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Preface 

I have my students to thank for this book. Regardless of ability, each has had
a role to play. The more able students have always helped, through their proj-
ect work, to develop new ideas and solutions in electronic design. Some have
displayed an astonishing instinctive understanding of engineering ideas, and
some have been so keen to learn as to make teaching easy and rewarding.
There is never enough time to give each individual student the time and help
they deserve. So, one has to start writing to make sure that the essential tech-
nical information is at least accessible, and hope that students are able to make
best use of it.

Another spur to writing this book has been the development of the interac-
tive design software which has made the job of learning and teaching elec-
tronics that much more enjoyable. The Proteus software used in this book has
been developed by a talented team at Labcenter Electronics in the UK, led by
John Jameson and Iain Cliffe. They have a world beating product, and I wanted
to make a small contribution to encouraging students and engineers to use it.
It allows us to bring electronic circuits to life on the computer screen instantly.

It has always been a problem in electronics that you cannot see a circuit
working in the same way that a mechanical engineer can see a steam engine
pumping up and down. Sure, we can see the screen flickering on a television,
or an electric motor spinning, but you cannot see electrons or volts. As a re-
sult, it has always been that much more difficult to teach electronics. Proteus
is a big step towards bringing electronics alive, as such it helps us to partici-
pate more effectively in the communications and information revolution that is
all around us.
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Introduction

This book is a sequel to my first effort ‘PIC Microcontrollers, an Introduction
to Microelectronics’. This attempted to provide a comprehensive introduction
to the subject via a single type of microcontroller, which is essentially a com-
plete computer on a chip. The PIC was the first widely available device to use
flash memory, which makes it ideal for experimental work. Flash memory al-
lows the program to be replaced quickly and easily with a new version. It is
now commonplace, not least in our USB memory sticks, but also in a wide
range of electronic systems where user data need to be retained during power
down. Cheap flash memory microcontrollers have transformed the teaching of
microelectronics – they are re-usable and the internal architecture is fixed,
making them easier to explain. On the other hand, beginners can ignore the
innards and treat them as a black box, and get on with the programming! The
small instruction set of the PIC is also a major advantage – only 35 instruc-
tions to learn. Compare that with a complex processor such as the Pentium,
which is quite terrifying compared with the PIC! The quality of the PIC tech-
nical documentation is also a major factor.

For these reasons, I set out to introduce the PIC into my teaching as widely as
possible. At the same time, schools, universities and hobbyists were starting to use
it, so continuity of learning was possible. Since there is never enough time to
teach all the detail, I decided to set out a full description of the basic PIC device,
the 16F84, and some representative applications. Although this particular chip is
now redundant in terms of new products, the basic architecture is unchanged in
current chips, so it is still a useful starting point.

My students and I soon graduated to the more powerful PIC 16F877. This is
now used widely as a more advanced teaching device, because it has a full
complement of interfaces: analogue input, serial ports, slave port and so on,
plus a good range of hardware timers. A full description of this chip covers
most of the features that higher level students need for project work with mi-
crocontrollers.

When interactive simulation of microcontrollers became available, a new di-
mension was added. We could now see them in action without having to spend
a lot of time building and debugging hardware! These design tools allow even
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the inexperienced designer to create a working system relatively quickly. As a
result, my next step was to document the 16F877 and its applications, through
the medium of interactive simulation.

Proteus© from Labcenter Electronics© consists of two main parts, ISIS and
ARES. ARES is a layout package, which is used to create a PCB when the cir-
cuit has been designed. ISIS is the schematic capture and interactive simula-
tion software used to create the circuit drawing and to test the circuit prior to
building the real hardware. SPICE is a mathematical circuit modelling system
which has been developed over many years – these models can now be used to
bring the drawing to life. Onscreen buttons and virtual signal sources, for
example, provide inputs to the circuit. Output can be displayed on a voltage
probe or on a virtual oscilloscope. Now that we have microcontroller simula-
tion as well, we really are in business. The MCU can be dropped on the screen,
a program attached and debugged instantly. Electronic design has never been
so easy!

It is assumed that the reader is familiar with the basics of microcontroller sys-
tems, as covered in the first book. This one follows on, and is divided into three
main parts. In the first part, the 16F877 hardware and programming and the
simulation system are introduced. In the second part, a range of interfacing
techniques are covered; switches, keypads, displays, digital and analogue inter-
facing, data conversion and so on. In the third part, power outputs, serial inter-
faces, sensors, and system design examples culminate in a design for a general
purpose board which provides a platform for further development.

Each topic is illustrated by designs based on the 16F877, so that the reader
can concentrate on the interfacing and not have to deal with different micro-
controllers. All the circuits are available on the associated website (see links
below). All schematics were produced using ISIS – and you can produce them
to the same standard in your own reports. The designs can be downloaded and
run along side the book. ISIS Lite, the introductory design package, can be
downloaded free, with extra features available for a small registration fee. The
16F877 will simulate fully, and the software changed, but the hardware cannot
be modified unless a licence is purchased for this device. The microcontroller
models can be purchased for institution or professional use in packages – see
the Labcenter website.

Get PICing!

viii

Introduction
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Links, References and Acknowledgements

Support Website 

www.picmicros.org.uk

This book is supported by the above website created by the author to provide

• application examples for downloading, listed by chapter
• applications to be displayed on screen for teaching purposes
• easy access to relevant data sheets
• links to relevant manufacturers websites, Microchip and Labcenter
• links to 'PIC Microcontrollers - an Introduction to Microelectronic Systems'

If you have Proteus Professional installed and a licence for the PIC 16 series
microcontrollers, you will be able to modify the hardware and application pro-
gram to your own requirements.

If not, Labcenter have agreed a special offer for readers of this book: a special
low cost edition of ISIS Lite schematic capture, with PROSPICE Lite simula-
tion tools and PIC 16F877 licence. A key will be e-mailed to you which will
allow the demo programs to be fully tested and modified. 

If you do not have a licensed copy of Proteus, you can download the demo ver-
sion and run the applications and modify the code, but not the hardware.

Please log on to www.picmicros.org.uk for details; also visit www.labcenter.co.uk
and www.proteuslite.com for Proteus/ISIS information and downloads.
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Part 1

Microcontroller

Else_IPM-BATES_ch001.qxd  6/27/2006  10:04 PM  Page 1

1



This page intentionally left blank

2



1

PIC Hardware

The microcontroller is simply a computer on a chip. It is one of the most
important developments in electronics since the invention of the microprocessor
itself. It is essential for the operation of devices such as mobile phones, DVD
players, video cameras, and most self-contained electronic systems. The small
LCD screen is a good clue to the presence of an MCU (Microcontroller Unit) –
it needs a programmed device to control it. Working sometimes with other
chips, but often on its own, the MCU provides the key element in the vast
range of small, programmed devices which are now commonplace.

Although small, microcontrollers are complex, and we have to look carefully
at the way the hardware and software (control program) work together to
understand the processes at work. This book will show how to connect the pop-
ular PIC range of microcontrollers to the outside world, and put them to work.
To keep things simple, we will concentrate on just one device, the PIC 16F877,
which has a good range of features and allows most of the essential techniques
to be explained. It has a set of serial ports built in, which are used to transfer data
to and from other devices, as well as analogue inputs, which allow measurement
of inputs such as temperature. All standard types of microcontrollers work in a
similar way, so analysis of one will make it possible to understand all the others.

The PIC 16F877 is also a good choice for learning about micro-controllers,
because the programming language is relatively simple, as compared with a
microprocessor such as the Intel Pentium™, which is used in the PC. This has
a powerful, but complex, instruction set to support advanced multimedia
applications. The supporting documentation for the PIC MCU is well designed,

Else_IPM-BATES_ch001.qxd  6/27/2006  10:04 PM  Page 3

3



and a development system, for writing and testing programs, can be down-
loaded free from the Microchip website (www.microchip.com). 

Processor System

The microcontroller contains the same main elements as any computer system:

• Processor
• Memory
• Input/Output

In a PC, these are provided as separate chips, linked together via bus connec-
tions on a printed circuit board, but under the control of the microprocessor
(CPU). A bus is a set of lines which carry data in parallel form which are
shared by the peripheral devices. The system can be designed to suit a partic-
ular application, with the type of CPU, size of memory and selection of
input/output (I/O) devices tailored to the system requirements.

In the microcontroller, all these elements are on one chip. This means that
the MCU for a particular application must be chosen from the available range
to suit the requirements. In any given circuit, the microcontroller also tends to
have a single dedicated function (in contrast to the PC); this type of system is
described as an embedded application (Figure 1.1).

Processor

In a microprocessor system or a microcontroller, a single processor block is in
charge of all input, output, calculations and control. This cannot operate
without a program, which is a list of instructions that is held in memory. The

Interfacing PIC Microcontrollers
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CPU

Memory

OutputInput

Figure 1.1 Block diagram of a basic microprocessor system
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program consists of a sequence of binary codes that are fetched from memory
by the CPU in sequence, and executed (Figure 1.2).

The instructions are stored in numbered memory locations, and copied to
an instruction register in the CPU via the data bus. Here, the instruction
controls the selection of the required operation within the control unit of
the processor. The program codes are located in memory by outputting the
address of the instruction on an address bus. The address is generated in
the program counter, a register that starts at zero and is incremented or
modified during each instruction cycle. The busses are parallel connections
which transfer the address or data word in one operation. A set of control
lines from the CPU are also needed to assist with this process; these
control lines are set up according to the requirements of the current in-
struction.

Decoding the instruction is a hardware process, using a block of logic gates
to set up the control lines of the processor unit, and fetching the instruction
operands. The operands are data to be operated on (or information about where
to find it) which follows most instructions. Typically, a calculation or logical
operation is carried out on the operands, and a result stored back in memory,
or an I/O action set up. Each complete instruction may be 1, 2 or more bytes
long, which includes the operation (instruction) code (op-code) itself and the
operand/s (1 byte � 8 bits).

PIC Hardware

5

Program Memory 

Address   Instruction
0000   10010011
0001 01010001
0002 10000100
0003 00011001
0004 01011100
0005 xxxxxxxx
0006 xxxxxxxx

  etc   etc 

CPU

Instruction Register 

Decoder Logic

Execution Logic 

Control lines to system 

Data bus 

Address bus 
Program
Counter 

Figure 1.2 Processor program execution
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Thus, a list of instructions in memory is executed in turn to carry out the
required process. In a word processor, for example, keystrokes are read in via
the keyboard port, stored as character codes, and sent to a screen output for
display. In a game, input from the switches on the control pad are processed and
used to modify the screen. In this case, speed of the system is a critical factor.

Memory

There are two types of memory: volatile and non-volatile. Volatile memory
loses its data when switched off, but can be written by the CPU to store current
data; this is RAM (Random Access Memory). ROM (Read Only Memory) is
non-volatile, and retains its data when switched off. 

In a PC, a small ROM is used to get the system started when it is switched
on; it contains the BIOS (Basic Input Output System) program. However, the
main Operating System (OS), for example, Windows™ and application
program (e.g. Word) have to be loaded into RAM from Hard Disk Drive
(HDD), which takes some time, as you may have noticed!

So why not put the OS in ROM, where it would be instantly available? Well,
RAM is faster, cheaper and more compact, and the OS can be changed or
upgraded if required. In addition, an OS such as Windows is very large, and
some elements are only loaded into RAM as needed. In addition, numerous
applications can be stored on disk, and loaded only as required.

The ideal memory is non-volatile, read and write, fast, large and cheap.
Unfortunately, it does not exist! Therefore, we have a range of memory
technologies as shown in Table 1.1, which provide different advantages, which

Interfacing PIC Microcontrollers
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Flash
ROM ROM RAM CD-ROM DVD-RW HDD

Description Chip Chip Chip Optical Optical Magnetic
disk disk disk

Sample size* 128 kb 128 Mb 512 Mb 650 Mb 4.7 Gb 30 Gb
Non-volatile � � x � � �

Write (many) Once � � Once � �

Large (bytes) x ? x � � �

Cheap (per bit) ? x ? � � �

Fast (access) ? � � x x x

*1 byte � 8 bits
1 kb � 1 kilobyte � 1024 bytes
1 Mb � 1 megabyte � 1024 kb
1 Gb � 1 gigabyte � 1024 Mb

Table 1.1 Memory and data storage technologies
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may all be used with a standard PC. The main trade-off is cost, size and speed
of access. Flash ROM, as used in memory sticks and MP3 players, is closest
to the ideal, having the advantages of being non-volatile and rewritable. This
is why it is used as program memory in microcontrollers which need to be
reprogrammed, such as the PIC 16F877.

Input and Output

Without some means of getting information and signals in and out, a data
processing or digital control system would not be very useful. Ports are based
on a data register, and set of control registers, which pass the data in and out
in a controlled manner, often according to a standard protocol (method of
communication). 

There are two main types of port: parallel and serial. In a parallel port, the
data is usually transferred in and out 8 bits at a time, while in the serial port
it is transmitted 1 bit at a time on a single line. Potentially, the parallel port
is faster, but needs more pins; on the other hand, the port hardware
and driver software are simpler, because the serial port must organise the
data in groups of bits, usually 1 byte at a time, or in packets, as in a network
(Figure 1.3). 

Taking printers as an example, the old standard is a parallel port
(Centronics), which provides data to the printer 1 byte (8 bits) at a time via a
multipin connector. The new standard, USB (Universal Serial Bus) is a serial
data system, sending only 1 bit at a time. Potentially, the parallel connection is
8 times faster, but USB operates at up to 480 megabits (Mb) per second, and
the printer is slow anyway, so there is no problem. One advantage of using

PIC Hardware
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(a)

Parallel Port Register 

Internal 
Data Bus

External data lines 

Read/Write 
Control 

External  
data line 

Serial Port Register 

Internal
Data BusRead/Write 

Control 

(b)

Figure 1.3 Parallel and serial data ports: (a) parallel; (b) serial
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USB is that it provides a simple, robust connector and this outweighs the fact
that the interface protocol (driver software) is relatively complex, because this
is hidden from the user. USB also provides power to the peripheral, if required,
and the printer can be daisy-chained with other devices. USB also automati-
cally configures itself for different peripherals, such as scanners and cameras. 

In the parallel port operating in output mode, the data byte is loaded from the
internal data bus under the control of a read/write signal from the CPU. The
data can then be seen on the output pins by the peripheral; for testing, a logic
probe, logic analyser or just a simple LED indicator can be used. In input
mode, data presented at the input pins from a set of switches or other data
source are latched into the register when the port is read, and is then available
on the data bus for collection by the CPU. One of the functions of the port is
to separate the internal data bus from the external hardware, and the other is to
temporarily store the data. The data can then be transferred to memory, or
otherwise processed, as determined by the CPU program.

The serial port register also loads data from the internal bus in parallel, but
then sends it out 1 bit at a time, operating as a shift register. If an asynchronous
serial format is used, such as RS232 (COM ports on old PCs), start and stop
bits are added so that bytes can be separated at the receiving end. An error
check bit is also available, to allow the receiver to detect corrupt data. In
receive mode, the register waits for a start bit, and then shifts in the data at the
same speed as it is sent. This means the clock rate for the send and receive port
must be the same. The USART (Universal Synchronous/Asynchronous
Receive/Transmit) protocol will be described in more detail later.

A USB or network port is more sophisticated, and arranges the data bytes in
packets of, say, 1k bytes, which are sent in a form which is self-clocking; that
is, there is a transition within each bit (1 or 0), so each can be picked up indi-
vidually. An error-correction code follows the data, which allows mistakes to be
corrected, rather than just be detected. This reduces the need for retransmission
of incorrectly received data, as required by simple error detection. Addressing
information preceding the data allows multiple receivers to be used.

The PIC 16F877, in common with most current MCUs, does not have USB
or network interfaces built in, so we can avoid detailed consideration of these
complex protocols. It does, nevertheless, have a good selection of other inter-
faces, which will be discussed in detail and sample programs provided.

PIC 16F877 Architecture

Microcontrollers contain all the components required for a processor system in
one chip: a CPU, memory and I/O. A complete system can therefore be built

Interfacing PIC Microcontrollers
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using one MCU chip and a few I/O devices such as a keypad, display and other
interfacing circuits. We will now see how this is done in practice in our typical
microcontroller.

