INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

.

• • •

8306733

Watanasiri, Suphat

APPLICATION OF MULTIPARAMETER CORRESPONDING STATES METHODS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONPOLAR, POLAR, AND ASSOCIATING PURE FLUIDS

The University of Oklahoma

Рн.D. 1982

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1980

by

Watanasiri, Suphat

All Rights Reserved

• •

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

APPLICATION OF MULTIPARAMETER CORRESPONDING STATES METHODS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONPOLAR, POLAR, AND ASSOCIATING PURE FLUIDS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

BY

SUPHAT WATANASIRI

Norman, Oklahoma

APPLICATION OF MULTIPARAMETER CORRESPONDING STATES METHODS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONPOLAR, POLAR, AND ASSOCIATING PURE FLUIDS

APPROVED BY

DISSERTATION COMMITTEE

ACKNOWLEDGMENTS

I would like to offer my sincere gratitude and appreciation to the following persons and organizations:

Professor K.E. Starling - for his guidance, inspiration, and encouragement throughout this research.

Professors S.D. Christian, L.L. Lee, C.E. Locke, J.M. Radovich, and F.M. Townsend - for serving on my advisory committee.

Dr. K.H. Kumar - for valuable advise and discussions.

Dr. M.R. Brulé - for valuable advise, encouragement and above all, friendship.

Mr. V.H. Owens - for his work on the structure factor and the dipole moment correlations.

My parents - for their love, understanding, and sacrifice.

U.S. Department of Energy/Pittsburgh Energy Technology Center through grant # DE-FG22-80PC30249, and The Oklahoma Mining and Mineral Resources Research Institute for financial support.

The Engineering Computer Network, and The University of Oklahoma Computing Survices - for excellent computing supports.

iii

. .

TABLE OF CONTENTS

					E	age
list of	'TABLES	•	•	•	•	vi
LIST OF	ILLUSTRATIONS	•	•	•	.vj	.ii
Chapter						
I.	INTRODUCTION	•	•	•	•	1
II.	THE THREE- AND FIVE-PARAMETER					
	CORRESPONDING-STATES MEWR CORRELATIONS	•	•	•	•	5
	2.1 The Three-Parameter					
	Corresponding-States MBWR Correlation	•	•	•	•	5
	2.2 The Five-Parameter					
	Corresponding-States MBWR Correlation	•	•	•	•	13
III.	A MULTIPARAMETER CORRESPONDING-STATES					
	CORRELATION FOR NONPOLAR, POLAR, AND					
	HYDROGEN-BONDING COMPOUNDS	•	•	•	•	17
	3.1 Correlation for the Structure Factor	•	•	•	•	19
	3.2 Determination of \mathbf{Z}_{α}	•	•	٠	•	22
	3.3 The Water Equation of State	•	•	•	•	30
	3.4 Determination of F_{α}	•	•	•	•	35
	3.5 The New Equation of State for Nonpolar	2,				
	Polar, and Associating Compounds		•	•	•	36

·· •

Page

IV.	APPLICATION OF THE CORRELATION TO	
	POLAR AND ASSOCIATING PURE COMPOUNDS	8
	4.1 Thermodynamic Property Expressions	
	and Calculations	8
	4.2 Compound Data Base	9
	4.3 Application of the New Correlation	
	to Polar and Associating Compounds \ldots 4	5
	4.4 Heat-of-Vaporization Predictions 6	8
V.	SENSITIVITY OF THERMODYNAMIC-PROPERTY	
	PREDICTIONS TO THE VALUES OF	
	POLAR/ASSOCIATIVE PARAMETERS	4
	5.1 Determination of Polar/Associative	
	Parameters from a Small Set of	
	Thermodynamic Data	75
	5.2 Application of the Correlation to Some	
	Undefined Coal-Fluid Fractions	38
VI.	CONCLUSIONS AND RECOMMENDATIONS	91
NOMENC	LATURE	94
LITERA	TURE CITED	96
APPEND	ICES	
A.	EXPRESSION FOR DERIVED THERMODYNAMIC PROPERTIES . 1	01
В.	SOURCE LISTING OF EQUATION OF STATE FUNCTION	
	SUBPROGRAMS	04
с.	DIPOLE MOMENT CORRELATION	10

.

. .

v

LIST OF TABLES

TABLE		Page
2.1	Universal Constants a_i and b_i , to be Used	
	in Equation (5), for the Three-Parameter	
	Corresponding-States MBWR Correlation	7
2.2	Predictions of Thermodynamic Properties Using	
	Generalized 3PCS-MBWR Correlation	9
3.1	Characterization Parameters for Polar and	
	Associating Compounds Used to Develop the	
	$\omega_{\rm S}$ Correlation, Equation (14)	23
3.2	Comparison of the Structure Factors Obtained	
	Using the Homomorph Method and Those Obtained	
	Using a Correlation, Equation (14)	26
3.3	Universal Constants a_i , b_i and c_i to be Used	
	in Equation (23), for the Multiparameter	
	Corresponding-States Correlation	32
3.4	Predictions of the Thermodynamic Properties	
	for Water	33
4.1	Characterization Parameters for the Polar and	
	Associating Compounds Studied in This Work	40

,

--

TABLE Page 4.2 Temperature and Pressure Ranges, and Data References for the Polar and Associating Compounds Studied in This Work 46 4.3 Predictions of the Thermodynamic Properties for Polar and Associative Compounds 55 4.4 The Structure Factors Determined Using Equation (14), and the Polar/Associative 61 4.5 Predictions of The Thermodynamic Properties Using Different Polar/Associative Parameters . . 69 5.1 Predictions of Vapor Pressure, Density, and Enthalpy of Vaporization Using the Polar/ Associative Parameters Determined From 77 5.2 Detailed Calculations of Thermodynamic Properties for Isoquinoline Using Polar/Associative Parameters Determined from One Vapor-Pressure Datum and 84 5.3 Comparisons of Exxon Coal-Fluid Density Data with Predictions by the New Correlation, and by the 3PCS-MBWR Correlation 89

vii

LIST OF ILLUSTRATIONS

Figure

-

. . .

Page

1.	Experimental and Predicted Water Densities	•	•	34
2.	Experimental and Predicted Densities for Phenol	•	•	64
3.	Experimental and Predicted Densities for			
	Dibenzofuran	•	•	65
4.	Deviations in Vapor-Pressure Predictions			
	vs Temperature for Phenol	•	•	66
5.	Deviations in Vapor-Pressure Predictions			
	vs Temperature for Dibenzofuran	•	•	67

Abstract

A multiparameter corresponding-states correlation has been developed to accurately predict the thermodynamic properties of nonpolar, polar, and associating pure fluids. The nonpolar contribution to the correlation, developed using multiproperty regression analysis of vapor-pressure, density, and enthalpy-departure data for methane through n-(1978). decane. is due to Starling et al. The polar/associating contribution is developed in this research using multiproperty regression analysis of extensive vaporpressure, density, and enthalpy-departure data for water, covering all fluid states. The correlation predicts vapor pressure and density for water with percent average absolute relative deviations of 0.6% and 1.4%, respectively. For enthalpy departure, the average absolute deviation is 9.3 kJ/kg (4 Btu/lb).

The correlation is generalized for other polar and associating compounds by using a temperatue- and densitydependent factor to characterize their polar/association effects relative to those for water. Parameters in the polar/association factor are determined via multiproperty analysis of vapor-pressure and density data. The

ix

. .

correlation is applied to a wide variety of compounds, including water, ammonia, alcohols, ethers, ketones, mercaptans, amines, phenol, cresols, xylenols, indanols, quinoline, acridine, dibenzofuran, and many other nitrogen-, oxygen-, and sulfur-containing model coal compounds. The average absolute deviations for vapor-pressure, density, and enthalpy and enthalpy-of-vaporization predictions are 1.8%, 2.6%, and 9.5 kJ/kg (4.1 Btu/lb), respectively.

Sensitivity of thermodynamic-property predictions to the values of polar/associative parameters are examined. It is shown that the parameters can be effectively determined using a small number of vapor-pressure and density data. As a result, the correlation can be applied readily to pure compounds with few experimental data. For undefined pseudocomponent fractions, the parameters are determined from the average normal-boiling point, molecular weight, density (at two temperatures), and, if available, the vapor pressure at a temperature lower than the normal-boiling point.

The correlation is used to predict with reasonable accuracy the densities for several wide-boiling coal-fluid fractions from the Exxon-Donor-Solvent process.

х

APPLICATION OF MULTIPARAMETER CORRESPONDING-STATES METHODS TO PREDICT THE THERMODYNAMIC PROPERTIES OF NONPOLAR, POLAR, AND ASSOCIATING PURE FLUIDS

CHAPTER I

INTRODUCTION

Several processes have been developed to convert coal into gaseous or liquid fuels. In designing these processes, techniques are needed to estimate the chemical and properties of coals and coal fluids. thermophysical Compared with the essentially paraffinic hydrocarbons from natural gas and petroleum, coal fluids are composed of polycyclic aromatic hydrocarbons with side-chains and with like sulfur, nitrogen, and oxygen. heteroatoms Many compounds identified in coal fluids are highly polar and associative (hydrogen bonded), e.g., phenolic compounds 1977). Consequently, petroleum-based (Schiller, correlations (e.g., Lee and Kesler, 1975; Peng and Robinson, 1976a; Starling et al., 1978) are not applicable to coal fluids. Accurate predictions of thermodynamic properties of model coal compounds and full-range coal fluids would thus

1

. . . .

require the use of correlations that are applicable to polycyclic aromatic hydrocarbons and to nonpolar, polar, and associating compounds.

providing thermodynamic Some progress towards correlations for coal fluids has been made in the past few years by the Coal-Calc Project at the University of Oklahoma. A three-parameter corresponding-states modified Benedict-Webb-Rubin (3PCS-MBWR) equation of state (Starling et al., 1978) was modified to predict the thermodynamic properties of nonpolar and slightly polar (reduced dipole moment (0.3) coal chemicals (Brule et al., 1979, 1982). and their mixtures (Watanasiri et al., 1982) with generally satisfactory results. Results were not as good for highly associative compounds, e.g., cresols, and xylenols, (Brulé et al., 1979, 1982), and for the high-molecular-weight, high-boilng-temperature fractions of coal liquids from the SRC-II and H-coal processes (Watanasiri et al., 1982). The work on the 3PCS-MBWR correlation is reviewed in Chapter II.

(1981)proposed five-parameter Gupta a corresponding-states MBWR correlation for polar and associating one- and two-ring model coal compounds. The correlation predicts vapor pressure and density of these compounds with deviations of 2% and 4%, respectively. However, it fails to give satisfactory prediction accuracy for other polar and hydrogen-bonding compounds such as water, which is an important component in coal liquefaction When the correlation was modified systems. **SO** that

thermodynamic properties for water could be predicted with reasonable levels of accuracy, the density prediction accuracy for model coal compounds suffered. A summary of the work by Gupta is also presented in Chapter II.

The objective of this research is to develop a multiparameter corresponding-states equation of state which is applicable to all classes of fluids, namely, nonpolar, polar, and associating fluids. over all fluid states. Since corresponding states theory does not apply to associating fluids, the present work must be considered empirical. The correlation developed here can be divided into a nonpolar contribution, and a polar/associating contribution. The separation of these different molecular contributions is achieved by the use of a structure factor to characterize structure (size and shape) effects which contribute to the nonpolar part of the correlation. Also, reduced dipole moment is used to characterize the polarity effect, which contributes to the polar/associating part of the correlation. The nonpolar contribution τo ť'në new correlation is the 3PCS formulation of Starling et al. (1978) which is briefly reviewed in Chapter II. The polar/associating contribution is based on the correlation of thermodynamic data for water. The water correlation is generalized to other compounds by using a temperature- and density-dependent function to characterize their polar/association effects relative to those for water. Parameters in the polar/association factor are determined

via multiproperty regression analysis of vapor-pressure and density data. The development of the water correlation and the subsequent generalization to other polar/associative fluids are discussed in Chapter III.

This work is primarily aimed at accurate predictions of thermodynamic properties for model coal compounds which are nonpolar, polar, and hydrogen-bonding, and for highly polar and associating compounds, like water, which are of enormous importance in synthetic-fuel processes. The new correlation was successfully applied to water and a wide variety of polar and hydrogen-bonding model coal compounds, including phenol, cresols, xylenols, indanols, furans, thiophenes, quinoline, and acridine. The correlation was further tested on other polar and associating compounds, such as ammonia, straight-chain alcohols, ethers, ketones, Predictions of vapor pressure, mercaptans, and amines. vapor and liquid densities, enthalpy, and enthalpy of vaporization for these compounds are generally satisfactory. Results are presented in Chapter IV.

Chapter V discusses the feasibility of determining the parameters in the polar/associative factor using only a few experimental data points. Also in Chapter V, the correlation is applied to predict the density for several wide-boiling coal-fluid fractions from the Exxon-Donor-Solvent (EDS) process.

. . .

Ą

CHAPTER II

THE THREE- AND FIVE-PARAMETER CORRESPONDING-STATES MBWR CORRELATIONS

This chapter reviews some of the earlier work on applications of corresponding-states methods to predict thermodynamic properties and phase behavior of coal fluids.

2.1 The Three-Parameter Corresponding-States MBWR Correlation

The three-parameter corresponding-states MBWR equation of state (Starling et al., 1978) expresses the compressibility factor Z as:

$$Z = Z_{0}(T^{*}, \rho^{*}) + \gamma Z_{\gamma}(T^{*}, \rho^{*})$$
 (1)

where Z_{\odot} and Z_{γ} are universal functions of reduced temperature, T^* , and reduced density ρ^* . Each compound is characterized by the orientation parameter, γ , which accounts for size, shape, and mild polarity effects of the compound. Equation (1) was developed using vapor-pressure, density and enthalpy-departure data for methane through ndecane with their orientation parameters being forced to equal Pitzer's acentric factor, ω . The orientation parameters for other fluids are determined from regression analysis of thermodynamic data such as vapor pressure, density, and enthalpy data (Brulé et al., 1979). Expressing equation (1) in the form of reduced-temperature and reduced-density expansions, it becomes:

$$Z = 1 + \rho^{*} (E_{1} - E_{2}T^{*-1} - E_{3}T^{*-3} + E_{9}T^{*-4} - E_{11}T^{*-5}) + \rho^{*2} (E_{5} - E_{6}T^{*-1} - E_{10}T^{*-2}) + \rho^{*5} (E_{7}T^{*-1} + E_{12}T^{*-2}) + E_{8}\rho^{*2}T^{*-3} (1 + E_{4}\rho^{*2}) \exp(-E_{4}\rho^{*2})$$
(2)

where

and

$$\mathbf{r}^* = \mathbf{k}\mathbf{T}/\mathbf{\epsilon} \tag{3}$$

$$\rho^* = \rho \sigma^3 \tag{4}$$

 $E_{i} = a_{i} + \gamma b_{i}$ (5)

The universal constants ai and bi were reported by Brule et al. (1979, 1982), and are listed in Table 2.1. The molecular-energy parameter ε and molecular-size parameter σ^3 are related to critical temperature T_c and critical density ρ_{cl} respectively.

$$\varepsilon = kT_{c}/1.2593$$
 (6)

$$\sigma^3 = 0.3189/\rho_c$$
 (7)

Table 2.1

Universal Constants a_i and b_i , to be Used in Equation (5), for the Three-Parameter Corresponding-States MBWR Correlation.

1 1	a _i	b _i
1	1.45907	0.32872
2	4.98813	-2.64399
3	2.20704	11.3293
4	4.86121	-
5	4.59311	2.79979
6	5.06707	10.3901
7	11.4871	10.3730
8	9.22469	20.5388
9	0.094624	2.76010
10	1.48858	-3.11349
11	0.015273	0.18915
12	3.51486	0.94260

•

· • ·

The 3PCS-MBWR equation was originally developed for natural-gas and petroleum-fluid systems. For normalparaffin hydrocarbons methane through n-decane, the average absolute deviations (averaged over all fluids) are 1.00% for density, 2.63 kJ/kg (1.13 Btu/lb) for enthalpy, and 0.85% for vapor pressure (Starling et al. 1978). The correlation is also accurate in the cryogenic region. In order to apply the 3PCS-MBWR correlation to mixtures, a conformal-solution model was used to express mixture composition dependence. Predictions of mixture thermodynamic properties and phase behavior are generally satisfactory except for mixtures in which the components have large size differences, e.g., methane + n-decane (Starling et al., 1978).

The 3PCS-MBWR correlation was applied to pure coal fluids by determining the orientation parameter, Y, in equation (1), or, equivalently, equation (5), for the The orientation parameter was obtained by fluids. multiproperty regression analysis of vapor-pressure, density, and enthalpy data for the fluids (Brulé et al., 1979, 1982). Using the γ obtained in this manner, the thermodynamic properties of numerous nonpolar, polar, and associating model coal compounds were calculated and compared with experimental values. Results for some representative compounds are presented in Table 2.2. The thermodynamic properties for nonpolar coal chemicals were predicted with acceptable levels of accuracy. For example, for phenanthrene, the deviations in vapor pressure and

Table 2.2

÷

Predictions of Thermodynamic Properties Using Generalized 3PCS-MBWR Correlation.

			Range		1 0			
Compounds	Prop.	N	T,°C	P, kPa	1,2 AARD	Data References		
Furan	Ps	19	0-217	28-5500	3.70	Kudchadker et al. 1978c		
Toluene	Ps den. Hd	42 23 84	60-316 0-110 10-371	19−4068 101 346−17≩37	1.45 0.91 3.03	Vargaftik, 1975 API-44/TRC		
o-Cresol	Ps den.	17 22	120-417 70-424	10-4811 0.9-5008	2.04 15.9	Jordan, 1954 Kudchadker et al. 1978a		
2,4-Xylenol	Ps	15	200-434	76-4400	4.04	Kudchadker et al. 1978b		
Thianaphthene	Ps	29	158-357	19-1060	0.55	Wieczorek & Kobayashi 198		
Tetralin	Ps den.	22 20	93-446 94-400	3-3296 3-3296	1.10 1.89	Kudchadker et al. 1978d Kudchadker et al. 1978d		
1-Methylnaph- thalene	Ps	17	142-246	6-103	1.27	Boublik et al. 1973		
Acridine	Ps	9	166-346	1-101	4.82	McNeil 1965		
Phenanthrene	Ps den.	51 8	199-382 100-320	3-200 1-101	0.80 0.67	Kudchadker et al. 1978e Kudchadker et al. 1978e		

For Ps, and den., AARD $z = \frac{1}{N} \sum |calc-exp|/exp \times 100 z$. For Hd, AAD = $\frac{1}{N} \sum |calc-exp|$, in Btu/lb.

density were 0.8% and 0.7%, respectively. The properties for many polar non-associating fluids could also be predicted with reasonable accuracy as long as the compounds are not too polar (reduced dipole moment approximately < 0.3). This class of fluids, is exemplified by furan, tetralin, and thianaphthene. For example, for tetralin, the % deviations in vapor pressure and density were 1.1% and 1.9%, respectively. When the fluids were highly polar and also associative, the 3PCS-MBWR correlation could not describe the properties with the same levels of accuracy, e.g., for o-cresol, & deviations for vapor pressure and density were 2.0% and 15.9%, respectively. The less satisfactory results for the polar and associating compounds were attributed to the fact that the 3PCS-MBWR correlation was developed for nonpolar and slightly polar fluids. Highly polar and associative compounds like cresols and xylenols overextend the limits of applicability of the correlation. In fact, there is no theoretical basis for the use of corresponding states methods for associating fluids.

