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Aim: The propagation of S. aureus in hospital and dental en-
vironments is considered an important public health problem 
since resistant strains can cause serious infections in humans. 
The genetic variability of 99 oxacillin-resistant S. aureus isolates 
(ORSA) from the dental patients (oral cavity) and environments 
(air) was studied by isoenzyme genotyping. Methods: S. aureus 
isolates were studied using isoenzyme markers (alcohol dehy-
drogenase, sorbitol dehydrogenase, mannitol-1-phosphate de-
hydrogenase, malate dehydrogenase, glucose dehydrogenase, 
D-galactose dehydrogenase, glucose-6-phosphate dehydroge-
nase, catalase and α/β-esterase) and genetic (Nei’s statistics) 
and cluster analysis (UPGMA algorithm). Results: A highly 
frequent polyclonal pattern was observed in this population of 
ORSA isolates, suggesting various sources of contamination 
or microbial dispersion. Genetic relationship analysis showed 
a high degree of polymorphism between the strains, and it 
revealed three taxa (A, B and C) distantly genetically related 
(0.653≤dij≤1.432) and fifteen clusters (I to XV) moderately re-
lated (0.282≤dij<0.653). These clusters harbored two or more 
highly related strains (0≤dij<0.282), and the existence of micro-
evolutionary processes in the population of ORSA. Conclusion: 
This research reinforces the hypothesis of the existence of 
several sources of contamination and/or dispersal of ORSA of 
clinical and epidemiologically importance, which could be as-
sociated with carriers (patients) and dental environmental (air).
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Introduction

The dissemination of S. aureus is considered an important public health problem 
because resistant strains can cause serious infections, especially in children and hos-
pital patients1–3. Dentists treat a wide variety of patients, a fact that exposes these 
health professionals to people colonized or infected with resistant microorganisms2,4. 
High rates of resistance to antibiotics used during odontological prophylaxis have 
been detected in pathogens associated with bacterial endocarditis, for example, 
S. aureus5–8. Strains of S. aureus can be disseminated during dental treatment and 
occasionally lead to the contamination and infection of patients and dentists. Cer-
tain aspects of odontological practice can contribute to the dissemination of microor-
ganisms9,10. The skin, environment and instruments can be contaminated with saliva, 
blood or debris during routine odontological treatment10,11. Several researchers have 
noted an increase in the amount of microorganisms present during clinical procedures 
in odontological environments, suggesting contamination from aerosols, especially 
when high-speed devices or ultrasonic scalers are used12,13. Among the species iden-
tified in microbiological studies, streptococci of the group viridans and Staphylococ-
cus spp. are the most prevalent microorganisms found on surfaces of odontological 
equipment12–15, including methicillin-resistant S. aureus, which has been detected on 
odontological operatory surfaces, air-water syringes and recliner chairs16. Additionally, 
bacteria and fungi were significantly more frequent in dentist’s hand with rings than 
those without rings, being Staphylococcus aureus, Escherichia coli and Candida albi-
cans highly prevalent among the isolated potentially pathogenic microorganisms10.

Phenotypic methods (biotyping, serotyping, bacteriophage or bacteriocin typing and 
antimicrobial susceptibility profiles) and genotypic [pulsed-field gel electrophoresis 
(PFGE) and other methods based on the restriction of genomes, analysis of plas-
mids, typing methods based on polymerase chain reaction (PCR)] of microbiologi-
cal characterization have elucidated the relationship and the distribution of human 
pathogens, which is considered essentially important for the epidemiology and con-
trol of hospital infections17. Isoenzymatic typing [multilocus enzyme electrophoresis 
(MLEE)] has been used for several decades as a “gold standard” in population genetics 
studies of eukaryotes18–20 and systematic studies21, as well as in large-scale studies 
for determining the genetic diversity and structure of natural populations of a variety 
of bacteria species22–24 and fungi25–27. This method represents an invaluable comple-
ment to the more recently developed molecular typing methods, particularly for large-
scale epidemiological studies28. In addition, MLEE possesses excellent typability (i.e., 
the percentage of different strains obtained) and reproducibility (i.e., the percentage 
of strains that display the same results in repetitive tests) and is associated with great 
discriminatory power (i.e., the ability to differentiate unrelated strains)23–33.

Epidemiological studies are necessary for the implementation of effective prevention 
measures. Genotyping of strains from patients in odontological clinical treatment and 
their environments can provide information that can potentially help control and pre-
vent the spread of S. aureus involved in the processes of colonization and human infec-
tion. This scientific research evaluated the genetic diversity of natural populations of 
oxacillin-resistance S. aureus dental isolates (dental patients and environments). The 
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frequency of strains and operational taxonomic groups (taxon and cluster) and pos-
sible epidemiological correlations were investigated by using isoenzymatic markers 
(MLEE) and genetic and grouping analysis.