PIC 16F877 Pin Out

Let us first consider the pins that are seen on the IC package, and we can then
discover how they relate the internal architecture. The chip can be obtained in
different packages, such as conventional 40-pin DIP (Dual In-Line Package),
square surface mount or socket format. The DIP version is recommended for
prototyping, and is shown in Figure 1.4.

Most of the pins are for input and output, and arranged as 5 ports: A(5), B(8),
C(8), D(8) and E(3), giving a total of 32 I/O pins. These can all operate as
simple digital I/O pins, but most have more than one function, and the mode of
operation of each is selected by initialising various control registers within the
chip. Note, in particular, that Ports A and E become ANALOGUE INPUTS by
default (on power up or reset), so they have to set up for digital I/O if required.

Port B is used for downloading the program to the chip flash ROM (RB6 and
RB7), and RB0 and RB4–RB7 can generate an interrupt. Port C gives access
to timers and serial ports, while Port D can be used as a slave port, with Port
E providing the control pins for this function. All these options will be
explained in detail later.

PIC Hardware

9

Reset = 0, Run = 1 MCLR 1 40 RB7 Port B, Bit 7 (Prog. Data, Interrupt) 
Port A, Bit 0 (Analogue AN0) RA0 2 39 RB6 Port B, Bit 6 (Prog. Clock, Interrupt))
Port A, Bit 1 (Analogue AN1) RA1 3 38 RB5 Port B, Bit 5 (Interrupt) 
Port A, Bit 2 (Analogue AN2) RA2 4 37 RB4 Port B, Bit 4 (Interrupt) 
Port A, Bit 3 (Analogue AN3) RA3 5 36 RB3 Port B, Bit 3 (LV Program) 

Port A, Bit 4 (Timer 0) RA4 6 35 RB2 Port B, Bit 2
Port A, Bit 5 (Analogue AN4) RA5 7 34 RB1 Port B, Bit 1

Port E, Bit 0 (AN5, Slave control) RE0 8 33 RB0 Port B, Bit 0 (Interrupt) 
Port E, Bit 1 (AN6, Slave control) RE1 9 32 VDD +5V Power Supply
Port E, Bit 2 (AN7, Slave control) RE2 10 31 Vss 0V   Power Supply

+5V Power Supply VDD 11 30 RD7 Port D, Bit 7 (Slave Port) 
0V Power Supply Vss 12 29 RD6 Port D, Bit 6 (Slave Port) 

(CR clock) XTAL circuit CLKIN 13 28 RD5 Port D, Bit 5 (Slave Port) 
XTAL circuit CLKOUT 14 27 RD4 Port D, Bit 4 (Slave Port) 

Port C, Bit 0 (Timer 1) RC0 15 26 RC7 Port C, Bit 7 (Serial Ports)
Port C, Bit 1 (Timer 1) RC1 16 25 RC6 Port C, Bit 6 (Serial Ports)
Port C, Bit 2 (Timer 1) RC2 17 24 RC5 Port C, Bit 5 (Serial Ports)

Port C, Bit 3 (Serial Clocks) RC3 18 23 RC4 Port C, Bit 4 (Serial Ports)
Port D, Bit 0 (Slave Port) RD0 19 22 RD3 Port D, Bit 3 (Slave Port) 
Port D, Bit 1 (Slave Port) RD1 20 21 RD2 Port D, Bit 2 (Slave Port) 

Figure 1.4 PIC 16F877 pin out
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The chip has two pairs of power pins (VDD � �5 V nominal and Vss � 0 V),
and either pair can be used. The chip can actually work down to about 2 V sup-
ply, for battery and power-saving operation. A low-frequency clock circuit
using only a capacitor and resistor to set the frequency can be connected to
CLKIN, or a crystal oscillator circuit can be connected across CLKIN and
CLKOUT. MCLR is the reset input; when cleared to 0, the MCU stops, and
restarts when MCLR � 1. This input must be tied high allowing the chip to run
if an external reset circuit is not connected, but it is usually a good idea to
incorporate a manual reset button in all but the most trivial applications.

PIC 16F877 Block Diagram

A block diagram of the 16F877 architecture is given in the data sheet, Figure 1-2
(downloadable from www.microchip.com). A somewhat simplified version is
given in Figure 1.5, which emphasises the program execution mechanism.

The main program memory is flash ROM, which stores a list of 14-bits
instructions. These are fed to the execution unit, and used to modify the RAM
file registers. These include special control registers, the port registers and a set
of general purpose registers which can be used to store data temporarily. A sep-
arate working register (W) is used with the ALU (Arithmetic Logic Unit) to
process data. Various special peripheral modules provide a range of I/O options. 

There are 512 RAM File Register addresses (0–1FFh), which are organised
in 4 banks (0–3), each bank containing 128 addresses. The default (selected
on power up) Bank 0 is numbered from 0 to 7Fh, Bank 1 from 80h to FFh and
so on. These contain both Special Function Registers (SFRs), which have a
dedicated purpose, and the General Purpose Registers (GPRs). The file regis-
ters are mapped in Figure 2-3 of the data sheet. The SFRs may be shown in
the block diagram as separate from the GPRs, but they are in fact in the same
logical block, and addressed in the same way. Deducting the SFRs from the
total number of RAM locations, and allowing for some registers which are re-
peated in more than one bank, leaves 368 bytes of GPR (data) registers.

Test Hardware

We need to define the hardware in which we will demonstrate PIC program
operation. Initially, a block diagram is used to outline the hardware design
(Figure 1.6). The schematic symbol for the MCU is also shown indicating the pins
to be used. For this test program, we simply need inputs which switch between 0
V and �5 V, and a logic indication at the outputs. For simulation purposes, we will
see that the clock circuit does not have to be included in the schematic; instead, the
clock frequency must be input to the MCU properties dialogue. The power supply
pins are implicit – the simulated MCU operates at �5 V by default. Unused pins
can be left open circuit, as long as they are programmed as inputs. 

Interfacing PIC Microcontrollers

10

Else_IPM-BATES_ch001.qxd  6/27/2006  10:04 PM  Page 10



The full schematic is shown in Chapter 3 (Figure 3.1).

The first test program, BIN1, will simply light a set of LEDs connected to
Port B in a binary count sequence, by incrementing Port B data register. The
second program, BIN4, will use two input push buttons attached to Port D to
control the output (start, stop and reset). The program will also include a delay
so that the output is slower, and visible to the user. Detailed design of the
interfacing will be covered later. A simple CR clock will be used, which is set
to 40 kHz (C � 4.7 nF, R ≈ 5 kΩ (preset), CR � 25 µs). This will give an
instruction execution time of 100 µs.

PIC Hardware
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Figure 1.5 16F877 program execution block diagram
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The PIC Program

The program is written as a source code (a simple text file) on a PC host com-
puter. Any text editor such as Notepad™ can be used, but an editor is provided
with the standard PIC development system software MPLAB (downloadable
from www.microchip.com). The instructions are selected from the pre-defined
PIC instruction set (Table 13-2 in the data sheet) according to the operational
sequence required. The source code file is saved as PROGNAME.ASM. More
details of the assembler program syntax are given later.

The source code is assembled (converted into machine code) by the assembler
program MPASM, which creates the list of binary instruction codes. As this is
normally displayed as hexadecimal numbers, it is saved as PROGNAME.HEX.
This is then downloaded to the PIC chip from the PC by placing the MCU in a
programming unit which is attached to the serial port of PC, or by connecting the
chip to a programmer after fitting it in the application board (in-circuit pro-
gramming). The hex code is transferred in serial form via Port B into the PIC
flash program memory. A list file is created by the assembler, which shows the
source code and machine code in one text file. The list file for a simple program
which outputs a binary count at Port B is shown in Program 1.1.

Interfacing PIC Microcontrollers
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Figure 1.6 BINX hardware outline: (a) block diagram; (b) PIC 16F877 MCU connections

Else_IPM-BATES_ch001.qxd  6/27/2006  10:04 PM  Page 12



PIC Hardware

13

The program listing includes the source code at the right, with source line
numbers, the hex machine code and the memory location where each instruction
is stored (0000–0004). Notice that some statements are assembler directives, not
instructions: PROCESSOR to specify the MCU type and END to terminate the
source code. These are not converted into machine code.

The ‘877 has 8k of program memory, that is, it can store a maximum of 
1024 � 8 � 8192 14-bit instructions. By default, it is loaded, and starts
executing, from address zero. In real-time (control) applications, the program
runs continuously, and therefore loops back at the end. If it does not, be care-
ful – it will run through the blank locations and start again at the beginning!

Let us look at a typical instruction to see how the program instructions are
executed.

Source code: MOVLW 05A

Hex code: 305A (4 hex digits)

Binary code: 0011 0000 0101 1010 (16 bits)

Instruction: 11 00xx kkkk kkkk (14 bits)

The instruction means: Move a Literal (given number, 5Ah) into the Working
register.

The source code consists of a mnemonic MOVLW and operand 05A. This
assembles into the hex code 305A, and is stored in binary in program memory

Memory
Address

Hex
Code

Address
Label

Operation
Mnemonic

Operand

--------------------------------------------------------------------- 

00001          PROCESSOR 16F877 
00002  

0000 3000 00003          MOVLW    00 
0001 0066       00004          TRIS     06 

00005  
0002    0186       00006          CLRF     06 
0003    0A86       00007  again    INCF     06 
0004    2803       00008          GOTO     again 

00009  
00010          END

Note: Lines 00001 and 00010 are assembler directives 

Line
Number

Program 1.1 BIN1 list file
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as 11 0000 0101 1010. Since each hex digit represents four binary bits, the
leading two bits are zero, and the leading digit will only range from 0 to 3 for
a 14-bit number. 

In the instruction set (data sheet, Table 13-2), it is seen that the first 4 bits
(11 00) are the instruction code, the next two are unused (xx, appearing as 00 in
the binary code) and the last 8 are the literal value (5A). The literal is represented
as ‘kkkk kkkk’ since it can have any value from 00000000 to 11111111 (00–FF).

The format of other instructions depends mainly on the number of bits
required for the operand (data to be processed). The number of op-code bits
can vary from 3 to all 14, depending on the number of bits needed for the
operand. This is different from a conventional processor, such as the Pentium,
where the op-code and operand are each created as a whole number of bytes.
The PIC instruction is more compact, as is the instruction set itself, for greater
speed of operation. This defines it as a RISC (Reduced Instruction Set
Computer) chip.

Program BIN4

The program BIN4 contains many of the basic program elements, and the list
file (Program 1.2) shows the source code, machine code, memory address and
list file line number as before. There are additional comments to aid program
analysis and debugging.

Note that two types of labels are used in program to represent numbers.
Label equates are used at the top of the program to declare labels for the file
registers which will be used in the program. Address labels are placed in the
first column to mark the destination for GOTO and CALL instructions. 

Chip Configuration Word

In Program BIN4, the assembler directive __CONFIG is included at the top of
the program, which sets up aspects of the chip operation which cannot be sub-
sequently changed without reprogramming. A special area of program memory
outside the normal range (address 2007h) stores a chip configuration word; the
clock type, and other MCU options detailed below, are set by loading the con-
figuration bits with a suitable binary code. The function of each bit is shown in
Table 1.2, along with some typical configuration settings. Details can be found
in the data sheet, Section 12.

CODE PROTECTION

Normally, the program machine code can be read back to the programming
host computer, be disassembled and the original source program recovered.
This can be prevented if commercial or security considerations require it. The

Interfacing PIC Microcontrollers
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MPASM 03.00 Released       BIN4.ASM   8-28-2005  19:54:36   PAGE  1 

LOC     OBJECT CODE  SOURCE TEXT 
  VALUE        LINE 

  00001 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00002 ; 
  00003 ;       Source File:    BIN4.ASM  
  00004 ;       Author:         MPB
  00005 ;       Date:     28-5-05    
  00006 ; 
  00007 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00008 ; 
  00009 ;       Slow output binary count is stopped, started 
  00010 ;       and reset with push buttons.  
  00011 ; 
  00012 ;       Processor:      PIC 16F877
  00013 ; 
  00014 ;       Hardware:       PIC Demo System   
  00015 ;       Clock:          RC = 40kHz
  00016 ;       Inputs:         Port D: Push Buttons  
  00017 ;          RD0, RD1 (active low) 
  00018 ;       Outputs:        Port B: LEDs (active high) 
  00019 ;     
  00020 ;       WDTimer:        Disabled 
  00021 ;       PUTimer:        Enabled 
  00022 ;       Interrupts:     Disabled 
  00023 ;       Code Protect:   Disabled 
  00024 ; 
  00025 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
  00026
  00027   PROCESSOR 16F877        ; Define MCU type

2007   3733    00028   __CONFIG 0x3733         ; Set config fuses 
  00029
  00030 ; Register Label Equates.................................... 
  00031

  00000006     00032 PORTB   EQU     06      ; Port B Data Register   
  00000086     00033 TRISB   EQU     86      ; Port B Direction Register 
  00000008     00034 PORTD   EQU     08      ; Port D Data Register 
  00000020     00035 Timer   EQU     20      ; GPR used as delay counter 

  00036
  00037 ; Input Bit Label Equates .................................. 
  00038

  00000000     00039 Inres   EQU     0       ; 'Reset' input button = RD0 
  00000001     00040 Inrun   EQU     1       ; 'Run' input button = RD1 

  00041
  00042 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00043
  00044 ; Initialise Port B (Port A defaults to inputs)............. 
  00045

0000   1683 1303      00046   BANKSEL TRISB           ; Select bank 1 
0002   3000    00047   MOVLW   b'00000000'     ; Port B Direction Code 
0003   0086    00048   MOVWF   TRISB           ; Load the DDR code into F86 
0004   1283 1303      00049   BANKSEL PORTB           ; Select bank 0 
0006   280B    00050   GOTO    reset           ; Jump to main loop 

  00051
  00052
  00053 ; 'delay' subroutine ........................................ 
  00054

0007   00A0    00055 delay   MOVWF   Timer           ; Copy W to timer register 
0008   0BA0    00056 down    DECFSZ  Timer           ; Decrement timer register  
0009   2808    00057   GOTO    down      ; and repeat until zero 
000A   0008    00058   RETURN           ; Jump back to main program 

  00059
  00060
  00061 ; Start main loop ........................................... 
  00062

000B   0186    00063 reset   CLRF    PORTB           ; Clear Port B Data  
  00064

000C   1C08    00065 start   BTFSS   PORTD,Inres     ; Test reset button 
000D   280B    00066   GOTO    reset           ; and reset Port B if pressed 
000E   1888    00067   BTFSC   PORTD,Inrun     ; Test run button
000F   280C    00068   GOTO    start           ; and repeat if not pressed 

  00069
0010   0A86    00070   INCF    PORTB           ; Increment output at Port B  
0011   30FF    00071   MOVLW   0FF      ; Delay count literal 
0012   2007    00072   CALL    delay           ; Jump to subroutine 'delay' 
0013   280C    00073   GOTO    start           ; Repeat main loop always 

  00074
  00075   END       ; Terminate source code 

Program 1.2 BIN4 list file
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code protection bits (CP1:CP0) disable reads from selected program areas.
Program memory may also be written from within the program itself, so that
data tables or error checking data can be modified. Obviously, this needs some
care, and this option can be disabled via the WRT bit. Data EEPROM may also
be protected from external reads in the same way via the CPD bit, while inter-
nal read and write operations are still allowed, regardless of the state-of-the-
code protection bits.

IN-CIRCUIT DEBUGGING

In-circuit debugging (ICD) allows the program to be downloaded after the
chip has been fitted in the application circuit, and allows it to be tested with
the real hardware. This is more useful than the previous method, which re-
quires the chip to be programmed in a separate programmer unit before in-
sertion in its socket on the board. With ICD, the chip can be programmed,
and reprogrammed during debugging, while avoiding possible electrical and
mechanical damage caused by removal from the circuit. The normal debug-
ging techniques of single stepping, breakpoints and tracing can be applied in
ICD mode. This allows a final stage of debugging in the prototype hardware,
where problems with the interaction of the MCU with the real hardware can
be resolved. 