Watanasiri et al. (1982) applied the 3PCS-MBWR correlation using semiempirical exponent conformal-solution mixing rules (Lee et al., 1979), to predict the phase behavior of binary and ternary mixtures of model coal compounds with light gases that are commonly present in coal-conversion process streams. The light components studied were hydrogen, methane, nitrogen, carbon dioxide, carbon monoxide, and hydrogen sulfide. In general, the K-

.. .

values of the light components were predicted to within 5% of the experimental values. For the heavy model coal compounds (e.g., tetralin), the t deviations in K-value prediction were usally less than 10%. The exceptions were mixtures involving water and, in some cases, m-cresol. For these mixtures, the K-value deviations were 15% or higher. These results, again, indicate the inadequacy of the 3PCS-MBWR correlation in dealing with highly polar and hydrogenbonding compounds. Several undefined coal fluids were also studied. Undefined fluids are fluids for which the exact compositions are not known because the compounds making up the fluids are too numerous. Generally, the fluids are broken up into narrow-boiling fractions. Then each fraction is treated as a pseudocomponent in the process calculations. The solubility of hydrogen and also of methane in several narrow-boiling fractions of fluids from the Exxon Bonor Solvent (EDS) and Solvent Refined Coal (SRC-II) processes (Lin et al., 1981) were predicted. Most of the prediction results were in error by approximately 10%. However, for the high-molecular-weight, high-boilng-temperature SRC-II fractions, errors were much larger (ca. 30%). The K-values of components in the overhead and bottoms streams from the hot separator following the reactor in the H-Coal pilot plant (IGT, 1980) were also predicted. The K-values of all high-boiling fractions were poorly predicted. The poor results were attributed to the breakdown of the correlations used to predict the characterization parameters for the

fractions (see Brulé et al., 1982). The characterizationparameter correlations were developed using data for coal compounds with maximum boiling points of 300 °C. However, many of the fractions in actual process streams have average boiling temperature well in excess of 500 °C. Furthermore, the fraction-boiling-temperature range was possibly too wide to satisfy pseudocomponent approximation assumption.

This earlier work in applying the 3PCS-MBWR correlation to pure model coal compounds and defined as well as undefined mixtures of coal fluids, provide impetus for further work on the development of a correlation which is applicable to highly polar and associating compounds as well as nonpolar and slightly polar compounds. The research presented here stems directly from the 3PCS-MBWR work.

Another problem area pointed out in the 3PCS-MBWR inadequacy of characterization-parameter work the is correlations for high-boiling fractions. Brulé and Starling (1982) proposed a method, called Therm-Trans, to overcome this problem. This method utilizes multiproperty analysis of inspection data for the fraction (normal-boiling point, specific gravity, molecular weight, and viscosity) to estimate characterization parameters (T_{c} , ρ_{c} , γ) for the fraction. This method was tested on numerous coaland petroleum-fluid fractions with satisfactory results. In this research, the Therm-Trans method is applied in chapter V to coal-fluid fractions. When the new correlation is used to predict the densities and the vapor pressures for several

. . .

coal-fluid fractions, some of the characterization parameters are determined using the thermodynamic inspection data.

2.2 The Five-Parameter Corresponding-States MBWR Correlation

Gupta (1981) proposed a five-parameter corresponding-states MBWR correlation for polar and associative one- and two-ring coal compounds. The 5PCS-MBWR equation is:

$$Z = Z_{0}(T^{*}, \rho^{*}) + \gamma Z_{\gamma}(T^{*}, \rho^{*}) + \mu^{*4} Z_{\mu}(T^{*}, \rho^{*}) + \alpha Z_{\alpha}(T^{*}, \rho^{*})$$
(8)

In equation (8), Z_{o} and Z_{γ} are identical to the corresponding functions in equation (1).

In an attempt to separate the contributions to Z into shape) Z_{γ} ; polarity, Z_{γ} ; structure (size and and association, Z_{n} contributions, a structure factor, ω_{S} , Was used in place of the Pitzer acentric factor, w. Since the acentric factor is defined from reduced vapor-pressure data, it not only contains information about the structure, but also the polarity and the degree of association of the The structure factor is intended to account only compound. for structure effects. A few authors have investigated the separation of the contributions to the acentric factor into shape and polarity effects, e.g., Peng and Stiel (1971). The concept of the structure factor used by Gupta was taken from Eubank and Smith (1962) who used the structure factor

in their thermodynamic correlation for dilute polar gases. In their work, the structure factor for a polar compound was defined as the acentric factor of its homomorph, which is a nonpolar compound that has the same general molecular structure as the polar compound. For polar compounds like those classed as alcohols, ketones, or ethers, the homomorphs have the same general structure as the polar compounds, except that oxygen is replaced by a -CH3 or a -CH2- group. For example, the homomorph for ethanol is propane. Difficulties in choosing the homomorph preclude most inorganic substances from this type of correlation (Eubank and Smith, 1962).

The polar contribution, Z_{μ} , is obtained from perturbation theory for dipole-dipole interactions (Twu, 1976). The reduced dipole moment, μ^{\pm} , is defined as:

$$\mu^* = 100\mu/(1.380535\sigma^3\varepsilon/k)$$
 (9)

. ...

$$\varepsilon/k = T_c/1_2 2593 \tag{10}$$

$$\sigma^3 = 0.3189 V_{\rm C} / 0.602252 \tag{11}$$

where μ is dipole moment in debye units, T_c is critical temperature in K, V_c is critical volume in cc/gmole, and σ^3 is molecular volume in λ^3 .

The association parameter, α , was defined as:

$$\alpha = \frac{Hv}{Hv} - 1.0 \tag{12}$$

where

. . .

$$H_V$$
 = heat of vaporization of

associating fluid at normal boiling point.

Hv = heat of vaporization of polar nonassociating fluid homolog at normal boiling point.

The association contribution, \mathbf{Z}_{α} , has the same temperature density dependence as Z_{O} and Z_{Y} . and The universal constants for Z_{α} were from determined multiproperty analysis of regression experimental data. When the constants in \mathbf{Z}_{α} were obtained by fitting vapor pressure and density data of one- and two-ring associative aromatic hydrocarbons, the 5PCS-MBWR equation predicted vapor pressure and density to 2% and 4%, respectively. However, when the correlation was used to predict vapor pressure and density of other polar and associating fluids such as water and ammonia, the overall deviations for both compounds were * 10%. Since water is an important component encountered in coal-fluid processing, an attempt was made to improve Z_{α} such that properties of both aromatic coal compounds and water could be predicted accurately. The constants in Z_{α} were redetermined by using the data for both coal compounds and water. The predictions of vapor pressures and densities for water were accurate to 1.7% and 1.1%, respectively. For coal fluids, the vapor-pressure prediction error was 5%. However, the density prediction error of 14% was not satisfactory. Equation (8) is probably not applicable to both water and coal chemicals or other associating fluids because Z_{α} does not adequately represent association

. . .

effects. The temperature and density dependence for Z_{α} could be guite different from Z_{0} and Z_{γ} . Another possibility is that the association parameter, α , used in equation (8) is not suitable for characterizing the association effects (Gupta, 1981).

Gupta compared the magnitude of all contributions to Z in equation (8). He reported that the polar contribution, $u^{*4}Z_{\mu}$, constitutes less than 3% of Z for compounds with reduced dipole moment smaller than 0.5, but the polar contribution can be appreciable (up to 15%) for compounds with μ * greater than 0.5.

The work of Gupta suggests that additional temperature and density dependence may be required for the associative contribution to Z. Also the generally small polar contribution may be combined with the associative contribution, without sacrificing prediction accuracy.

-- - -

CHAPTER III.

A MULTIPARAMETER CORRESPONDING-STATES CORRELATION FOR NONPOLAR, POLAR, AND HYDROGEN-BONDING COMPOUNDS

In this work, an equation of state which is applicable to all classes of fluids, namely, nonpolar, polar, and associating compounds is developed. The correlation can be conveniently divided into nonpolar, and polar/associative contributions. The nonpolar contribution comes from the 3PCS correlation which is an excellent correlation for nonpolar compounds (Starling et al. 1978; Brulé et al., 1979; 1982), as discussed in chapter II. The polar and associative contributions come from the equation of state for water, and are characterized by a reduced dipole moment and an association factor. The development of the new correlation is discussed in this chapter.

The new compressibility factor correlation is expressed as:

$$Z = Z_{o}(T^{*}, \rho^{*}) + \omega_{s} Z_{\gamma}(T^{*}, \rho^{*}) + \mu^{*} F_{\alpha}(T^{*}, \rho^{*}) Z_{\alpha}(T^{*}, \rho^{*})$$
(13)

where Z_{0} , and Z_{γ} are the same as those in equation (1)

....

(i.e., the same temperature and density dependence, and numerical constants). The use of Z_{o} and Z_{γ} preserves the capability of the new correlation in predicting accurately the properties of nonpolar compounds (μ *=0).

As discussed in section 2.2, $\omega_{\rm S}$ is the structure factor defined using the homomorph method (Eubank and Smith 1962, Gupta 1981). It is used in the new correlation to account for structure (size and shape) effects in order to separate structural contributions from polarity and association contributions. A homomorph for the compound has to be identified in order to determine ω_s . The difficulty and ambiguity in choosing the appropriate homomorph, and hence the structure factor, for a polar or associative compound of interest, as discussed by Eubank and Smith (1962), are partially overcome by the use of a correlation for the structure factor which is a function of critical temperature, critical volume, normal boiling temperature, and dipole moment. The correlation for the structure factor is discussed in section 3.1. Subsequently, this structure factor correlation is used to define ω_s .

The reduced dipole moment, μ^* , is defined by equations (9) through (11). The parameter μ^* is used to characterize polar compounds and to make the polar/association contributions due to Z_{α} vanish for the case of nonpolar compounds. For nonpolar compounds ($\mu^{*=0}$), equation (13) reduces to the 3PCS form of equation (1).

The term Z_{α} is the polar and associative contribution

to Z. The expression for Z_{α} is obtained from the equation of state for water. The rationale for the choice of Z_{α} and the development of the water equation of state are discussed in sections 3.2 and 3.3. The polar/association factor, F_{α} , is used to generalize the correlation to polar and associating fluids. The determination of F_{α} is discussed in section 3.4.

3.1 Correlation for the Structure Factor

As discussed above, the structure factor is used in the new correlation framework, equation (13), to account for structure (size and shape) effects. The structure factor of a compound is defined as the acentric factor of its homomorph. The homomorph of a polar compound is a nonpolar compound which has the same general structure, normally with the OH, or NH2 groups being replaced by CH3 or CH2 groups. For a nonpolar compound, the homomorph would be, naturally, the compound itself.

The concept of the structure factor, and hence homomorph, is introduced in an attempt to cast the compressibility-factor correlation, equation (13), with a nonpolar contribution that results primarily from structure (size and shape) effects, and with a polar/associative contribution which results from polarity and hydrogenbonding effects. The fact that the acentric factor, ω , represents both structure and polar/associative effects,

precludes w from being used in the new correlation framework. The use of the structure factor, although providing the necessary separation of different molecular contributions, poses several difficulties and ambiguities. One obvious ambiguity is that several polar/associating compounds can have the same homomorph (hence, the same structure factor). For example, the homomorph for methanol, as well as methylamine and methylmercaptan is the nonpolar compound ethane. The structure factors for these three compounds should be different from one another in principle, although the differences could be relatively small, because of the differences in the sizes of oxygen, nitrogen, and The homomorph for some polar sulfur atoms. organic cannot be conveniently defined, i.e., what compounds homomorph should be chosen for toluene (u*=0.131), or oxylene $(\mu \times = 0.152)$ is not clear. For inorganic compounds, e.g., HCl, the ambiguity of defining a homomorph becomes even more severe.

Despite these drawbacks, the structure factor, defined through the homomorph concept, was shown to be a useful characterization parameter in previous research (Eubank and Smith, 1962; Gupta, 1981), and also in this work, as discussed in the chapter IV. An attempt was made to correlate the structure factors of compounds for which homemorphs can be clearly defined as fuctions of measurable properties of the compounds (e.g., critical temperature, normal boiling temperature, critical volume, and dipole moment). The reasons for developing the correlation are twofold. First, given a correlation that can predict the structure factor for any polar and associating compounds of interest with reasonable levels of accuracy, the correlation can then be used as the defining equation for the structure factor. Thus, it is no longer necessary to rely on the homomorph concept to deduce the structure-factor value for a given compound. As a result, the difficulties and ambiguities associated with the use of the homomorph can be totally avoided. Second, the equation of state correlation, equation (13) is ultimately developed to predict the thermodynamic properties for undefined coal-fluids. The structure-factor correlation, which is developed as a function of measurable quantities, would be used in predicting the structure factor for undefined fractions. The correlation for the structure factor is:

 $f1 = 1.60457 x \ln(T_c/V_c)$ $f2 = 4.91301 - 8.96259 x (T_b/T_c) - 7.51826 x (T_b/T_c)^2$ $+ 28.5238 x (T_b/T_c)^3 + 7.14638 x \ln(T_b/T_c)$ $f3 = \mu^* (-96.4516 x (T_b/T_c)^{0.5} + 112.424 x (T_b/T_c)^{0.2}$ $+ 5.38401 x (T_c/V_c)^{0.5} - 29.3509 x (T_c/V_c)^{0.2})$ $f4 = 100.559 - 40.0325 x (T_b/T_c) - 156.114 x (T_b/T_c)^2$ $+ 104.718 x (T_b/T_c)^3 + 72.0599 x \ln(T_b/T_c)$ $\omega_g = (f1 + f2 + f3)/f4$ (14)

where T is the critical temperature in K, V is the

. . .

critical volume in cc/gmole, T_b is the normal boiling temperature in K, and μ^* is the reduced dipole moment calculated using equations (9) through (11). The characterization parameters (e.g., T_c) for the compounds used to develop equation (14) are summarized in Table 3.1. The values predicted using equation (14) agree within 16% of the values obtained through the homomorph method, as shown in Table 3.2. The predicted structure factor values for methanol, methylamine, and methylmercaptan are slightly different from one another. The predicted structure factor for toluene is also smaller than its acentric factor. A reasonable value for HCl can also be obtained. These observations indicate that equation (14) is reasonably well behaved and can be used to define the structure factor.

3.2 Determination of Z_{γ}

Gupta (1981) used for Z_{α} a function that has the same temperature and density dependence as Z_{0} and Z_{γ} . However, the temperature and density dependence used by Gupta for Z_{α} was not adequate in representing the polar and hydrogenbonding effects as demonstrated by poor density predictions for these compounds. A Z_{α} expression which can adequately represent the pressure-density-temperature behavior of polar and associative compounds is necessarily different from those for Z_{0} and Z_{γ} . In order to develop the expression for Z_{α} , extensive and accurate PVT and enthalpy data for polar

Emp. Form.	Compound Name	MW	Tc K	Tb K	ρ _c kg∕m3	ω <mark>*</mark> s	ری debye
H2 O	Water	18.015	1547.3	373.2	321.7	0.008	1.82
мнз	Ammonia	17.03	405.6	239.9	234.8	0.008	1.47
CH4O	Methanol	32.042	512.6	337.8	271.5	0.098	1.7
C2H6O	Ethanol	46.069	516.2	351.5	275.9	0.152	1.73
Сзнво	Propanol	60.096	536.7	370.4	275.0	0.193	1.67
C4H1 00	1-Butanol	74.123	·562 . 9	390.9	270.5	0.251	1.81
C5H1 20	1-Pentanol	88.150	586.0	411.0	270.4	0.296	1.71
C6H1 40	1-Hexanol	102.18	610.0	430.2	268.2	0.351	1.73
C6H6O	Phenol	94.113	694.2	455.0	411.0	0.257	1.55
C7H8 O	m-Cresol	108.14	705.9	475.4	346.6	0.331	1.59
C7H8O	o-Cresol	108.14	697.6	464.2	383.5	0.314	1.45
C7H8 0	p-Cresol	108.14	704.6	475.1	390.4	0.324	1.56
C8H1 00	2,4-Xylenol	122.17	707.7	484.1	320.0	0.390	1.98

Characterization Parameters for Polar and Associating Compounds Used to Develop the ws Correlation, Equation (14).

Table 3.1

ч 1 ÷

Emp. Form.	Compound Name	MW	TC K	Tb K	^р с kg/m3	ω _s *	u debye
C8H1 00	2,5-Xylenol	122.17	707.1	484.3	350.0	0.390	1.52
C8H1 00	2,6-Xylenol	122.17	701.1	474.2	310.0	0.390	1.90
C8H1 80	3,4-Xylenol	122.17	730.0	500.2	350.0	0.390	1.73
C2H60	Dimethyl Ether	46.069	400.0	248.3	258.8	0.152	1.30
Сзнво	Methyl Ethyl Ether	60.096	437.8	280.5	271.9	0.193	1.22
C4H100	Diethyl Ether	74.123	466.7	307.7	264.7	0.251	1.30
C5H1 20	Ethyl Propyl Ether	88.150	500.6	336.8	258.0	0.296	1.16
C1 2H1 00	Diphenyl Ether	170.21	766.0	531.2	331.0	0.458	1.15
Сзнео	Acetone	58.080	508.2	329.4	278.0	0.176	2.86
C4H8O	2-Butanone	72.107	535.6	352.8	270.1	0.227	2.73
C5H100	2-Pentanone	86.134	564.0	375.5	286.2	0.279	2.65
CH4S	Methyl Mercaptan	48.107	470.0	279.1	331.8	0.098	1.26
C2H6S	Ethyl Mercaptan	62.134	499.0	308.2	300.2	0.152	1.44
C1 2H8S	Dibenzothiophene	184.27	899.3	605.3	348.9	0.334	0.83

Emp. Form.	Compound Name	MW	Tc K	Tb K	ρc kg/m3	ω _s *	یں debye
CH5N	Methylamine	31.058	430.0	266.8	221.8	0.098	1.29
C2H7N	Ethylamine	45.085	456.0	289.7	253.3	0.152	1.35
C2H7N	Dimethylamine	45.085	437.6	280.0	241.1	0.152	1.18
C4H11N	Diethylamine	73.139	496.6	328.6	243.0	0.251	1.12
C6H7N	Aniline	93.129	699.2	457.2	339.9	0.257	1.56
C4H4O	Furan	68.075	490.2	304.5	312.3	0.220	0.70
C4H8O	Tetrahydrofuran	72.107	540.2	33 9 .1	321.9	0.192	1.70
C1 2H8O	Dibenzofuran	168.20	837.8	557.9	334.0	0.334	0.88
C5H5N	Pyridine	79.102	620.0	388.5	311.4	0.144	2.30
C9H7N	Quincline	129.161	782.2	510.8	320.7	0.302	2.20
C9H7N	Isoquinoline	129.161	803.2	516.4	320.5	0.282	2.60
C1 2H9N	Carbazole	167.20	900.1	627.9	267.8	0.401	2.11
C1 3H9N	Acridine	179.22	905.2	619.2	330.1	0.362	1.96

*

:

Structure factor determined using the homomorph method.

25

i

Table 3.2

Comparison of the Structure Factors Obtained Using the Homomorph Method and Those Obtained Using a Correlation, Equation (14).

		هم دی کا جو ک درد. به این که دی دو درد در این که در ۱.۱
Compound Name	ω _s Homomorph	ω _s Correlation
Water	0.008	0.008
Ammonia	0.008	0.007
Methanol [#]	0.098	0.086
Ethanol	0.152	0.196
Propanol	0.193	0.280
1-Butanol	0.251	0.308
1-Pentanol	0.296	0.357
1-Hexanol	0.351	0.379
Phenol	0.257	0.248
m-Cresol	0.331	0.301
o-Cresol	0.314	0.287
p-Cresol	0.324	0.304
2,4-Xylenol	0.390	0.310
2,5-Xylenol	0.390	0.342
2,6-Xylenol	0.390	0.293
3,4-Xylenol	0.390	0.330
Dimethyl Ether	0.152	0.163
Methyl Ethyl Ether	0.193	0.204
Diethyl Ether	0.251	0.246
Ethyl Propyl Ether	0.296	0.285
Phenyl Ether	0.458	0.378

.