Material and Methods

Microbiological Sampling

A total of ninety-nine bacterial samples of oxacillin-resistant S. aureus (ORSA), from the 
bacteria collection of the Laboratório de Farmacogenética e Biologia Molecular, Facul-
dade de Ciências Médicas and Centro de Pesquisa e Pós-graduação (UNIFENAS), Alfenas, 
MG, Brazil, were kindly provided and used for the present research. These samples were 
previously isolated from dental patients and clinical environment (air) (Faculdade de 
Odontologia, UNIFENAS) (approved by Committee of Ethics in Human Research, proto-
col no. 174/2009) and characterized using microbiological methods of identification [i.e., 
stain of Gram, growth in chromogenic medium CHROMagar Staphylococcus aureus®, cat-
alase test, coagulase test (Coagu-Plasma, Laborclin Produtos para Laboratórios Ltda.), 
clumping factor A test (Staphy Test, Probac do Brasil Produtos Bacteriológicos Ltda.), 
fermentation of mannitol test and DNAse test]34 and antimicrobial susceptibility testing 
(i.e., diffusion disk and confirmatory triage for resistance to oxacillin)35.

Multilocus Enzyme Electrophoresis (MLEE)

Preparation of cell extracts, electrophoresis procedures, enzyme staining and genetic 
interpretation of MLEE patterns were performed according to methods previously 
reported23,25,26,31. To ensure reproducibility of the results, the cellular enzymes of the S. 
aureus ATCC® 25.923TM reference strain were systematically used. A total of nine met-
abolic enzymes (Table 1) was investigated using systems and solutions previously 
established for the MLEE analyses23,25,26,31. The discriminatory power of the MLEE 
method was determined using the numeric index of discrimination (D), in accordance 
with the probability that two unrelated isolates sampled from a test population are 
classified into different types (i.e., strains or ETs)25,26.

Grouping Analysis

The statistic of Nei (1972)36 was used to estimate the genetic distance (dij) among the 
isolates/strains (ETs) of oxacillin-resistant S. aureus. The interpretation in terms of 
enzyme loci infers that, on average, from zero to an infinite number of allele substi-
tutions are detected (for electrophoresis) for every 100 existing loci from a common 
ancestral strain. A tree with two-dimensional classification (dendrogram), based on the 
matrix dij, was generated by the grouping SAHN method (Sequential, Agglomerative, 
Hierarchic, Nonoverlapping Clustering Methods) and the UPGMA algorithm (Unweighted 
Pair-Group Method Using an Arithmetic Average). Once MLEE provided all levels of rela-
tionship that must be solved by DNA fingerprinting methods (i.e., identification of the 
same strain between independent isolates, identification of microevolutionary changes 
in the same strain, identification of clusters of moderately related isolates and identifi-
cation of completely unrelated isolates), a threshold (average value: dij ) in the dendro-
gram was established to identify identical isolates and highly related isolates, clusters 
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Table 1. Systems and solutions utilized for the MLEE analyses of the S. aureus metabolic enzymes.

Enzyme Compound for staining

EC 
number Name Symbol Substrate Buffer Salt Coenzyme Dye and 

Catalyser

1.1.1.1. alcohol 
dehydrogenase ADH

Ethanol (3mL) 
Isopropanol 

(2mL)

200mM 
Tris-HCl pH 
8.0 (q.s.p. 
50mL) a

NAD 1% 
(2mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.1.1.17
mannitol-1-
phosphate 

dehydrogenase
M1P

Mannitol 
1-phosphate 

(5mg)

200mM 
Tris-HCl pH 
8.0 (q.s.p. 
50mL) a

NAD 1% 
(2mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.1.1.37. malate 
dehydrogenase MDH 2M Malic acid

(6 mL) b

200mM 
Tris-HCl pH 
8.0 (q.s.p. 
50mL) a

NAD 1% 
(2mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.1.1.47 glucose 
dehydrogenase GDH D-glucose 

(500 mg)

200mM 
Tris-HCl pH 
8.0 (q.s.p. 
50mL) a

NAD 1% 
(2mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.1.1.48 D-galactose 
dehydrogenase GLDH Galactose 

(450mL)

Tris-HCl 
100mM pH 
8.4 (q.s.p. 
50mL) c

NAD 1% 
(1mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.1.1.49
glucose-6-
phosphate 

dehydrogenase
G6PDH

Glicose-6-
phosphate

disodium salt 
(100 mg)