Interfacing PIC Microcontrollers
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Bit Label Function Default Enabled Typical

15 – None 0 x 0
14 – None 0 x 0
13 CP1 Code protection 1 0 1
12 CP0 (4 levels) 1 0 1
11 DEBUG In-circuit debugging (ICD) 1 0 0
10 – None 1 x 1
9 WRT Program memory write enable 1 1 1
8 CPD EEPROM data memory write protect 1 0 1
7 LVP Low-voltage programming enable 1 1 0
6 BODEN Brown-out reset (BoR) enable 1 1 0
5 CP1 Code protection (CP) 1 0 1
4 CP0 (repeats) 1 0 1
3 PWRTE Power-up timer (PuT) enable 1 0 0
2 WDTE Watchdog timer (WdT) enable 1 1 0
1 FOSC1 Oscillator type select 1 x 0
0 FOSC0 RC � 11, HS � 10, XT � 01, LP � 00 1 x 1

Default � 3FFF (RC clock, PuT disabled, WdT enabled).
Typical RC clock � 3FF3 (RC clock, ICD disabled, PuT enabled, WdT disabled).
Typical XT clock � 3731 (XT clock, ICD enabled, PuT enabled, WdT disabled).

Table 1.2 Configuration bits
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LOW VOLTAGE PROGRAMMING

Normally, when the chip is programmed, a high voltage (12–14 V) is
applied to the PGM pin (RB3). To avoid the need to supply this voltage
during in-circuit programming (e.g. during remote reprogramming), a
low-voltage programming mode is available; however, using this option
means that RB3 is not then available for general I/O functions during
normal operation.

POWER-UP TIMER

When the supply power is applied to the programmed MCU, the start of program
execution should be delayed until the power supply and clock are stable, other-
wise the program may not run correctly. The power-up timer may therefore be
enabled (PWRTE � 0) as a matter of routine. It avoids the need to reset the MCU
manually at start up, or connect an external reset circuit, as is necessary with
some microprocessors.  An internal oscillator provides a delay between the
power coming on and an internal MCU reset of about 72 ms. This is followed by
an oscillator start up delay of 1024 cycles of the clock before program execution
starts. At a clock frequency of 4 MHz, this works out to 256 µs.

BROWN-OUT RESET

Brown out refers to a short dip in the power-supply voltage, caused by mains
supply fluctuation, or some other supply fault, which might disrupt the
program execution. If the Brown-Out Detect Enable bit (BODEN) is set, a
PSU glitch of longer than about 100 µs will cause the device to be held in reset
until the supply recovers, and then wait for the power-up timer to time out,
before restarting. The program must be designed to recover automatically. 

WATCHDOG TIMER

The watchdog timer is designed to automatically reset the MCU if the program
malfunctions, by stopping or getting stuck in loop. This could be caused by an
undetected bug in the program, an unplanned sequence of inputs or supply
fault. A separate internal oscillator and counter automatically generates a reset
about every 18 ms, unless this is disabled in the configuration word. If the
watchdog timer is enabled, it should be regularly reset by an instruction in the
program loop (CLRWDT) to prevent the reset. If the program hangs, and the
watchdog timer reset instruction not executed, the MCU will restart, and (pos-
sibly) continue correctly, depending on the nature of the fault.

RC OSCILLATOR

The MCU clock drives the program along, providing the timing signals for
program execution. The RC (resistor–capacitor) clock is cheap and cheerful,
requiring only these two inexpensive external components, operating with the

PIC Hardware
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internal clock driver circuit, to generate the clock. The time constant (product
R � C) determines the clock period. A variable resistor can be used to give a
manually adjustable frequency, although it is not very stable or accurate. 

CRYSTAL OSCILLATOR

If greater precision is required, especially if the program uses the hardware
timers to make accurate measurements or generate precise output signals, a
crystal (XTAL) oscillator is needed. Normally, it is connected across the clock
pins with a pair of small capacitors (15 pF) to stabilise the frequency. The
crystal acts as a self-contained resonant circuit, where the quartz or ceramic
crystal vibrates at a precise frequency when subject to electrical stimulation.
The oscillator runs at a set frequency with a typical accuracy of better than 50
parts per million (ppm), which is equivalent to �/− 0.005%. A convenient
value (used in our examples later) is 4 MHz; this gives an instruction cycle
time of 1 µs, making timing calculations a little easier (each instruction takes
four clock cycles). This is also the maximum frequency allowed for the XT
configuration setting. The PIC 16FXXX series MCUs generally run at a max-
imum clock rate of 20 MHz, using a high-speed (HS) crystal which requires
the selection of the HS configuration option.

CONFIGURATION SETTINGS

The default setting for the configuration bits is 3FFF, which means that the code
protection is off, in-circuit debugging disabled, program write enabled, low-volt-
age programming enabled, brown-out reset enabled, power-up timer disabled,
watchdog timer enabled and RC oscillator selected. A typical setting for basic
development work would enable in-circuit debugging, enable the power-up timer
for reliable starting, disable the watchdog timer and use the XT oscillator type.

By default, the watchdog timer is enabled. This produces an automatic reset at
regular intervals, which will disrupt normal program operation. Therefore, this
option will usually be disabled (bit 2 � 0). Conversely, it is generally desirable
to enable the power-up timer, to minimise the possibility of a faulty start-up.

PIC Instruction Set

Each microcontroller family has its own set of instructions, which carry out
essentially the same set of operations, but using different syntax. The PIC uses
a minimal set of instructions, which makes it a good choice for learning.

A version of the PIC instruction set organised by functional groups is listed
in Table 1.3. It consists of 35 separate instructions, some with alternate result
destinations. The default destination for the result of an operation is the file

Interfacing PIC Microcontrollers
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PIC INSTRUCTION SET

F � Any file register (specified by address or label), example is labelled GPR1
L � Literal value (follows instruction), example is labelled num1
W  � Working register, W (default label)

Labels Register labels must be declared in include file or by register label equate (e.g. GPR1 EQU 0C)
Bit labels must be declared in include file or by bit label equate (e.g. bit1 EQU 3)
Address labels must be placed at the left margin of the source code file (e.g. start, delay)

Operation Example

Move
Move data from F to W MOVF GPR1,W
Move data from W to F MOVWF GPR1
Move literal into W MOVLW num1
Test the register data MOVF GPR1,F

Register
Clear W (reset all bits and value to 0) CLRW
Clear F (reset all bits and value to 0) CLRF GPR1
Decrement F (reduce by 1) DECF GPR1
Increment F (increase by 1) INCF GPR1
Swap the upper and lower four bits in F SWAPF GPR1
Complement F value (invert all bits) COMF GPR1
Rotate bits Left through carry flag RLF GPR1
Rotate bits Right through carry flag RRF GPR1
Clear ( � 0) the bit specified BCF GPR1,but1
Set ( � 1) the bit specified BSF GPR1,but1

Arithmetic
Add W to F, with carry out ADDWF GPR1
Add F to W, with carry out ADDWF GPR1,W
Add L to W, with carry out ADDLW num1
Subtract W from F, using borrow SUBWF GPR1
Subtract W from F, placing result in W SUBWF GPR1,W
Subtract W from L, placing result in W SUBLW num1

Logic
AND the bits of W and F, result in F ANDWF GPR1
AND the bits of W and F, result in W ANDWF GPR1,W
AND the bits of L and W, result in W ANDLW num1
OR the bits of W and F, result in F IORWF GPR1
OR the bits of W and F, result in W IORWF GPR1,W
OR the bits of L and W, result in W IORLW num1
Exclusive OR the bits of W and F, result in F XORWF GPR1
Exclusive OR the bits of W and F, result in W XORWF GPR1,W
Exclusive OR the bits of L and W XORLW num1

Test & Skip
Test a bit in F and Skip next instruction if it is Clear ( � 0) BTFSC GPR1,but1
Test a bit in F and Skip next instruction if it is Set ( � 1) BTFSS GPR1,but1
Decrement F and Skip next instruction if F � 0 DECFSZ GPR1
Increment F and Skip next instruction if F � 0 INCFSZ GPR1

Jump
Go to a labelled line in the program GOTO start
Jump to the label at the start of a subroutine CALL  delay
Return at the end of a subroutine to the next instruction RETURN
Return at the end of a subroutine with L in W RETLW num1
Return From Interrupt service routine RETFIE

Control
No Operation - delay for 1 cycle NOP
Go into standby mode to save power SLEEP
Clear watchdog timer to prevent automatic reset CLRWDT

Note 1: For MOVE instructions data is copied to the destination but retained in the source register.
Note 2: General Purpose Register 1, labelled ‘ GPR1’, represents all file registers (00-4F). Literal value ‘num1’ represents all 8-bit values 00-FF. File

register bits 0–7 are represented by the label ‘but1’.
Note 3: The result of arithmetic and logic operations can generally be stored in W instead of the file register by adding, ‘W’ to the instruction. The full syntax

for register operations with the result remaining in the file register F is ADDWF GPR1,F etc. F is the default destination, and W the alternative, so the
instructions above are shortened to ADDWF, GPR1, etc. This will generate a message from the assembler that the default destination will be used.

Table 1.3 PIC instruction set by functional groups

Else_IPM-BATES_ch001.qxd  6/27/2006  10:04 PM  Page 19



register, but the working register W is sometimes an option. Each instruction
is described in detail in the MCU data sheet, Section 13.

Instruction Types

The functional groups of instructions, and some points about how they work,
are described below. The use of most of these instructions will be illustrated in
due course within the demonstration programs for each type of interface.

MOVE

The contents of a register are copied to another. Notice that we cannot move a
byte directly from one file register to another, it has to go via the working
register. To put data into the system from the program (a literal) we must use
MOVLW to place the literal into W initially. It can then be moved to another
register as required. 

The syntax is not symmetrical; to move a byte from W to a file register,
MOVWF is used. To move it the other way, MOVF F,W is used, where F is any
file register address. This means that MOVF F,F is also available. This may
seem pointless, but in fact can be used to test a register without changing it.

REGISTER

Register operations affect only a single register, and all except CLRW (clear W)
operate on file registers. Clear sets all bits to zero (00h), decrement decreases
the value by 1 and increment increases it by 1. Swap exchanges the upper and
lower four bits (nibbles). Complement inverts all the bits, which in effect
negates the number. Rotate moves all bits left or right, including the carry flag
in this process (see below for flags). Clear and set a bit operate on a selected bit,
where the register and bit need to be specified in the instruction.

ARITHMETIC & LOGIC

Addition and subtraction in binary gives the same result as in decimal or hex.
If the result generates an extra bit (e.g. FF � FF � 1FE), or requires a borrow
(e.g. 1FE–FF � FF), the carry flag is used. Logic operations are carried out on
bit pairs in two numbers to give the result which would be obtained if they
were fed to the corresponding logic gate (e.g. 00001111 and 01010101 �
00000101). If necessary, reference should be made to an introductory text for
further details of arithmetic and logical operations, and conversion between
number systems. Some examples will be discussed later.

TEST, SKIP & JUMP

A mechanism is needed to make decisions (conditional program branches) which
depend on some input condition or the result of a calculation. Programmed jumps

Interfacing PIC Microcontrollers
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are initiated using a bit test and conditional skip, followed by a GOTO or CALL.
The bit test can be made on any file register bit. This could be a port bit, to check
if an input has changed, or a status bit in a control register. 

BTFSC (Bit Test and Skip if Clear) and BTFSS (Bit Test and Skip if Set) are
used to test the bit and skip the next instruction, or not, according to the state of
the bit tested. DECFSZ and INCFSZ embody a commonly used test – decrement
or increment a register and jump depending on the effect of the result on the
zero flag (Z is set if result � 0). Decrement is probably used more often 
(see BIN4 delay routine), but increment also works because when a register is
incremented from the maximum value (FFh) it goes to zero (00h).

The bit test and skip may be followed by a single instruction to be carried
out conditionally, but GOTO and CALL allow a block of conditional code.
Using GOTO label simply transfers the program execution point to some other
point in the program indicated by a label in the first column of the source code
line, but CALL label means that the program returns to the instruction following
the CALL when RETURN is encountered at the end of the subroutine. 

Another option, which is useful for making program data tables, is RETLW
(Return with Literal in W). See the KEYPAD program later for an example of
this. RETFIE (Return From Interrupt) is explained below.

CONTROL

NOP simply does nothing for one instruction cycle (four clock cycles). This
may seem pointless, but is in fact very useful for putting short delays in the
program so that, for example, external hardware can be synchronised or a
delay loop adjusted for an exact time interval. In the LCD driver program
(Chapter 4), NOP is used to allow in-circuit debugging to be incorporated later
when the program is downloaded, and to pad a timing loop so that it is exactly
1 ms.

SLEEP stops the program, such that it can be restarted with an external
interrupt. It should also be used at the end of any program that does not loop
back continuously, to prevent the program execution continuing into unused
locations. The unused locations contain the code 3FFF (all 1 s), which is a
valid instruction (ADDLW FF). If the program is not stopped, it will run
through, repeating this instruction, and start again when the program counter
rolls over to 0000.

CLRWDT means clear the watchdog timer. If the program gets stuck in a
loop or stops for any other reason, it will be restarted automatically by the
watchdog timer. To stop this happening when the program is operating nor-
mally, the watchdog timer must be reset at regular intervals of less than, say,
10 ms, within the program loop, using CLRWDT.
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OPTIONAL INSTRUCTIONS

TRIS was an instruction originally provided to make port initialisation sim-
pler (see program BIN1). It selects register bank 1 so that the TRIS data di-
rection registers (TRISA, TRISB, etc.) can be loaded with a data direction
code (0�output). The manufacturer no longer recommends use of this
instruction, although it is still supported by the current assembler versions to
maintain backward compatibility, and is useful when learning with very
simple programs. The assembler directive BANKSEL can be used in more
advanced programs, because it gives more flexible access to the registers in
banks 1, 2, 3. It will be used here from Program BIN4 onwards. The other
option is to change the bank select bits in the STATUS register direct, using
BSF and BCF. 

OPTION, providing special access to the OPTION register, is the other
instruction, which is no longer recommended. It can be replaced by
BANKSEL to select bank 1 which contains the OPTION register, which can
then be accessed directly. 

Program Execution

The PIC instruction contains both the op-code and operand. When the program
executes, the instructions are copied to the instruction register in sequence, and
the upper bits, containing the op-code, are decoded and used to set up the
operation within the MCU. Figure 1.5, which illustrates the key hardware
elements in this process, is derived from the system block diagram given in the
data sheet.

The program counter keeps track of program execution; it clears to zero on
power up or reset. With 8k of program memory, a count from 0000 to 1FFF
(8191) is required (13 bits). The PCL (Program Counter Low) register (SFR
02) contains the low byte, and this can be read or written like any other file
register. The high byte is only indirectly accessible via PCLATH (Program
Counter Latch High, SFR 0Ah). 

SUBROUTINES

Subroutines are used to create functional blocks of code, and provide
good program structure. This makes it easier for the program to be understood,
allows blocks of code to be re-used, and ultimately allows ready-made
library routines to be created for future use. This saves on programming
time and allows us to avoid ‘re-inventing the wheel’ when writing new
applications. 

A label is used at the start of the subroutine, which the assembler then
replaces with the actual program memory address. When a subroutine is
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called, this destination address is copied into the program counter, and the
program continues from the new address. At the same time, the return ad-
dress (the one following the CALL) is pushed onto the stack, which is a
block of memory dedicated to this purpose. In the PIC, there are 8 stack ad-
dress storage levels, which are used in turn. The return addresses may thus
be viewed as a stack of items, which must be added and removed in the same
sequence. 

The subroutine is terminated with a RETURN instruction, which causes the
program to go back to the original position and continue. This is achieved by
pulling the address from the top of the stack and replacing it in the program
counter. It should be clear that CALL and RETURN must always be used in
sequence to avoid a stack error, and a possible program crash. Conventional
microprocessor systems often use general RAM as the stack, in which case it
is possible to manipulate it directly. In the PIC, the stack is not directly acces-
sible (Figure 1.7).