• • •

.

.

· ·

Compound Name	ω _s Homomorph	ω _s Correlation
Acetone	0.176	0.099
2-Butanone	0.227	0.176
2-Pentanone	0.279	0.209
Methyl Mercaptan	0.098	0.127
Ethyl Mercaptan	0.152	0.160
Dibenzothiophene	0.334	0.327
Metnylamine [#]	0.098	0.146
Ethylamine	0.152	0.181
Dimethylamine	0.152	0.201
Diethylamine	0.251	0.258
Aniline	0.257	0.249
+ Furan	0.220	0.178
Tetrahydrofuran	0.192	0.169
Dibenzofuran	0.334	0.291
Pyridine	0.144	0.155
Quinoline	0.302	0.230
+ Isoquinoline	0.275	0.202
Carbazole	0.401	0.369
Acridine	0.362	0.332
+ Diphenylmethane	0.443	0.423

Table 3.2 (Continued)

٠

.

••••

.

Compound	ωs	ω _s
Name	Homomorph	Correlation
*		
Toluene	0.257	0.249
Hydrogen Chloride	-	0.092
ون کے بیے برید سے رہے خلک خلل سے بڑھ کے دینا کہ خلی خلے خلا جو ا	و هم بزند هم من برو جند علم هو جند الله بجند علم من به	
******* #		
# Homomorph for Meth and Methylamine is *	• -	rcaptan,
Homomorph for Meth and Methylamine is	ene and HCl car	•

,

.

•••••

Table 3.2 (Continued)

and associative compounds are needed in performing multiproperty regression analysis. Since there are very few polar and associating compounds for which extensive and accurate data have been taken, water was chosen as the candidate fluid. Water is highly polar and associative. There are very accurate and extensive PVT and enthalpy data for water, covering wide ranges of temperature and pressure (e.g., Keenan et al., 1969). In addition, water is found in significant amounts at various stages of coal-conversion processes and encillary refining processes that involve steam-stripping operations. The presence of water in a stream poses great difficulties in performing process process calculations since most commonly used generalized equations of state correlation are not capable of accurately predicting the thermodynamic properties of water. Although numerous activity coefficient models exist that can model water (e.g., Wilson, 1964; Renon and Prausnitz, 1968), the use of equation of state (EOS) correlation in process calculations has several advantages over the use of activity-coefficient models. One major advantage is that in using EOS in phase-equilibrium calculations involving components that are supercritical at the temperature and pressure of interest, the difficulty and ambiguity in states for the supercritical defining the reference components do not arise. For aqueous mixtures, the K-value of the mixture components are generally predicted with unacceptable levels of accuracy using generalized equations

. . .

of state (see e.g., Peng et al. 1976b; Watanasiri et. al. 1982), especially when the concentration of water is high. Because of the importance of water, the difficulties in predicting water properties, and the abundance of water thermodynamic data, water is chosen as the fluid on which the Z_{α} expression is based. The temperature and density dependence of the Z_{α} expression for water will be used for other polar and hydrogen-bonding compounds. Property predictions for other polar and associating compounds ($\mu^*F_{\alpha} \neq 0$) can be considered as an interpolation between the 3PCS correlation ($\mu^*F_{\alpha} = 0$) and the water correlation ($\mu^*F_{\alpha} = 1$).

3.3 The Water Equation of State

.- . .

The equation of state for water is a special case of the general equation for polar and associative fluids, i.e., equation (13). Choosing methane to be the homomorph for water, the ω_s used in equation (13) is 0.008. Setting the product μ *Fa to be unity, equation (13) reduces to:

$$Z_{H_{2}O} = Z_{O}(T^{*}, \rho^{*}) + 0.008 Z_{\gamma}(T^{*}, \rho^{*}) + Z_{\alpha}(T^{*}, \rho^{*})$$
(15)

The functional forms of Z_{α} and Z_{γ} , and the constants a_{\pm} and b_{\pm} , were fixed to be the same as those of the 3PCS-MBWR, equation (2). The term Z_{α} was then obtained via multiproperty regression analysis of vapor pressure, vapor and liquid density, and enthalpy-departure data for water. The resultant expression for Z_{α} is:

$$Z_{\alpha} = \rho^{*}(c_{1} - c_{2}T^{*-1} - c_{3}T^{*-3} + c_{9}T^{*-4}) + \rho^{*2}(c_{5} - c_{6}T^{*-1}) + \rho^{*5}(c_{15} + c_{7}T^{*-1} + c_{12}T^{*-2}) + c_{8}\rho^{*2}T^{*-3}(1 + b_{4}\rho^{*2})\exp(-b_{4}\rho^{*2}) + c_{13}\rho^{*3}T^{*-2} + c_{14}\rho^{*4}T^{*-1} + c_{16}\rho^{*6}T^{*-1}$$
(16)

The universal constants c_1 through c_{16} are reported in Table As shown in equation (16), Z_{α} contains all of the 3.3. density dependence and most of the temperature dependence of \mathbf{Z}_{o} and \mathbf{Z}_{v} , as in equation (2). However, \mathbf{Z}_{α} also requires three additional density-dependent terms (ρ^{*3} , ρ^{*4} , and ρ^{*6}) in order to predict the thermodynamic properties of water to reasonable levels of accuracy. The percent average absolute relative deviation in the prediction of vapor-pressure data over the entire saturation curve including the critical point, is 0.6%. The vapor- and liquid-density predictions are accurate to 1.4%. The density data used extended from low temperature liquid (0 $^{\circ}$ C) to highly compressed hightemperature vapor (1320 °C, 1720 bar). For enthalpy departure, the average absolute deviation is 9.3 kJ/kg (4 Btu/lb). The enthalpy data used cover the temperature range from 10°C to 1320°C, and pressure range from 31 bar to 1720 bar. References from which water data were taken are listed in Table 3.4. The prediction results are also reported in Table 3.4. The P-V-T behavior for water predicted by equation (16) is plotted against experimental data in Figure 1.

- . .

Tabl	e 3	.3
------	-----	----

i	ai	b _i	Ci
1	1.45907	0.32872	0.485914
2	4.98813	-2.64399	-1.06672
3	2.20704	11.3293	5.39716
4	4.86121	-	-
5	4.59311	2.79979	-1.55842
6	5.06707	10.3901	4.70204
. 7	11.4871	10.3730	3.47628
8	9.22469	20.5388	17.2603
9	0.094624	2.76010	0.497917
10	1.48858	-3.11349	-
11	0.015273	0.18915	-
12	3.51486	0.94260	14.7689
13	-	-	-1.79202
14	-	-	4.78259
15	-	-	7.46297
16	-	-	-23.3345

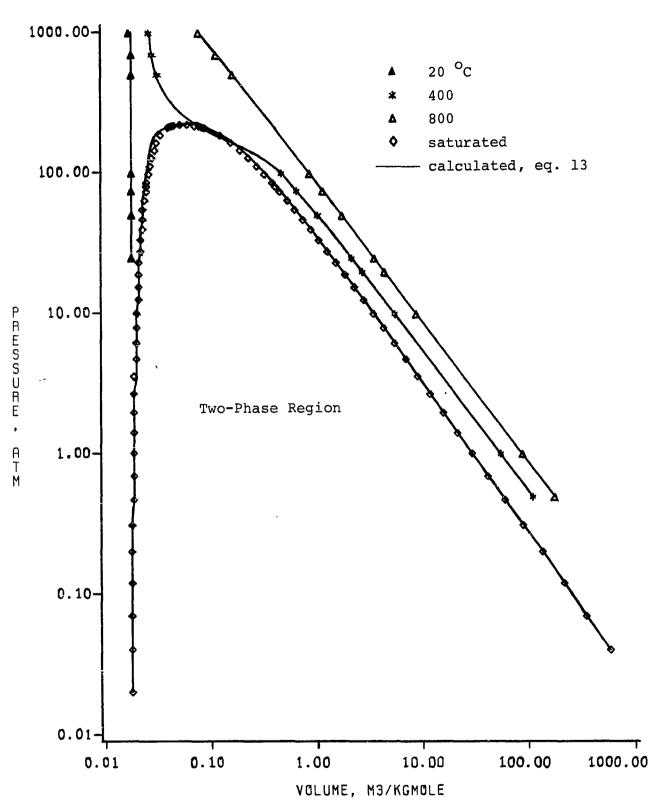
Universal Constants a_i , b_i and c_i to be Used in Equations (16) and (23), for the Multiparameter Corresponding-States Correlation.*

*

. .

a i, and bi are the same as those given in Table 2.1, and by Brulé et al. (1982).

Prop.1	No. of points	T range K	P range kPa	AARD: ² eq. (16)	Data References
P s	65	273-647	0.6-22090	0.62	Osborne et al. 1939.
den.	385	273-1589	0.6-140000	1. 4 6	Osborne et al. 1939, Keyes & Smith 1934, Keyes et al. 1936, Kennedy 1957, Holser & Kennedy 1958, Kell & Walley 1965, Keenan et al. 1969.
Hđ	239	283-1589	3100-108400	3.62	Callendar & Egerton 1960, Keenan et al. 1969.


Table 3.4

Predictions of the Thermodynamic Properties for Water.

2

AAD for Hd is in Btu/lb.

FIGURE 1. EXPERIMENTAL AND PREDICTED WATER DENSITIES

.-..

Note that the correlation for water in this work is not as accurate as specific correlations for water, such as the Keenan and Keyes correlation (Keenan et al., 1969). However, it is not the intent of this work to develop a better correlation for water than, e.g., the Keenan and Keyes correlation. The water correlation is used as a vehicle for the extension of the 3PCS-MBWR equation to polar and associative fluids and the levels of accuracy achieved here is adequate for process design. The Keenan and Keyes correlation cannot be used conveniently in our corresponding-states framework because of its complexity.

3.4 Determination of F_{α}

The polar/association contribution to Z, Z_{α} , obtained for water, as explained in the preceding section, is incorporated into the three-parameter corresponding-states correlation, resulting in an equation of state for nonpolar compounds and water.

$$Z = Z_{\alpha}(\mathbf{T}^{\star}, \boldsymbol{\rho}^{\star}) + \omega_{s} Z_{\gamma}(\mathbf{T}^{\star}, \boldsymbol{\rho}^{\star}) + Z_{\alpha}(\mathbf{T}^{\star}, \boldsymbol{\rho}^{\star})$$
(17)

The generalization of equation (17) to other polar and hydrogen-bonding compounds must be accomplished by using characterization parameters which force the polar/associative contributions to go to zero for nonpolar compounds, and indicate the degree of polarity and association for the compound. One possible characterization

parameter is the dipole moment (or the reduced dipole moment). However, the dipole moment is not an entirely adequate characterization parameter for compounds that associate or hydrogen-bond. Nonetheless, if one postulates that there exists a function that can characterize the polar and association effects, then equation (17) becomes

$$z = z_{o}(T^{*}, \rho^{*}) + \omega_{s} z_{\gamma}(T^{*}, \rho^{*}) + \mu^{*} F_{\alpha} z_{\alpha}(T^{*}, \rho^{*})$$
(18)

The first requirement is met by equation (18). To determine F_{α} , equation (18) can be rearranged:

$$F_{\alpha} = (Z - Z_{o}(T^{*}, \rho^{*}) - \omega_{s} Z_{\gamma}(T^{*}, \rho^{*})) / \mu^{*} Z_{\alpha}(T^{*}, \rho^{*})$$
(19)

Using isothermal and isochoric data for methanol and ethanol, the functionality of \mathbf{F}_{α} was determined to be:

$$F_{\alpha} = d_{1} + d_{2}\rho^{*2} + d_{3}T^{*}$$
(20)

where d_1 , d_2 , and d_3 are the polar/associative characterization parameters.

3.5 The New Equation of State for Nonpolar, Polar, and Associating Compounds

Assembling all the building blocks as described above, the multiparameter corresponding-states correlation for nonpolar, polar, and associating pure fluids is:

$$Z = Z_{o}(T^{*}, \rho^{*}) + \omega_{s} Z_{\gamma}(T^{*}, \rho^{*}) + \mu^{*} F_{\alpha}(T^{*}, \rho^{*}) Z_{\alpha}(T^{*}, \rho^{*})$$
(21)

Expressed as an explicit reduced density and reduced

- - - -

temperature function, equation (21) becomes:

$$Z = 1 + \rho^{*} (E_{1} - E_{2}T^{*-1} - E_{3}T^{*-3} + E_{9}T^{*-4} - E_{11}T^{*-5}) + \rho^{*2} (E_{5} - E_{6}T^{*-1} - E_{10}T^{*-2}) + \rho^{*5} (E_{15} + E_{7}T^{*-1} + E_{12}T^{*-2}) + E_{8}\rho^{*2}T^{*-3} (1 + E_{4}\rho^{*2}) \exp(-E_{4}\rho^{*2}) + E_{13}\rho^{*3}T^{*-2} + E_{14}\rho^{*4}T^{*-1} + E_{16}\rho^{*6}T^{*-1}$$
(22)

where

$$E_{i} = a_{i} + \omega_{s} b_{i} + \mu^{*} F_{\alpha} c_{i}$$
(23)

and

- . -

$$F_{\alpha} = d_{1} + d_{2} \rho^{*2} + d_{3} T^{*}$$
 (24)

The values of the universal constants a_i , b_i , and c_i are listed in Table 3.3. The constants a_i and b_i (constants for Z_o and Z_γ , respectively) are the same as those for the 3PCS-MBWR correlation (see Table 2.1), while the c_i (constants for Z_α) are determined from fitting water data, as discussed in section 3.3. The reduced dipole moment, u^* , is defined in equations (9), through (11). The polar/association parameters, d_1 , d_2 , and d_3 are determined from experimental vapor pressure and density data, as discussed in Chapter IV.

CHAPTER IV

APPLICATION OF THE CORRELATION TO POLAR AND ASSOCIATING PURE COMPOUNDS

4.1 Thermodynamic Property Expressions and Calculations

To calculate thermodynamic properties of a compound (e.g., density, enthalpy, entropy, etc...) at a given temperature and pressure (and composition in the case of mixture), one starts with the determination of density. Density is calculated implicitly by solving equation (22). The density-search technique used in this work was described by Goin (1978). Other thermodynamic properties can then be calculated using the obtained density in the expressions derived by the classical thermodynamic relations (see, e.g., Reid et al. 1977). An example is the following relation for the enthalpy departure:

$$H - H^{0} = -\frac{\varepsilon}{k}RT^{2}\int_{0}^{\rho} (\partial Z/\partial T^{*})_{\rho*} d \ln \rho^{*} + RT(Z - 1)$$
(25)

The expression for enthalpy departure and fugacity are given

- . .

in the appendix A.

To calculate the vapor pressure for a compound, one calculates the fugacity of the compound in both the vapor and liquid phases at an assumed initial pressure. Since the fugacities in both phases are equal at the vapor pressure, the initial pressure can be adjusted until the equality of vapor- and liquid-phase fugacities is obtained. The final pressure is the desired vapor pressure. To calculate the enthalpy of vaporization, one calculates the difference between the vapor and liquid enthalpy departure.

4.2 Compound Data Base

. . .

The multiparameter corresponding-states correlation is applied to a wide variety of compounds including water, ammonia, alcohols, ethers, ketones, amines, mercaptans, phenol, cresols, xylenols, indanols, quinoline, furans, and many nitrogen-, oxygen-, and sulfur-containing compounds. Some very important model coal compounds like phenanthrol are not included because of the lack of experimental data. Table 4.1 lists the compounds and their characterization parameters.

The characterization parameters T_c and ρ_c are taken from the compilation of Reid et al. (1977), or from the literature sources from which thermodynamic data were obtained (e.g., Kudchadker et al., 1977, for phenol). The structure factor, ω_s , is obtained using the homomorph method

Table 4.1

,

.

Characterization	Parameters	for Polar	and A	ssociating	Compounds	Studied in	This Work
Compound Name	T K	V _C cc/gmole	ω _s	µ*	גע <u>ו</u> לא * מע <u>ו</u> לי	d ₂ u*	d ₃ u*
Water	647.3	56.0	0.00	8 1.255	1.0058	0.0139	-0.0140
Ammonia	405.6	72.5	0.00	8 1.125	0.8610	-0.0882	-0.0953
Methanol	512.6	118.0	0.09	8 0.907	1.8716	-0.5746	-0.6273
Ethanol	516.2	167.0	0.15	2 0.773	2.4803	-0.6236	-1.3846
Propanol	536.7	218.5	0.19	3 0.640	2.2780	-0.2756	-1.3725
1-Butanol	562.9	274.0	0.25	1 0.605	0.7994	0.2183	0.0147
1-Pentanol	586.0	326.0	0.29	6 0.514	2.2580	-0.7885	-1.6159
1-Hexanol	610.0	381.0	0.35	1 0.471	3.2747	-5.1905	-2.6191
Phenol	694.2	229.0	0.25	7 0.510	1.9494	-3.8521	-1.3237
m-Cresol	705.9	312.0	0.33	1 0.445	1.3389	-1.3922	-0.9019
o-Cresol	697.6	282.0	0.31	4 0.429	1.2935	-3.0866	-0.6992
p-Cresol	704.6	277.0	0.32	4 0.463	1.5877	-4.3603	-0.7596
2,3-Xylenol	723.0	359.3	0.39	0 0.510	1.4003	-3.3180	-1.1300
2,4-Xylenol	707.7	. 381.8	0.39	0 0.500	0.8796	-0.5009	-0.7658

1,2 Characterization Parameters for Polar and Associating Compounds Studied in This Work

:

Compound Name	T K	V cc/gmole	^w s	× بر	a ₁ ,	d ₂ u*	d ₃ u*
2,5-Xylenol	707.1	349.0	0.390	0.402	1.4065	-2.1971	-1.0421
2,6-Xylenol	701.1	394.1	0.390	0.474	0.9385	-3.2931	-0.7711
3, 4-Xylen ol	730.0	349.1	0.390	0.450	1.6339	-2.0874	-1.2496
2–Indanol	645.7	410.5	0.303	0.472	4.8754	-2.5390	-2.0303
4-Indar:01	755.7	395.5	0.303	0.420	0.5154	0.2332	-0.0789
5-Indanol	765.8	395.5	0.303	0.417	0.1190	0.3725	0.3824
Dimethyl Ether	400.0	178.0	0.152	0.639	0.3013	0.4167	-0.2783
Methyl Ethyl Ether	437.8	221.0	0.193	0.515	0.4779	-0.2217	-0.3556
Diethyl Ether	466.7	280.0	0.251	0.472	0.5975	-0.8432	-0.4280
Ethyl Fropyl Ether	500.6	341.7	0.296	0.368	-0.3267	0.4550	0.2453
Phenyl. Ether	766.0	514.3	0.458	0.240	-0.4015	.00019	0.4187
Acetone	508.2	209.0	0.176	1.152	0.4730	-0.1184	.03743
2-Butanone	535.6	267.0	0.227	0.948	00028	0.4976	0.2490
2-Pentanone	564.0	301.0	0.279	0.844	0.4899	-0.9539	~0.1660

Table 4.1 (Continued)

÷

.

