Freguency Response
Sometimes we will design analog circuits to attenuate certain frequencies

while amplifying others --- Filters and decoupling circuits

In all cases there will be some finite bandwidth due to the nonidealities
associated with the transistors and other components

The output signal phase will also be shifted differently (relative to the input
signal) as a function of frequency

For analog design we generally view plots of the magnitude and phase as a
function of frequency, w, radians/sec to understand these behaviors

If we consider only frequency responses to design the circuit, how do we
know what is happening in terms of the transient response? And do we care?
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Simple RC Circuit Example

 For analog design we generally view plots of the magnitude and phase asa
function of frequency, w, radians/sec
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Transfer Function M agnitude and Phase
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« The steady state response of a cosine input signal is modified in terms of
phase and magnitude as displayed on the plots
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Steady State Response
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Changein SS Response as Freguency is Varied

« Notethat lower frequency signals have less attenuation of magnitude and less
phase shift, as can be seen from the frequency domain plots
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High Freguency Response

« For frequencies significantly beyond the breakpoint in the magnitude plot, the
response will start to vanish
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Magnitude on alog Scale

The breakpoints in these frequency domain characteristics are related to the
natural frequencies of the circuit

Plotting the magnitude on alog-log scale we can see this relationship

For our RC example, the time constant, t , is 2ns, therefore the natural
frequency is 5e8.
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Magnitude on a decibel (dB) Scale

« Magnitudes are generally plotted on adB scale:
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« Magnitude (for this single time constant example) falls off at asymptotic rate
of 20dB/decade, or 6dB/octave (an octave is a 2x change in frequency)

« Thisrelation to circuit natural frequencies also holds for higher order circuits

« Allowsusto quickly estimate (visualize) the frequency response based on the
natural frequencies
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Natural Freguencies

« You may not have seen Laplace Transforms yet, but like phasors they
represent a transformation to the (complex) frequency domain that makes it
easy to solve for natural frequencies, S's, or reciprocal time constants, t ‘s
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Poles

« With Laplace transform terminology thereisapole at -1/RC for this RC
circuit
« A polerepresents avalue for s for which H(s) isinfinite.

1
H(s) = Vo(s) _ 1 _ RC
Vi(s) 1+sRC i+s
RC

« However, the transfer function is not infinite at the real frequency, w
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H(w) =
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Poles and Natural Frequencies

It is important to note that naturual frequencies and time constants have
positive magnitude, while poles are negative (negative real partsfor RLC)

Vi(s) 1+sRC

1+2
p

p isequa to 1/RC and can be thought of as the natural frequency
The pole which makes H(s) infinite, however, is s=-p

We know that if we solved for the time domain response, that the stermin the
assumed solution form would have to be a negative value:

AeSt
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Bode Plot

Once we know the magnitude of the pole, p, for thistransfer function, we can
use straight line estimates (on the log-log scale) to approximate the frequency
response plot
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We calculate the asymptotes for the magnitude of this function

For w«p |H(w)| @0dB

For w»p  [H(W) @20|ogaiv0 = _[20log(w) — 20log(p)](dB)

Where do these asymptotes intersect?
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« With frequency plotted on alog scale, we can quickly sketch the asymptotes
« The maximum error at the breakpoint in the curve is known to be 3dB
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Bode Plot: Phase

« The phase plot (for this single pole) can be sketched in asimilar way
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Phase Plot

Maximum error at the breakpoint is 5.7 degrees
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Poles and Zeros

We'll solve circuitsintermsof s, just like the book
But we'll only consider sinusoidal steady state problems, therefore, s® jw

We'll also use the terminology of pole to refer to the natural frequency
magnitude

A related term isazero

Example of acircuit with azero at s=0 --- Actually atransmission zero at
w = 0 inthiscase:
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Magnitude on a decibel (dB) Scale

« Swapping the R and C changes a low-pass filter into a high-pass filter
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The values of the zeros and poles signify the breakpoints and direction
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Bode Plot