200mM 
Tris-HCl pH 
8.0 (q.s.p. 
50mL) a

100mM
MgCl2

(1 mL) d

NADP 1% 
(1mL)

PMS 1% 
(500µL) MTT 
1.25% (1mL)

1.11.1.6 catalase CAT e

3.1.1.1. α- and β- 

esterase EST

α- and 
β- Naphthyl 
acetate (1% 
solution in 
acetone) 
(1.5ml)

50mM 
Sodium 

phosphate 
pH 7.0 

(q.s.p. 50mL)f

Fast Blue RR 
salt (25 mg)

Electrode buffer: Tris–citrate pH 8.0 [83.2 g of C4H11NO3 (Tris), 33.09 g of C6H8O7.H2O (Citric acid), 1 liter of 
H2O]; Gel buffer: Electrode buffer diluted 1:29.
a 24.2 g of C4H11NO3 (Tris), 1 liter of H2O (pH adjusted with HCl);
b 26.8 g of C4H6O5 (DL-malic acid) and 16g of NaOH in 100 ml of H2O (caution: potentially explosive reaction);
c 12.1 g of C4H11NO3 (Tris), 1 liter of H2O (pH adjusted with HCl);
d 2.03 g of MgCl2.6HCl (Magnesium chloride) in 100 ml of H2O;
e Incubate gel slice for 30 min at 0 °C in 50 ml of 0.1 M sodium phosphate pH 7.0 buffer, then pour off solution, 
and immerse it in 50 ml of 1.5% potassium iodide solution (KI) for 2 min. Therefore, rinse gel slice with water, 
and immerse it in 50 ml of 0.03% hydrogen peroxide (H2O2) solution. Mix gently and remove stain solution 
when white zones appear on dark-blue background;
f Sodium phosphate buffer pH 7.0: mix equal parts of 27.6 g of NaH2PO4.H2O (monobasic) in 1 liter of water 
and 53.6 g of Na2HPO4.7H2O in 1 liter of water, then dilute the mixture 1:25 with water.
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(0 ≤ dij < dij ) and taxa (singular taxon, i.e., taxonomic group of any nature or rank) (dij ≥ dij ). 
Correlation coefficients based on the Pearson product-moment was used as a measure 
of agreement between the genetic distance values implicit in the UPGMA dendrogram 
and the original explicit values in the matrix of genetic distance dij. All these analyses 
were performed using the NTSYS-pc program version 2.125,26,32.

Results
The electrophoretic isoenzyme patterns of oxacillin-resistant S. aureus isolates 
were reproducible in different gels after three repetitions of each electrophoretic 
run. According to haploid nature of S. aureus, these patterns displayed the follow-
ing characteristics (Table 2): all 30 enzymatic loci were polymorphic for one, two, 
three, four, five and six alleles (one allele: Cat-2, β-Est-3, Gdh-2, G6pdh-3, Sdh-1; 
two alleles: Adh-1, Cat-1, α-Est-1, β-Est-2, M1p-2, M1p-3, Mdh-3 and Sdh-2; three 
alleles: Gdh-3, Mdh-1, Sdh-3 and Mdh-4; four alleles: Adh-2, Adh-3, α-Est-3, β-Est-1, 
G6pdh-2 and Mdh-2; five alleles: M1p-1, Gdh-1, Gldh-2 and G6pdh-4; six alleles: 
α-Est-2, G6pdh-1 and Gldh-1). The average number of alleles per polymorphic locus 
was equal to 3.16 ±1.62. The existing combination in 30 enzymatic loci revealed 
79 strains (ETs) [79% of the isolates, including the reference strain of S. aureus 
ATCC® 25.923, that is, identical isolates that match the same strain ET (dij = 0.000)]. 
Based on the genetic interpretation of electrophoretic patterns, the discriminatory 
power of the MLEE genotyping method was equal to 0.99051, that is, there was a 
99% probability that two non-related isolates of S. aureus, from the test population, 
would be classified as distinct strains ETs.

The genetic diversity among the strains of oxacillin-resistant S. aureus was evaluated 
using the matrix dij and the UPGMA dendrogram (Figure 1). Considering the threshold 
obtained (0 ≤ dij < 0.282: isolates identical or highly related; 0.282 ≤ dij < 0.653: isolates 
moderately related; dij ≥ 0.653: isolates genetically distantly related), the results indi-
cated three main groups or taxa, designated A, B and C. Taxon A comprised nine iso-
lates/strains (ET2 G22.5, ET6 G11.66, ET8 G11.86, ET9 G11.129, ET22 G18.66, ET24 G18.8, ET32 G18.46, 
ET68 G11.36 and ET76 G18.137) and eight moderately related clusters (from I to VIII; a total 
of 60 isolates 60% or 43 ETs 54.4%):

• Cluster I: Thirteen identical and/or highly related isolates, including the reference 
strain; 11 highly related strains (ET1 ATCC 25.923 and G13.172, ET41 G18.100 and G20.44, ET43 G20.12, 
ET44 G18.155, ET45 G22.55, ET46 G22.22, ET47 G18.51, ET48 G15.100, ET49 G16.140, ET50 G13.165 
and ET51 G15.40).