Compound Name	T _C K	V _C cc/gmole	^ω s		d ₁ µ*	d ₂ μ*	d ₃ u*
Methyl Mercaptan	470.0	145.0	0.098	0,633	0.2241	-0.2133	01414
Ethyl Mercaptan	499.0	207.0	0.152	0.588	0.2240	0.2989	-0.1876
Thiophene	579.4	218.5	0.192	0.188	0.3094	-0.5596	-0.2149
Tetrahydrothiopher	ne632.0	262.0	0.192	0.613	.01012	0.4739	03352
Thianaphthene	752.0	385.0	0.288	0.151	0.2855	-1.9178	-0.1012
Dikenzothiophene	899.3	528.2	0.334	0.158	0.8689	-2.1454	-0.5773
Methylamine	430.0	140.0	0.098	0.690	1.1565	.05413	-0.8730
Ethylamine	456.0	178.0	0.152	0.622	0.7017	01382	-0.3671
Dinæthylamine	437.6	187.0	0.152	0.541	1.1378	-0.5618	-0.7980
Diethylamine	496.6	301.0	0.251	0.380	0.3088	0.3501	-0.2780
Aniline	699.2	274.0	0.257	0.471	0.8072	-0.5633	-0.4364
Furan	490.2	218.0	0.2201	0.281	02964	0.5541	07590
Tetrahydrofuran	540.2	224.0	0.1923	0.642	0.2711	-0.4811	07554
Dibenzofuran	837.8	503.6	0.334	0.178	-0.6653	0.6710	0.5614

Table	4.1	(Continued)

Compound Name	т К	V _C cc/gmole	ω _s	ຸມ *	d_μ*	⁴ 2µ*	d ₃ u*
Pyridine	620.0	254.0	0.1437	0.761	0.6794	.03640	-0.4710
Quinoline	782.2	402.8	0.302	0.514	0.4402	-0.5312	-0.3564
Isoquinoline	803.2	403.0	0.282	0.600	0.4169	-0.7927	-0.3495
Carbazole	900.1	624.3	0.401	0.369	0.1928	0.6526	-0.2617
Acridine	905.2	542.9	0.362	0.367	4765	0.6052	0.6468
Toluene	591.7	316.0	0.257	0.131	0187	0.1493	.02001
o-Xylene	630.2	369.0	0.314	0.152	-0.1942	-0.3597	0.1458
Diphenylmsthane	770.2	529.1	0.4427	0.072	0.3191	-1.0624	-0.1427
Acetic Acid	594.4	171.0	0.176	0.535	0.8872	-0.5330	0.1573

1

ws determined using the homomorph method.

2

d1, d2, and d3 determined by multiproperty analysis of all available wapor pressure and density data.

and the correlation, equation (14), as discussed in section 3.1. Using two different methods to obtain ω_s , resulted in slightly different property prediction accuracies, as discussed in the next section. The $\omega_{_{\rm S}}$ values reported in Table 4.1 are obtained using the homomorph method. The dipole moment, μ , to be used in calculating μ^* via equations (9) through (11), is obtained from McClellan (1963). There are many sets of dipole moment values for some compounds, depending on temperature, phase (gas or liquid), and the fluid medium in which the measurement was made (e.g., in benzene, carbon tetrachloride). The recommended values given by McClellan (1963) are generally adopted. If a recommended value is not given, the value for the compound in its liquid state measured in benzene at a temperature of 20-50 $^{\circ}C$ is used throughout this work, for consistency. The polar/associative characterization parameters d_1 , d_2 , and d_3 used in equation (24), are not measurable properties, unlike T or $\rho_{\rm c},$ and must therefore be determined by regression analysis of experimental vapor pressure and/or density data. These polar/associative parameters are also dependent on the choice of ω_s values being used. The d_1 , d_2 , and d_3 reported in Table 4.1 are those obtained using vapor pressure and density data, with ω_{e} values determined by the homomorph method. Chapter V discusses the determination of d_1 , d_2 , and d_{γ} using different types of thermodynamic property data, and using data sets of different sizes. The effects of these parameters on the accuracy of thermodynamic property

predictions over the complete data set are also discussed. In this chapter, d_1 , d_2 , and d_3 are determined from the complete set of vapor pressure and density data. The regression method developed by Goin (1978) is used in the determination of parameters throughout this work with the exception of certain parts of chapter V wherein the regression method of Britt-Luecke (1973) is used. In chapter V, three parameters have to be determined using three data points; the regression method of Goin is not applicable in this case.

The experimental thermodynamic data used in this work to determine polar/associative parameters and to test the applicability of the new correlation are vapor pressure, vapor and liquid density, compressibility factor, enthalpy departure, and enthalpy of vaporization. The compound names, temperature and pressure ranges for the experimental data, and references from which the data were taken are listed in Table 4.2. Most of the data are at saturation conditions except for water, ammonia, methanol, ethanol, and dibenzofuran.

4.3 Application of the New Correlation to Polar and Associating Compounds

The polar/associative parameters, d_1 , d_2 and d_3 determined from vapor pressure and density data with ω_s determined from the homomorph muthod, are used in the first set of calculations. These characterization parameters are

Table 4.2

÷

Temperature and Pressure Ranges, and Data References for the Polar and Associating Compounds Studied in This Work.

Compound	Prop.	No. Of points	T range K	P range kPa	Data References
Water	Ps den.	65 385	273-647 273-1589	•••	Osborne et al. 1939 Osborne et al. 1939, Keyes & Smith 1934, Keyes et al. 1936, Kennedy 1957, Holser & Kennedy 1958, Kell & Walley 1965, Keenan et al. 1969
	Hđ	239	283-1589	3100-108400	Callendar & Egerton 1960, Keenan et al. 1969
Ammonia	Ps	142	197-403	7-10903	Garnjost 1974, Haar & Gallagher 1977
	den.	239	197-573	7-81060	Garnjost 1974, Haar & Gallagher 1977
			Alcohol	6	
Methanol	Ps den.	25 209	263-503 273-513	—	Young 1910 Young 1910, Ramsey & Young 1887
Ethanol	Ps den.	38 214	293- 498 273-623	6-4700 2-68900	Young 1910 Ramsey & Young 1887,
	Z	162	473-623	8300-68900	Young 1910 Lo & Stiel 1969

Compound	Prop.	No. of points	T range K	P range kPa	Data References
Propanol	Pa	44	303-513	4-3550	Kemme & Kreps 1969, Ambrose & Townsend 1963, Ambrose & Sprake 1970
	den.	37	353-533	50-4810	Int. Crit. Tables 1926
1-Butanol	Ps .	41	333-399	8-130	Kemme & Kreps 1969, Ambrose & Townsend 1963, Ambrose & Sprake 1970
	den.	14	293-490	0.6-1300	Hales & Ellender 1976
1-Pentanol	Ps	44	343-429	6180	Kenne & Kreps 1969,
	den.	14	293-490	0.2-800	Ambrose & Sprake 1970 Hales & Ellender 1976
1-Hexanol	Ps	42	313-438	0.3-130	Kemme & Kreps 1969
			Phen	015	
Phenol	Ps den.	14 14	323-673 323-673	0.3-5100 0.3-5100	Kudchadker et al. 1977 Kudchadker et al. 1977
	Н	14	323-673	0.3-5100	Kudchadker et al. 1977
m-Cresol	Ps den.	23 26	323-693 293-693 222-693	0.01-3830 0.1-3830 0.01-3830	Kudchadker et al. 1978a Kudchadker et al. 1978a Kudchadker et al. 1978a
	Н	23	323-693	0.01-3830	Kudchadker et al. 1978a
o-Cresol	Ps den. H	23 24 23	323-693 313-693 323-693	0.3-4810 0.1-4810 0.3-4810	Kudchadker et al. 1978a Kudchadker et al. 1978a Kudchadker et al. 1978a

Table 4.2 (continued)

Compound	Prop.	No. of points	T range K	P range kPa	Data References
p-Cresol	Ps	22	333-693	0.2-4280	Kudchadker et al. 1978a
	den.	24	313-693	0.05-4280	Kudchadker et al. 1978a
	Н	22	33 3–693	0.2-4280	Kudchadker et al. 1978a
2,3-Xylenol	Ps	19	353-693	0.5-3400	Kudchadker et al. 1978b
	Н	19	353-693	0.5-3400	Kudchadker et al. 1978b
2,4-Xylenol	Ps	32	303-673	0.02-2900	Kudchadker et al. 1978b
	den.	5	303-343	0.02-0.4	Kudchadker et al. 1978b
	Н	19	343-673	0.4-2900	Kudchadker et al. 1978b
2,5-Xylenol	Ps	18	353-673	0.7-3200	Kudchadker et al. 1978b
	den.	7	353-473	0.7-76	Kudchadker et al. 1978b
	Н	18	353-673	0.7-3200	Kudchadker et al. 1978b
2,6-Xylenol	Ps	17	333-653	0.4-2400	Kudchadker et al. 1978b
	Н	18	333-653	0.4-2400	Kudchadker et al. 1978b
3,4-Xylenol	Ps	19	353-693	0.3-3200	Kudchadker et al. 1978b
	den.	7	353-473	0.3-49	Kudchadker et al. 1978b
	H	19	353-693	0.3-3200	Kudchadker et al. 1978b
			Indano	ls	
1-Indanol	Ps	6	333-413	0.02-3	Viswanath & Wilhoit 198
	den.	6	333-413	0.02-3	Viswanath & Wilhoit 198
	Н	6	333-413	0.02-3	Viswanath & Wilhoit 1980

Prop. No. of Compound T range P range Data References points K kPa 2-Indanol Ps 10 353-513 0.03 - 115Viswanath & Wilhoit 1980 den. 10 353-513 0.03 - 115Viswanath & Wilhoit 1980 H 10 353-513 0.03-115 Viswanath & Wilhoit 1980 4-Indanol Ps 12 353-553 0.2 - 235Viswanath & Wilhoit 1980 den. 12 353-553 0.2 - 235Viswanath & Wilhoit 1980 H 12 353-553 0.2 - 235Viswanath & Wilhoit 1980 5-Indanol Ps 11 353-533 0.2 - 139Viswanath & Wilhoit 1980 den. 12 353-553 0.2 - 326Viswanath & Wilhoit 1980 H 11 353-533 0.2 - 139Viswanath & Wilhoit 1980 Ethers Dimethyl Ether Ps 17 249 - 393100-4700 Int. Crit. Tables 1926 denl 19 249-400 100-5300 Int. Crit. Tables 1926 Int. Crit. Tables 1926 denv 19 249-400 100-5300 Int. Crit. Tables 1926 Methyl Ethyl Ether Ps 18 281-438 100-4400 Int. Crit. Tables 1926 17 denl 281 - 438100-4400 Int. Crit. Tables 1926 denv 18 281-438 100-4400 . Diethyl Ether 24 263-466 Int. Crit. Tables 1926 Ps 150-3600 denl 23 250-3600 Int. Crit. Tables 1926 273-467 denv 23 250-3600 Int. Crit. Tables 1926 273-466 Ethyl Propyl Ether Ps 17 334-493 100 - 2900Int. Crit. Tables 1926 denl 18 334-501 100-3300 Int. Crit. Tables 1926

Compound	Prop.	No. of points	T range K	P range kPa	Data References
Diphenyl Ether	Ps	13	523-643	80-700	Vargaftik 1975
	denl	23	523-633	80-600	Vargaftik 1975
			Ketone	S	
Acetone	Ps	20	329508	100-4800	Int. Crit. Tables 1926
	denl	20	329-508	100-4800	Int. Crit. Tables 1926
	denv	19	329-508	100-4800	Int. Crit. Tables 1926
2-Butanone	Ps	17	316-362	30-130	Collerson et al. 1965
	denl	4	273303	100	Timmermans 1950
2-Pentanone	Ps	18	330-385	20-130	Collerson et al. 1965
	denl	18	330-385	20-130	Meyer & Wagner 1966
			Furans		
Furan	Ps	25	193-473	0.08-4390	Kudchadker et al. 1978c
	denl	20	193-373		Kudchadker et al. 1978c
	H	25	193-473	0.08-4390	Kudchadker et al. 1978c
Tetrahydrofuran	Ps	25	253-540	2-5200	Kudchadker et al. 1978c
-	denl	10	253-333	2-80	Kudchadker et al. 1978c
	Н	24	253-533	2-4720	Kudchadker et al. 1978c
Dibenzofuran	Ps	19	435-618	5-300	Sivaraman & Kobayashi 198
	denl	42	391-563	500-25500	Nasir et al. 1981

Compound	Prop.	No. of points	T range K	P range kPa	Data References
		Sul	fur-Contain	ing Compounds	
Methyl Mercaptan	Ps denl	21 21	279 -47 0 279 -47 0	100-7200 100-7200	Int. Crit. Tables 1926 Int. Crit. Tables 1926
Ethyl Mercaptan	Ps den1 denv	21 21 21	308 ~499 308-499 308-499	100-5500 100-5500 100-5500	Int. Crit. Tables 1926 Int. Crit. Tables 1926 Int. Crit. Tables 1926
Thiop hene	P s denl H	29 15 28	235-579 273-393 235-573	0.2-5700 3-300 0.2-5300	Kudchadker et al. 1981b Kudchadker et al. 1981b Kudchadker et al. 1981b
Tetrahydrothiopher	nePs denl H	33 9 24	208-613 273-343 213-453	0.001-4100 0.5-20 0.002-410	Kudchadker et al. 1981b Kudchadker et al. 1981b Kudchadker et al. 1981b
Thianaphthene	Ps	27	424-631	20-1100	Wieczorek & Kobayashi 1980
Dibenzothiophene	Ps	19	425-608	0.5-100	Sivaraman & Kobayashi 1981
			Amines		
Methylamine	Ps	17	267-430	100-7500	Int. Crit. Tables 1926
Ethylamine	Ps	18	290-456	100-5600	Int. Crit. Tables 1926
Dimethylamine	Ps	18	280-438	100-5200	Int. Crit. Tables 1926

Table 4.2 (continued)

	Table	4.2	(continued)
--	-------	-----	-------------

:

Compound	Prop. No. of points		Trange Prange K kPa		Data References		
Diethylamine	Ps	19	328-497	100-3700	Int. Crit. Tables 1926		
20011/20112114	denl	19		100-3700	Int. Crit. Tables 1926		
	denv	19			Int. Crit. Tables 1926		
Aniline	Ps	30	2736 9 9	0.01-5310	Kudchadker 1982		
	denl	31	273-699	0.01-5310	Kudchadker 1982		
	H	29	273-673		Kudchadker 1982		
		Nit	rogen-Conta	ining Compoun	ds		
Pyridine	Ps	46	253-620	0.1-5600	Kudchadker 1979		
•*	denl	27		0.1-5600	Kudchadker 1979		
	Н	26	253-613	0.1-5210	Kudchadker 1979		
Quinoline	Ps	42	313-753	0.03-3500	Viswanath 1979a, Wilson et al. 1981		
	denl	16	303-513	0.01-100	Viswanath 1979a		
	H	23	303-653	0.01-1148	Viswanath 1979a,		
Isoquinoline	Ps	29	333-803	0.1-5000	Viswanath & Wilhoit 1979b		
-	denl	19	333-533	0.1-150	Viswanath & Wilhoit 1979b		
	H	20	333-573	0.1-310	Viswanath & Wilhoit 1979b		
Carbazole	Ps	26	518-673	7-220	McNeil 1965, Kudchadker et al. 1981a		
	denl	6	520-59 3	7-50	McNeil 1965, Kudchadker et al. 1981a		
	Н	10	519-673	7-220	Kudchadker et al. 1981a		

Compound	Prop.	No. of points	T range K	P range kPa	Data References
Acridine	Ps	25	383-633	0.05-130	McNeil 1965, Kudchadker et al. 1981a
	đenl H	12 15	393-613 383-633	0.08-90 0.05-130	Kudchadker et al. 1981a Kudchadker et al. 1981a
			Other Com	pounds	
Toluene	Ps denl	33 13	273-583 273-383	0.9-3800 0.9-100	Vargaftik 1975 Vargaftik 1975
o-Xylene	Ps denl	42 59	253-632 298-548	0.03-3800 100-40000	Vargaftik 1975 Vargaftik 1975
Diphenylmethane	Ps	38	425-728	4-1800	Wieczorek & Kobayashi 1980 Wilson et al. 1981
	denl	3	311-372	100	API-42, 1966
Acetic Acid	Ps denl	22 22	392-595 392-595	100-5800 100-5800	Int. Crit. Tables 1926 Int. Crit. Tables 1926

Table 4.2 (continued)

1

.

Ps = vapor pressure, den. = vapor and liquid density, denl = liquid density, denv = vapor density, Hd = enthalpy departure, H = enthalpy of vaporization, Z = compressibility factor.

summarized in Table 4.1. Calculations of density, vapor pressure, and enthalpy departure for compounds listed in Table 4.2 were made using equations (22) through (24) and thermodynamic relations in appendix A. The prediction results are presented in Table 4.3. Satisfactory prediction accuracy was achieved using the new equation of state for all of the compounds studied, especially for model coal compounds (e.g., phenol, cresols, xylenols, indanols, pyridine, quinoline, furans), and straight-chain alcohols. The AARD& for vapor pressure and density predictions are 2.3% and 2.8%, respectively.

To provide further perspective on the accuracy achieved by the new correlation, property calculations were made using the 3PCS-MBWR, equation (2). In these calculations, the best orientation parameter determined by regrassion analysis of all available experimental data are The 3PCS-MBWR results, as reported in Table 4.3, used. reemphasize the inadequacy of three-parameter corresponding-states correlations in predicting properties for highly polar and hydrogen-bonding compounds.

As discussed in section 3.1, the structure factor, ω_{s} , can be conveniently determined using equation (14). In this section, the value of the ω_{s} correlation, and the effects of the ω_{s} values obtained in this manner on the predictions of thermodynamic properties are examined. The ω_{s} values calculated from equation (14) are used in the multiproperty regression analysis of vapor pressure and

. . . .

Table 4.3

ست خلف التي حيد خود هذه الحف الحف خلف هذه الحد اليه حتى خدة التي تكرد خلك التي خبرة الحف الحق				به خه خه خه هر جر هر هر		
			AARD*			
Compound	Prop.	No. of points	eq. 13	egs. 13&14	3PCS-	
11 . 1						
Water	P8 don	64 205	0.57	0.57	11.9	
	ua	385 239	1.40	1.40	10.41/	
		239	3.02	3.63	70 • T	
Ammonia	Ps	142	0.44	0.44	4.10	
	den.	142 239	0.88	0.88	4.30	
	1-		•			
	•	Alcohols	•			
	1-		1			
Methanol	Ba	25	1 27	4 20	0 70	
Methanol	rs den	209	2 50	2.52	3.70 4 20	
	uen.	203	2.50	2.92	4.30	
Ethanol	Ps	38	3.44	3.22	2.60	
	den.	214	3.79	3.85	4.40	
	Z	162				
	•					
Propanol		44				
	den.	37	3.64	3.79	5.10	
1-Butanol	De	41	7 0	0 22	4 60	
I-Bulanoi	rð Aon	14	5 90	0.89		
		• •	0.00	0.05	0.00	
1-Pentanol	Ps	44	1.65	1.65	4.80	
	den.	14	0.76	0.79	0.90	
	-				201.40	
1-Hexanol	PS	42	1.17	1.13	8.10	
	1-		1			
	i	Phenols	1			
	1-	دنه هند هند اعتد جها همة كله عنه هنه هن ه	•			
Dhome 1	Da		2 99	4 03	n 40	
Phenol	Ps den1	14	3.22 2.99	1.83	2.40	
	aent	14	2.99	4.03	19.7	
m-Cresol	Ps	23	2.89	2.93	3.20	
	denl	26	1.30	1.23	7.50	
o-Cresol	Ps	23	2.30	2.12	2.30	
	denl	24	2.90	2.85	15.7	

. .-

. .

Predictions of the Thermodynamic Properties for Polar and Associative Compounds.

