'I'32
= .01k662 Ty3
= .017388 T65
=z 010250 T76
= 0060242 g7
Stiffness Constants

Modified Stiffness Factors

*
K= Ky [ - T (g * Oy

poa

Kgi = Ky [1,’ Ty1 (Bym +Cyy

= ,084693 EI K53,
- .13333  EI Keg
- .098146 EI K5
- 083291 EI K3
= .20000 EI KE?
- 094232 EI K?é

= .0072k11
= .010803
= .018327
- .013910
- 0089684
- .005097h

N

230 ]

= %0000
= .071510
= 091308
= .20000
= .082099
- 095472

Qg = 47.875 EI

(3-30)

(3-41)
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{3-25)

(3-32)

(3-36)

El

BEI

EI

EX

ET



-13333 EI

Kiz = .0722%2 EI Ko =
Klis = .40000 EI K%g = 080988 EI .
b) Summation of K*'sz
ZK; = .31617 EI X5 = M7151 EI
£K3 = .37752 EI sk% = .37341 BI
TK, = .b722h EI £K7 = .30979 EI
‘ ¢c) Modified Carry~over Stiffness Factors
cxkj £ K?@% [C K3 - T(,j}i (hdﬁ + CK% ﬂk}g)] ((3w26>
Chn;j = Cgﬂu {3-3
CKyy * Ky [Cij - Typ {hgn + Cyj him)] (3-37)
Cknf = - Knp tbxp + Cpp Band Tax {3-27)
CK;J = = Koy (b, +Cpy b)) Toy (3-28)
CKpy/= - Kyy (him + Cpop B gn) Ty (3-38)
Chpg = - Epm (hjn + Copn B! Tjy1 (3-39).
CK5, = .016278 EI CKig = .019260 EI
CKp3 = .O17876 EI CKsy = -.046369 EI
CKzg = -.053013 EI CKsy’= -.057959 EI
CKppiz -.062651 EI CEEj = .20000 EI
CKE‘,}?/: -, 046038 EI C;}(’%? = 019657 BRI
CK5g = -.052618 EI CkZ. = 019338 &I
CK§7 = 066657 EI CKZp = -.052613% EI
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CK%Q

it

CK3),

P <3
Cl3y

13

% -
CK36//"

CK3¢/

1

CK35

06

CK3g

t

CKi3

CKig

4

*
CMS” & <

Cis =

4) Modified Distribution Constants

a) Modified Distrivution Factors

L=
n
=

11}

=
NO%
A
i

.017876
017796

8

.052615
-.060135
~.037092
-.Ok6367

-10006

-017795
-, 0k6366
057959

. 20000

.26788
42170
31042
.22063
52977
24961
15298
.8L703

EI

EI

EI

Z ‘I{e;j»

K%
3

pueefS—

cﬁy§
CKEy
oKty
e,

¥
CKv?a

@

1

i

i

il

CK$6

o

t

CEFy

CREpre

1

CKTBI
S
CK73

31

5
CK5o

HE“Y

LH

)
sk

(a2

1

v}
[}

~. 060130
-+ 037095
- . 0kH367
. 10000
022452
.0159655
-.053012
-0062651
auo§6037
-.052613

- O6EET
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EX
EI
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EI
EI

EI
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EI

EI
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Modified Carvy-over Distribution Fachors

1
—
\O
(6]
—
o

£

561

- e

= -, 16642

056539
047351
<13937

® -.15929

26489
;098251

]

=0 12282

047139

i .
O
\O
Qo
=
[ev}
(WS]

¥
i
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FO
g
(WY}

L L £
“dn Yin T ogpw
d

CK% /
n

H 2 DE T s
Ju Jn EKE

-
CE I
Jm T im sz»;r
(%4

v G - AN
S§6 Dﬁﬁ = OMOBJe

P2 #* ~2-
Gy Dy = -+098341

w2 A

¥* g3

4 R/ 13
Q5% D54 12202
o % At
Csh D‘SL o J-;*E’.‘*Sl {

% 3 aT ey
Cir Dy = 052689

%* * .
CGB D62 = lh;O)

® 3% .
CsDga”= - 16118

= 26805

)

Ok
w

o

% Ok
N
§

z -,000431
2

Cel, Déh = -,12417

agS Dgs = ,051888

,ﬁi‘ A - =ahrr)
L?B D78 = 072474
C%l D%l = -, 17121
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Joint Moment Carry-over Factors