A delay subroutine is included in the program BIN4. The stack mechanism
and program memory arrangement is shown in Figure 2.1 in the data sheet, and
a somewhat simplified version is shown in Figure 1.6. 

INTERRUPTS

The stack is also used when an interrupt is processed. This is effectively a call
and return which is initiated by an external hardware signal which forces the
processor to jump to a dedicated instruction sequence, an Interrupt Service
Routine (ISR). For example, the MCU can be set up so that when a hardware
timer times out (finishes its count), the process required at that time is called
via a timer interrupt.

When an interrupt signal is received, the current instruction is completed and
the address of the next instruction (the return address) is pushed into the first
available stack location. The ISR is terminated with the instruction RETFIE
(return from interrupt), which causes the return address to be pulled from the
stack. Program execution then restarts at the original location. However,
remember to take into account any changes in the registers which may have
happened in the ISR. If necessary, the registers must be saved at the beginning
of the ISR, and restored at the end, in spare set of file registers. A simple
example using a timer interrupt is seen later in a test program which generates
a pulse output.

PAGE BOUNDARIES

In normal program execution, the operation of the program counter is automatic,
but there are potential problems when a program branch occurs. Jump instructions
(CALL or GOTO) provide only an 11-bit destination address, so the program
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memory is effectively divided into four 2k blocks, or pages. A jump across the
program memory page boundary requires the page selection bits (PCLATH 4:3)
to be modified by the user program. In addition, if the 8-bit PCL is modified di-
rectly, as in table read, care must be taken if a jump is made from one 256-byte
block to another; PCLATH again may need to be modified explicitly. Sections 2.3
and 2.4 in the 16F877 data sheet detail how to handle these problems.
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14 bit program
instructions 

13 bit 
hex address 

Instruction 1 0000h (RESET)
Instruction 2 0001h
Instruction 3 0002h
Instruction 4 0003h
Instruction 5 0004h (INTERRUPT) 
Instruction 6 0005h

Page 0 
•

•

•

•

•

•

•

•

(2k)

Instruction 2048 07FFh (END PAGE 0) 
Instruction 2049 0800h (START PAGE 1)

Page 1 (2k)

Instruction 4096 0FFFh (END PAGE 1)
Instruction 4097 1000h (START PAGE 2)

Page 2 (2k)

Instruction 6144 17FFh (END PAGE 2) 
Instruction 6145 1800h (START PAGE 3)

Page 3 (2k)

Instruction 8192 1FFFh (END PAGE 3)

Program Counter (13)

On subroutine call or interrupt store return 
address in next available stack level register 

Return address 1 Stack level 0 
Return address 2 Stack level 1 
Return address 3 Stack level 2 
Return address 4 Stack level 3 
Return address 5 Stack level 4 
Return address 6 Stack level 5 
Return address 7 Stack level 6 
Return address 8 Stack level 7 

Figure 1.7 P16F877 program memory and stack
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Special Function Registers

As we have seen, the file register set is divided into special function registers and
general purpose registers. The SFRs have predetermined functions, as specified in
the 16F877 data sheet (Figure 2-3), and occupy locations 00-1F in bank 0, 80-9F
in bank 1, 100-10F in bank 2 and 180-18F in bank 3. Many are repeated in more
than one bank. Their functions will be explained below in order of significance. 

Program Counter (PCL)

The function the program counter has been described above, under program
execution. PCL contains the low 8 bits of the program counter, while the upper
bits (PC<8–12>) are accessed via PCLATH. It is incremented during each
instruction, and the contents replaced during a GOTO, CALL (program
address) or RETURN (stack). 

Status Register

The status register records the result of certain operations, MCU power status
and includes the bank selection bits. The bit functions are detailed in the Table
Register 2-1 in the data sheet.

ZERO FLAG (Z)

This is set when the result of a register operation is zero, and cleared when it is
not zero. The full instruction set must be consulted to confirm which operations
affect the Z flag. Bit test and skip instructions use this flag for conditional
branching, but remember that there are dedicated instructions for decrement or
increment and skip if zero. Curiously, these do not affect the zero flag itself. A
typical use of the zero flag is to check if two numbers are the same by
subtracting and applying bit test and skip to the Z bit.

CARRY FLAG (C)

This flag is only affected by add, subtract and rotate instructions. If the result of
an add operation generates a carry out, this flag is set; that is, when two 8-bit
numbers give a 9-bit sum. The carry bit must then be included in subsequent
calculations to give the right result. When subtracting, the carry flag must be set
initially, because it provides the borrow digit (if required) in the most signifi-
cant bit of the result. If the carry flag is cleared after a subtraction, it means the
result was negative, because the number being subtracted was the larger. An
example of this is seen later in the calculator program.

Taken together, the zero and carry flags allow the result of an arithmetic
operation to be detected as positive, negative or zero, as shown in Table 1.4.
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Again, remember that the carry flag must be set before a subtraction operation,
so that a borrow can be detected as C � 0. 

DIGIT CARRY (DC)

A file register can be seen as containing 8 individual bits, or 1 byte. It can also
be used as 2 � 4-bit nibbles (a small byte!). Each nibble can be represented as
1 hex digit (0-F). The digit carry records a carry from the most significant bit
of the low nibble (bit 3). Hence the digit carry allows 4-bit hexadecimal arith-
metic to be carried out in the same way as 8-bit binary arithmetic uses the
carry flag C.

REGISTER BANK SELECT (RP1:RP0)

The PIC 16F877 file register RAM is divided into four banks of 128 locations,
banks 0–3 (Figure 2-3 in data sheet). At power on reset, bank 0 is selected by
default. To access the others, these register bank select bits must be changed,
as shown in Table 1.5.

It can be seen that some registers repeat in more than one bank, making it
easier and quicker to access them when switched to that bank. For example, the
status register repeats in all banks. In addition, a block of GPRs at the end of
each bank repeat, so that their data contents are available without changing
banks.

The register banks are selected by setting and clearing the bits RP0 and RP1
in the status register. More conveniently, the pseudo-operation BANKSEL can
be used instead. The operand for BANKSEL is any register in that bank, or its
label. In effect, BANKSEL detects the bank bits in the register address and
copies them to the status register bank select bits.
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Flag after Zero Carry
Operation (Z) (C) Result Comment

ADD 0 0 A+B<256 8-bit sum, no carry
A+B 1 1 A+B�256 (100h) Exactly, carry out

0 1 A+B>256 9-bit sum, carry out

SUB 0 1* A−B<256 8-bit difference, no borrow
A−B 1 1* A−B�0 Numbers equal, no borrow

0 0* A−B<0 Borrow taken, result negative

*Set carry flag before subtracting.

Table 1.4 Arithmetic results 
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POWER STATUS BITS

There are two read only bits in the status register which indicate the overall
MCU status. The Power Down (PD) bit is clear to zero when SLEEP mode is
entered. The Time Out (TO) bit is cleared when a watchdog time out has
occurred.

Ports

There are five parallel ports in the PIC 16F877, labelled A–E. All pins can
be used as bit- or byte-oriented digital input or output. Their alternate functions
are summarised in Table 1.6.

It can be seen that many of the port pins have two or more functions,
depending on the initialisation of the relevant control registers. On power up
or reset, the port control register bits adopt a default condition (see Table 2-1
in the data sheet, right hand columns). The TRIS (data direction) register bits
in bank 1 default to 1, setting the ports B, C and D as inputs. If this is as
required, no further initialisation is needed, since other relevant control regis-
ters are generally reset to provide plain digital I/O by default. 

However, there is an IMPORTANT exception. Ports A and E are set to
ANALOGUE INPUT by default, because the analogue control register
ADCON1 in bank 1 defaults to 0 - - - 0000. To set up these ports for digital
I/O, this register must be loaded with the code x - - - 011x (x � don’t care),
say 06h. If analogue input is required only on selected pins, ADCON1 can be
initialised with bit codes that give a mixture of analogue and digital I/O on
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RP1 RP0 Bank Address Total Function

0 0 0 00 – 20 32 Special function registers
20 – 7F 96 General purpose registers

0 1 1 80 – 9F 32 SFRs, some repeat
A0 – EF 80 GPRs
F0 – FF 16 Repeat 70-7F

1 0 2 100 – 10F 16 SFRs, some repeat
110 – 16F 96 GPRs
170 – 17F 16 Repeat 70-7F

1 1 3 180 – 18F 16 SFRs, some repeat
190 – 1EF 96 GPRs
1F0 – 1FF 16 Repeat 70-7F
000 – 1FF 96 SFRs

368 GPRs

Table 1.5 Register bank select
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Ports A and E. Note that ADCON1 is in bank 1 so BANKSEL is needed to
access it. Initialisation for analogue I/O will be explained in more detail
later.

Timers

The PIC 16F877 has three hardware timers (data sheet, Sections 5, 6 and 7).
These are used to carry out timing operations simultaneously with the
program, to make the program faster and more efficient. An example would be
generating a pulse every second at an output.

Timer0 uses an 8-bit register, TMR0, file register address 01. Its output is an
overflow flag, T0IF, bit 2 in the Interrupt Control Register INTCON, address
0B. The timer register is incremented via a clock input which is derived either
from the MCU oscillator (fOSC) or an external pulse train at RA4. The register
counts from 0 to 255d in binary, and then rolls over to 00 again. When the reg-
ister goes from FF to 00, T0IF is set.

If the internal clock is used, the register acts as a timer. Each instruction in the
MCU takes four clock cycles to execute, so the instruction clock is fOSC/4. The
timers are driven from the instruction clock, which can be monitored externally
at CLKOUT, if the chip is operating with an RC clock. If preloaded with a value
of say, 155d, TMR0 will count 100 clock pulses until T0IF is set. If the chip is
driven from a crystal of 4 MHz, the instruction clock will be 1 MHz, and the timer
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Bits Pins Alternate function/s Bit Default

Port A 6 RA0–RA5 Analogue inputs 0,1,2,3,5 Analogue
Timer0 clock input 4 Input
Serial port slave select input 5

Port B 8 RB0–RB7 External interrupt 0 Digital 
Low-voltage programming input 3 I/O
Serial programming 6,7
In-circuit debugging 6,7

Port C 8 RC0–RC7 Timer1 clock input/output 0,1 Digital
Capture/Compare/PWM 1,2 I/O
SPI, I2C synchronous clock/data 3,4,5
USART asynchronous clock/data 6,7

Port D 8 RD0–RD7 Parallel slave port data I/O 0–7 Digital
I/O

Port E 3 RE0–RE2 Analogue inputs 0,1,2 Analogue
Parallel slave port control bits 0,1,2 Input

Table 1.6 Port alternate functions
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will overflow after 100 µs. If this were used to toggle an output, a signal with a
period of exactly 2 � 100 � 200 µs (frequency � 5 kHz) would be obtained.

Alternatively, a count of external pulses can be made, and read from the
register when finished, or the read triggered by external signal. Thus, the
timers can also be used as counters. Figure 5-1 in the data sheet shows the full
block diagram of Timer0, which shows a pre-scale register and the watchdog
timer. The pre-scaler is a divide by N register, where N � 2, 4, 8, 16, 32, 64,
128 or 256, meaning that the output count rate is reduced by this factor. This
extends the count period or total count by the same ratio, giving a greater range
to the measurement. The watchdog timer interval can also be extended, if this
is selected as the clock source. The pre-scale select bits, and other control bits
for Timer0 are found in OPTION_REG. Some typical Timer0 configurations
are detailed in Table 1.7.

Timer1 is a 16-bit counter, consisting of TMR1H and TMR1L (0E AND 0F).
When the low byte rolls over from FF to 00, the high byte is incremented. The
maximum count is therefore 65535d, which allows a higher count without
sacrificing accuracy.

Timer2 is an 8-bit counter (TMR2) with a 4-bit pre-scaler, 4-bit post-scaler and
a comparator. It can be used to generate Pulse Width Modulated (PWM) output
which is useful for driving DC motors and servos, among other things (see the
data sheet, section 7, for more details). These timers can also be used in capture
and compare modes, which allow external signals to be more easily measured.
There will be further detail provided with demonstration programs on timed I/O. 
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OPTION_REG Configuration Effect Applications

11010000 Internal clock (fOSC/4) Timer mode using 1. Preload Timer0 with initial
Active bits in bold No pre-scale instruction clock value, and count up to 256

2. Clear Timer0 initially and
read count later to measure
time elapsed

11010011 Internal clock (fOSC/4) Timer mode using Extend the count period × 16
Pre-scale � 16 instruction clock with for applications 1 and 2

pre-scale

11110111 External clock Counter mode Count one pulse in 256 at RA4
T0CKI pin Pre-scale � 256

11111110 Watchdog timer Extend watchdog Watchdog timer checks
selected pre-scale � 64 reset period to program every second

18 × 64 � 1152 ms

Table 1.7 Typical configurations for Timer0
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Indirect File Register Addressing

File register 00 (INDF) is used for indirect file register addressing. The address
of the register is placed in the file select register (FSR). When data is written
to or read from INDF, it is actually written to or read from the file register
pointed to by FSR. This is most useful for carrying out a read or write on a
continuous block of GPRs, for example, when saving data being read in from
a port over a period of time. Since nine bits are needed to address all file
registers (000–1FF), the IRP bit in the status register is used as the extra bit.
Direct and indirect addressing of the file registers are compared in the data
sheet (Figure 2–6).

Interrupt Control Registers

The registers involved in interrupt handling are INTCON, PIR1, PIR2, PIE1,
PIE2 and PCON. Interrupts are external hardware signals which force the
MCU to suspend its current process, and carry out an Interrupt Service
Routine (ISR). An interrupt can be generated in various ways, but, in the PIC,
the result is always to jump to program address 004. If more than one interrupt
source is operational, then the source of the interrupt must be detected and the
corresponding ISR selected. 

By default, interrupts are disabled, so programs can be loaded with their
origin (first instruction) at address 0000, and the significance of address 0004
can be ignored. If interrupts are to be used, the main program start address
needs to be 0005, or higher, and a ‘GOTO start’ (or similar label) placed at
address 0000. A ‘GOTO ISR’ instruction can then be placed at 004, using the
ORG directive, which sets the address at which the instruction will be placed
by the assembler. 

The Global Interrupt Enable bit (INTCON, GIE) must be set to enable the
interrupt system. The individual interrupt source is then enabled. For example,
the bit INTCON, T0IE is set to enable the Timer0 overflow to trigger the
interrupt sequence. When the timer overflows, INTCON, T0IF (Timer0
Interrupt Flag) is set to indicate the interrupt source, and the ISR called. The
flags can be checked by the ISR to establish the source of the interrupt, if more
than one is enabled. A list of interrupt sources and their control bits is given in
Table 1.8.

The primary interrupt sources are Timer0 and Port B. Input RB0 is used for
single interrupts, and pins RB4–RB7 can be set up so that any change on these
inputs initiates the interrupt. This could be used to detect when a button on a
keypad connected to Port B has been pressed, and the ISR would then process
the input accordingly.

The remaining interrupt sources are enabled by the Peripheral Interrupt
Enable bit (INTCON, PEIE). These are then individually enabled and flagged
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in PIE1, PIE2, PIR1 and PIR2. Many of these peripherals will be examined in
more detail later, but the demonstration programs do not generally use inter-
rupts, to keep them as simple as possible. However, if these peripherals are
used in more complex programs where multiple processes are required, inter-
rupts are useful. The program designer then has to decide on interrupt priority.
This means selectively disabling lower priority interrupts, using the enable
bits, when a more important process is in progress. For example, when reading
a serial port, the data has to be picked up from the port before being overwrit-
ten by the next data to arrive.