میں چین ایک بڑی ایک نے اور ایک میں میں میں ہیں ہے۔					
				AARDa	
Compound	Prop.	No. of	eg. 13		3PCS-
		points		13&14	MBWR
	میں کی برور خان خان میں میں میں ہے۔	نه مه دیر ۵۰ مه هم می دی هر می د	جباد هين هين تلك قلت قريد هي عربه و		
p-Cresol	Ps	22	3.68	3.52	4.20
,	denl	24		2.97	20.1
2,3-Xylenol	Ps	19	3.48	3.61	4.96
	Da	32	3.72	3.77	8.42
2,4-Xylenol	Ps denl	5	1.33	1.25	0.19
	Gent	5	1.33	1.24	0.10
2,5-Xylenol	Ps	18	4.53	4.63	5.13
	denl	7	1.04	1.09	8.94
	_	. –			
2,6-Xylenol	Ps	17	2.79	2.89	3.69
3,4-Xylenol	Ps	19	2 60	3.57	5.36
3,4-Aylen01	denl	13		0.87	8.23
		•	0.02	••••	0.110
	ĺ		•		
		Indanols			
	1		-1		
1-Indanol	Ps	6	2.65	2.38	
(-Indanoi	denl	6	1.81	1.31	
		_			
2-Indanol	Ps	10		10.3	22.8
	denl	10	2.33	2.12	28.5
	.				
4-Indanol	P8	12 12	4.58 0.70	4.62 0.65	
	denl	12	0.70	0.05	3.06
5-Indanol	Ps	11	5.41	5.39	9.78
	denl	12	1.46	1.41	3.66
		Ethers	}		
			•		
	-				
Dimethyl Ether	Ps	17	0.62	0.60	2.60
	denl denv	19 19	3.62 1.57	3.30 2.02	5.80 4.40
	Gena	13	1.57	2. V2	1997 - C. 1997 - C. 19

.

.

.. .

Table 4.3 (continued)

ور بای بی این این این این این این این این این ای	ین هیده بیده بیده کنده وی هیچ هیچ منت بر			AARD*	د • • • • • • • • • • • • • • • • • • •
Compound	Prop.	No. of points	eq. 13	egs. 13&14	3PCS- MBWR
Methyl Ethyl Ether	Ps den1 denv		1.29 0.85 13.4	0.85 1.14 13.1	1.98 1.20 13.6
Diethyl Ether	Ps den1 denv		2.67 5.29 3.62	2.42 5.30 3.72	0.89 5.33 2.92
Ethyl Propyl Ether		17 18			
Diphenyl Ether		13 23			
		 Ketones	İ		
Acetone	Ps den1 denv	20 20 20	0.92 4.30 12.4	0.40 3.50 13.1	4.78 3.42 14.2
2-Butanone	Ps denl	17 4	0.03 0.12	0.02 0.14	0.87 3.70
2-Pentanone	Ps denl	18 18		0.02 0.27	
		 Furans 	1		
Furan	Ps denv	25 20	2.71 6.71	1.94 0.91	8.10 9.58
Tetrahydrofuran	Ps denl	25 10	0.93 0.49	0.93 0.32	2.01 2.95
Dibenzofuran	Ps denl	19 42	3.97 3.52	1.54 1.07	6.40 6.40

. .

Table 4.3 (continued)

، یہ بد حد حد حد حد حد حالی جہ سے ہے حد حد عبر بیب	یپ جه چه نک هن می می می می من م			AARD*	
Compound	Prop.	No. of points	ēq. 13	eqs. 13&14	3PCS- MBWR
ŀ	س می بی بی بی بی کر بی بی				
1 1		ontaining			
Methyl Mercaptan	Ps denl	21 21	0.96 1.59	1.10 2.15	1.15 1.92
Ethyl Mercaptan	Ps den1 denv	21 21 21	1.27 1.23 14.8	1.42	1.37 1.48 19.0
Thiophene	Ps denl	29 15	2. 44 1.39	2.46 1.33	5.15 5.92
Tetrahydrothiophene	Ps denl	33 9	4.69 3.12		4.69 0.65
Thianaphthene	Ps	27	0.43	0.45	2.07
Dibenzothiophene	Ps	19	3.07	3.08	3.74
		 Amines 	İ		
Methylamine	Ps	17	2.74	0.79	6.83
Ethylamine	Ps	18	0.27	0.21	0.61
Dimethylamine	Ps	18	0.40	0.27	4.60
Diethylamine	Ps den1 denv	19 19 19	0.45 3.44 10.8		2.20 5.10 14.4
Aniline	Ps denl	30 31	2.69 3.73	2.55 4.16	

. .

Table 4.3 (continued)

	ه های میرود دیده میک ویک ویک در است. میک است. ا	ه هم بين جي جو جو تو هو هو هو هو هو		AARD%	
Compound	Prop.	No. of points	eg. 13	egs. 13&14	3PCS- MBWR
	Nitrogen	-Containir		7	
Pyridine	Ps	4 6	2.87	0.91	3.85
	denl	27	4.26	4.29	5.51
Quinoline		42 16			
Isoquinoline	Ps	29	1.17	2.69	2.81
	denl	19	0.26	2.41	4.62
Carbazole	Ps	26	3.37	1.85	0.61
	denl	6	21.1	8.87	24.2
Acridine	Ps	25	2.36	2.29	8.29
	denl	12	0.66	0.57	4.20
	i Ot	her Compou	unds i		
Toluene		33 13			
o-Xylene	Ps	42	0.82	0.87	0.99
	den.	59	0. 38	9.37	1.46
Diphenylmethane	Ps	38	1.51	1.42	2.53
	den.	3	2.06	0.46	3.23
Acetic Acid	Ps	22	2.29	0.70	11.3
	den1	22	7.17	3.48	6.0

.

....

density data to determine d_1 , d_2 , and d_3 . The resultant parameters are listed in Table 4.4. As pointed out in section 3.1, the new sets of ω_{c} are very similar to those obtained using the homomorph method, see Table 3.2. Property calculations were made, once again, using the new correlation. The results are, for most cases, similar to the first set of results, and are reported for comparison in Table 4.3. Notable improvements are observed for 1-butanol, furan, dibenzofuran, carbazole, and acetic acid. The overall AARDs for vapor pressure and density predictions are 1.8% and 2.6%, respectively. The prediction results are compared graphically with experimental data via P-V-T The P-V-T behavior for water, phenol, and diagrams. dibenzofuran are shown in Figures 1, 2, and 3, respectively. plots of percent deviations in vapor-pressure The predictions versus temperature are made for a few compounds to illustrate the degrees of bias (or lack of bias) of the predictions. Deviation plots for phenol and dibenzofuran are shown in Figures 4 and 5. These plots show that the deviations are generally scattered, showing a bias value close to zero. On the basis of the results obtained here, the ω_{a} correlation, equation (14), is recommended for use the proposed multiparameter corresponding-states with correlation, equation (13). Subsequent calculations reported here are made using $\omega_{\rm S}$ values determined from equation (14).

. . .

Table 4.4

Compound	 ω _s	a _ا س م	d ₂ u*	d ₃ "
Name				
Water	0.008	1.0058	0.0139	-0.0140
Ammonia	0.0073	0.8674	-0.09867	-0.09835
Methanol	0.0856	1.9249	-0.5891	-0.6506
Ethanol	0.196	2.2386	-0.5515	-1.2474
Propanol	0.280	1.7877	-0.04771	-1.1204
1-Butanol	0.308	2.2099	-0.5887	-1.6412
1-Pentanol	0.357	1.9348	-0.6398	-1.4602
1-Hexanol	0.379	3.1451	-4.1887	-2.5925
Phenol	0.248	1.7598	-4.3681	-1.0150
m-Cresol	0.301	1.5140	-1.4857	-0.9977
o-Crescl	0.287	1.4198	-3.2124	-0.7504
p-Cresol	0.304	1.6897	-4.3418	~0.8161
2,3-Xylenol	0.292	1.8871	-3.5052	~1.3592
2,4-Xylenol	0.310	1.2708	-0.6234	-0.9453
2,5-Xylenol	0.342	1.6607	-2.3021	-1.1669
2,6-Xylenol	0.293	1.4359	-3.3215	-1.0121
3,4-Xylenol	0.330	1.9454	-2.2242	-1.3998
1-Indanol	0.725	0.7834	-0.1454	0.9126
2-Indanol	0.716	2.6420	-1.6042	-0.8841
4-Indanol	0.335	0.3555	0.2975	-0.0049
5-Indanol	0.333	-0.02068	0.3875	0.4546
Dimethyl Ether	0.163	0.2330	0.5088	-0.2470

·· .

The Structure Factors Determined Using Equation (14), and the Polar/Associative Parameters.

Compound Name	 ω _s	d _l µ*	d ₂ μ*	 d ₃ ۳
ر میں بھر کے میں اور اور میں بھر بھر بھر میں بھر میں اور اور اور اور اور اور اور اور اور اور		فل حاليا هي خالبا حمل حاليا بالله جيل حيد التي الي الي ال	ه هه هه چه هه هه ها خا خه نبه برما م	هو چه بله دی کا جه خبر حد هد هد ه
Methyl Ethyl Ether	0.204	0.4005	-0.0867	-0.3311
Diethyl Ether	0.246	0.6012	-0.8423	-0.4255
Ethyl Propyl Ether	0.285	-0.04253	0.0933	0.06840
Diphenyl Ether	0.378	0.0368	-0.1984	0.2008
Acetone	0.099	0.9389	-0.6541	-0.1744
2-Butanone	0.176	0.2894	0.3693	0.1115
2-Pentanone	0.209	0.8500	-1.1109	-0.3312
Furan	0.178	-0.4425	1.5890	0.1643
Tetrahydrofuran	0.169	0.4294	-0.6281	-0.1672
Dibenzofuran	0.291	-1.0740	1.2526	1.0671
Methyl Mercaptan	0.127	0.0266	-0.0634	0.0966
Ethyl Mercaptan	0.160	0.1736	0.3561	-0.1584
Thiophene	0.196	0.2958	-0.5622	-0.2110
Tetrahydrothiophene	0.167	0.2015	0.3169	-0.1452
Thianaphthene	0.285	0.4855	-2.0343	-0.1916
Dibenzothiophene	0.327	0.9124	-2.2063	-0.6007
Methylamine	0.146	1.1326	-0.2150	-0.9510
Ethylamine	0.181	0.7291	-0.4222	-0.4220
Dimethylamine	0.201	0.5199	0.3510	-0.3986
Diethylamine	0.258	-0.1130	1.1029	0.0108
Aniline	0.249	0.9222	-0.7013	-0.5315
Pyridine	0.155	0.3094	0.3251	-0.1749

.. **.**

Table 4.4 (Continued)

.

Compound Name	ω _s	d <u>l</u> u	d ₂ u	d ₃ u
Quinoline	0.230	-0.0613	1.3738	-0.1642
Isoquinolin	0.202	-0.3838	1.6982	0.1622
Carbazole	0.369	-1.4641	2.8509	1.0229
Acridine	0.332	-0.3281	0.5653	0.5771
Toluene	0.249	0.0380	0.1095	01673
o-Xylene	0.286	02118	0.2512	.05491
Diphenylmethane	0.423	0.2903	-0.7486	08933
Acetic Acid	0.250	0.5482	-1.3006	0.4567
و به بی ک بی به به بی بی بی بی بی بی بی بی بی بی بی بی بی				بيروز حقة الله فله حيد نلاء حتير عليه بليو جي ج

.

Table 4.4 (Continued)

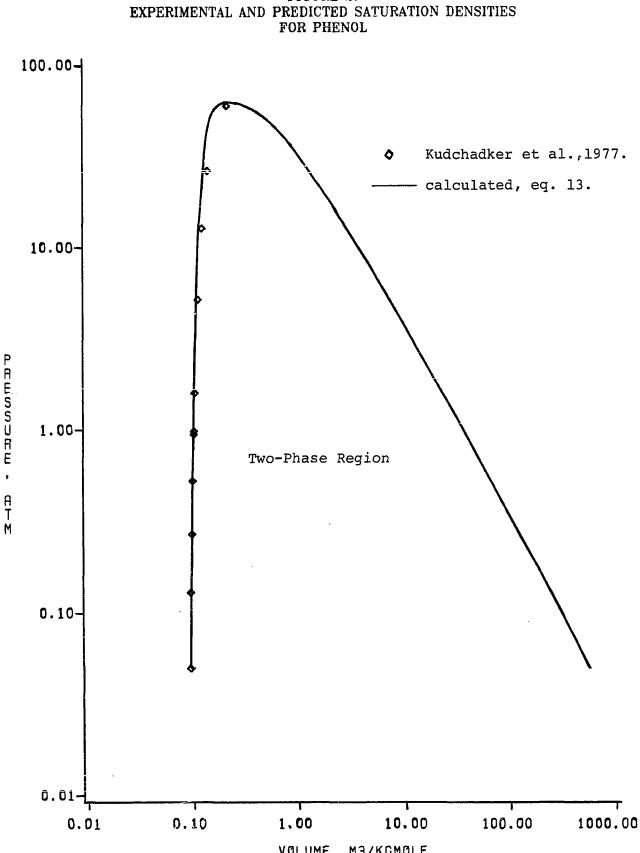
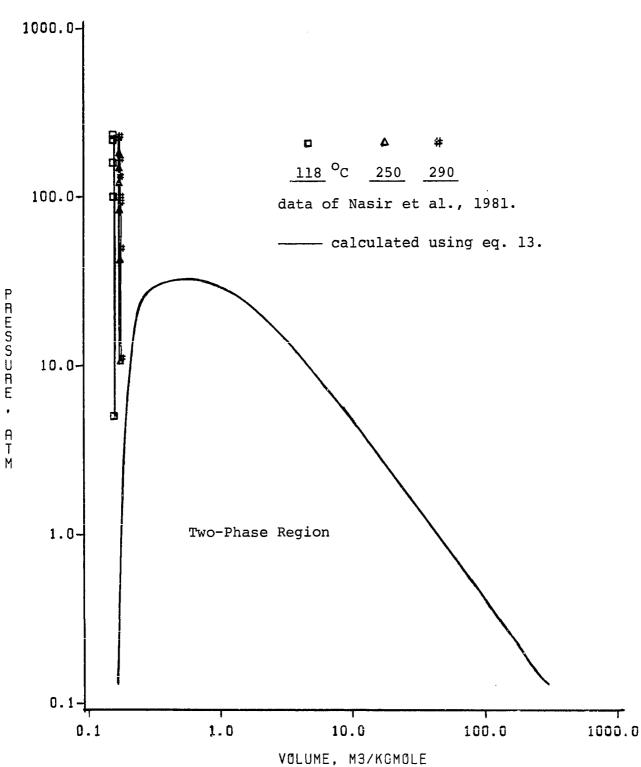



FIGURE 2.

VOLUME, M3/KGMOLE

. . .

FIGURE 3. EXPERIMENTAL AND PREDICTED DENSITIES FOR DIBENZOFURAN

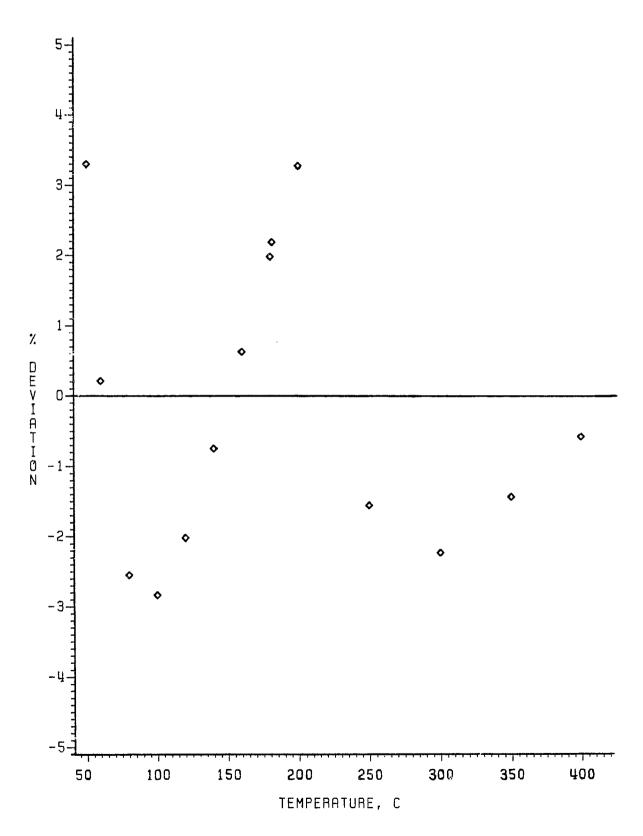


FIGURE 4. DEVIATIONS IN VAPOR-PRESSURE PREDICTIONS VS TEMPERATURE FOR PHENOL

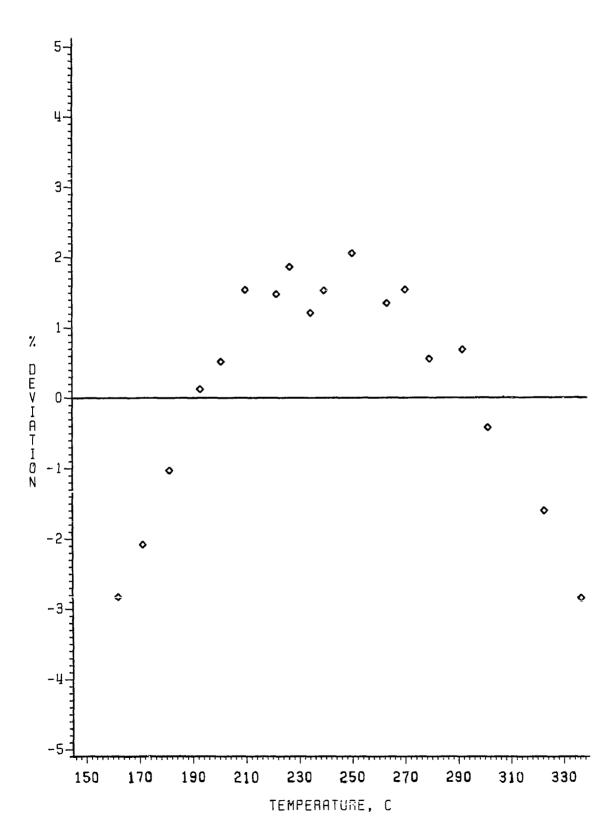


FIGURE 5. DEVIATIONS IN VAPOR-PRESSURE PREDICTIONS VS TEMPERATURE FOR DIBENZOFURAN

4.4 Heat-of-Vaporization Predictions

further test the To new correlation, the polar/associative parameters, d_1 , d_2 , and d_3 determined using vapor pressure and density data, reported in Table used to predict enthalpy and enthalpy of 4.4, are vaporization for a number of polar and associating This is an important test because in order for compounds. the generalized correlation to be used effectively in process design, the correlation must be capable of pressures, predicting accurate vapor densities, and enthalpies for process-stream fluids. Equally important is that the temperature dependence of the correlation can be critically tested with the use of enthalpy data because the enthalpy expression, equation (25), contains the temperature derivative of compressibility Z. In general, enthalpy or enthalpy-departure data are used. However, enthalpy-ofvaporization data can be used if other enthalpy data are not available. If the enthalpy of vaporization can be predicted accurately, the enthalpies of both the vapor and liquid are predicted within reasonable levels of accuracy. For most in this section, only enthalpy-ofcompounds tested vaporization data are available. Water and ammonia are the only compounds with enthalpy-departure data. The predicted enthalpy and enthalpy of vaporization deviate from the experimental values, averaged over all compounds, by 9.5 kJ/kg (4.1 Btu/lb). Results are reported in table 4.5. The

Table 4.5

Compound	Prop.	No. of		AARDz	
میز منه چه ها که که که که که به چه وی برای بای ای ت خت جي الله جي هي جي جه الله الله الله الله الله ا	points	a 	b	с 	
Water	Ps	64	0.57	-	11.9
		385	1.46	-	6.47
	Hd	239	3.63	-	18.1
Ammonia	Ps	142		0.56	
		239			
	Hd	145	2.85	2.10	8.95
		Phenols	•		
Phenol	Ps	14	1.83	2.54	2.40
· · · · · · ·	denl	14	4.03	4.99	19.7
	Н	14	7.50	7.38	6.94
m-Cresol	Ps	23	2.93	3.00	
	denl	26	1.23		7.64
	Н	23	6.46	6.31	8.23
o-Cresol	Ps	23		1.95	
	denl	24		3.80	
	Н	23	7.27	7.46	6.97
p-Cresol	Ps	22		2.68	
	denl	24		3.76	
	н	22	6.20	5.42	7.74
2,3-Xylenol	Ps	19	3.61	4.28	4.67
	н	19	4.63	4.11	4.75
2,4-Xylenol	Ps	32		3.77	
	denl	5	1.25	1.24	0.19
	Н	19	3.36	3.31	5.30
2,5-Xylenol	Ps	18	4.63	4.63	5.57
	denl	7	1.09	0.32	8,91
	Н	18	5.36	4.96	4.97
2,6-Xyleno1	Ps	17	2.89	2.94	3.66
	Н	18	2.16	2.12	3.42

.