#
rji = - Cji T

3
ja '(Cjn

11}

= -.056539
= +.166L2

T +.13291
-.0k7351
= +.13937

= -0007h59
= +.12282

= -,047139
T -.037682

i
+

.098183
30078

H
1

5) Load Constants

a)

Fixed End Moments

Mo

¥

Ji

./ %
Djn

-

Jn “gn

r67
Tee
r63
rey
T
73
I'T6

_ w12 _ wla
12 20
- 360
wla + wl2
12 30

’ c* D* + C*¢D¥ 7
+ Jn “gn

]

n

59

(3-85 &
111)

(3-87, 99,
103, &
107)

.0ko8L7
098341
.30125
052689
14103
.007439
12417
.051888
.13576
.16983
.063L46



- wl?"
FM23 o

= - 135
FM,, = + 915

= 4+ 90

b) Static Loads Moments

-\ ©

[@\®

+le ‘@

Figure 4-7. TFree Body Above EEQ
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3%t

61

Figure 4-8. Free Body
Above 27.

SMOS = BMyg = - 3600

Figure 4-9. TFree Body
Above 18.

‘SIVIO7 = - 9900

142]
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o

1



¢) Fixed End Shears

FM,,
~ FVg

F\hg

K/F'r 3K/FT FMIé

W

62

Figure 4-10. Free Body

of Member 12.

FVype -(1/2 ;wl-¢/3)wl

Figure L-11. Free Body
of Member 23.

FV23: -(J_/g)wl

= - 30
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6) Modified Fixed End Moment Constants

a) Modified Fixed End Moments

¥ ' - =y P .
FMjk o FMJK - I‘Jk [(FMJ:K + I'an) hk}p +(FMkJ + FMpn) kjn
+(FVM Lk + vaﬂ Ip"; blip - SNOj(gp + gk)]
(3-29)
* L
FMy, = FMyp . (3-34)

" |
™, = FMji " Tji [(FMij + FMm) h + (Fle + FMnm) h*‘m

Ji Jn im
3 o R A
+(FVJi Iy + BV I Vb, - SM . (8, + &) J
{3-L0)
FMi, = -914.19 FME, = O
#* .
FMpy = -339.96 FMig = O
FMz, = 0 FME. = 0O
FMys = -220,07 FMg3 = O
FM3p = - 7.2270 FME, = - 92.250
FM3, = O FN$6 : - 80.715
FMy, = FM¥, = O FM¥n = -54k.89
FMy5 = FM¥, = O FMg, = -461.06
b) Starting Moments
= - ZFM“T‘ ~90)
s 3 {3-90)
my = +560.03 s = 0
m3 = + T.2270 mg = + 92.250

i
[958

13

mi, 0 wy = +625.61



7)

TABLE 4-2

CARRY-OVER PROCEDURE

2 3 4 5 6 7
- 0473851 2|=—.14103 2|=—.13576
056539 {3 3|=— 037682 3|=—.09834| 3|— Bor43s 3|=—.16983
D47139 —{4 4|=—S0125 4= 12417
12282 —{8 .Jo078 —~|5 5= 051888
16642 —[6 B07459 6 098183~ |6 040847 6|=—.063446
13291 |7 13937 —|7 .D52689 |7
+560.03 + 7.23 ] o + 92.28 +625.61
- 31.66 + 93.20 + 74.43
— 24.43
+ 1.6 + 1.15 - 3.00 + R -  3.40
+ 1.15
- .04 - .38 + W
- 3,38
- .33 + 1.0l + 14
+ 18588
+ 26.21 - 1.38 + 23.08 - 9.64 - _9.79
+686.85
+ 93.28 + 116,65 - 43.58
+ 120.62
- 6.82 + 20.07 + 16,03
+108.08
- 5.12 - 5.09 + 13.27 = .81 + 15.06
+ 19.00
- T2 - 871 + 1.87
- 2.
- " + .33 + .04
- 22.41
- 3.6 + - -  2.78 + 1.6 + 1.18
+ 32 .27
+  4.38 + 5.48 - 2085
- 3,90
+ .22 - .65 - .52
+ 5.04
- 24 - .24 + .62 - .04 + 70
- 2.69
* .10 + Bl - 27
+ 259
+ 28 - .78 - B
- 312
- .44 + .02 - 1] + .18 + 16
+ .34
+ 0% - .08 - .02
= 63
+ .04 ] 10 - .08
+ .47
- .02 - 02 + .08 ] + o7
- 1.19
* .04 + .36 - e
+ .58
+ 06 - "7 - .02
- 26
- .04 0 - .03 + .01 + .01
0
- .06
0 - .01 - 0t
- 10
o [+] + 0l [+] + W01
= 20
+ .01 + .06 - .02
+ o8
+ .0l - .02 0
- .03
0 o 4] 0
0
0
+ .02
] o ] 0 ]
- .02
(4] + .0l o
+ LO1
[+] 4 [+] [¢]
o
0
0
0
0
+676.06 + 89.28 + 16.05 - 2.18 - 160.06 + T19.46