• Cluster II: Five identical and/or highly related isolates; two highly related strains 
(ET36 G18.20 and ET39 G18.110, G18.111, G18.166 and G18.156).

• Cluster III: Three highly related isolates; two highly related strains (ET13 G11.135, 
ET15 G13.47 and ET21 G18.95).

• Cluster IV: Three highly related isolates; three highly related strains (ET3 G6.15, ET5 
G5.38 and ET4 G6.12).

• Cluster V: Four identical and/or highly related isolates; three highly related strains 
(ET10 G11.139, ET11 G11.58 andG11.19 and ET12 G11.39).
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Table 2. Allele profiles of oxacillin-resistant S. aureus isolates (79 strains/ETs), sourced from odontological 
clinical and environment samples, and obtained for the genetic interpretation of MLEE patterns. 
Discriminatory power (D) = 0.99051. (-) allele null.

ET

Alleles in 30 enzyme loci

Adh Sdh M1p Mdh Gdh Gldh G6pdh Cat α-Est β-Est

1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 1 2 3 4 1 2 1 2 3 1 2 3

ET1 - - 2 - 2 - - 2 1 - - 1 - - 1 - - 1 - - 1 - 2 - - 5 - - 1 -

ET2 - - 2 - 2 - - 2 - - - - - - 1 - 6 - - - 1 - 2 - - 5 2 - - -

ET3 - - 2 - 2 1 - - 1 - 2 - - - 1 2 - 3 - 2 - - 2 - - 5 - - 1 -

ET4 2 - - - 2 1 - - 1 - 2 - - - 1 2 - 3 - 2 - - 2 - - 6 4 - 2 -

ET5 - - 2 - - 1 - - 1 - 4 - - - 1 2 - 3 - 2 - - 2 - - 5 - - 1 -

ET6 - 2 1 - 2 1 - 2 1 - - 1 2 - - - 6 2 - 4 - - 2 - - - - - - -

ET7 - - - - 2 1 - 2 1 - - - - - - - - - - 4 - - 2 - - - - 4 - -

ET8 - - - - 2 1 - 2 1 - - - 1 - - - - - - - 1 - 2 - - 1 - - - -

ET9 - - - - 2 1 - 2 1 - - - - - - - - 4 - - 1 - 2 - - - 1 - - -

ET10 - 4 2 - 2 - 5 2 - - 4 1 - 5 1 - 5 1 - - 1 - 2 - - 5 - - 1 -

ET11 - 4 - - 2 - 4 - - - 4 - - 5 - - 5 - - - - 3 2 - - 3 - - 1 -

ET12 - 4 - - 2 - 4 - - - 4 - - 3 - - 5 - - - 1 3 2 - - 3 - - 1 -

ET13 - 1 - - - - 2 - - 3 - - - - - - 2 - - - - - 2 - - 5 - - - -

ET14 - - - - - - - - - - 3 - - 5 - - - - - - 1 4 2 - - 5 - - - -

ET15 - - - - - - - - 1 3 - - - - - - - - - 2 - - 2 - - 5 - - 1 1

ET16 - - - - - - - - 1 - - - - 5 - - 3 - - - 1 - 2 - - 2 - - - -

ET17 - - - - 2 - - - 1 - - - - - - - - - - 4 - - 2 - - - - - - -