-

• •

Predictions of the Thermodynamic Properties Using Different Polar/Associative Parameters.

Compound	Prop.	No. of		âARD2	
		points	a 	b	C
3,4-Xylenol	Ps denl H	7	3.57 0.87 5.43	1.13	
		 Indanols 	•		
1-Indanol	Ps denl H	6 6	2.38 1.31 34.6	5.87 1.19 26.4	19.6 4.19 5.60
2-Indanol	Ps denl H	10 10 10	10.3 2.12 18.2	10.5 2.10 15.9	11.9 1.56 10.3
4-Indanol	Ps denl H	12 12 12	4.62 0.65 1.48		
5-Indanol	Ps denl H	11 12 11	5.39 1.41 7.21	1.30	3.66
		 Furans 			
Furan	Ps denl H	25 20 25	1.94 0.91 2.30	1.93 1.05 2.28	8.22 9.57 4.74
Tetrahydrofuran	Ps denl N	25 10 24	0.93 0.32 2.99	1.04 1.19 2.23	2.02 2.94 2.01
	•	-Containing			
Thiophene	Ps den1 H	29 15 28		2.38 2.57 2.08	

• • •

Table 4.5 (continued)

					د به ه چر خه به به				
Compound	Prop.	No. of points		AARD%	<u>c</u>				
میں غیر سے بچ ہیں ہے کہ جے جو بی ہے کہ اور بچ کو بی بی اور اور اور اور اور اور اور اور اور اور									
Tetrahydrothiophene	Ps	20	5 03	4 04	6 41				
recranyarochrophene		33	5.03 2.54		6.41				
	denl	9		3.42	0.67				
	Н	24	5.73	5.54	5.34				
1									
	Nitrogen-Containing Compounds								
ł				1					
Pyridine	Ps	46	0.91	0.94	3.92				
	denl	27	4.29		5.51				
	H	26	2.49		3.42				
	••	20		2.02	3142				
Quinoline	Ps	42	3.89	4.22	18.7				
	denl	16	0.90	1.23	6.08				
	H	23	7.35	7.45	7.02				
Isoquinoline	Ps	29	2.69	2.74	7.64				
	denl	19	2.41	2.04	6.98				
	H	20	3.20	3.11	3.88				
	**	20	5.20	2.11	5.00				
Carbazole	Ps	26	1.85	-	0.72				
	denl	6	8.87	-	24.2				
	Н	10	2.89	-	6.02				
A musi di na	D-	<u></u>	0 00	• • •	0.40				
Acridine	Ps	25	2.29	2.22	8.40				
	denl	12	0.57		4.20				
	Н	15	5.40	5.37	8.01				
Aniline	Ps	30	2.55	2.85	2.39				
• === = = = = = = = = = = = = = = = = =	denl	31	3.28		5.06				
	H	29	4.86	4.77	5.36				
	11	23	3.00		2.30				

- -

Table 4.5 (continued)

a calculated using polar/associative parameters determined from vapor-pressure and density data (see Table 4.4). b Polar/associative parameters determined from vaporpressure, density, and enthalpy of vaporization data. c

Calculated by the 3PCS-MBWR correlation using the best orientation parameter, 1, determined from vaporpressure, density, and enthalpy of vaporization data.

72

results show that parameters d_1 , d_2 , and d_3 determined using only vapor-pressure and density data can be used effectively in the calculation of enthalpy and enthalpy of vaporization.

the enthalpy predictions, То improve the d₂ polar/associative parameters, **d**₁, **d**₂, and are redetermined using vapor pressure, density, and enthalpydata. With the new characterization of-vaporization parameters, vapor pressure, density, enthalpy, and enthalpy of vaporization are calculated. The average deviations for all compounds are reported in Table 4.5. In comparing these results to those obtained above using parameters from vapor pressure and density data only, no significant improvement in prediction accuracy for enthalpy of vaporization has been achieved by the inclusion of enthalpy-of-vaporization data in the data base. In fact, density predictions for some compounds actually deteriorate. It is considered best, therefore, to determine d_1 , d_2 , and d_3 using only vapor pressure and density data. The 3PCS-MBWR results are also given in Table 4.5 for comparisions.

CHAPTER V

SENSITIVITY OF THERMODYNAMIC-PROPERTY PREDICTIONS TO THE VALUES OF POLAR/ASSOCIATIVE PARAMETERS

From the results obtained for 51 polar and hydrogenbonding compounds, as presented in Chapter IV, the new correlation is sufficiently accurate for use in processdesign calculations. As discussed in section 4.2, the new correlation requires the use of T_c , ρ_c , ω_s , u^* , d_1 , d_2 , and d_3 as characterization parameters. The first four parameters are either measurable, or can be calculated using correlations, see e.g., Brule et al., (1982). However, the polar/associative parameters d_1 , d_2 , and d_3 have to be determined from multiproperty regression analysis of vaporpressure and density data. In chapter IV, all available vapor-pressure and density data were used to determine d_1 , d_2 , and d_3 .

In this chapter, data sets of different numbers of data points, and data sets consisting of different types of thermodynamic data are used to determine sets of d_1 , d_2 , and d_3 . These parameters are used to predict thermodynamic properties for the entire data set. The prediction

accuracies are then compared with those reported in chapter This study provides insight into IV. e.g., Table 4.5. sensitivity to the polar/associative parameters, and helps identify the types of thermodynamic property data most critical to the determination of the best set of parameters (Brule and Starling, 1982). Also, the minimum number of points which are needed to determine a set of data parameters that can be used to predict properties for the complete data set with reasonable accuracy will be This study is particularly useful in the identified. application of the correlation to undefined fractions since only a few inspection data are usually obtained for these boiling temperature fractions. e.g., (hence, vapor pressure), specific gravity, How well these few data points can be used to determine parameters that will ultimately be used to predict properties over wide ranges of temperature and pressure is of great interest to design engineers.

5.1 Determination of Polar/Associative Parameters from a Small Set of Thermodynamic Data

For each compound studied in this section, a total of seven data points are selected. The three vapor-pressure and three density data points are at about 0.02, 0.2, and 1 bar. The enthalpy of vaporization datum is at 1 bar. These selected data are at very low pressures compared to the rest of the data which typically are at pressures up to the

....

critical pressure (see Table 4.2). These data are used in to analysis determine multiproperty regression polar/associative parameters, d_1 , d_2 , and d_3 . The resultant parameters are then used to predict the entire data set for vapor pressure, density, and enthalpy of vaporization. The results are compared in Table 5.1 with those obtained using parameters determined from the entire vapor pressure and density data set (compare columns designated a and b). For all practical purposes, both prediction results are equivalent, indicating that parameters determined using low-pressure data are as good as those determined using the entire data set covering much broader temperature and pressure ranges.

Results in section 4.5 indicate that enthalpy of vaporization data are not important in the determination of polar/associative parameters. To reconfirm this observation, the parameters are determined using only three vapor-pressure and three density data points, omitting the single enthalpy-of-vaporization datum. Prediction results for the entire data set using these parameters are presented in Table 5.1, column c. No deterioration in the prediction accuracy is observed for any system studied. These results reconfirm that enthalpy-of-vaporization data are not necessary in the determination of parameters d_1 , d_2 , and d_3 .

In the next study, the number of data points used in the determination of d_1 , d_2 , and d_3 are reduced to three. Three vapor-pressure data points are used to determine the

Table 5.1

Predictions of Vapor Pressure, Density, and Enthalpy of Vaporization Using the Polar/Associative Parameters Determined from Small Number of Data Points.

Compound	Prop.	No. of	_		АА	RD*		
منه هنه بينه بينه بينه في نين ني منه منه بيه بيه بين الم		points	aa	b	C	d	e	f
			•	enols 				
Phenol	Ps	14	1.83	2.86	2. 6 6	2.81	2.87	2.84
	denl	14	4.03	3.01	3.07	5.38	3.32	3.34
	H	14	7.50	6.73	6.66	4.58	5.97	6.00
m-Cresol	Ps	23	2.93	3.67	3.69	8.42	3.22	3.10
	denl	26	1.23	2.32	2.34	2.26	2.62	2.62
	H	23	6.46	6.04	6.03	7.61	6.25	6.27
o-Cresol	Ps denl H	23 24 23	2.12 2.85 7.27	2.42 3.18 6.37	2.46 3.22 6.36		1.98 4.10 7.37	- - -
p-Cresol	Ps	22	3.52	3.87	3.91	0.69	3.25	3.99
	denl	2 4	2.97	3.11	3.08	6.79	3.36	5.00
	H	2 2	6.20	5.24	5.23	4.83	5.40	4.22
2, 4-Xylen ol	Ps	32	3.77	-	5.17	5.19	5.32	5.49
	denl	5	1.25	-	0.12	1.10	0.16	1.75
	H	19	3.36	-	4.02	4.14	4.06	4.31

.

Compound	Prop.	No. of	_		AA	RD*		
		points	a	b	C	d	e	f
2,5-Xylenol	Ps den1 H	18 7 18	4.6 3 1.09 5.36	- - -	5.19 0.30 5.06	6.62 10.4 5.78	5.39 0.44 5.29	6.03 0.86 5.79
2,6-Xylenol	Ps H	17 18	2.89 2.16	_	- -	2.79 2.22	-	-
3,4-Xylenol	Ps denl H	19 7 19	3.57 0.87 5.43		4.07 0.53 5.25	10.3 2.86 7.58	4.23 0.94 5.28	4 .13 1.09 5.67
			•	nols				
1-Indanol	Ps denl H	6 6 6	2.38 1.31 34.6	12.7 5.22 16.1	2.81 1.29 33.0	2.00 5.06 34.4	3.39 2.18 33.4	-
2-Indanol	Ps denl H	10 10 10	10.3 2.12 18.2	11.5 1.68 10.5	11.5 1.70 10.6	13.0 13.8 12.6	13. 4 2.20 10.9	-
4-Indanol	Ps denl H	12 12 12	4.62 0.65 1.48	4.68 0.58 2.07	4.65 0.59 1.99	1.80 12.9 5.30	4.83 0.60 2.75	-
5-Indanol	Ps denl H	11 12 11	5.39 1.41 7.21	7.96 1.11 1.15	- - -	3.06 15.7 9.63	8.48 1.22 1.55	- -

•

.

.

Compound	Prop.	No. of			AA	RD%		
		points	a	d	С	d	e	£
			1	1				
			Fur	ans I				
			1	1				
Furan	Ps	25	1.94	3.29	3.32	3.02	3.35	1.85
	denl	20	0.91	0.90	0.91	2.30	0.98	0.98
	Н	25	2.30	2.84	2.86	3.41	2.96	2.23
'Tetrahydrofuran	Ps	25	0.93	1.15	1.08		0.97	
	denl	10	0.32	0.31	0.31	-	0.29	-
	Н	24	2.99	2.28	2.31	~~	2.32	-
Dibenzofuran	Ps	19	1.54	1.52	1.51		1.50	6.32
	denl	42	1.07	1.09	1.08		2.16	1.07
				ning Com	ipounas 			
Thiophene	Ps	29	2.46	2.57	2.61	-	2.50	3.08
THIOPHENE	denl	15	1.33	0.14	0.14	-	0.19	2.11
	Н	28	2.16	2.07	2.06	-	2.15	2.46
Tetrahydro-	Ps	33	5.03	5.76	5.78	5.29	5.51	9.26
thiophene	denl	9	2.54	0.75	0.75	3.05	1.46	3.9
	н	24	5.73	4.24	4.24	4.03	4.14	8.59

.

.

Compound	Prop.	No. of			AA	RD%		
		points		р	C	a		£
			en-Conta	ining Co	mpounds	1		
	•	•				1		7 40
Pyridine	Ps	46	0.91	0.95	0.97	-	0.98	7.46
	denl	27			4.24		4.09	1.68
	н	26	2.49	2.31	2.32	-	2.35	9.57
Quinoline	Ps	42	3.89	4.56	4.84	5.13	5.35	5.65
Zarnorine	denl	16			1.17	8.56	0.67	0.61
	Н	23	7.35	7.19	7.25	7.11	7.32	7.14
		2.0						
Isoquinoline	Ps	29	2.69	4.76	3.16	3.50	3.19	11.5
-	denl	19	2.41	0.48	0.63	0.64	0.85	0.41
	Н	20	3.20	4.46	2.58	2.57	2.59	9.85
Acridine	Ps	25	2.29	3.84	3.48	1.79	3.67	12.2
	denl	12	0.57	0.56	0.52	6.62	0.75	2.00
	Н	15	5.40	6.21	6.08	3.61	6.25	8.08
Aniline	Ps	30	2.55	4.87	4.88	4.53	4.95	5.36
	denl	31			2.04		2.03	2.85
	Н	29	4.86		6.09	5.83	6.15	6.43
Average	Ps	504	3.00	3.70	3.74	_	3.78	5.77
	denl	342			1.72	-	2.01	
	H	403	4.93	4.49	4.40	-	4.54	5.67

.

•

а calculated using polar/associative parameters determined from the entire vapor-pressure and density data (see Table 4.4), used herein as bases for comparisons. b Polar/associative parameters determined from 3 vapor-pressure, 3 density, and 1 enthalpy-of-vaporization data. С Polar/associative parameters determined from 3 vapor-pressure, and 3 density data. đ Polar/associative parameters determined from 3 vapor-pressure data. е Polar/associative parameters determined from 2 vapor-pressure, and 1 density data. £ Polar/associative parameters determined from 1 vapor-pressure and 2 density data.

Prediction results for the entire data set parameters. using these parameters are presented in Table 5.1, column d. Most of the vapor-pressure predictions are comparable to the previous cases, see e.g., column c, with a few exceptions. However, density predictions deteriorate significantly, e.g., for 2,5-xylenol, the density AARD% is 10.4 % compared to 0.30 % in column c. It is evident that vapor-pressure data alone is not sufficient in determining the parameters. Both vapor pressure and density data are required in obtaining an optimum set of parameters d_1 , d_2 , and d_3 . Therefore, new sets of data each containing two vaporpressure points (at 0.02 and 1 bar) and one density point (at 1 bar) are created. Parameters are then determined using these three data points. The resultant parameters are again used to predict properties for the entire data set. Prediction results are presented in Table 5.1, column e. Comparing column e (2 Ps, 1 den.) with column c (3 Ps, 3 den.), for most systems studied, the prediction accuracies for both cases are about the same. However, densityprediction errors of a few systems, e.g., dibenzofuran, and 4-indanol for the case in column e are slightly larger than those in column c. The differences are generally small and do not affect other property calculations. These results indicate that a minimum of three data points, consisting of two vapor-pressure data and one density datum, are all that are needed in determining the optimum parameters d_1 , d_2 , and d₃. However, for undefined fractions, there is generally

only 1 vapor-pressure datum available, but more than one density data may be available (or can be easily measured). Therefore, a more critical test is to use one vapor-pressure datum and two density data in the determination of d_1 , d_2 , and d_3 .

New sets of data each containing one vapor-pressure datum (at 1 bar) and two density data points (at 0.8 and 1 bar) were created. Parameters are then determined using these three data points. The resultant parameters are again used to predict properties for the entire data set. Prediction results are presented in Table 5.1, column f. In this case, the vapor-pressure prediction accuracies for some compounds deteriorate significantly, while the density prediction accuracies for most compounds remain practically unchanged. Examination of the vapor-pressure calculation results reveal that large deviations occur in the low pressure region, e.g., at 0.01 bar, as shown in Table 5.2 for isoquinoline. However, vapor-pressure prediction accuracies at high pressures are generally satisfactory. The parameters determined using vapor-pressure data at 1 bar cannot be used reliably to calculate vapor pressure at much lower temperatures, but are reasonably reliable at high temperatures. Comparing these results with the previous case (2 Ps and 1 den.), it is evident that vapor-pressure data at low temperatures are essential in the determination of parameters d_1 , d_2 , and d_3 . For pure compounds, these data are generally available. Unfortunately, for undefined

- -

Detailed Calculations of Thermodynamic Properties for Isoquinoline Using Polar/Associative Parameters Determined from One Vapor-Pressure Datum and Two Density data.

Table 5.2

	prop.: Viswanath & Wilhoit 1979.									
	mw			c cc/mol	WS	น*				
input :	129.161			403.00		.446				
i manak				sociative p	parameters-					
input :	.1636	94 1	.08580	31190						
temp	pres			prop	perty					
°C	atm	code	expm	calc	aad	%aard	ref			
<u> </u>		•	004		~~~	25 400				
60.00 70.00		4	.001	.001	.000	-35.182	1 1			
70.00 80.00		4 4	.002	.001	001	-34.053	1			
90.00		4	.004 .006	.002 .004	001 002	-32.261 -29.997	1			
100.00		4	.008	.004	002	-29.997	1			
110.00		4	.015	.012	004	-24.610	1			
120.00		4	.024	.012	005	-21.865	1			
130.00		4	.036	.029	007	-19.163	1			
140.00		4	.052	.043	009	-16.554	1			
150.00		4	.075	.064	011	-14.111	1			
160.00		4	.105	.093	012	-11.830	1			
170.00		4	.145	.131	014	-9.778	1			
180.00		4	.198	.182	016	-7.859	1			
190.00		4	.265	.248	016	-6.204	1			
200.00		4	. 349	.333	·017	-4.749	1			
220.00		4	.585	. 571	014	-2.418	1			
240.00		4	.937	.929	008	849	1			
260.00		4	1.440	1.441	.001	.094	1			
280.00		4	2.142	2.148	.006	.283	1			
300.00		4	3.079	3.089	.010	.328	1			
320.00		4	4.303	4.309	.007	.151	1			
340.00		4	5.882	5.853	029	- 486	1			
360.00		4	7.866	7.766	100	-1.273	1			
380.00		4	10.264	10.095	169	-1.650	1			
400.00		4	13.225	12.887	338	-2.556	1			
440.00		4 4	21.021 31.483	20.071 29.767	950 -1.716	-4.519 -5.451	1 1			
520.00		4	45.398	42.336	-3.063	-6.746	1			
530.00		4	49.149	46.179	-2.970	-6.042	1			
		-	201120		2.070	01034	ı			

.....

84

.