In more complex processors, a more sophisticated interrupt priority system
may be available, so that interrupts have to be placed in order of priority, and
those of a lower priority automatically disabled during a high-priority process.
The limited stack depth (8 return addresses) in the PIC must also be taken into
account, especially if several levels of subroutine are implemented as well as
multiple interrupts.
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Enable Flag
Source Bit Set Bit Set Interrupt Trigger Event

TMR0 INTCON,5 INTCON,2 Timer0 count overflowed
RB0 INTCON,4 INTCON,1 RB0 input changed (also uses INTEDG)
RB4-7 INTCON,3 INTCON,0 Port B high nibble input changed

Peripherals INTCON,6

TMR1 PIE1,0 PIR1,0 Timer1 count overflowed
TMR2 PIE1,1 PIR1,1 Timer2 count matched period register PR2
CCP1 PIE1,2 PIR1,2 Timer1 count captured in or matched CCPR1
SSP PIE1,3 PIR1,3 Data transmitted or received in 

Synchronous Serial Port

TX PIE1,4 PIR1,4 Transmit buffer empty in Asynchronous 
Serial Port

RC PIE1,5 PIR1,5 Receive buffer full in Asynchronous 
Serial Port

AD PIE1,6 PIR1,6 Analogue to Digital Conversion 
completed

PSP PIE1,7 PIR1,7 A read or write has occurred in the 
Parallel Slave Port

CCP2 PIE2,0 PIR2,0 Timer2 count captured in or matched 
CCPR2

BCL PIE2,3 PIR2,3 Bus collision detected in SSP (I2C mode)
EE PIE2,4 PIR2,4 Write to EEPROM memory completed

Table 1.8 Interrupt sources and control bits
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Peripheral Control Registers

The function of most of the peripheral blocks and their set up will be explained
as each is examined in turn, with a sample program. 

The only peripheral which does not require external connections is
the Electrically Erasable Programmable Read Only Memory (EEPROM).
This is a block of non-volatile read and write memory which stores data
during power down; for example, a security code or combination for an
electronic lock. A set of registers in banks 2 and 3 are used to access this
memory as well as a special EEPROM write sequence designed to prevent
accidental overwriting of the secure data. See Section 4 of the data sheet for
details.

SUMMARY 1

• The microcontroller contains a processor, memory and input/output
devices

• The program is stored in ROM memory in numbered locations (addresses)
• The P16F877 stores a maximum of 8k � 14 instructions in flash ROM
• The P16FXXX family uses only 35 instructions
• The P16F877 has 368 bytes of RAM and 5 ports (33 I/O pins)
• The ports act as buffers between the MCU and external systems
• The program is executed in sequence, unless there is a jump instruction
• The program counter tracks the current instruction address
• A configuration word is needed to select the clock type and other chip

options
• The program source code (.ASM) is assembled into machine code (.HEX)
• Subroutines are used to structure the program
• Interrupts are used to give I/O processing priority
• Hardware timers operate simultaneously with the program
• The serial ports require parallel to serial data conversion

ASSESSMENT 1

1 State the three main elements in any microprocessor system. (3)

2 State the difference between a microprocessor and microcontroller. (3)
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3 Describe briefly the process of fetching an instruction. (3)

4 State the advantages of flash ROM, compared with other memory types. (3)

5 Explain why serial data communication is generally slower than parallel. (3)

6 State why Ports A and E in the PIC 16F877 cannot be used for 
digital input without initialisation. (3)

7 How many bits does the 8k MCU program memory contain? (3)

8 Outline the process of installing a program in the PIC MCU. (3)

9 Explain the function of each bit in the binary code for the instruction 
‘MOVWF 0C’. (3)

10 Work out the configuration word required to initialise the P16F877 as follows:
RC clock, ICD enabled, PuT on, WDT off, BoD on, code protection off. (3)

11 Briefly compare the operation of a subroutine and an interrupt, explaining 
the role of the stack, return address, interrupt flag and the special 
significance of address 004 in the P16XXX. (5)

12 Explain how conditional program jumps are implemented in the PIC MCU. (5) 

ASSIGNMENTS 1

1.1 Program Execution

Describe the process of program instruction execution in a P16F877 MCU
by reference to its block diagram in the data sheet. Explain the role of
each block, and how the instructions and data is moved around. Use the
instructions MOVLW XX, ADDWF XX and CALL XXX as examples to
explain the execution sequence and the nature of the operands of these
instructions.

1.2 Instruction Analysis

Analyse the machine code for program BIN1. List the instructions in binary
and explain the function of each individual bit, or group of bits, within each
instruction, by reference to the instruction set summary in the data sheet. In
particular, identify the operand bits, and the operand type (literal, file address
or program address).
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1.3 Led Scanner

Study program BIN4. Suggest how the main loop could be modified to light
the least significant LED, and then rotate it through each bit so that the lit LED
appears to scan. Explain what will happen after it reaches the last position,
referring to role of the carry flag in the rotate command. Suggest how the scan
direction can be reversed at the end of the row of LEDs.
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2

PIC Software

The PIC microcontroller architecture has been introduced in Chapter 1, so we
now turn to the software, or firmware, as it should more accurately be known,
since it is stored in non-volatile memory. The source code is written on a PC
host using a text editor, or the edit window in MPLAB (the standard develop-
ment system), assembled and downloaded to the chip. The entry-level develop-
ment system hardware normally used until recently is shown in Figure 2.1 (a).
It consists of a host PC and programming unit, connected via a serial link.

The PC is running MPLAB, and when the program has been written and
assembled, it is downloaded by placing the chip in programming unit con-
nected to a PC COM (RS232) port. The RS232 protocol, the simplest serial
data format, will be described later since it is available as a serial port on
the PIC 16F877 itself. The chip is programmed via pins RB6 (clock) and
RB7 (data).

The programming unit supplied by Microchip is called PICSTART Plus. It
has a zero insertion force (ZIF) socket in which the chip is placed, and contains
another PIC within to handle the programming. The firmware in the program-
mer control chip can be updated in line with updates of the development sys-
tem itself, since new MCU types are added continuously to the range. Third
party-companies also produce inexpensive programming modules, some of
which are supplied in a kit form to further reduce the cost.

A more recent, and versatile, method of program downloading uses ICD 
(In-Circuit Debugging) mode (Figure 2.1 (b)). Here, the PC is connected to an
ICD module, which controls communication directly with the target chip. The
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(a)

(b)
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Figure 2.1 PIC development systems: (a) programming unit; (b) ICD system
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Figure 2.2 Screenshot of MPLAB
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MCU is left in circuit at all times, which minimises the possibility of damage,
and is reprogrammed via the same pins as before in Port B. However, the chip
can now be programmed to run in ICD mode; this means, program execution
in the chip itself can be controlled from MPLAB. The program can be stopped,
started and single stepped in the same way as in software simulation mode. The
program can thus be tested within the target hardware, a much more realistic
and powerful option.

MPLAB can be downloaded free from www.microchip.com (development
tools). The essential elements are an editor, assembler, simulator and pro-
grammer. The interface is shown in a typical configuration in the screenshot
(Figure 2.2).

Assembly Language

MPLAB has an integrated text editor designed for entering PIC programs. An
assembly language program can be entered using the instruction set defined
for the MCU chosen, plus any assembler directives required. 

Assembler Code

The general syntax requirements for the typical PIC program have already
been seen in Program 1.2 (BIN4). The source code occupies the columns to the
right of the line numbers in the list file (Column 2). The columns to the left of
the line numbers are the machine code, and the memory locations at which
each code is stored. A typical instruction is analysed in Table 2.1.

The machine code instruction provides the information to the execution unit
of the MCU to carry out the required operation (move, calculate, test, etc.). It
could be entered in plain binary, but this would require us to look up the code
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List File Example
Column Content Meaning

0 000C Memory location at which machine code instruction is stored
1 1C08 Machine code instruction, including op-code and operands
2 00065 Source code line number
3 start Address label marking jump destination
4 BTFSS Instruction mnemonic
5 PORTD,Inres Instruction operand labels
6 ;Test reset button Comment delimited by semi-colon

Table 2.1 List file elements
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each time. A more user-friendly option is the instruction mnemonic. Labels
are used to represent the op-code and operands, and these are replaced by the
assembler program with the corresponding binary codes, to produce the
machine code program (hex file). Our sample instruction is further dissected
in Table 2.2.

It can be seen that the 14-bit instruction code can be broken into three func-
tional parts. The first two bits are always zero, the unused bits 14 and 15. The
next four give the code for BTFSS, the next three identify the bit to be tested
(0) and the last seven the file register address (08). This structure can be seen
in the instruction set in the data sheet (Table 13-2). 

Other instructions do not necessarily have all these operands. CLRW has no
operands, and CLRF has one, the file register address. In most of the byte-ori-
ented file register operations, the destination for the result is switched to W by
setting bit 7 � 0. 

Note that an unused memory location normally contains all 1s (3FFF).
However, in the instruction set code 3FFF � ADDLW 0FF, meaning add the
literal FF to W. Blank locations will repeat this operation until the program
counter rolls over to zero and the program restarts! Therefore, if the
program does not loop continuously, it should be terminated with a SLEEP
instruction to stop the program at that point. Note that code 0000 � NOP,
no operation.

In the official instruction set in the data sheet, the elements are identified as
follows:

f � file register (00-7F)

d � destination (1�file register, 0�W)

k � literal (00-FF)

b � bit number (0-7)

Note also that the effect on the flags of each instruction is given.
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Label Hex Binary Meaning Range

start 000C 0000 0000 0000 1100 Program memory address label 0000 – 1FFF(8K)
BTFSS 00 01 11-- ---- ---- Op-code (bits 13,12,11,10 only) -
PORTD 1C08 -- -- ---- -000 1000 File register address � 08 00 – 7F (128)
Inres -- -- --00 0--- ---- File register bit � 0 0 – 7 

Table 2.2 Instruction analysis
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The assembly language program is therefore written using pre-defined labels
for the instruction (mnemonics) with user-defined labels for destination
addresses, registers, bits and literals. In general, any number that appears in the
program can be replaced by a label.

Assembler Syntax

The essentials of program syntax (grammar and spelling) are also illustrated in
BIN4. The instructions themselves are placed in the second and third columns;
here they are separated by a tab for clarity, but a space is also acceptable to the
assembler. The line comments are delimited by a semicolon. The comment
should describe the effect of the instruction, rather than simply repeating the
meaning of the mnemonics and labels.

In MPLAB, the line numbering can be switched on in the source code edit
window. When creating a source code file, always ‘Save As..’ immediately
the edit window has been opened, to make sure that the file path is estab-
lished. Note that MPLAB has a limit on the number of characters in the file
path, so you may not be able to save in the MPLAB folder itself. In any case,
we will be accessing the files from the interactive simulation software as
well, so a directory near the root of C: is preferable. Do not forget to keep
backup versions of your work on a network, USB flash ROM or other avail-
able drive!

A large comment block at the top of the program is desirable, but this should
be in proportion to the complexity of the program. The source code file name,
author and date or version number are essential. A program description should
then follow, and details of the MCU and its configuration. Details of the target
hardware should also be included, especially the I/O usage.

This is then followed by the MCU selection and configuration word. These
are assembler directives, and are not converted to machine code, as can be seen
in the left hand column of the list file. The PROCESSOR directive tells the as-
sembler which MCU will be used, because there is some variation between
them; most obviously, the number of valid port addresses. The 18FXXX series
of chips also have a more extensive instruction set. 

The __CONFIG directive sets the programmable fuses in the chip, which
cannot be changed except by reprogramming. These have been described in
detail in Chapter 1, but include the options listed in the program header: clock
type, code protection and watchdog and power-up timer enable. The configu-
ration code (3733h) and its location (2007h) appear in the left column of the
list file.

Another commonly required directive is EQU. This allows any number in the
program to be represented by a label, notifying the assembler that the label
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given should be replaced by the number to which it is equated. File register
(PORTB, TRISB, PORTD, Timer), bit numbers (Inrun, Inres) and literals may
be represented in this way. The literal b’00000000’ in the port initialisation
block could also have been replaced by a suitable label by adding this to the
label equates. However, the only directive that is absolutely essential is END,
to indicate the end of the source code to the assembler.

By contrast, program memory address labels are declared implicitly by their
placement at the beginning of the relevant source code line (delay, down, reset,
start). Short labels are used here so they fit into an 8-character column in the
source code. Longer labels (e.g. start_of_main_program) may be used, in
which case the label can be one line and the associated code on the next; the
line return is not significant to the assembler. However, no spaces should be
left in the label, as these are significant. Avoid characters other than letters,
numbers and underscore in labels.

Layout and Structure
The source code shown in BIN4 is organised in blocks, to make it easier to
understand. Good layout and readability are important as it is quite possible
that another software engineer will want to repair, modify or otherwise update
your program. As much information as possible should be included to assist in
this process, not always a priority when software production schedules are
tight! However, it will be worthwhile in the long term.

Each block is described in a full line block comment, and each instruction
explained in a line comment. Functional parts of the code are separated into
the following blocks:

1. Header comment

2. MCU configuration

3. Label equates

4. Port initialisation

5. Subroutines/macros

6. Main program

The subroutines are placed before the main program so that the destination
address labels are declared before being encountered as operands in subse-
quent blocks, which could give rise to a syntax error ‘label not recognised’ or
similar. In fact, in two pass assemblers, the problem does not arise, since the
labels are established before the final assembly of the object code. Therefore,
if you wish to write the main block first, and follow it with the component
subroutines, that is not a problem, and possibly more logical.
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The use of subroutines encourages structured programming, where distinct
operations are created in separate blocks and then called as necessary. This
provides re-usable code: a subroutine may be called as many times as required,
but only needs to be written once. 

These blocks can be included as separate source code files, or as pre-compiled
blocks, as is the case if a higher-level language such as ‘C’ is used (see below).

Standard special function register names can also be included in the form of
a standard header file that is supplied with MPLAB for each PIC chip. This is
called P16F877A.INC for our examples here; it contains a complete list of the
SFRs and their addresses. These standard names then have to be used, provid-
ing a standard labelling system, which aids communication between develop-
ers. These labels are all in upper case e.g. PORTA. The use of the standard SFR
label file is recommended for all PIC programs. Incidentally, the ‘A’ designa-
tion at the end of the PIC chip number indicates that the maximum clock rate
is increased from 10 to 20 MHz.

Macros, Special Instructions, Assembler Directives

Another structured programming technique is the macro. This is similar to
the subroutine, but the block of code is pre-defined, and then inserted as
source code whenever required. This increases the source code size, but
reduces the program execution time by eliminating the time taken to jump
to the subroutine, and back, when CALL and RETURN are executed. Each
of these takes an extra clock cycle, which may be significant in high-speed
applications.

There are also special or supplementary instructions recognised by the
assembler. Essentially, this is a macro, which is predefined within the assem-
bler, so providing extra instructions on the basic set. There is a collection of
these listed in the assembler help file supplied with MPLAB (HelpFiles\
hlpMPASMAsm). Selected examples are given in Table 2.3.

Assembler directives are also provided in addition to the instruction set to
improve the efficiency and flexibility of the programming process for experi-
enced developer. One is essential (END), a few others are usually necessary,
but most are optional at this stage. Some of the more commonly used direc-
tives are listed in Table 2.4.

Program BIN4 source code can now be rewritten using some of these direc-
tives (BIN4D) to illustrate their use (Program 2.1).