8)

Numberical Check

JMJ

JM5

11

rkj JMk + mJ + ri.j J‘Mi + rm %

+rpy My s M,

65

(3-8%)

560.03 4+ {-.04735)(+89.28) + (+.13578) (+719.46)

+ (+.14103) (+160.086)

+ 676.05

{~.056539) (+676.06) + 7.23 + (-.037682)(+6.05)

4+ (+.16983) {#719.46) + (-.007439) (+160.06)

+ (+.0983%1)(-2.18)

+ 89.18

(-.047139) (+89.28) + (+.12717)(+160.06)

+ (-.30125)(-2.18)

+ 16.32

(-.051888) (+160.06) +

+ {-.30078) {+16.05)

- 2.18

s

{

.12282) (+89.28)



9)

Mg

143

IH

it

]

(~.063546){T19.468) + 92.25 4 (~.04084)(-2.18)

& (4. 166L2) (+676.06) + (-.007459)(+85.28)
+ (+.098183) (+16.05)

+ 160.11

625.61 + (-.052689)(+160.08)

+ (+°13291}(+676006) + (+.13937}(89.28)

Final Moments

Mg = Dy ¥y b Oy Tyg Ty + Coy 25 ¥
¥ -
+ Cpj Doy d¥, + PNy
# #0¥ ¥
Myp = Dy JMy + €y Ty JM, + FMy
Mg = Dy My + Cy o Dyy dMy + Cpy Doy JH
¥ ¥ ¥
+ Cpj Dy TMy + FMyq
My, = -1002 Mgy =+ 5
Mgy = - 304 Mgg = - 5
Mp7 = 4 LLO Mgs = 4 29
Mpgy & - 136 Mgy * + 209
Mygp = - 97 Mgy = - 138

O~
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CHAPTER V
SUMMARY AND CONCLUSION

' The primary objective of this study was to develope a simplified
method of analysis for Vierendeel trusses with inclined chords consisting
of members 6f any cross section. The principles of the carry-over joint
moment method were originally presented by Professor Tuma (22, 27, 30, 31,
32). |

This method is much shorter than the moment distribution method
from which this method is a modification. In a Vierendeel truss there
are 2P + 2 Jjoints where the P parameter represents the number of panels,
and there are 6P + 2 end moments in all the members of the truss. The
time ratio 5etWeen carry-over joint moment method and moment distribution
method is 2P'*2 . The time ratio varies from .50 fcr one penel to nct.

6p+2
reasonably less than .34 for many panels. There is also a further re-

duction in time for the carry-over methced because the distribution and
carry-over is completed in one step, whereas the moment distribution
method takes two. This lowers the time saved ratic down to .25 thrcugh
.17 depending on the number of panels used. In a Vierendeel tower the
time saved ratio is 3 %%) or .167. There are 2P joint in a
Vierendeel tower and 6 P end moments in all members. There is am

additional time saving due to having cne carry-over procedure as compared

to many depending upon number of panelg for the mement distribution method.

68
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The total amount of time saved by the elimination of the displacement
carry-over procedu;es iswvery difficult to estimate because additional
time is needed to solve for the new constants ih the carry—over-joint
moment mgthod. Eqwgygr,wthg time needed to calculate the new constants
is estimated to be Qne-half of time required to complete the displaceﬁent
carry-over procedures. A |

The total time saving for the carry-over joint method as compared to
the moment distribution method is approximately forty-five per cent.

In addition to the time saved there is cne more desirable feature
of the carryuover Joint moment methcd which is fewer calculations to

complete; thereby lowering the chance for error.
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