ET18 - - - - - - - - 1 - - - - - - - - - 4 - - - 2 - - 2 - - - -

ET19 - - 2 - - 3 - 1 - 3 - - - - - - - - 6 - - - 2 - - - - - - -

ET20 - 2 - - 2 - - - 1 3 - 2 - 5 - - - - - - 1 - 2 - - - - - - -

ET21 - - 2 - - 3 - 1 - 3 - - - - - - - 1 - - - - 2 - - 5 - - - -

ET22 - - - - - - 3 - - - 3 - - - - - 4 - - - 1 - 2 - - 5 - - - -

ET23 - - - - - - - - 1 - 3 - - - - - - - - 2 - - 2 - - - 1 2 - -

ET24 - - - - - - - - 1 - 3 - 2 - - - - - - 2 - - 2 - - 5 - - - -

ET25 - - 2 - - 3 - - 1 - 4 - - 5 - - - - 6 - - - 2 - - - - - 1 -

ET26 - - - - - - - - 1 - 4 - - - - - - 1 - - 1 - 2 - - 2 - 2 - -

ET27 - - 2 - 2 - - 2 - - - - 3 - 1 - - 1 - - 1 - 2 - 1 - - - 1 -

ET28 - - 2 - 2 - 5 2 - - - - 3 - 1 - - 1 - - 1 - 2 - 1 - - - 1 -

ET29 - - 2 - 2 - - 2 - - - 1 3 - 1 - - 1 - - 1 - 2 - 2 - - - 1 -

ET30 - - 2 - 2 - - 2 - - - 1 - - - - - 1 - - 1 - 2 - 2 - - - 1 -

ET31 - - 2 - 2 - - 2 - - - - - 1 - - - 1 - - 1 - 2 - 2 - - - 1 -

ET32 - 3 - - 2 - - 2 - - - 1 - 2 - - - 1 - - 1 - 2 - 2 - - - 1 -

ET33 - - 2 - 2 - - 2 - - - 1 - - 1 - - 1 - - 1 - 2 - 2 - - - 1 -

ET34 - - 2 - 2 - - 2 - - - 1 - - 1 - - 1 - - 1 - 2 - - - - - 1 -

ET35 - - 2 - 2 - - 2 - - - 1 - 3 1 - - 1 - - 1 - 2 - - - - 3 - -

ET36 - - 2 - 2 - 5 2 - - - 1 - - 1 - - 1 - - 1 - 2 - 2 6 - 3 - -

ET37 - - 2 - 2 - - 2 - - - 1 - 3 - - - 1 - - 1 - 2 - 2 - - 3 - -

ET38 - - 2 - 2 - 5 2 - - - 1 - - 1 - - 1 - - 1 - 2 - 2 - - 3 - -

ET39 - - 2 - 2 - 5 2 - - 3 - - - 1 - - 1 - - 1 - 2 - - 6 - 3 - -

ET40 - - 2 - 2 - 5 2 - - - 1 - - 1 - - 1 - - 1 - 2 - 1 - - 3 - -

ET41 - - 2 - 2 - - 2 - - - 1 - - 1 - - 1 - - 1 - 2 - - 6 - 3 - -
ET and [-] correspond to electrophoretic type (bacterial strain) and allele null, respectively. Continue
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Table 2. Allele profiles of oxacillin-resistant S. aureus isolates (79 strains/ETs), sourced from odontological 
clinical and environment samples, and obtained for the genetic interpretation of MLEE patterns. 
Discriminatory power (D) = 0.99051. (-) allele null. Continuation

ET

Alleles in 30 enzyme loci

Adh Sdh M1p Mdh Gdh Gldh G6pdh Cat α-Est β-Est

1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 1 2 1 2 3 4 1 2 1 2 3 1 2 3