Note the following features of the BIN4D list file:

• List file options allow unwanted elements of printout to be suppressed. 
• Configuration settings are detailed in Chapter 1.
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• Equate is used for file register addresses.
• Data Direction code is SET, and may be changed later.
• Timer count value is defined as a constant.
• Text substitution is used for input bits.
• File path for standard P16F877A include file is specified in double

quotes.
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Directive Example Meaning

LIST p=16f877a, w=2, st=off Listing options: e.g. select MCU, print errors only, no symbol table
ORG 05 Set the first program memory address for the code that follows
END End of program source code
PORTA EQU 05 Declare a label (assembler constant)
Max SET 200 Declare a label value which may be changed later 

(assembler variable)
PROCESSOR 16F877A Select the MCU type
CONSTANT Hours_in_day=24 Declare a constant 
__CONFIG 0x3731 Set processor configuration word
BANKSEL TRISC Select file register bank containing the register specified
#INCLUDE “C:\PIC\P16F877A.INC” Include additional source file from directory specified
#DEFINE Cflag 3,0 Substitute text ‘Cflag’ with ‘3,0’ e.g. ‘BSF Cflag’
MACRO pulse Declare macro definition with address label
ENDM End a macro definition
NOEXPAND Do not print macro each time used

Table 2.4 Selected assembler directives

S. Instruction Meaning Assembler Code

BZ    addlab Branch to destination (address label) if BTFSC   STATUS,Z
result of previous operation zero GOTO    addlab

BNZ   addlab Branch to destination (address label) if BTFSS   STATUS,Z
result of previous operation not zero GOTO    addlab

BC    addlab Branch to destination (address label) BTFSC   STATUS,C
if carry set GOTO    addlab

BNC   addlab Branch to destination (address label) BTFSS   STATUS,C
if carry not set GOTO    addlab

NEG   num1 Negate (2s complement) a file register COMF    num1
(labelled num1) INCF    num1

TSTF  num1 Test a file register (labelled num1) MOVF    num1
to modify status bits

Table 2.3 Supplementary instructions
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MPASM 03.00 Released      BIN4D.ASM   11-13-2005  19:43:31         PAGE  1 

LOC  OBJECT CODE     LINE SOURCE TEXT 
  VALUE 

  00001 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00002 ; 
  00003 ;       Source File:    BIN4D.ASM 
  00004 ;       Author:         MPB
  00005 ;       Date:     13-11-05  
  00006 ; 
  00007 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00008 ; 
  00009 ;       Slow output binary count is stopped, started 
  00010 ;       and reset with push buttons.  
  00011 ;       Modified with extra directives 
  00012 ; 
  00013 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  
  00014
  00015 ;       Declare processor, supress messages and warnings, 
  00016 ;       do not print symbol table, and configure (RC clock) 
  00017
  00018   LIST p=16f877a, w=2, st=off, mm=off 

2007   3733    00019   __CONFIG 0x3733    
  00020
  00021 ;       Declare GPR label and literal constant 
  00022 ;       Define input labels
  00023 ;       Include standard SFR label file 
  00024 ;       Include PortB initialisation file 
  00025

  00000020     00026 Timer EQU 20 
  00000000     00027 DDCodeB SET b'00000000' 
  00FF   00028 CONSTANT Count=0FF 

  00029 #DEFINE RunBut PORTD,1 
  00030 #DEFINE ResBut PORTD,0 
  00031 #INCLUDE "C:\books\book2\apps\p16f877a.inc" 
  00001   LIST 
  00002 ; P16F877A.INC  Standard Header File, Version 1.00    Microchip

Technology, Inc. 
  00398   LIST 
  00032 #INCLUDE <bout.ini> 

0000   1683 1303      00001   BANKSEL TRISB           ; Select bank 1 
0002   3000    00002   MOVLW   DDCodeB         ; Port B Direction Code 
0003   0086    00003   MOVWF   TRISB           ; Load the DDR code into F86 
0004   1283 1303      00004   BANKSEL PORTB           ; Select bank 0 

  00033
  00034 ; Program code ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  00035
  00036 ; 'delay' macro ............................................. 
  00037
  00038 delay   MACRO      ; macro definition starts 
  00039   MOVWF   Timer           ; Copy W to timer register 
  00040 down    DECF    Timer           ; Decrement timer register  
  00041   BNZ     down      ; and repeat until zero 
  00042   ENDM      ; macro definition ends 
  00043
  00044 ; Main loop ................................................. 
  00045

0006   0186    00046 reset   CLRF    PORTB           ; Clear Port B Data  
  00047

0007   1C08    00048 start   BTFSS   ResBut          ; Test reset button 
0008   2806    00049   GOTO    reset           ; and reset Port B if pressed 
0009   1888    00050   BTFSC   RunBut          ; Test run button
000A   2807    00051   GOTO    start           ; and repeat if n pressed 

  00052
000B   0A86    00053   INCF    PORTB           ; Increment output at Port B  
000C   30FF    00054   MOVLW   Count           ; Delay count literal 

  00055   delay      ; Jump to subroutine 'delay' 
000D   00A0        M   MOVWF   Timer           ; Copy W to timer register 
000E   03A0        M down    DECF    Timer           ; Decrement timer register  
000F   1D03 280E          M   BNZ     down      ; and repeat until zero 
0011   2807    00056   GOTO    start           ; Repeat main loop always 

  00057
  00058   END       ; Terminate source code...... 

Errors   :     0 
Warnings :     0 reported,     1 suppressed 
Messages :     0 reported,     3 suppressed 

Program 2.1 BIN4D list file using assembler directives
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• Microchip header file title line is too long in this format.
• List file print for standard P16F877A include file is suppressed

(398 lines).
• Port B initialisation include file path is not specified, uses default (<>).
• Delay macro does not need to be skipped in program execution.
• Special instruction BNZ is used in delay macro.
• Text substitution is used for input testing.
• Macro expansion is indicated by ‘M’ instead of line number.
• END is the only essential assembler directive.
• Warnings and messages are suppressed.
• Memory map and symbol list are suppressed.

In order to keep the sample programs, provided later, on interfacing as easy to
understand as possible, most of these assembler options are to be avoided.
Once the essentials of the assembly language have been mastered, the more
powerful features of the assembler can be incorporated in your applications,
based on a close study of the description of the PIC assembler directives given
the help files provided with MPLAB.

Software Design

When the principles of assembly language programming are reasonably
well understood, methods of software design need to be considered. This
involves taking the program specification and working out how to construct
the program; a design method is needed to outline the program structure
and logic. 

The language to be used to write the program will influence how this is done.
The main alternative to assembly language is ‘C’, which has a more user-
friendly syntax than assembler. It uses functions to represent blocks of assem-
bly language; the C compiler converts source code functions and statements
into the pre-defined machine code blocks. The component functions may read-
ily be compiled in a library (collection of commonly used functions) or written
by the user.

A C program can be best represented by pseudocode, a program description
using structured text statements. By contrast, assembly language is more con-
veniently represented by flowcharts, especially for learning purposes, as it is
a graphical design aid. More complex programs can be represented by struc-
ture charts. To illustrate the use of these techniques, we will analyse program
BIN4.
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The program specification can be stated as follows:

A portable, self-contained unit is required for educational purposes, at min-
imum cost, which displays a repeating 8-bit binary count on a set of LEDs. The
count should start at zero, and be displayed when a non-latching push button
(RUN) is held down. The count should stop when RUN is released, and reset to
zero with another push button (RESET). The output sequence should be easily
visible, with each full count cycle taking at least 10 s.

Flowcharts

There are two main forms of flowchart. Data flowcharts may be used to repre-
sent complex data processing systems, but here we will use a minimal set of
symbols to represent an assembly language program. Program flowcharts may
be used to represent overall program structure and sequence, but not the de-
tails. An example is given in Figure 2.3, which represent the program BIN4, as
listed in Chapter 1.

The name of the program or project is given in the start symbol at the top of
the flowchart. This is followed by the initialisation sequence in a plain rectan-
gular process symbol, and an input/output operation (clear the LEDs) in the par-
allelogram-shaped symbol. A program decision (button pressed?) is enclosed in
a diamond shape, with two possible outputs. The selection test is expressed as
a question; the active decision is labelled yes or no, so it is unnecessary to label
the default path. 

The flow is implicitly down the page, so plain connected lines may be used,
with the branch forward or backward using an arrow line style. The subroutine
name is enclosed in a double line box, and expanded into a separate flowchart
below. A parameter (the delay time) is passed to the subroutine as the register
variable ‘count’.

These operations can be translated into PIC assembler as shown in Table 2.5.
Obviously, the precise implementation will depend on the exact sequence
required, but generally

• A process is a sequence with no external branches
• An I/O operation uses the ports
• A branch will use bit test and skip
• A subroutine uses CALL and RETURN

In most of the programs given here, ‘End’ is not needed in the flowchart, as the
main sequence usually loops continuously until reset. However, the END
directive is still needed to terminate the source code file.
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45

Else_IPM-BATES_ch002.qxd  6/29/2006  11:34 AM  Page 45



Flowcharts are useful for providing a graphical representation of the program,
for example, for a presentation, but they are time consuming to create.
Nevertheless, the flowcharts shown here were drawn just using the drawing tools
in Word, so the creation of flowcharts to a reasonable standard is not difficult
for the occasional user. Specialist drawing packages are also available, which
make the process quicker and easier for the professional software engineer.

Pseudocode

Pseudocode shows the program as a text outline, using higher-level language
constructs to represent the basic processes of sequential processing, selection
and repetition. BIN4 is represented in Table 2.6.
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(a)

(b)
DELAY

Decrement
Count = 0?

Return 

No 

BIN4

Initialise  
Port B = all outputs 

Reset ? 

All LEDs off

Run? 

Increment
LED display

DELAY
using Count

Yes

No

Figure 2.3 BIN4 flowcharts: (a) main routine; (b) delay subroutine
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The program outline uses high level key words such as IF and DO…WHILE to
control the sequence. It is not an ideal method for a very simple program like this,
but is useful for more complex programs. In particular, it translates directly into
‘C’, if the high-level language is preferred. Note that in this case, the program out-
line does not make any assumptions about the hardware implementation.

Structure Charts

Structure charts are also more suited to more complex programs, but the con-
cept can be illustrated as in Figure 2.4.

Each program component is included under standard headings: inputs,
processes and outputs, and can be broken down further in more complex pro-
grams, so that components can be created independently and then integrated.

‘C’ Programming

The ‘C’ programming language allows applications to be written using syntax
whose meaning is a little easier to understand than assembly code. Programs
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Operation Symbol Implementation

Start Source code file/project name in start box.
End End not needed if program loops endlessly

Process BANKSEL  TRISB
Sequence MOVLW    B’00000000’

MOVWF    PORTB

Input
or CLRF     PORTB
Output

Branch BTFSS    PORTD,Inres
Selection GOTO     reset

Subroutine MOVLW    0FF
Procedure CALL     delay
or
Function

Table 2.5 Flowchart implementation

DELAY
using Count

Reset ?

All LEDs off

Initialise
Port B = all outputs

BIN4

Else_IPM-BATES_ch002.qxd  6/29/2006  11:34 AM  Page 47



Interfacing PIC Microcontrollers

48

Project: BIN4 MPB 22-3-06 Ver 1.0
Hardware: BINX MCU = P16F877 RC clock = 40 KHz
Description: LED binary counter with stop and reset buttons

Declare
Registers Input, Output, Count
Bits Reset, Run

Initialise
Inputs (default) Reset, Run
Outputs LEDS

Main
DO

IF Reset pressed
Switch off LEDs

DO
Increment LEDS
Load Count
DELAY using Count

WHILE Run pressed
ALWAYS

Subroutine
DELAY

DO
Decrement Count

WHILE Count not zero
RETURN

Table 2.6 BIN4 pseudocode

BIN4 

Inputs OutputsProcesses

Reset Run Reset IncDELAY LEDS 

Figure 2.4 BIN4 structure chart
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in C are converted into assembly language by a compiler, and assembled into
machine code, in a two-stage process. 

‘C’ is the high-level language of choice for microcontrollers. A range of
different development systems and compilers are available, but most use the
same basic syntax defined as ANSI (American National Standards Institute) 
C. Assembly language is syntax which is unique to each type of processor,
while C provides a common language for all MCU types.

BIN4C Program

A version of BIN4, BIN4C, is shown in Figure 2.5 as an example. The func-
tion is the same as BIN4.

It can be seen that the program is simpler, because each C statement is
converted into several assembler instructions. As a result, the program written
in C will normally occupy more memory than the equivalent assembler
version, so microcontrollers with larger memory are typically needed.
Therefore, the more powerful 18XXXX series of PIC chips are usually used
for C applications. They also have additional instructions, such as multiply,
which makes the conversion more compact.
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// BIN4C.C  ************************ MPB 19-11-05  

#include <16F877.h> // Include standard MCU labels 
#byte PortB=6 // Output port data type and address 

void main()  // Start of program 
{ 

set_tris_b(0);  // Initialise output port 
PortB=0;  // Initial output value 

while(1)  // Endless loop between braces 
{ 
   if (!input(PIN_D0)) // Reset button pressed? 

PortB=0; // if so, switch off LEDs 

   if (!input(PIN_D1)) // Run button pressed? 
PortB++; // if so, increment binary display 

} 
} // End of program 

Figure 2.5 BIN4C source code
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In the BIN4C source code, the header file with the standard register labels
for the 16F877 is included in the same way as in the assembler version.
The output port is declared as an 8-bit variable (PortB), and its address
assigned (6). 

The main program block starts with the statement ‘void main()’ and is en-
closed in braces (curly brackets). The output port is then initialised using a li-
brary function provided with the compiler ‘set_tris_b(0)’, where 0 is the data
direction code in decimal form. An initial value of 0 is output to switch off the
LEDs.

The control loop starts with the loop condition statement ‘while(1)’, which
means repeat the statements between the braces endlessly. The buttons are
tested using ‘if (condition)’ statements, and the actions following carried out if
the condition is true. The condition is that the input is low ( ! = not ), and pin
labels as defined in the header file are used.

BIN4C Assembler Code

The C source code is compiled into assembler code, and then into machine
code. The list file in Figure 2.6 shows the assembler version of BI4C.

It can be seen that some statements are converted into a single instruction,
for example,

PortB++;  >>> INCF   06,F

Others need several instructions,

if (!input(PIN_D0))   >>> BSF 03.5
BSF 08.0
BCF 03.5
BTFSS 08.0

The total number of instructions for the C version is 28. The original as-
sembler version used 20, giving an increase of 40% for the C version, in this
case.

We are not going to look at the C language in any further detail here,
but this example is given so that the advantages of C programming for
microcontrollers can be appreciated. When assembly language has been
mastered, the developer can then decide if C would be a better choice for 
given applications. For those needing complex mathematical calculations,
for example, C is a better choice. For simpler programs comprising more bit
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CCS PCM C Compiler, Version 3.207  19-Nov-05 15:01

  Filename: C:\PIC\bin4c\bin4c.LST 
  ROM used: 28 words (0%) 

 Largest free fragment is 2048
  RAM used: 5 (3%) at main() level 

 5 (3%) worst case 
  Stack:    0 locations 

* 
0000:  MOVLW  00
0001:  MOVWF  0A
0002:  GOTO   004 
0003:  NOP 
....................  //BIN4C.C
....................
.................... #include <16F877.h>  
.................... #device PIC16F877 
.................... #list  
....................
.................... #byte PortB=6 
....................
.................... void main()   
.................... {  
0004:  CLRF   04
0005:  MOVLW  1F
0006:  ANDWF  03,F 
0007:  BSF    03.5 
0008:  BSF    1F.0 
0009:  BSF    1F.1 
000A:  BSF    1F.2 
000B:  BCF    1F.3 
.................... set_tris_b(0); 
000C:  MOVLW  00
000D:  MOVWF  06
.................... PortB=0;   
000E:  BCF    03.5 
000F:  CLRF   06
....................
.................... while(1)   
.................... {   
....................    if (!input(PIN_D0))
0010:  BSF    03.5 
0011:  BSF    08.0 
0012:  BCF    03.5 
0013:  BTFSS  08.0 
....................    PortB=0; 
0014:  CLRF   06
....................    if (!input(PIN_D1))
0015:  BSF    03.5 
0016:  BSF    08.1 
0017:  BCF    03.5 
0018:  BTFSS  08.1 
....................   PortB++; 
0019:  INCF   06,F 
.................... } 
001A:  GOTO   010 
.................... }  
....................
001B:  SLEEP 

Figure 2.6 BIN4C list file
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I/O operations and fewer calculations, assembler is generally faster and more
compact. C and assembler can be mixed in the same program to retain the
advantages of both.

