Frequency Response

- Sometimes we will design analog circuits to attenuate certain frequencies while amplifying others --- Filters and decoupling circuits
- In all cases there will be some finite bandwidth due to the nonidealities associated with the transistors and other components
- The output signal phase will also be shifted differently (relative to the input signal) as a function of frequency
- For analog design we generally view plots of the magnitude and phase as a function of frequency, , radians/sec to understand these behaviors

• If we consider only frequency responses to design the circuit, how do we know what is happening in terms of the transient response? And do we care?

Simple RC Circuit Example

• For analog design we generally view plots of the magnitude and phase as a function of frequency, , radians/sec

$$V_{i}()$$

$$\begin{array}{c}
 & A_{1} \\
 & A_{2} \\
 & A_{3} \\
 & A_{4} \\
 & 0
\end{array}$$

$$V_i(t) = a_{avg} + A_n \cos(n _o t - _n)$$
 $n = 1$

Transfer Function Magnitude and Phase

• The steady state response of a cosine input signal is modified in terms of phase and magnitude as displayed on the plots

10⁸

10⁹

10⁶

10⁷

10¹⁰

10¹¹

radians/sec

Change in SS Response as Frequency is Varied

• Note that lower frequency signals have less attenuation of magnitude and less phase shift, as can be seen from the frequency domain plots

$$v_{in} = 3\cos(\times 10^8 t)$$

3
2
1
0
-1
-2
3
0
20
40
60
80
100
time(ns)

High Frequency Response

• For frequencies significantly beyond the breakpoint in the magnitude plot, the response will start to vanish

$$v_{in} = 3\cos(\times 10^{10}t)$$

Magnitude on a log Scale

- The breakpoints in these frequency domain characteristics are related to the natural frequencies of the circuit
- Plotting the magnitude on a log-log scale we can see this relationship
- For our RC example, the time constant, , is 2ns, therefore the natural frequency is 5e8.

Magnitude on a decibel (dB) Scale

• Magnitudes are generally plotted on a dB scale:

- Magnitude (for this single time constant example) falls off at asymptotic rate of 20dB/decade, or 6dB/octave (an octave is a 2x change in frequency)
- This relation to circuit natural frequencies also holds for higher order circuits
- Allows us to quickly estimate (visualize) the frequency response based on the natural frequencies

Natural Frequencies

• You may not have seen Laplace Transforms yet, but like phasors they represent a transformation to the (complex) frequency domain that makes it easy to solve for natural frequencies, s's, or reciprocal time constants, 's

s j

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{sC}}{\frac{1}{sC} + R}$$

Poles

- With Laplace transform terminology there is a pole at -1/RC for this RC circuit
- A pole represents a value for s for which H(s) is infinite.

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{1 + sRC} = \frac{\frac{1}{RC}}{\frac{1}{RC} + s}$$

• However, the transfer function is *not* infinite at the real frequency,

$$H(\) = \frac{V_o(\)}{V_i(\)} = \frac{1}{1+j\ RC}$$

Poles and Natural Frequencies

• It is important to note that naturual frequencies and time constants have positive magnitude, while poles are negative (negative real parts for RLC)

$$H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{1 + sRC} = \frac{1}{1 + \frac{s}{p}}$$

- p is equal to 1/RC and can be thought of as the natural frequency
- The pole which makes H(s) infinite, however, is s=-p
- We know that if we solved for the time domain response, that the s term in the assumed solution form would have to be a negative value:

$$Ae^{St}$$

• Once we know the magnitude of the pole, p, for this transfer function, we can use straight line estimates (on the log-log scale) to approximate the frequency response plot

$$H(\) = \frac{V_o(\)}{V_i(\)} = \frac{1}{1+j} RC = \frac{1}{1+\frac{j}{p}}$$

$$|H(\)| = \frac{|1|}{1+\frac{j}{p}} \quad 20\log(|1|) - 20\log\left|1+\frac{j}{p}\right| \quad \text{in dE}$$

• We calculate the asymptotes for the magnitude of this function

For
$$p | H() | 0dB$$

For $p | H() | -20\log \frac{1}{p} = -[20\log () -20\log (p)](dB)$

• Where do these asymptotes intersect?

- With frequency plotted on a log scale, we can quickly sketch the asymptotes
- The maximum error at the breakpoint in the curve is known to be 3dB

Bode Plot: Phase

• The phase plot (for this single pole) can be sketched in a similar way

$$H(\)=\frac{1}{1+\frac{j}{p}} \qquad H(\)=-\operatorname{atan}\ \frac{-}{p}$$

For $\langle p \rangle H() 0 (radians) 0 degrees$

For
$$p \to p$$
 $H() -\frac{1}{4}(radians)$ -90 degrees

For
$$= p$$
 $H()$ $-\frac{1}{8}(radians)$ -45 degrees

 $0 \frac{p}{-45}$

It can be shown that the change in slope is -45 degrees/decade

» *p* -90

Phase Plot

• Maximum error at the breakpoint is 5.7 degrees

Poles and Zeros

- We'll solve circuits in terms of s, just like the book
- But we'll only consider sinusoidal steady state problems, therefore, s = j
- We'll also use the terminology of pole to refer to the natural frequency magnitude
- A related term is a zero
- Example of a circuit with a zero at s=0 --- Actually a transmission zero at = 0 in this case:

Magnitude on a decibel (dB) Scale

• Swapping the R and C changes a low-pass filter into a high-pass filter

• The values of the zeros and poles signify the breakpoints and direction

• Once we know the pole and zero values we can apply a Bode approximation

$$H(\) = \frac{V_o(\)}{V_i(\)} = \frac{j RC}{1+j RC} = \frac{j\frac{p}{p}}{1+\frac{j}{p}}$$

$$|H(\)| = \frac{\left|j\frac{p}{p}\right|}{\left|1+\frac{j}{p}\right|} \quad 20\log\left|j\frac{p}{p}\right| - 20\log\left|1+\frac{j}{p}\right|$$

- Pole term is the same as before
- Zero term is 0dB at breakpoint, and increasing at a rate of 20dB/decade otherwise
- Note that zeros create asymptotes that are increasing with frequency, while
 poles create asymptotes that are decreasing with frequency
- We add all of the asymptotes together to get the overall response

- For each term in the transfer function expression:
 - 1. Find the direction and slope of the asymptote
 - 2. Find one point through which the asymptote passes

Poles and Zeros of Larger Circuits

- Bode plots can be used for higher-order circuits too
- But higher order circuits will have more poles and zeros, and transfer functions of the form:

$$H(\) = K \frac{1 + \frac{j}{z_1}}{1 + \frac{j}{p_1}} \frac{1 + \frac{j}{z_2}}{1 + \frac{j}{p_2}} \dots \frac{1 + \frac{j}{z_m}}{1 + \frac{j}{p_n}}$$

• We would expect that there will always be more finite poles than zeros, why?

• What does the K-term represent?

2nd Order Example

• The following RC circuit will have 2 poles and 1 zero for the transfer function from the input to node 1 or 2:

- You may know how to solve for the poles (natural frequencies) of a circuit by formulating the differential equations and using an assumed solution of: Ae^{st}
- An easier way is to use the following circuit to solve for the poles and zeros:

2nd Order Example

• Write the nodal equations just like you would for phasors

• Transfer functions to nodes 1 and 2 are:

$$H_1(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{R_1 R_2 C_1 C_2} (1 + sR_2 C_2)}{s^2 + s \frac{1}{R_2 C_2} + \frac{1}{R_2 C_1} + \frac{1}{R_1 C_1} + \frac{1}{R_1 R_2 C_1 C_2}}$$

$$H_2(s) = \frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{R_1 R_2 C_1 C_2}}{s^2 + s \frac{1}{R_2 C_2} + \frac{1}{R_2 C_1} + \frac{1}{R_1 C_1} + \frac{1}{R_1 R_2 C_1 C_2}}$$

Numerical Example

$$H_1(s) = \frac{\frac{(1+10^{-10}s)}{10^{-20}}}{s^2 + s(0.03 \times 10^{12}) + 10^{20}} = 10^{20} \frac{1 + \frac{s}{10^{10}}}{s^2 + s(0.03 \times 10^{12}) + 10^{20}}$$

- What is the dc gain?
- What is the zero? Does it represent a transmission zero?

Numerical Example

• Rearrange the terms to recognize the poles

$$H_1(s) = 10^{20} \frac{1 + \frac{s}{z}}{s^2 + s(0.03 \times 10^{12}) + 10^{20}} = 10^{20} \frac{1 + \frac{s}{z}}{(s + p_1)(s + p_2)}$$

• Where: $p_{1,2} = -(-1.5 \times 10^{10} \pm 1.118 \times 10^{10})$

$$H_1(s) = \frac{10^{20}}{p_1 p_2} \frac{1 + \frac{s}{z}}{\frac{s}{p_1} + 1 + \frac{s}{p_2} + 1}$$

• So we can write the sinusoidal steady state transfer function as:

$$H_1(j) = \frac{1 + \frac{j}{z}}{\frac{j}{p_1} + 1 + \frac{j}{p_2} + 1}$$

Numerical Example

• Transfer function can be expressed as the product of the pole and zero terms:

$$H_1(j) = \frac{1 + \frac{j}{z}}{\frac{j}{p_1} + 1 + \frac{j}{p_2} + 1} = 1 + \frac{j}{z} - \frac{1}{\frac{j}{p_1} + 1} - \frac{1}{\frac{j}{p_2} + 1}$$

• If we measure the magnitude in dB, then all of the terms can be separated:

$$|H_1(j)|_{dB} = 20\log\left[1 + \frac{j}{z} - \frac{1}{\frac{j}{p_1} + 1} - \frac{1}{\frac{j}{p_2} + 1}\right] =$$

$$20\log\left[1+\frac{j}{z}\right]+20\log\left[\frac{1}{\frac{j}{p_1}+1}\right]+20\log\left[\frac{1}{\frac{j}{p_2}+1}\right]$$

• Add the asymptotes for each of the individual pole and zero contributions

Phase Numerical Example

• Starting again with the transfer function in product form:

$$H_1(j) = 1 + \frac{j}{z} - \frac{1}{\frac{j}{p_1} + 1} - \frac{1}{\frac{j}{p_2} + 1}$$

• Each term represents a complex number which can be expressed in polar coordinate form

$$H_1(j) = H_z$$
 at $\frac{1}{z}$ H_{p1} -at $\frac{1}{p_1}$ H_{p1} -at $\frac{1}{p_2}$

- From which it is apparent that all of the phase angle terms add
- So we can add the phase-shift asymptotes too

Phase Plot

Zeros at Node 2

$$H_2(j) = \frac{1}{\frac{j}{p_1} + 1 + \frac{j}{p_2} + 1}$$

• The zero at node 1 is $1/R_2C_2$, but the response at node 2 does not have any finite zeros --- does this make sense?

• The transfer functions share the same two poles, their responses are different due to the zero

Phase Plot