Table	5.2	(continued)
-------	-----	-------------

•

......

temp	pres				erty		
°C	atm	code	expm	calc	aad	%aard	ref
60.00	.001	1	1.067	1.053	014	-1.352	1
7Ŭ.00	.002	1	1.059	1.047	012	-1.162	1
80.00	.004	1	1.051	1.041	010	984	1
90.00	.006	1	1.044	1.034	010	915	1
100.00	.010	1	1.036	1.028	008	768	1
110.00	.015	1	1.028	1.021	007	636	1
120.00	.024	1	1.019	1.015	004	424	1
130.00	.036	1	1.011	1.008	003	327	1
140.00	.052	1	1.003	1.001	002	247	1
150.00	.075	1	.995	.993	002	187	1
160.00	.105	1	.987	.986	001	146	1
160.00	.105	1	.987	.986	001	146	1
170.00	.145	1	.978	.978	.000	022	1
180.00	.198	1	.970	.970	.000	020	1
190.00	.265	1	.962	.962	.000	038	1
200.00	. 349	1	.953	.953	.000	.029	1
220.00	. 585	1	.936	.936	.000	.000	1
240.00	.937	1	.918	.918	.000	.000	1
260.00	1.440	1	. 899	.899	.000	.032	1
60.00	.001	5	196.719	200.072	3.353	1.705	1
70.00	.002	5	192.725	200.022	7.297	3.786	1
80.00	.004	5	189.063	199.439	10.376	5.488	1
90.00	.006	5	185.735	198.424	12.690	6.832	1
100.00	.010	5	182.406	197.058	14.652	8.033	1
110.00	.015	5	180.409	195.405	14.996	8.312	1
120.00	.024	5	178.412	193.518	15.106	8.467	1
130.00	.036	5	176.415	191.438	15.024	8.516	1
140.00	.052	5	174.750	189.202	14.451	8.270	1
150,00	.075	5	172.753	186.836	14.083	8.152	1
160.00	.105	5	171.089	184.364	13.275	7.759	' 1
170.00	.145	5	169.425	181.804	12.380	7.307	1
180.00	.198	5	167.760	179.173	11.412	6.803	1
190.00	.265	5	166.096	176.482	10.386	6.253	1
200.00	.349	5	164.432	173.742	9.310	5.662	1
220.00	.585	5	161.103	168.145	7.042	4.371	1
240.00	.937	5	157.775	162.431	4.656	2.951	1
260.00	1.440	5	154.113	156.623	2.510	1.629	1
280.00	2.142	5	150.452	150.722	.270	.180	1
300.00	3.079	5	146.457	144.732	-1.725	-1.178	1

•

وحكا كلت ستل يبته خصا	بند جو جو بو بو بو بو بو در چر چر بو بو بو بو بو بو بو بو بو بو بو بو بو	SUMMARY-				
code	property	units	pre	dictio	on de	viations
1	liquid density	gm/cc	. 39	%aard	for	19 points
4	vapor pressure	atm	11.33	%aard	for	29 points
5	heat of vaporization	Btu/lb	9.75	aad	for	20 points

· ·

.

.

. .

.

fractions, the inspection data normally measured for the fractions are the normal boiling point and specific gravities. As the results in this section indicate, the parameters determined using the inspection data for the fractions cannot be used to predict accurately the vaporpressure (volatility data) of the fractions at temperatures much lower than the average normal boiling point. The densities, on the other hand, can be predicted with greater confidence over wide temperature and pressure ranges. Since the errors in vapor-pressure calculations may have adverse effects on the k-value calculations for the fractions, the problems encountered here must be examined further. One obvious solution is to measure vapor pressure (volatility) for the fraction at a temperature lower than the normal boiling point. This measurement can be done for fractions that are used in detailed laboratory study, e.g., Wilson et al., (1981), but is not practical for routine inspection data measurements. Another possible solution is to reduce the number of parameters $(d_1, d_2, and d_3)$ that have to be determined from data by correlating some of the parameters as a function of measurable quantities. The reduction of the number of characterization parameters is very desirable in light of the difficulties encountered for the undefined fractions. Work in this area is in progress. If d₁, d₂, and d3 can all be correlated as functions of measurable quantities, the equation-of-state correlation will be totally generalized in that d₁, d₂, and d₃ are no longer

component specific, but are determined from a set of universal constants. The work on further generalization of the correlation is recommended.

5.2 Application of the Correlation to Some Undefined Coal-Fluid Fractions.

In this section, the new correlation is applied to predict the density for coal-fluid fractions. Density measurements have been made for several wide-boiling coalfluid fractions from the Exxon-Donor-Solvent (EDS) process over wide ranges of temperature and pressure (Hwang et al., For each fraction, ${\rm T_c}$ and ${\rm V_c}$ are calculated using 1982). the correlations of Brule et al., (1982). The structure factor, ω_s , is calculated using equation (14). The dipole moment is calculated using the correlation of Owens (1982). As pointed out in section 5.1, densities for the fractions can be reliably predicted using parameters \hat{a}_1 , \hat{a}_2 , and \hat{a}_3 inspection data. Therefore. determined from the polar/associative parameters d_1 , d_2 , and d_3 are determined multiproperty regression analysis of the averagevia normal-boiling point for the fraction (vapor pressure), and two density data. The resultant parameters are used to predict the entire density data set for the fraction. Results are reported in Table 5.3. Generally, the predictions accuracy are satisfactory. Note that the reduced dipole moment values for most of the fractions are small, indicating that the fractions are not very polar.

Table 5.3

Comparisons of Exxon Coal-Fluid Density Data with Predictions by the New Correlation, and by the 3PCS-MBWR Correlation Data of Hwang et al., 1982.

Exxon Coal		Tb_Range	Avg Tb °C	Rai T,°C	nge		*	%AAR	D 3PCS ²
Liquid	MW	°C	°C	T,°C	P, kPa	N	ب ر	Eq. 13	3PCS ²
IHS	179	202-513	2'71	24-454	69-138	33	0.08	1.51	1.04
IA-3	167	121-524	246	44-424	23-205	30	0.24	0.63	4.18
TU-2	107		2.30	*** ***	25 205	30	0.24	0.05	4.70
IA-6	172	193-421	260	22-428	23-205	36	0.04	0.39	1.05
IA-10	164	116-421	244	43-429	23-205	32	0.01	1.17	1.58
WV-1	192	177-429	276	21-371	14-207	26	0.17	0.20	4.40
	132		270	2. 37.					

1

.

I = Illinois No. 6 Coal: W = Wyoming Wyodak Coal

2

The 3PCS-MBWR results taken from Brulé et al., 1982.

Therefore, the 3PCS-MBWR correlation is applicable to these fractions as well. The density prediction results using the 3PCS-MBWR correlation, as reported by Brulé et al., (1982), are given in Table 5.3 for comparison.

. .

į

÷.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

A multiparameter corresponding-states equation of has been developed for accurate predictions of state thermodynamic properties of pure nonpolar, polar, and associating fluids. The correlation can be divided into a nonpolar and a polar/associating contributions. The nonpolar contribution comes from the three-parameter corresponding-states correlation. The polar/associating contribution is determined from the water equation of state. The nonpolar and water equation are generalized for polar and associating compounds by using reduced dipole moment, and a temperature- and density-dependent polar/associative factor. The characterization parameters required are critical temperature, critical density, structure factor, reduced dipole moment. and three polar/associating parameters. The first four parameters are either measurable quantities or can be calculated using correlations, while the last three must be determined from experimental data. Characterization parameters are given for 51 polar and associating compounds.

The correlation was applied with satisfactory results to a wide variety of nonpolar, polar, and associating compounds including naphthalene, tetralin, water, ammonia, straight-chain alcohols, amines, ethers, ketones, phenols, indanols, quinoline, thiophene, dibenzofuran, acridine, and many other nitrogen-, oxygen-, and sulfur-containing model coal compounds. For 51 polar and associating compounds, the average absolute deviations are 1.8% for vapor pressure, 2.6% for density, and 9.5 kJ/kg (4.1 Btu/lb) for enthalpy and enthalpy of vaporization.

sensitivity of the thermodynamic-property The predictions to the values of polar/associative parameters were examined. It was demonstrated that the polar/associative parameters can be determined effectively using small number of vapor-pressure and density data. Both vapor pressure and density data are needed to determine an optimum set of parameters. It was further shown that two vapor-pressure data, and one density datum are all that is needed to determine the parameters. As a result, the correlation can be applied readily to pure compounds with few experimental data. Parameters determined using one vapor-pressure datum and two density data can be used to reliably predict the densities, but not the vapor pressures low temperatures. As a result, the densities for at undefined fractions can be predicted with reasonable levels of accuracy, provided measurements of the fraction boiling point, molecular weight and density (at two temperatures)

are available. In order to predict the vapor pressure (volatility) for the fractions, an additional vapor pressure datum at a temperature lower than the normal-boilng point is required.

The correlation was applied to predict the density for several wide-boiling coal-fluid fractions from the Exxon-Donor-Solvent process with reasonable accuracy.

It is recommended that the number of polar/associative parameters be reduced via correlation for the parameters and that the equation-of-state correlation be further generalized so that the characterization parameters may be more conveniently and reliably obtained for undefined fractions.

NOMENCLATURE

Roman

.

.

. . .

,

E	generalized ith equation-of-state parameter
a _i ,b _i ,c _i	universal constants in expression for E_1
d ₁ ,d ₂ ,d ₃	polar/associative characterization parameters
den.	density (vapor and liquid)
denl	liquid density
denv	vapor density
f	pure component fugacity
Fα	polar/association factor
	enthalpy departure of fluid
k	Boltzmann constant (1.38054 x 10^{-23} J/K)
P	absolute pressure
Ps	vapor pressure
T	absolute temperature
Т*	reduced temperature
${f r}_{ m b}$	normal boiling temperature
T _c	critical temperature
V c	critical volume
Z	compressibility factor
z _o	isotropic-reference-fluid compressibility factor

94

.

- \mathbf{Z}_{γ} shape contribution to compressibility factor
- Z_{α} polar and associative contribution to compressibility factor

Greek

association parameter α characteristic molecular-energy parameter ε γ molecular orientation parameter dipole moment, debye Д **ม*** reduced dipole moment density ρ ρ* reduced density acentric factor ω structure factor ωs σ3 characteristic molecular-size parameter

LITERATURE CITED

- Ambrose, D. and R. Townsend, "Thermodynamic properties of organic oxygen compounds. Part IX. The Critical Properties and Vapour pressures above five atmospheres, of six aliphatic alcohols," <u>J. Chem. Soc.</u>, 3614 (1963).
- Ambrose, D. and C.H.S. Sprake, "Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols," <u>J. Chem. Thermodynamics</u>, <u>2</u>, 631 (1970).
- American Petroleum Institute (API), "Properties of Hydrocarbons of High Molecular Weight," Research Project 42, New York, (1940-1966).
- Boublik, T., V. Fried, and E. Halá, <u>The Vapor Pressures</u> of Pure Substances, Elsevier Pub. Co., New York (1973).
- Britt, H.I. and R.H. Luecke, "The Estimation of Parameters in Non-Linear Implicit Models," Technometrics, <u>15</u>, 233 (1973).
- Brule, M.R., L.L. Lee, and K.E. Starling, "Predicting thermodynamic properties for fossil-fuel chemicals," Chem. Eng., 155-164 (19 Nov 1979).
- Brulé, M.R., C.T. Lin, L.L. Lee, and K.E. Starling, "Multiparameter Corresponding-States Correlation of Coal-Fluid Thermodynamic Properties," <u>AIChE J.</u>, <u>28:4</u>, 616 (1982).
- Brulé, M.R. and K.E. Starling, "Application of Multiproperty Analysis in the Prediction of Complex-System Thermophysical Behavior," paper presented at the AIChE 75th Annual Meeting, Los Angeles, California, November (1982).
- Callendar, G.S. and A. Egerton, Phil. Trans. Roy. Soc. (London) 252, 133 (1960).
- Collerson, R.R., J.F. Counsell, R. Handley, J.F. Martin,

and C.H.S. Sprake, "Thermodynamic Properties of Organic Oxygen Compounds. Part XV. Purification and Vapor Pressures of Some Ketones and Ethers," <u>J. Chem. Soc.</u>, 3697 (1965).

- Eubank, P.T. and J.M. Smith, "Thermodynamic Properties of Polar Gases in the Dilute Phase," <u>AIChE J.</u>, <u>8:1</u>, 117 (1962).
- Garnjost, H., Ph.D. Thesis, University of Bochum, Germany 1974.
- Goin, K.M., "Development of Equation of State for Fluid-Correlation Methodology for Thermodynamic and PVT Properties, Including a Case Study for Water," Ph.D. Thesis, The University of Oklahoma, Norman OK (1978).
- Gupta, V., "Equation of State for Polar and Associating One and Two Ring Coal Derived Fluids," Master Thesis, The University of Oklahoma, Norman OK (1981).
- Haar, L. and J.S. Gallagher, "Thermodynamic Properties for Ammonia," <u>NBS report</u> (1977).
- Hales, J.L. and J.H. Ellender, "Liquid densities from 293 to 490 K of nine aliphatic alcohols," <u>J. Chem.</u> Thermodynamics, <u>8</u>, 1177 (1976).
- Holser W.T. and G.C. Kennedy, "Properties of Water, Part IV, Pressure-Volume-Temperature Relations of Water in the Range 100-400°C and 100-1400 Bars," Am. J. Sci., 256, 744-753 (1958).
- Hwang, S.C., C. Tsonopoulos, J.R. Cunningham, and G.M. Wilson, "Density, Viscosity, and Surface Tension of Coal Liquids at High Temperatures and Pressures," <u>Ind. Eng. Chem. Proc. Des. Dev.</u>, <u>21:1</u>, 127 (1982).
- Institute of Gas Technology (IGT), "Preparation of a Coal Conversion Systems Technical Data Book," Annual Reports Prepared for DOE by IGT, Chicago, IL (1980).
- <u>International Critical Tables</u>, Vol. III, McGraw-Hill, New York, 1926.
- Jordan, T.E., <u>Vapor Pressure of Organic Compounds</u>, Interscience Publishers, New York, 1954.
- Keenan, J.H., F.G. Keyes, P.G. Hill, and J.G. Moore, <u>Steam Tables</u>, John Wiley and Sons, New York, 1969.
- Kell and Whalley, <u>Phil. Trans. Roy. Soc.</u> (London), <u>258A</u>, 565 (1965).

Kemme, H.R. and S.I. Kreps, "Vapor Pressure of Primary n-Alkyl Chlorides and Alcohols," <u>J. Chem. Eng. Data</u>, <u>14:1</u>, 98 (1969).

Kennedy, G.C., Am. J. Sci., 255, 724 (1957).

Keyes and Smith, Proc. Am. Acad. Arts Sci., 285 (1934).

- Keyes, Smith, and Gerry, <u>Proc. Am. Acad. Arts Sci.</u>, <u>70</u>, 319 (1936).
- Kudchadker, A.P., S.A. Kudchadker, and R.C. Wilhoit, "Phenol," Key Chemicals Data Books, Thermodynamics Research Center, Texas A&M University (December, 1977).
- Kudchadker, A.P., S.A. Kudchadker, and R.C. Wilhoit, "Cresols," Key Chemicals Data Books, Thermodynamics Research Center, Texas A&M University (January, 1978a).
- Kuduhadker, A.F. and S.A. Kudchadker, "Xylenols," Key Chemicals Data Books, Thermodynamics Research Center, Texas A&M University (March, 1978b).
- Kudchadker, A.P., S.A. Kudchadker, and R.C. Wilhoit, "furan, Dihydrofuran, and Tetrahydrofuran," Key Chemicals Data Books, Thermodynamics Research Center, Texas A&M University, (May, 1978c).
- Kudchadker, A.P., S.A. Kudchadker, and R.C. Wilhoit, "Tetralin," API Monograph Series 705 (October, 1978d).
- Kudchadker, A.P., S.A. Kudchadker, and R.C. Wilhoit, "Anthracene and Phenanthrene," API Monograph Series 708 (1978e).
- Kudchadker, A.P. and S.A. Kudchadker "Pyridine, and Phenylpyridines," API Monograph Series 710 (July, 1979).
- Kudchadker, A.P., S.A. Kudchadker, R.C. Wilhoit, and S.K. Gupta, "Carbazole, 9-Methylcarbazole, and Acridine," API Monograph Series 716 (June, 1981a).
- Kudchadker, A.P., S.A. Kudchadker, R.C. Wilhoit, and S.K. Gupta, "Thiophene, 2,3- and 2,5-Dihydrothiophene, and Tetrahydrothiophene," API Monograph Series 717 (November, 1981b).
- Kudchadker, S.A. "Aniline," API Monograph Series 718 (January, 1982).
- Lee, B.I. and M.G. Kesler, "A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States," <u>AIChE J.</u>, <u>21:3</u>, 510 (1975).

- Lee, T.J., L.L. Lee, and K.E. Starling, "Conformal Solution Theory Parameter Mixing Rules," <u>ACS Adv.</u> <u>Chem. Ser., 182</u>, 125 (1979).
- Lin, H.M., H.M. Sebastian, J.J. Simnick, and K.C. Chao, "Solubilities of Hydrogen and Methane in Coal Liquids," <u>Ind. Eng. Chem. Process Des. Dev.</u>, 20, 253 (1981).
- Lo, H.Y. and L.I. Stiel, "The PVT Behavior of Ethyl Alcohol at Elevated Pressures and Temperatures," ISEC Fundamentals, 8:4, 713 (1969).
- McClellan, A.L., <u>Tables of Experimental Dipole Moments</u>, Freeman, San Francisco, 1963.
- McNeil, D., <u>Coal Tar Data Book</u>, 2nd Ed., Coal Tar Research Association, Oxford Road, Gomersal, Leeds, England (1965).
- Meyer E.F. and R.E. Wagner, "Cohesive Energies in Polar Organic Liquids," J. Phys. Chem., 70:10, 3162 (1966).
- Nasir, P., A. Sivaraman, and R. Kobayashi, "An Integrated Experimental/Calculational Approach to Evaluate the Fugacity Function of Dibenzofuran at High Temperatures & Pressures," Dept. of Chem. Eng., Rice University, Houston, Texas, 1981.
- Osborne, N.S., H.F. Stimson, and D.C. Ginnings, RP 1229, National Bureau of Standards, 1939.

Owens, V.H., private communication, (1982).

- Peng, D.Y. and L.I. Stiel, "Separation of Shape and Polarity Effects for Polar Fluids," <u>AIChE J.</u>, <u>17</u>, 1008 (1971).
- Peng, D.Y. and D.B. Robinson, "A New Two-Constant Equation of State," <u>I&EC Fund.</u>, <u>15:1</u>, 59 (1976a).
- Peng, D.Y. and D.B. Robinson, "Two- and Three-Phase Equilibrium Calculations for Systems Containing Water," <u>The Canadian J. of Chem. Eng.</u>, <u>54</u>, 595 (1976b).

Ramsey W. and S. Young, Phil. Mag., 24, 196 (1887).

- Reid, R.C., J.M. Prausnitz, and T.K. Sherwood, <u>Properties of Gases and Liquids</u>, 3rd Ed., McGraw Hill, New York, 1977.
- Renon H. and J.M. Prausnitz, "Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures," <u>AIChE J., 14:1</u>, 135 (1968).

Schiller, J.E., "Composition of Coal liquefaction Products," <u>Hydrocarbon Processing</u>, 147 (January, 1977).