SUMMARY 2

• The standard development system consists of a source code editor, assem-
bler, simulator and programmer

• Machine code instructions can be broken down into operation and operand
• Programs should be well commented and structured for ease of analysis

and debugging
• Assembler directives can be used to improve the efficiency and flexibility

of code production

ASSESSMENT 2

1 Describe the advantages of in-circuit programming and debugging over the
corresponding conventional development process. (3)

2 Refer to the instruction set in the PIC16F877 data sheet. State the binary 
codes for the operation and operands in the instruction DECFSZ 0C. (3)

3 State three commonly used assembler directives. (3)

4 Identify two instructions, one of which must be placed last in the PIC 
source code. What happens if one of these is not used? (3)

5 Identify two types of label used assembly language programming. (3)

6 State three PIC chip options, which are determined by the 
configuration code. (3)

7 State the function of the EQU directive. (3)

8 State the difference between the subroutine and macro, and one 
advantage of each. (3)

9 Describe the function of the standard header file “P16F877A.INC”. (3)

10 State the only assembler directive, which is essential in any program, 
and its function. (3)
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11 Identify the five main symbols, which are used in a flowchart. (5)

12 Rewrite the BIN4 program pseudocode outline with the delay in-line 
(eliminate the subroutine). (5)

ASSIGNMENTS 2

2.1 MPLAB Test

Download and install the current version of the MPLAB development system
(if necessary). Enter or download program BIN4. If entered manually, leave
out the comments. Assemble (V7 Quickbuild) and run the program. Set up the
input simulator buttons to represent the push buttons at Port D (toggle mode).
Set the MCU clock to 40 kHz. Display Port B and the Timer register in a suit-
able window. Demonstrate that the program runs correctly. 

2.2 MPLAB Debugging

Use the MPLAB debugging tools to single step the program BIN4 and observe
the changes in the MCU registers. Operate the simulated inputs to enable the
output count to Port B. Set a break point at the output instruction and run one
loop at a time, checking that Port B is incremented. Use the stopwatch to meas-
ure the loop time. Comment out the delay routine call in the source code, re-
assemble and check that the delay does not execute, and note the effect on the
loop time. Re-instate the delay, change the delay count to 03 and note the ef-
fect on the loop time.

2.3 C Program

Write a minimal ‘C’ program, which will perform the same function as BIN1,
and save as a plain text file BIN1.C. Discuss the advantages and disadvantages
of programming in ‘C’ and assembler. Obtain access to a suitable ‘C’ develop-
ment system and test your program. Predict the assembler code, which will be
produced by the same compiler that was used to produce the list file
BIN4C.LST. Add comments to explain the meaning of each assembler state-
ment produced by the compiler.
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3

Circuit Simulation

In the past, the electronics engineers needed to have a fairly comprehensive
knowledge of both electronic component operation and circuit analysis, before
setting out to design new applications. The circuit would be designed on paper
and a prototype built to test the design, using a hardware prototyping technique
such as stripboard; further refinement of the design would often then be
required. When the circuit was fully functional, a production version could be
developed, with the printed circuit board (PCB) being laid out by hand. Further
testing would then be needed on the production prototype to make sure that the
layout was correct, and that the variation in component values due to
tolerances would not prevent the circuit from functioning correctly. Learning
how electronics systems worked also required a good imagination! Unlike
mechanical systems, it is not obvious how a circuit works from simple
observation. Instruments (voltmeters, oscilloscopes, etc.) must be used to see
what is happening, and these also need complex skills to use them effectively.

We now have computer-based tools that make the job easier, and perhaps
more enjoyable. An early ECAD (Electronic Computer-Aided Design) tool
was a system of mathematical modelling used to predict circuit behaviour.
SPICE was developed at University of Berkeley, California, to provide a
consistent and commonly understood set of models for components, circuits
and signals. This system uses nodal analysis to predict the signal flow between
each point in a circuit, based on the connections between the components. The
results would be displayed or printed numerically.

The simplest component is the resistor, and the simplest mathematical model
Ohm’s law, V = IR, which relates the current and voltage in the resistor. For two
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resistors in series this becomes V = I(R1�R2). The power dissipated in the re-
sistor is given by P = IV. For AC signals, RMS voltages are used so that the
same model can be applied. Reactive components need the frequency of the
signal to be included, so V = IX is used, where X is the reactance. For a capac-
itor, the magnitude of the reactance is 1/ωC, for an inductor ωL, where C is the
capacitance and L the inductance. We then need to model the phase relation-
ship between voltage and current, using complex numbers, and so on.

Digital circuits are in principle easier, since they are modelled using simple
logical relationships, such as A = B.C, where the dot represents the ‘and’ op-
eration. The other main operators are ‘�’ representing logical ‘or’, and ‘!’ log-
ical invert. Thus, a simple logic function may appear as A = (B.C � !D).

The next step is to model mixed mode circuits, with analogue and digital
components connected together. Then microprocessors needed to be added,
which needed a programmed model to represent program execution. Computer
graphics have now developed to the point that the modelling can be done in
conjunction with a circuit drawn on the computer screen, and a simulation gen-
erated interactively. Components placed in the drawing have their models at-
tached, and the nodes are identified from the connections on the schematic.
Inputs can be supplied from simulated signal sources, and virtual instruments
and on-screen graphics are used to display the outputs obtained.

Interactive circuit simulation now makes the job of analysing and designing
electronic circuits quicker, easier (therefore cheaper) and more fun! The circuit
can be drawn and tested on screen, and a PCB layout also generated from the
schematic. Simple (one or two sided) PCBs can now be produced directly by a
machine tool attached to the same computer, avoiding the usual chemical
process. Once in production, assembly and testing can also be automated.

Proteus VSM (Virtual System Modelling), from Labcenter Electronics in the
UK, has been used to create the circuit diagrams and test the designs in this book.
It is currently the only package available with a comprehensive range of micro-
controller models. The schematic capture and interactive simulator component is
ISIS; a PCB layout can be created from the same drawing using the associated ap-
plication ARES. It is the most complete package available at the current time for
designing and testing embedded applications, providing an extensive range of
passive and active components, mixed mode simulation and interactive peripheral
hardware. Details of Proteus can be found at www.labcenter.co.uk.

Basic Circuit

A circuit to demonstrate the operation of BIN4 program is shown in Figure 3.1,
designated as BINX since it can be used for a range of programs. The circuit
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was drawn using ISIS and exported as a bitmap for insertion into a document.
As can be seen, ISIS also allows circuit diagrams to be readily presented to a
professional standard.

The microcontroller is a PIC 16F877, our reference device; other PIC chips
will be described later. A set of LEDs is connected to Port B, with push but-
tons on RD0 and RD1. A CR clock circuit is shown connected to CLKIN, with
a pre-set pot providing variable resistance, which allows the clock frequency
to be adjusted. Remember the clock frequency is inversely proportional to the
CR product. Note that for simulation purposes the external clock circuit does
not control the operating frequency of the PIC; this must be set in the proper-
ties dialogue for the MCU component (see below). Similarly, the MCLR
(Master Clear) input does not have to be connected for the program to run in
simulation mode, whereas this is essential in the real circuit.

The inputs are pulled up to 5 V via 10k resistors, although this value is not
critical. The inputs are thus high by default, as is the case if they are not con-
nected. The port does not need to be initialised for input, as this is also the de-
fault condition. On the other hand, the outputs do need to be initialised by the
MCU program by loading the data direction register with zeros. The PIC out-
puts can typically provide up to 25 mA, which is enough to light the LEDs
without any additional current drivers. 150 R resistors limit the current in the
LEDs to about 20 mA.

The programs BIN1 and BIN4 can be tested in this simulated hardware.
When creating a new application, a suitable folder should be made to contain
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Figure 3.1 BINX schematic
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the project files, since the design file for the schematic will be accompanied
by several files associated with the attached program (source code, hex code,
list file, etc.).

Drawing the Schematic

A screenshot of the ISIS schematic capture and interactive simulation envi-
ronment is shown in Figure 3.2. The main schematic edit window is accompa-
nied by an overview window showing the whole drawing and an object select
window, which normally contains a list of components. However, it also shows
lists of other available devices for use in the edit window when specific modes
are selected.

The main editing window includes a sheet outline, which shows the edge of
the drawing area, within which components must be placed. The component
button is normally selected by default in the mode toolbar. With this mode se-
lected, components are fetched for placing on the schematic by hitting the P
(pick devices) button, and selecting the required category of components. The
individual device type can then be chosen from a list (Figure 3.3).

The components are categorised as microprocessors (includes microcon-
trollers), resistors, capacitors, etc. with variants within each. Subcategories can
be selected. Interactive components, such as push buttons, are grouped in the
ACTIVE library.
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Figure 3.2 ISIS screenshot
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The selected components appear in the device list, and when highlighted
can be placed on the schematic with a single mouse click. The pins are then
connected as required by clicking on the component leads and dragging a
wire. Right-click highlights a connection or component, and further right-
click deletes it. Right-click and left-click open a connection or component
properties dialogue. The PIC chip property edit window, for example, allows
the program hex file to be selected, and the simulation clock frequency and
configuration word to be entered (Figure 3.4).

To complete the BINX schematic, power terminals must be added. Select the
terminal button in the objects toolbar, and a list of terminal types is displayed
in the device list. Power and ground terminals may then be added to the draw-
ing. The power terminal voltage needs to be defined via its properties’
dialogue. Entering �5 V as the label actually defines the operating voltage as
well. Note that the MCU does not need a power supply connection – it is
assumed to operate at 5 V.
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Figure 3.3 Picking a device
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Circuit Simulation

An MCU-based simulation will not run without a program attached to the
micro-controller chip. When the program has been edited and assembled, a hex
(machine code) file is created. In the MPLAB development system, it is tested
with simulated inputs and numerical outputs; for example, the state of Port B
is displayed as a hex or binary number. Inputs are generated as asynchronous
events by assigning on screen buttons, or using a stimulus file to generate the
same input sequence each time the simulation is run. It is a purely software
simulator, but with some advantages for the experienced developer.

ISIS provides a more user-friendly development environment, particularly
for the inexperienced designer, by providing interactive, on-screen, inputs and
outputs, so that the circuit can be seen operating in the same way as it will in
the real hardware (we hope!). It also provides debugging features, which are
also good for learning, that is, not too complicated.
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Figure 3.4 MCU properties
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If the hex file has already been created, this can be attached to the MCU via
the processor properties dialogue and the circuit will operate. However, it is
generally more useful to attach the source code as well, since this enables
source code debugging. In this mode, the source code listing is displayed and
the programme stopped, started and single stepped with the execution point
showing in the source code window. If there are problems with the program se-
quence (logical errors), the source code debugger allows them to be more eas-
ily resolved.

The source code debugging window is seen in Figure 3.5. The execution
point in the program listing is highlighted. The buttons at the top of the source
code window allow the program to be stepped, or run between breakpoints.
The CPU (special function) registers are also displayed, so that the MCU in-
ternal changes can be tracked. The CPU data memory window shows all the
file registers, so that general-purpose register contents can be monitored.

Setting up the Simulation

There are three main stages for testing an MCU design:

• Create the schematic drawing around the selected MCU
• Write the program source code and build (assemble) it
• Attach the resulting machine code to the MCU
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Figure 3.5 Source code debugging
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SOURCE CODE

The source code file is written in the source text editor from the Source menu,
select Add/Remove Source Files, New. Create the new source file in the proj-
ect folder containing the design file. MPASM should be selected as the Code
Generation Tool (the standard Microchip assemblers are included in ISIS). The
source code file now appears in the Source menu, and the edit window can be
opened by clicking on it. 

The program is written using the defined PIC assembler syntax. Write a
basic header consisting of the source code file name, author, date, plus version
number, target design file and hardware information (e.g. clock type and
speed) as required. The MCU type should then be specified, the configuration
word provided and the standard label file included, as necessary. Add the END
directive, which is always needed for correct assembly. The header can now be
saved and built, and attached, and the simulation run. The program will not yet
do anything, but this ensures the file paths are correct before proceeding with
the full source code. As with most projects, it is advisable to develop the
application stage by stage, ensuring correct function at each stage before pro-
ceeding to the next. 

Build All is used to assemble the program and create the hex file. Obviously,
if there are any syntax errors, they must be corrected at each stage. BIN4
source code (Chapter 1) provides an example of the kind of header informa-
tion which should be included.

MACHINE CODE

To attach the machine (hex) code, click right, then left, on the MCU and the
component properties dialogue should open. The folder tab by the Program
File box gives access to the project files, and allows the hex file to be opened
(attached). The MCU clock frequency and configuration word can be entered
at the same time. For the clock RC components shown in the schematic for
BINX, the time constant is about 5k � 4n7 � 25 µs, giving a frequency of
1/25 MHz = 40 kHz. Any clock value can be set in the properties dialogue, re-
gardless of the components in the drawing, but normally they should match.
The variable resistance in the schematic allows the clock frequency to be
adjusted around this value in the final hardware. 40 kHz gives an instruction
frequency of 10 kHz, and an instruction cycle time of 100 µs. The configura-
tion word can be set to 0x3FFB (RC clock, watchdog disabled).

Running the Simulation

The simulation is run by clicking on the run button in the set of control but-
tons at the bottom of the screen. If the source code has been changed, it is
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automatically saved and re-assembled at this command, which provides one-
click retesting. This saves a lot of time during the development process, espe-
cially for the inexperienced programmer. 

The circuit will operate in real time if the animation settings are correct, and
the simulation is not too complex. The default animation settings (System, Set
Animation Options) are 20 frames per second and 50 ms per frame, giving
real-time operation (20�50 ms = 1 s). For other applications and clock
speeds, these settings may need to be modified to see the circuit operation
clearly. In this circuit, the output LEDs should show a visible binary count; as
the delay between each increment is about 75 ms, the whole count will take
about 20 s.

The count is started by ‘pressing’ the run button with the mouse. It should
stop when released, and start again at the same count. The reset button should
clear the count to zero. Note that there is a problem if mouse must be used to
select other operations – it cannot be used to hold the button. The answer is to
temporarily link across the run button in the circuit, to keep the circuit in run
mode for testing or replace the buttons on the drawing with switches. While
the simulation is running, the logic state of each line can be indicted as a red
(1) or blue (0) square; this feature is enabled via the System menu, Animation
Options.

Software Debugging

The main objective of simulation testing is to fault-find the software
before downloading it to the real hardware. In ISIS, the hardware design is
tested at the same time. Changes to the hardware simply require editing the
component properties (e.g. to change a resistance), rewiring or changing com-
ponents. 

Syntax errors (e.g. misspelling an instruction) and semantic errors (e.g.
missing a label out) should have been identified at the initial program assem-
bly stage. Simulation allows logical errors to be detected, that is, mistakes in
the operation of the program when executed. Source code debugging enables
the source code execution sequence to be examined, and changed to eliminate
errors. The main debugging information is provided from

• Source code debug window
• CPU register display (SFRs)
• CPU data memory display (file registers)
• Watch window
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SOURCE CODE DEBUG WINDOW

This shows the source code, alongside the program memory locations and hex
code when these options are selected; the program execution can be controlled
from this window. It is called up by pausing the program, and selecting PIC
CPU Source Code in the Debug menu (Figure 3.6).

When paused, the current program execution point is shown in the source
debug window. The buttons at the top of the window are used to run or single-
step the program, as follows:

Run.. at full speed (window closes)

Step Over… Step through instructions only in the current routine, 
and execute subroutines at full speed

Step Into… Step through all instructions, including subroutines
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Figure 3.6 Select source debug window
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Step Out of.. Run at full speed out of current subroutine, then step through 
the calling routine

Run to… current cursor position

These controls allow the program sequence to be inspected, skipping sub-
routines if these are OK or will be debugged later, or escaping from a subrou-
tine loop (e.g. delay). Breakpoints allow the program to be run and stopped at
a selected point. For example, if a break point is set at the beginning of a loop,
it can be executed one loop at a time. Additional options are available with a
right-click on the source debug window (e.g. clear all breakpoints). If the pro-
gram sequence is incorrect, the source code must be corrected in the edit win-
dow, which should be kept minimised for quick access while debugging.

CPU REGISTER WINDOW

This displays selected special function registers, including the port data and di-
rection registers, plus the working register, status flags, etc. It also shows the
stack pointer, which is not normally accessible in the real chip. This shows
which of the 8 return address locations is next available, that is, how many lev-
els of subroutine have been used up.

CPU DATA MEMORY

This shows all the file registers, so it is a quick way to check on a general pur-
pose register. For example, in BIN4, the Timer count register can be seen.
When a register changes, it is highlighted, which helps to keep a track of them.