« Once we know the pole and zero values we can apply a Bode approximation

LW
Hw) = oW __jwre___'p
Vi(w) 1+ jwRC 14 W
‘.W P
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o Poleterm isthe same as before

« Zerotermis0dB at breakpoint, and increasing at arate of 20dB/decade
otherwise

« Note that zeros create asymptotes that are increasing with frequency, while
poles create asymptotes that are decreasing with frequency

« We add all of the asymptotes together to get the overall response

lecture 2-18



Bode Plot

« For each term in the transfer function expression:
1. Find the direction and slope of the asymptote
2. Find one point through which the asymptote passes
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Polesand Zeros of Larger Circuits

Bode plots can be used for higher-order circuits too

But higher order circuits will have more poles and zeros, and transfer

functions of the form:

& 1 [Wogg . IWo,, &g WO
e zlﬂe zzﬂ e zmﬂ

& 4 IWoag 4 1W6,, &8 , IWO
& " p,ee ng“e P2

H(w) = K

We would expect that there will always be more finite poles than zeros, why?

What does the K-term represent?
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2nd Order Example

« Thefollowing RC circuit will have 2 polesand 1 zero for the transfer function
from the input to node 1 or 2:

RL V(W) R2 v _,(w)

JWo

gq * z_lra
+ Cl—— ——C2 R + 208 4 20
Vi(w) @ P pr

~
« You may know how to solve for the poles (natural frequencies) of acircuit by

formulating the differential equations and using an assumed solution of: Ae™
« Aneasier way isto use the following circuit to solve for the poles and zeros:

R1 Voi(S) R2 v (s)

1/sC1— —— i\) =
V(9 t — __ 1/sC2 V. (s)
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2nd Order Example
« Write the nodal equationsjust like you would for phasors
R1 V,(s) R2 V (8)

+ 1/sCl—— —— 1/sC2
Vi(s)

N4

« Transfer functionsto nodes 1 and 2 are;

1

+
V (s) RR,C.C, LT SRCo)
o} 1'2¥1%=2
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V()  2,m.l . 1, 15, _ 1
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1
V()  Z,ml , 1, 15, 1

R,C, R,C, R,C{% R;R,C,C,
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Numerical Example

100 Vi1(s) 100 v _,(s)

+ —__1pF —— 1pF
Vi(s) P P
A4
(1+10 %) -
B 10_20 .20 € 1010
Hq(s) = 2 12 20 107 x 2 , .12 20
s”+s(0.03" 107°) + 10 s”+s(0.03" 107°) + 10

« What isthedc gain?

« What isthe zero? Doesit represent atransmission zero?
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Numerical Example

« Rearrange the terms to recognize the poles

% =
Hy(s) = 107 . = 109 x &
. s*+5(0.03" 10™) + 107 (S+Py)(s+py)
. Where p, , = ~(-15" 100+ 1.118" 10™)

H,(jw) =

epl ﬂep2
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Numerical Example

« Transfer function can be expressed as the product of the pole and zero terms:

6@+JW0
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- |f we measure the magnitude in dB, then all of the terms can be separated:
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« Add the asymptotes for each of the individual pole and zero contributions
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Phase Numerical Example

Starting again with the transfer function in product form:

_ JWg 1 1
Hl(JW) @.+ ngdéw 10 xa—v-v-l-lo

Each term represents a complex number which can be expressed in polar
coordinate form

_ &6 Vo aVo
H,(jw) = H E)atane g><H b- atanepngH 1P- ataneloz
From which it is apparent that all of the phase angle terms add

So we can add the phase-shift asymptotes too
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Zeros at Node 2

. 1
Ho(jw) =
Epl erz

« Thezeroat node 1is1/R,C,, but the response at node 2 does not have any
finite zeros --- does this make sense?

R1 Vo]is/)\/s/z\/ VOZ(S)

+ 1/sCl— 1/sC2
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« Thetransfer functions share the same two poles, their responses are different

dueto the zero
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