ET42 - - 2 - 2 - - 2 - - - - - - 1 - - 1 - - 1 - 2 - 1 - - 3 - -

ET43 - - 2 - 2 - - 2 - - 3 - - - 1 - - 1 - - 1 - 2 - - 5 - - 1 -

ET44 - - 2 - 2 - - 2 - - - - - - 1 - - 1 - 3 - - 2 - - 5 - - 1 -

ET45 - - 2 - 2 - - 2 - - - - - - 1 - - 1 - - 1 - 2 - - 5 - - 1 -

ET46 - - 2 - 2 - - 2 - - - 1 - - 1 - - 1 - - 1 - 2 - - 5 - 1 - -

ET47 - - 2 - 2 - - 2 - - - - - - 1 - - 1 - 3 1 - 2 - - 5 - - 1 -

ET48 - - 2 - 2 - - 2 - - - - - - 1 - - 1 - - 1 - 2 - - 5 - 3 1 -

ET49 - - 2 - 2 - - 2 - 2 - - - - 1 - - 1 - - 1 - 2 - - 4 - 3 - -

ET50 - - 2 - 2 - - 2 - 2 - - - - 1 - - 1 - - 1 - 2 - - 5 - - 1 -

ET51 - - 2 - 2 - - 2 - 2 - - - - 1 - - 1 - - 1 - 2 - - 4 - - 1 -

ET52 - - - - - - - - - 2 - - - - - - - - - 1 1 - 2 - - - - - - -

ET53 - - 4 - - 2 3 - 2 2 - - - - - 3 1 5 5 - - 5 2 1 - - - - - -

ET54 - - - - - - - - - 2 1 - - - - - - - - 1 - 2 2 - - - - - - -

ET55 - - - - - - - - - 2 - - - - - - - - 3 - - - 2 - - - - - - -

ET56 - - - - - - - - - - 1 - - - - - - - 1 - - - 2 - - - 2 - - -

ET57 1 3 - - - - - - - - 1 - - - - - - - - - - 2 2 - - - - - - -

ET58 - - - - - - - - - - - - - - - - - - 1 - - - 2 - - - - - - -

ET59 - - - - - - - - - - 1 - - - - - - - 3 - - - 2 - - - - - - -

ET60 - - 3 1 - - - - - - 1 - - 5 - - - - - - - 5 2 - - - - - - -

ET61 - - - 1 1 - - - - 2 - - - 4 - 1 - - 1 - - - 2 - - - - - - -

ET62 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - -

ET63 1 3 - - - - - - - - - - - - - - - - 2 1 - - 2 - - - - 4 - -

ET64 - - - - - - - - - - - - - - - - - - 2 - - - 2 - - - - - - -

ET65 - - - - - - - - - 1 - - - - - - - - 5 - - - 2 - - - - - - -

ET66 - - - - - - - - - - - - - 4 - - - - - - 1 - 2 - - - - - - -

ET67 - - - - - - - - - - - - - - - - - - - - - - 2 - 1 - - - - -

ET68 - - - - - - 4 - - - - - - - - - 5 - - 1 - - 2 - 2 - - - - -

ET69 - - - - - - - - - 2 - - - - - - - - - - - - 2 - - - - - - -

ET70 - - - - - - - - - 1 - - - 4 - - - - - - - - 2 - - - - - - -

ET71 - - - - - - - - - 1 - - - - - - - - 2 1 - - 2 - - - - - - -

ET72 - - 4 - - - - - - - - - - - - - - - 5 - - - 2 - - - - - - -

ET73 - - - - - - - - - - - - - - - - - - 2 1 - - 2 - - - - - - -

ET74 - - - - - - 1 - - - - 1 - - - - 1 - 5 - - - 2 - - - - - - -

ET75 - - - - - - - - - - - 1 - - 1 - - - - 3 - - 1 - - - - - - -

ET76 - - - - - - - - - - - 1 - - 1 - - - - 3 - - 1 - - 5 3 - - -

ET77 - - - - - - - - - - - 2 - - - - - - - 2 - 1 1 - - - - - 1 -

ET78 - - - - - - - - - - - 2 - - - - - - - 3 - - 1 - - - - - - -

ET79 - - - - - - - - - - - 2 - - - - - - - - 1 - 1 - - - - - - -
ET and [-] correspond to electrophoretic type (bacterial strain) and allele null, respectively.
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• Cluster VI: Eight identical and/or highly related isolates; six highly related strains 
(ET27 G18.33, G18.104 and G20.45, ET29 G18.14, ET30 G19.43, ET31 G22.48, ET33 G18.135 and ET34 G20.14).

• Cluster VII: Three highly related isolates; three highly related strains (ET35 G18.45, 
ET37 G19.10 and ET42 G18.126).

Figure 1. Genetic diversity of 99 oxacillin-resistant S. aureus isolates sourced from a population of 
odontological clinical and environment samples. The UPGMA dendrogram (rjk = 0.79908) was generated 
from a matrix of genetic distance dij (Nei, 1972).
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• Cluster VIII: Twelve identical and/or highly related isolates; three highly related strains 
(ET28 G18.94, G18.9 and G21.1, ET38 G18.55, ET40 G15.52, G16.40, G18.142, G18.26, G18.50, G18.74, G22.63 and G19.21).

Taxon B comprised eight isolates/strains (ET14 G13.112, ET60 G14.71, ET16 G12.14, ET25 G18.89, 
ET53 G14.126, ET56 G15.159, ET57 G13.41 and ET63 G16.258) and six moderately related clusters 
(from IX to XIV; a total of 33 isolates 33% or 30 ETs 37.9%):

• Cluster IX: Thirteen identical and/or highly related isolates; four highly related 
strains (ET20 G18.15, ET61 G13.120, ET66 G5.31, ET70 G13.174 and G14.199).

• Cluster X: Nine highly related isolates; nine highly related strains (ET18 G13.51, ET55 G17.68, 
ET58 G17.86, ET59 G16.269, ET64 G15.131, ET65 G17.13, ET71 G15.64, ET73 G17.128 and ET74 G17.62).

• Cluster XI: Two highly related isolates; two highly related strains (ET19 G11.13 and 
ET72 G17.63).

• Cluster XII: Three highly related isolates; three highly related strains (ET52 G16.88, 
ET54 G16.49 and ET69 G13.142).