- Sivaraman, A. and R. Kobayashi, "Investigation of Vapor Pressures and Heat of Vaporization of Condensed Heterocyclic Aromatic Compounds at Elevated Temperatures," J. Chem. Eng. Data, 27:3, 264 (1982).
- Starling, K.E., L.L. Lee, K.C. Mo, C.H. Twu, et al., "Self- Consistent Correlation of Thermodynamic and Transport Properties," Final Report GRI/AGA/BR-111-1/77-36, Gas Research Institute and American Gas Association, Arlington VA (1978).
- Timmermans, J., <u>Physico-Chemical Constants of Pure</u> <u>Organic Compounds</u>, Elsevier Publishing Co. Inc., New York, 1950.
- Twu, C.H., "Perturbation Theory for High Pressure Behavior of Liquid Mixtures," Ph.D. Thesis, University of Florida (1976).
- Vargaftik, N.B., <u>Tables on the Thermophysical Properties</u> of <u>Gases and Liquids</u>, 2nd Ed., Hemisphere Pub. Co., Washington, D.C. (1975).
- Viswanath, D.S., "Quinoline," API Monograph Series 711 (December, 1979a).
- Viswanath, D.S. and R.C. Wilhoit, "Isoquinoline," API Monograph Series 712 (December, 1979b).
- Viswanath, D.S. and R.C. Wilhoit, "Indanols," API Monograph Series 713 (March 1980).
- Watanasiri, S., M.R. Brule, and K.E. Starling, "Correlation of Phase-Separation Data for Coal-Conversion Systems," <u>AIChE J.</u>, <u>28:4</u>, 626 (1982).
- Wilson, G.M., "Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing," J. Am. Chem. Soc., <u>86</u>, 127 (1964).
- Wilson, G.M., R.H. Johnston, S.C. Hwang, and C. Tsonopoulos, "Volatility of Coal Liquids at High Temperatures and Pressures," <u>Ind. Eng. Chem. Process</u> <u>Des. Dev.</u>, 20:1, 94 (1981).
- Wieczorek, S.A. and R. Kobayashi, "Vapor Pressure Measurements of Diphenylmethane, Thianaphthene, and Bicyclohexyl at Elevated Temperature," J. Chem. Eng. Data, 25:4, 302 (1980).

Young, S. Proc. Roy. Soc. Dublin, 12, 374 (1910).

. . .

APPENDIX A

EXPRESSIONS FOR DERIVED THERMODYNAMIC PROPERTIES

The classical relationships for the enthalpy departure of a pure compound is given by:

$$H-H^{0} = RT(Z-1) + \int_{0}^{\rho} \{P - T(\partial P/\partial T)_{\rho}\} d\rho/\rho^{2}$$
 (A.1)

In terms of the reduced temperature T^* , the reduced density ρ^* , and the compressibility factor Z, equation A.1 becomes

$$H-H^{0} = RT(Z-1) - \underbrace{\varepsilon RT}_{k}^{*2} \int_{0}^{\rho^{*}} (\partial Z/\partial T^{*})_{\rho^{*}} d \ln \rho^{*}$$
(A.2)

Substituting Z from equation (22) into equation A.2,

$$H-H^{0} = RT(Z-1) - \frac{\varepsilon}{k} RT^{*2} \left\{ \rho^{*} \{ E_{2}T^{*-2} + 3E_{3}T^{*-4} - 4E_{9}T^{*-5} + \frac{5E_{11}T^{*-6} + \mu^{*}d_{3}(c_{1} - c_{2}T^{*-1} - c_{3}T^{*-3} + c_{9}T^{*-4}) \} + \frac{5E_{11}T^{*-6} + \mu^{*}d_{3}(c_{1} - c_{2}T^{*-3} + \mu^{*}d_{3}(c_{5} - c_{6}T^{*-1}) \} + \frac{1}{2}\rho^{*2} \{ E_{6}T^{*-2} + 2E_{10}T^{*-3} + \mu^{*}d_{3}(c_{15} + c_{7}T^{*-1} + \frac{1}{2}\rho^{*5} \{ -E_{7}T^{*-2} - 2E_{12}T^{*-3} + \mu^{*}d_{3}(c_{15} + c_{7}T^{*-1} + \frac{c_{12}T^{*-2}}{2}) \} - \frac{1}{3\rho^{*3}\mu^{*}} \{ 2d_{2}(c_{2}T^{*-2} + 3c_{3}T^{*-4} - 4c_{9}T^{*-5}) + \frac{2(d_{1} + 3/5d_{2}\rho^{*2})c_{13}T^{*-3} + d_{3}c_{13}T^{*-2} \} - \frac{1}{3\rho^{*4}\mu^{*}T^{*-2}} \{ d_{2}c_{6} + (d_{1} + 2/3d_{2}\rho^{*2})c_{14} \} - \frac{1}{2} \left\{ \frac{1}{2} + \frac{1$$

·· · •

$$\frac{1}{6\rho^{*6}\mu^{*}T^{*-2}\left(d_{1} + \frac{3}{4d_{2}\rho^{*2}}c_{16}\right) +}{2/35\rho^{*7}\mu^{*}T^{*-2}\left\{d_{2}\left(c_{7} + 2c_{12}T^{*-1}\right)\right\} -}{\left\{\frac{e^{-E}4^{\rho^{*2}}}{2E_{4}}\left(2 + E_{4}\rho^{*2}\right) - \frac{1}{E_{4}}\right\}\left\{T^{*-4}\left(-3E_{8} + \mu^{*}d_{3}T^{*}c_{8} + 3\mu^{*}d_{2}\rho^{*2}c_{8}\right\} +}{3\mu^{*4}d_{2}c_{8}T^{*-4}\left\{e^{-E}4^{\rho^{*2}}\left(3 + 3E_{4}\rho^{*2} + E_{4}^{2}\rho^{*4}\right) - 3\right\}/(2E_{4}^{2})\right\}}$$
(A.3)

The fugacity expression is:

•

••••

$$\begin{aligned} \ln (f/P) &= \int_{0}^{\phi} (z-1)d \ln \phi^{*} - \ln z + (z-1) \\ &= (z-1) - \ln z + \phi^{*} \{E_{1} - E_{2}T^{*-1} - E_{3}T^{*-3} + E_{9}T^{*-4} - \\ &= E_{11}T^{*-5}\} + \frac{1}{2}\phi^{*2} \{E_{5} - E_{6}T^{*-1} - E_{10}T^{*-2}\} + \\ &= 1/5\phi^{*5} \{E_{15} + E_{7}T^{*-1} + E_{12}T^{*-2}\} + 1/3\phi^{*3}E_{13}T^{*-2} + \\ &= 1/4\phi^{*4}E_{14}T^{*-1} + 1/6\phi^{*6}E_{16}T^{*-1} - \\ &= \mu^{*}d_{2}\phi^{*2} \{2/3\phi^{*}(c_{1} - c_{2}T^{*-1} - c_{3}T^{*-3} + c_{9}T^{*-4}) + \\ &= 1/4\phi^{*2}(c_{5} - c_{6}T^{*-1}) + 2/15\phi^{*3}c_{13}T^{*-2} + \\ &= 1/12\phi^{*4}c_{14}T^{*-1} + 1/12\phi^{*4}c_{14}T^{*-1} + 2/35\phi^{*5}(c_{15} + \\ &= c_{7}T^{*-1} + c_{12}T^{*-2}) + 1/24\phi^{*6}c_{16}T^{*-1} \end{aligned}$$

$$(1/2E_{4}) \{ e^{-E_{4}\rho^{*2}} (2 + E_{4}\rho^{*2}) - 2E_{4} \} \{ E_{8}T^{*-3} - \mu^{*}d_{2}\rho^{*2}c_{8}T^{*-3} \} - (1/2E_{4}^{2}) (\mu^{*}d_{2}c_{8}T^{*-3}) \{ e^{-E_{4}\rho^{*2}} (3 + 3E_{4}\rho^{*2} + E_{4}^{2}\rho^{*4}) - 3 \}$$
(A.4)

* 7

• • • • • •

• • •

• •

103

APPENDIX B

SOURCE LISTING OF EQUATION OF STATE FUNCTION SUBROUTINES

C

function enth(t,rho)

```
calculate enthalpy departure at given temperature and density
common /prm/rgas,renrgy,tcrit,pcrit,rhoc,w,alpha,beta,xmw
   ,a(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
1
rhos=0.3189*rho/rhoc
tstar=1.2593*t/tcrit
rt=rgas*t
enth=-rt*tstar*fi2(t,rho)+rt*(pres(t,rho)/rgas/t/rho-1.0)
return
end
function fugcof(t,rho)
   calculate fugacity at given temperature and density
common /prm/rgas,renrgy,tcrit,pcrit,rhoc,w,alpha,beta,xmw
   ,a(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
1
fp=alog(rho*rgas*t)+fi1(t,rho)+(pres(t,rho)/rho/rgas/t-1.0)
fugcof=exp(fp)
return
end
function pres(t, rho)
   calculate presure at given temperature and density
common /prm/rgas,renrgy,tcrit,pcrit,rhoc,w,alpha,beta,xmw
   ,a(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
1
 common /gwater/wh2o
dimension ai(12), bi(12), ac(12)
  w=a(2)
  wh2o=0.008
  rhos=0.3189*rho/rhoc
  tstar=1.2593*t/tcrit
  t4=4.86121
  x=1./tstar
  x2=x*x
  x3=x2*x
  x4=x3*x
  x5=x4*x
                             104
```

C

C

```
call acalc(ac,w)
tm1=ac(1)-ac(2)*x-ac(3)*x3+ac(9)*x4-ac(11)*x5
tm2=ac(5)-ac(6)*x-ac(10)*x2
tm3=ac(7)*x+ac(12)*x2
tm4=ac(8)*x3
tme=(1.+t4*rhos**2)*(exp(-t4*rhos**2))
tm4=tme*tm4*(rhos**2)
z1=1.+rhos*tm1+tm2*rhos**2
z2=tm3*rhos**5+tm4
za=zwater(t,rho)
z=z1+z2+(a(1)+a(3)*rhos*rhos+a(5)/x)*za
pres=z*rho*rgas*t
return
end
```

```
C
```

```
function zwater(t,rho)
    calculate Za
common /prm/rgas, renrgy, tcrit, pcrit, rhoc, w, alpha, beta, xmw
   ,ax(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
1
common /gwater/wh2o
dimension a(16)
rhos=0.3189*rho/rhoc
tstar=1.2593*t/tcrit
 t4=4.86121
x=1./tstar
  x^2=x*x
  x3=x2*x
  x4=x3*x
  x5=x4*x
   call rcalc(a)
   tm1=a(1)-a(2)*x-a(3)*x3+a(9)*x4
   tm2=a(5)-a(6)*x
   tm3=a(7)*x+a(12)*x2+a(15)
   tm4=a(8)*x3
   tmn=a(13)*x2
   tmo=a(14)*x
   tmp=a(16)*x
   tme=(1.+t4*rhos**2)*(exp(-t4*rhos**2))
   tm4=tme*tm4*(rhos**2)
   z1=rhos*tm1+tm2*rhos**2
   z2=tm3*rhos**5+tm4
   z3=rhos*rhos*rhos*tmn
   z4=rhos*rhos*rhos*rhos*tmo
   z5=rhos*rhos*rhos*rhos*rhos*rhos*tmp
   zwater=z1+z2+z3+z4+z5
 return
 end
```

```
subroutine acalc(ci,w)
    calculate 3PCS-MBWR coefficient, ai+bi*gamma
 dimension ai(12), bi(12), ci(12)
 data a1/1.45907,4.98813,2.20704,4.86121,4.59311,
1 5.06707,11.4871,9.22469,.094624,1.48858,.015273,
2 3.51486/
 data bi /.32872,-2.64399.11.3293.0.0.2.79979.10.3901.
1 10.3730,20.5388,2.7601,-3.11349,.18915,.94260/
   ci(1)=ai(1)+bi(1)*w
   ci(2)=ai(2)+bi(2)*w
   ci(3)=ai(3)+bi(3)*w
   ci(4) = ai(4)
   ci(5)=ai(5)+bi(5)*w
   c1(6)=a1(6)+b1(6)*w
   c1(7)=a1(7)+b1(7)*w
   c1(8)=a1(8)+b1(8)*w
  c1(9)=a1(9)+b1(9)*w
  c1(10)=a1(10)+b1(10)*w
  ci(11)=ai(11)+bi(11)*w
   ci(12)=ai(12)+bi(12)*w
return
end
subroutine rcalc(a)
   Constants for Za, taken from EOS for water
dimension a(16)
  a(1)=0.485914
  a(2)=-1.06672
  a(3)=5.39716
  a(4)=0.0
  a(5) = -1.55842
  a(6)=4.70204
  a(7)=3.47628
  a(8)=17.2603
   a(9)=0.497917
  a(10)=0.0
  a(11)=0.0
  a(12)=14.7689
  a(13)=-1.79202
   a(14)=4.78259
  a(15)=7.46297
  a(16) = -23.3345
return
end
```

C

C

	function fil(t,rho)
C	. evaluate integral fil for fugacity calculations
	common /prm/rgas,renrgy,tcrit,pcrit,rhoc,w,alpha,beta,xmw
	1 ,ax(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
	dimension a(12), ri(16)
	w=ax(2)
	rhos=0.3189*rho/rhoc
	tstar=1.2593*t/tcrit
	t4=4.86121
	x=1./tstar
	$x^2 = x \times x$
	x3=x2*x
	x4=x3*x
	tm0=exp(-t4*rhos**2)
C	. 3PCS-MBWR part
	call acalc(a,w)
	tm1=a(1)-a(2)*x-a(3)*x3+a(9)*x4-a(11)*x5
	tm2=a(5)-a(6)*x-a(10)*x2
	它m3=a(7)*x+a(12)*x2
	$t5 = a(8) \times x3$
	tm4=t5/t4 - t5*tm0/t4
	tm4=tm4-0.5*t5*(rhos**2)*tm0
	f1=rhos*tm1+0.5*(rhos**2)*tm2
	f2=0.2×tm3×(rhos×*5)+tm4
C	. association part (based on water)
	call rcalc(ri)
	tm1=ri(1)-ri(2)*x-ri(3)*x3+ri(9)*x4-ri(11)*x5
	tm2=ri(5)-ri(6)*x-ri(10)*x2
	tm3=ri(7)*x+ri(12)*x2+ri(15)
	$t5 = ri(8) \times 3$
	tm4=t5/t4 - t5*tm0/t4
	tm4=tm4-0.5*t5*(rhos**2)*tm0
	tmn=ri(13)*x2
	tmo=ri(14)*x
	tmp=ri(16)*x
	f3=rhos*tm1+0.5*(rhos**2)*tm2
	f4=0.2*tm3*(rhos**5)+tm4
	f5=1.0/3.0*rhos*rhos*tmn
	f6=1.0/4.0*rhos*rhos*rhos*thos*tmo
	f7=1.0/4.0*rhos*rhos*rhos*rhos*rhos*rhos*rhos*tmp
•	I/-1.0/0.0^INS^INS^INS^INS^INS^INS^INS^U
C	, $h = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
	$tm44 = -t5 \times tm0 \times (t4 \times t4 \times rhos \times 4+3.0 \times t4 \times rhos \times rhos + 3.0)/$
	& 2.0/t4/t4+3.0*t5/2.0/t4/t4
	f8=1.0/3.0*rhos*rhos*rhos*tm1+0.25*(rhos**4)*tm2
	f9=1.0/7.0*tm3*(rhos**7)+tm44
	f10=1.0/5.0*rhos*rhos*rhos*rhos*rhos*tmn
	f11=1.0/6.0*rhos*rhos*rhos*rhos*rhos*rhos*rhos
	f12=1.0/8.0*rhos*rhos*rhos*rhos*rhos*rhos*rhos*rhos
	fi1=f1+f2+(ax(1)+ax(5)/x)*(f3+f4+f5+f6+f7)
•	& +ax(3)*(f8+f9+f10+f11+f12)
	return
	end

•* • •

```
function fi2(t,rho)
    evaluate integral fi2 for enthalpy departure calculations
common /prm/rgas,renrgy,tcrit,pcrit,rhoc,w,alpha,beta,xmw
   ,ax(40),b(7),nterms,nparm,numb,rtop,rmidl,rmidv
1
dimension a(12).ri(16)
  w=ax(2)
   rhos=0.3189*rho/rhoc
   tstar=1.2593*t/tcrit
   t4=4.86121
  x=1./tstar
  x^2=x^x
  x3=x2*x
  x4=x3*x
  x5=x4*x
  x6=x5*x
  tmO=exp(-t4*rhos**2)
                          3PCS-MBWR part
  call acalc(a,w)
  tm1=+a(2)*x2 +3.0*a(3)*x4-4.0*a(9)*x5+5.0*a(11)*x6
  tm2=+a(6)*x2 +2.0*a(10)*x3
  tm3=-a(7)*x2 -2.0*a(12)*x3
   t5 = -3.0 \times a(8) \times x4
   tm4=0.5*t5*tm0/t4*(2.0+t4*rhos*rhos)
  tm4=-tm4+t5/t4
   f1=rhos*tm1+0.5*tm2*rhos**2
   f2=0.2*tm3*rhos**5+tm4
                         association part (based on water)
   call rcalc(ri)
      dci/dt
  tm1=+ri(2)*x2 +3.0*ri(3)*x4-4.0*ri(9)*x5+5.0*ri(11)*x6
   tm2=+r1(6)*x2 +2.0*r1(10)*x3
   tm3=-r1(7)*x2 -2.0*r1(12)*x3
  t5 =-3.0*r1(8)*x4
  tmn = -2.0 \times ri(13) \times x3
  tmo = -ri(14) \times 2
  tmp=-ri(16)*x2
   tm_{1}=0.5*t5*tm_{1}(2.0+t4*rhos*rhos)
   tm4 = -tm4 + t5/t4
   f3=rhos*tm1+0.5*tm2*rhos**2
   f4=0.2*tm3*rhos**5+tm4
   f5=1.0/3.0*rhos*rhos*rhos*tmn
   f6=1.0/4.0*rhos*rhos*rhos*rhos*tmo
   f7=1.0/6.0*rhos*rhos*rhos*rhos*rhos*rhos*rhos
```

C

C

C

C

```
tml1=r1(1)-r1(2)*x-r1(3)*x3+r1(9)*x4-r1(11)*x5
tm21=r1(5)-r1(6)*x-r1(10)*x2
tm31=r1(7)*x+r1(12)*x2+r1(15)
t51 =r1(8)*x3
tm41=t51/t4 - t51*tm0/t4
tm41=t51/t4 - t51*tm0/t4
                                                                                                                               tmd1=t51/t4 - t51*tm0/t4
tmd1=tm41-0.5*t51*(rhos**2)*tm0
tmn1=r1(13)*X2
tmo1=r1(14)*X
tmp1=r1(16)*X
f31=rhos*tm11+0.5*(rhos**2)*tm21
f41=0.2*tm31*(rhos**5)+tm41
5
                                                                                                                                                                                                                                                                                            return
```

3

υ

end

5

68 68

υ

APPENDIX C

DIPOLE MOMENT CORRELATION (OWENS, 1982)

subroutine dpm (tb,tc,xmw,vc,dpmr) C C tb=normal boiling point, K tc=critical temperature, K C xmw=molecular weight C vc=critical volume, cc/gmole C C dpmr=reduced dipole moment, see equation (9) С dimension pa(14) data pa/-.3378408,-2.410656,.04227894,4.568199,.09874062, 1.168614, -. 2494797, -3.906319, -6.718836, 4.173075, &. 3.735801, -. 4982880, 1.175132, 1.100288/ S. tcvc=tc/vc tbtc=tb/tc w1=4.90147+.929177*alog(tcvc) w2=7.62708*tbtc-9.84610*tbtc**2-1.23133*tbtc**3+ 8 11.8132*alog(tbtc) w3=30.3806+34.1873*tbtc-170.218*tbtc**2+110.755* tbtc**3+18.3794*alog(tbtc) 2 ww=(w1+w2)/w3hynp=-10397.5+46.2681*tb-1373.91*tb**.5+4595.81*alog(tb) p1=hvnp/xmw/100. $p_2=vc/xmw/tc*100$. p3=vc/tc*xmw p4=tb/tc*hvnp/xmw/1000. f1=pa(1)*p1+pa(2)*p2+pa(3)*p3+pa(4)*p4 f2=(pa(5)*vc+pa(6)*tb+pa(7)*tc+pa(8)*hvnp/100.)/100. £3=pa(9)*ww+pa(10)*ww**.5+pa(11)*alog(ww) $f_{4}=pa(12)\timesxmw/100.+pa(13)\times(xmw/100.)\times2+pa(14)\timesalog(xmw/100.)$ dpmr=((f1/f4+f2*f3)**2)**.5 return end