• Cluster XIII: Four identical and/or highly related isolates; two highly related strains 
(ET62 G17.115 and G16.167 and ET67 G11.131 and G11.32).

• Cluster XIV: Two highly related isolates; two highly related strains (ET23 G18.91 and 
ET26 G18.10).

Taxon C comprised three isolates/strains (ET7 G11.96, ET17 G12.13 and ET79 G22.64) and 
only one moderately related cluster (XV; a total of six isolates 6% or five ETs 6.3%):

• Cluster XV: Four identical and/or highly related isolates; three highly related strains 
(ET75 G17.42 andG18.124, ET78 G20.48 and ET77 G19.44).

Discussion
In this study, the enzyme electrophoretic profiles of oxacillin-resistant S. aureus iso-
lates on different gels were reproducible after three repetitions of each electropho-
retic run. The discriminatory capacity (i.e., 99% probability that two unrelated isolates 
sampled from a population test are classified in different strains ETs) of the MLEE 
method, based on genetic interpretation of electrophoretic enzyme patterns, was also 
observed (i.e., the combination of existing alleles on 30 enzyme loci revealed 79 ETs). 
Once again, MLEE proved to be a powerful tool for the typing of S. aureus in epidemi-
ological studies. These results are in agreement with previously reported data on the 
discriminatory power and reproducibility of the MLEE method as applied to bacte-
ria and yeasts of medical importance23–27,31, but the discriminatory power was higher 
than the values reported for S. aureus by other groups of researchers29,30.

Genetic polymorphism has been found in almost all natural populations and at all levels 
of genetic organization, from genotype characteristics to phenotypic traces. The possible 
reasons of its existence have been the subject of a long debate in the population genetics 
and molecular evolution fields37,38. S. aureus is a heterogeneous species (polymorphic)39 
that has been observed to have a clonal population structure40. Therefore, it is believed 
that S. aureus does not suffer extensive recombination, diversifies extensively by nucle-
otide mutations and displays a high degree of linkage disequilibrium (non-random asso-
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ciations between gene loci). A particular structural gene locus is defined as polymorphic 
when the frequency of its more common allele presents a value below 0.99 (99%). Some 
of the measures used to quantify this variability in populations of organisms are the 
allele and gene frequencies, the percentage of polymorphic loci, the average number of 
alleles per locus and heterozygosity41. In this study, quantitative and qualitative variations 
of polymorphic loci (30 100% polymorphic enzyme loci to one, two, three, four, five and 
six alleles) and the average number of alleles per polymorphic locus (3.16 ±1.62) were 
observed in the population of oxacillin-resistant S. aureus. These variations have been 
observed in several studies of genetic diversity of populations of S. aureus obtained from 
human and bovine sources29,30,42,43. In addition, the genetic polymorphism observed in the 
population of oxacillin-resistant S. aureus isolates revealed a highly frequent polyclonal 
pattern and infrequent monoclonal pattern, suggesting various sources of contamina-
tion or microbial dispersion from an epidemiological point of view.

The genetic relationship between the oxacillin-resistant S. aureus strains was deter-
mined by using the statistic dij of Nei (1972) and the UPGMA dendrogram25,26,32,36, 
which displayed a value rjk acceptable (rjk ~ 0.8) based on the correlation coeffi-
cient of Pearson’s product-moment [i.e., good agreement between the elements dij 
(matrix of genetic distance) and Cjk (correlation matrix derived from UPGMA dendro-
gram)]. A high degree of genetic polymorphism (0.000 ≤ dij ≤ 1.705) was observed 
between the ORSA isolates (i.e., on average, from zero to 170.5 allele substitutions 
were detected in each 100 loci from a common ancestor strain). These isolates 
were allotted to three taxa (A, B and C), which were distantly genetically related 
(0.653 ≤ dij ≤ 1.705). Taxon A presented a larger number of isolates, strains or clus-
ters of bacteria (60 isolates 60%, 43 ETs 54.4% and eight clusters I-VIII), followed by taxon 
B (33 isolates 33%, 30 ETs 37.9% and six clusters IX-XIV) and taxon C (six isolates 6%, five 
ETs 6.3% and one cluster XV). Each taxon presented one or more clusters and/or moder-
ately related isolates (0.282 ≤ dij < 0.653). In turn, these clusters harbored two or more 
identical and/or highly related isolates (0 ≤ dij < 0.282). Considering that highly related 
isolates/strains highly come from a common ancestor [i.e., descendants have suf-
fered microevolutions and adaptations as a result of recombination (not extensive), 
nucleotide mutations and non-random association between gene loci (linkage dis-
equilibrium)39,40, these results suggest the existence of microevolutionary processes 
in the population of oxacillin-resistant S. aureus, as demonstrated in each cluster (i.e., 
on average, from zero to < 28.2 allele substitutions were detected in each 100 loci 
from a common ancestor strain). However, these data reinforce the hypothesis of the 
existence of several sources of contamination and/or dispersal of oxacillin-resistant 
S. aureus of clinical and epidemiologically importance, which could be associated 
with carriers (patients) and dental environmental (air). These epidemiological inves-
tigations have also been a goal of our research group and contribute to (i) knowl-
edge about the dynamics of the spread and retention of S. aureus strains resistant 
to antibiotics in hospital and odontological environments (i.e., surgical devices, den-
tal instrumentation, various surfaces, air and other) and (ii) the implementation or 
restructuring of containment barriers, use of personal protective equipment, means 
of identification and periodic treatment from professionals carriers of microorgan-
isms (nasal cavities, oral and oropharyngeal, perineum and armpits), techniques and 
devices for air purification, hygiene and more efficient prophylaxis.
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Certain aspects of practicing dentistry may contribute to the transmission of micro-
organisms9. The skin, environment, and instruments can be contaminated with saliva, 
blood or organic debris during routine dental treatment11. In the dental environment, 
investigators have observed an increase in the amount of microorganisms during clin-
ical procedures, suggesting contamination by aerosols, especially when high-speed 
handpieces or ultrasonic scalers are used12,13,15. Among the species identified in 
microbiological studies, Streptococcus viridans and Staphylococcus spp. are the most 
prevalent microorganisms found on the surfaces of dental equipment12–15. In addition, 
the high-speed drills and cavitrons used in dental offices generate aerosols and drop-
lets that are contaminated with blood and bacteria and may be a route for the trans-
mission of diseases such as SARS (severe acute respiratory syndrome), tuberculosis, 
and Legionnaires’ disease44–46. Methicillin-resistant S. aureus (MRSA) has frequently 
been detected on surfaces in dental operatories, including the air-water syringe and 
reclining chair16. Nosocomial infections or the colonization of MRSA occurred in eight 
out of 140 patients who displayed no evidence of MRSA upon admission to a clinic. 
Antibiogram tests revealed that the isolates from the eight patients were of the same 
strain as those from the surfaces of the dental operatory, suggesting S. aureus trans-
mission between the patients and the dentist via the clinical environment16. The fre-
quency of S. aureus isolated from the noses, hands, and tongues of students and 
patients and from the clinical environment of a pediatric dentistry clinic before and 
after dental treatment was determined47. The highest concentration of S. aureus was 
found in the noses and on the tongues of children and among the dental students, and 
the highest level of contamination was observed on gloved hands, which was followed 
by the tongue and hands without gloves before clinical care. At the end of dental treat-
ment, S. aureus colonies isolated from the gloved hands of students decreased signifi-
cantly. Considering the clinical environment, S. aureus dissemination increased at the 
end of dental procedures, and the most contaminated areas were the auxiliary table 
and the storeroom, which was located at the center of the clinic. Such results can be 
explained by the intense circulation of people in the clinic and the use of high-speed 
dental handpieces. However, it is still speculated that much of the S. aureus contam-
ination detected in the clinical environment came from other sources, such as direct 
contact, skin exfoliation or the improper handling of plates, and it is concluded that the 
dental clinic is an appropriate environment for S. aureus cross-transmission.

Because molecular-based epidemiological studies are useful in identifying possible 
sources of the spread of microorganisms in hospitals and dental clinical settings, 
this study contributes to our knowledge on the dynamics of the spread of S. aureus 
strains resistant to antibiotics and points to the need for containment barriers, use 
of personal protective equipment, periodic identification and treatment of carriers 
among clinical staff, and installation of air purifiers. Thus, infection control guidelines 
and published research pertinent to dental infection control principles and practices 
must be applied by the dentist as a matter of routine in academic dental offices. This 
research showed a genetic polymorphism in the population of oxacillin-resistant S. 
aureus isolates (dental patients and air of the clinical environment) and a highly fre-
quent polyclonal pattern of these bacterial strains, supporting the hypothesis of vari-
ous sources of contamination or microbial dispersion in the dental clinic environment. 
The isoenzyme typing and genetic relationship analysis revealed also some taxa and 
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clusters exhibiting different frequencies of strains and possibly microevolutionary 
changes. In addition to the genetic information of S. aureus, the present methodology 
potentially collaborates with measures of prevention, management, and tracking of S. 
aureus, especially in dental clinics with great workflow.
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