WATCH WINDOW

This window allows user-selected registers to be monitored, in a variety of data
formats. By right-clicking on the window, the SFRs can be picked up from a
list by name, or GPRs added by address (number) and named. This allows only
those registers which are of particular interest to be viewed. Unlike the other
debug windows, this window remains visible when the simulator is in run
mode, which allows the registers to be monitored in real time (Figure 3.7).

Hardware Testing

We have seen how to create the circuit in schematic form, and to test the pro-
gram. The simulation software also provides virtual instruments which can be
used to measure circuit performance, just as in the real world. The Instruments
button in the Gadgets toolbar provides a list of these in the device window. It
includes an Oscilloscope, Logic Analyser, Signal Generator, Voltmeters and
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Ammeters. The complete list of tools available and how to use them is pro-
vided in the Proteus VSM help files. 

Meters

Voltmeters and ammeters may be added to the circuit to measure volt drop
across a component or absolute voltage at a point (relative to 0 V) (Figure 3.8).
The ammeter measures current through a component, or along a ‘wire’. As an
example, the current and voltage around one of the LEDs is shown with the
LED on. The range and other properties of a meter can be changed by right-
clicking on the instrument.

Oscilloscope

A virtual oscilloscope allows signals to be displayed in the same way as a real
oscilloscope. Select it from the Instruments list and left-click to drop the
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minimised version on the drawing. Two channels, A and B, are available for
connection to different points in the circuit, with the 0 V being implicit. A
larger display version is enabled by pausing the simulation and selecting the
oscilloscope in the Debug menu. It is not displayed until the program is run;
with a signal in view, the scope controls may be adjusted to obtain the best dis-
play, and measure signal amplitude or frequency. Figure 3.9 shows the BIN4
application with a scope and logic analyser attached. A special version of the
program with the delay commented out to speed it up was used to give a suit-
able scope display (BIN4F). Figure 3.10 shows the clock output (CLKOUT)
from the PIC chip alongside the LSB output at RB0 (CLKOUT has to be en-
abled in the MCU Properties, Advanced Properties dialogue).

Logic Analyser

The logic analyser allows multiple digital signals to be displayed simultane-
ously. They are captured by sampling a set of lines at regular intervals, and
storing the samples as binary bits. A typical mid-range analyser might have 48
inputs, sampled at 25 MHz. Thus, 6 bytes are stored every 40 µs, continuously.
Unlike the oscilloscope, when the analyser is triggered, the data from ‘before’
the trigger event, as well as after, can be displayed.
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Figure 3.8 Voltmeter and ammeter
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Figure 3.9 Oscilloscope and Logic Analyser

Figure 3.10 Oscilloscope display
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The logic analyser is particularly useful in testing conventional micro-
processor systems, as it allows the data signals flowing between the CPU,
memory and I/O devices to be captured from the address and data busses.
This can then be compared with the program list file, to identify any discrep-
ancies. Individual signals can also be displayed. In real logic analysers, the
data can be displayed as a timing diagram, as in the oscilloscope, or as binary
or hexadecimal in a table, which shows each sample numerically. This is un-
necessary in the simulation, as this information can be captured from the CPU
or MCU itself.

In Figure 3.9, the logic analyser is capturing the 8-bit output at Port B. This
is useful if the output is changing at high speed; program BIN4F provides the
test output. The analyser trigger input must be operated while the program is
running or paused. Note that there may be a significant delay before the data
is displayed. Time intervals can be measured using the two marker controls
(Figure 3.11).

Graphs

Another powerful feature of the Proteus simulation is the graph display. Select
the Simulation Graph option in the Mode toolbar, and a graph box can be
drawn in a convenient position on the schematic. Attach voltage probes to the
binary output at Port B, as seen in Figure 3.12. If these are highlighted and
dragged onto the graph area, they are assigned to the next available graph line
on the chart. They can be deleted by right-clicking twice.

Circuit Simulation

69

Figure 3.11 Logic analyser display
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Now run the simulation and stop. Hit the spacebar – the signals should
appear in the graph window. If necessary, right, then left, click on the graph
area to change the timescale settings. For this example, running BIN4F, a max-
imum time of 100 ms is suitable. The graph can be enlarged to full screen size
for detailed analysis and printing, just click on the title bar of the window.

Hardware Implementation

When the application design has been tested and proved in simulation mode, it
can be converted into prototype hardware. The ISIS schematic can be exported
to ARES, the PCB layout part of the Proteus package, as a netlist. This is a list
of the components in the circuit, with SPICE model definitions attached, and a
list of the circuit nodes which describes how the components are connected.
Each of these identifies the terminals of the components attached to that node,
so that the signal flow can be calculated for simulation, and to define the com-
ponents and connections needed in a PCB layout (Figure 3.13).

The nodes in the netlist can be identified by comparison with the circuit
schematic. For example, the clock input CLKIN is defined as node 18:

#00018,3 Node number 18, 3 connections to:

C1,PS,2 Cap C1, passive terminal, pin 2
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ISIS SCHEMATIC DESCRIPTION FORMAT 6.1
=====================================
Design:   C:\BOOKS\BOOK2\APPS\1 LED Output\bin4\BIN4.DSN 
Doc. no.: <NONE> 
Revision: <NONE> 
Author:   <NONE> 
Created: 12/02/05 
Modified: 25/11/05 

*PROPERTIES,0 

*MODELDEFS,0

*PARTLIST,21
C1,CAP,4n7,EID=16,PACKAGE=CAP10,PINSWAP="1,2"
D1,LED-RED,LED-RED,BV=4V,EID=6,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D2,LED-RED,LED-RED,BV=4V,EID=7,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D3,LED-RED,LED-RED,BV=4V,EID=8,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D4,LED-RED,LED-RED,BV=4V,EID=9,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D5,LED-RED,LED-RED,BV=4V,EID=A,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D6,LED-RED,LED-RED,BV=4V,EID=B,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D7,LED-RED,LED-RED,BV=4V,EID=C,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
D8,LED-RED,LED-RED,BV=4V,EID=D,IMAX=10mA,PACKAGE=DIODE25,ROFF=100k,RS=3,STATE=0,VF=2V
R1,RES,10k,EID=4,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R2,RES,10k,EID=5,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R3,RES,220R,EID=E,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR
R4,RES,220R,EID=F,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR
R5,RES,220R,EID=10,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R6,RES,220R,EID=11,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R7,RES,220R,EID=12,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R8,RES,220R,EID=13,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R9,RES,220R,EID=14,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR 
R10,RES,150R,EID=15,PACKAGE=RES40,PINSWAP="1,2",PRIMTYPE=RESISTOR
RV1,POT-LIN,10k,EID=17,STATE=5
U1,PIC16F877,PIC16F877,ADC_ACQUISITION_TIME=20u,ADC_RCCLOCK_PERIOD=4u,ADC_SAMPLE_DELAY=100n,CFGWORD=0x3FFB,CLOCK=40
kHz,DBG_ADC_BREAK=0,DBG_ADC_WARNINGS=0,DBG_ADDRESSES=0,DBG_DUMP_CFGWORD=0,DBG_GENERATE_CLKOUT=0,DBG_I2C_OPERATIONS=
1,DBG_RANDOM_DMEM=0,DBG_RANDOM_PMEM=0,DBG_STACK=1,DBG_STARTUP_DELAY=0,DBG_UNIMPLEMENTED_MEMORY=1,DBG_UNIMPLEMENTED_
OPCODES=1,DBG_WAKEUP_DELAY=0,EID=1A,EPR_WRITECODE_DELAY=10m,EPR_WRITEDATA_DELAY=10m,ITFMOD=PIC,MODDATA="256,255",MO
DDLL=PIC16,PACKAGE=DIL40,PORTTDHL=0,PORTTDLH=0,PROGRAM=..\bin4f\BIN4F.HEX,WDT_PERIOD=18m

*NETLIST,47  
#00000,2
R1,PS,1
U1,IO,20

#00001,2
R2,PS,1
U1,IO,19

#00002,2
D1,PS,A
R3,PS,2

#00003,2
D2,PS,A
R4,PS,2

#00004,2
D3,PS,A
R5,PS,2

#00005,2
D4,PS,A
R6,PS,2

#00006,2
D5,PS,A
R7,PS,2

#00007,2
D6,PS,A
R8,PS,2

#00008,2
D7,PS,A
R9,PS,2

#00009,2
D8,PS,A
R10,PS,2

#00010,2
R3,PS,1
U1,IO,40

#00011,2
R4,PS,1
U1,IO,39

#00012,2
R5,PS,1 
U1,IO,38

#00013,2
R6,PS,1 
U1,IO,37

#00014,2
R7,PS,1 
U1,IO,36

#00015,2
R8,PS,1 
U1,IO,35

#00016,2
R9,PS,1 
U1,IO,34

#00017,2
R10,PS,1
U1,IO,33

#00018,3
C1,PS,2 
RV1,PS,2
U1,IP,13

#00019,1
U1,IO,2 

#00020,1
U1,IO,3 

#00021,1
U1,IO,4 

#00022,1
U1,IO,6 

#00023,1
U1,IO,7 

#00024,1
U1,IO,8 

#00025,1 
U1,IO,9 

#00026,1 
U1,IO,10 

#00027,1 
U1,OP,14 

#00028,1 
U1,IO,16 

#00029,1 
U1,IO,17 

#00030,1 
U1,IO,18 

#00031,1 
U1,IO,30 

#00032,1 
U1,IO,29 

#00033,1 
U1,IO,28 

#00034,1 
U1,IO,27 

#00035,1 
U1,IO,22 

#00036,1 
U1,IO,21 

#00037,1 
U1,IO,26 

#00038,1 
U1,IO,25 

#00039,1 
U1,IO,24 

#00040,1 
U1,IO,23 

#00041,1 
U1,IO,5

#00042,1 
U1,IO,15 

+5V,6
+5V,PT 
R1,PS,2
R2,PS,2
RV1,PS,3 
RV1,PS,1 
U1,IP,1

GND,10 
GND,PT 
C1,PS,1
D1,PS,K
D8,PS,K
D7,PS,K
D6,PS,K
D5,PS,K
D4,PS,K
D3,PS,K
D2,PS,K

VDD,3
VDD,PT 
U1,PP,11 
U1,PP,32 

VSS,3
VSS,PT 
U1,PP,12 
U1,PP,31 

*GATES,0  

Figure 3.13 BINX netlist
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RV1,PS,2 Pot RV1, passive terminal, pin 2

U1,IP,13 Chip U1, input terminal, pin 13

The netlist data is used by the layout package to generate a list of compo-
nents with specified pinouts. If there is a choice of physical packages, ARES
will allow the user to select the most suitable. These are placed on the layout,
with temporary connections shown as straight lines between the pins,
producing  a ratsnest display. Autorouting can then be invoked and a layout
produced which can be converted into a PCB. In Figure 3.14, the layout for
circuit BINX is shown for a double-sided board, so some tracks are overlaid
on others.

If the PCB is to be produced automatically, a standard Gerber output file 
can be generated to be passed to a prototyping system. Alternatively, the PCB can
be produced in the traditional way, by printing the layout as a transparency,
transferring it to the board photographically and etching the board layout
chemically.

Interfacing PIC Microcontrollers
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Figure 3.14 PCB layout
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Program Downloading

When the application hardware has been produced, the MCU program must be
downloaded into the chip. The traditional method is to remove the chip from
the circuit and place it in a separate programming unit (therefore must be fit-
ted in a socket, not soldered in). The program is then downloaded from the de-
velopment system PC host, using the programming utility in MPLAB. This has
obvious disadvantages – removing the chip risks physical and electrical dam-
age, is not possible to reprogram in-circuit or remotely.

Microchip have therefore come up with an in-circuit programming method,
which is inexpensive and provides the opportunity to debug the system while
running in real hardware. ICD (In-Circuit Debugging) uses the same program-
ming pins on the chip, but they are connected to a 6-pin programming con-
nector fitted to the application hardware. An ICD programming module is then
connected between the host PC and the target application board, and the pro-
gram downloaded to the chip in circuit. This also provides the possibility of
remote reprogramming after an application has been commissioned on site. A
slight disadvantage when using Proteus VSM for debugging is that, at present,
the program must be returned to MPLAB for downloading (Figure 3.15).

ICD allows the program to run from MPLAB, and debugged in hardware,
with the usual single stepping and breakpoint control. To achieve this, the chip
has special debugging features built in so that the program can be interrupted
as required; also, a block of debug code is loaded into the top of memory,
slightly reducing the maximum possible program size. A NOP (No Operation)
must be placed at location 0000 (first instruction in the program) to allow
access to the debug code before the program starts executing. Since RB3, RB6

Circuit Simulation

73

Figure 3.15 ICD connections
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and RB7 are needed for programming, it is best not to use these for conven-
tional I/O, if possible. This would mean re-designing the BINX circuit and
using another port for the LEDs. Note also that a pull-up resistor should be
used on !MCLR to enable normal running, while allowing the programming
voltage (about 13 V) to be applied without damaging the target system 5 V
supply.

Testing the program in the real hardware allows any final bugs to be
squashed. These could arise from slight performance discrepancies between
the hardware and the simulated circuit, last minute modifications to the design
and so on. When the program has been fully tested and passed as functioning
fully to specification, the program is downloaded again with the ICD option
turned off, so that it will run independently.

SUMMARY 3

• Circuits are tested by simulation based on mathematical modelling
• Proteus VSM provides interactive simulation in the schematic
• Source code and the hex file must be attached to the MCU
• The primary debug tool is source code stepping with register display
• Simulated test instruments are used for virtual testing
• A netlist is exported to ARES for the PCB layout

ASSESSMENT 3

1 State the three main steps in testing an MCU design in Proteus VSM. (3)

2 Why does the clock circuit not have to be drawn for simulation? (3)

3 Calculate the instruction cycle time if the clock is 10 MHz (3)

4 What type of errors are detected by the assembler and simulation respectively? (3)

5 Explain the difference between step into, step over and step out. (3)

6 Explain why breakpoints are useful in debugging. (3)

7 Explain the functions of a logic analyser. (3)

8 Explain the user actions required to generate a graph in Proteus VSM. (3)

Interfacing PIC Microcontrollers
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9 Explain the function of a netlist. (3)

10 Explain the advantages of ICD over traditional hardware debugging. (3)

11 Outline the process for testing a design by interactive simulation, and state its
advantages over conventional development techniques. (5)

12 State the type of signal that would be typically measured using a voltmeter,
oscilloscope and logic analyser, respectively. State two advantages of a 
simulation graph. (5)

ASSIGNMENTS 3

3.1 Bin4 Simulation

Test the application program BIN4 in simulation mode by attaching it to the
BINX design. Carry out the same, or equivalent, tests as those detailed in
Chapter 2 (Assignment 1). Comment out the delay and modify the schematic
as necessary to display a full speed count. Use the virtual instruments in ISIS
simulation mode to display the output: the LSB output on the scope, all out-
puts on the logic analyser and graph. Confirm correct operation of the appli-
cation in the interactive simulation environment.

3.2 System Comparison

Compare in detail the functionality of the MPLAB and Proteus simulation
environments, and identify the advantages of each.

3.3 Proteus Debugging

Load the BIN4 project into the ISIS simulator environment. Introduce the
following errors into BIN4.ASM:

Omit (comment out) the PROCESSOR directive

Omit (comment out) the label equate for ‘Timer’

Replace ‘CLRF’ with ‘CLR’ (invalid mnemonic)

Delete label ‘Start’ (label missing)

Replace ‘0’ with ‘O’ in the literal 0FF.

Omit (comment out) ‘END’ directive

Circuit Simulation
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Note the effect of each error type and the message produced by the assembler.
What general type of error are they? Warning ‘default destination being used’
should be received in the list file. What does this mean? Eliminate it by chang-
ing the assembler error level to suppress messages and warnings.

With the program restored so that it assembles correctly:

Replace ‘BTFSS’ with ‘BTFSC’

Omit (comment out) ‘GOTO reset’

Note the effect of these errors. What general type of error are they? Describe
the process used to detect each one.

Interfacing PIC Microcontrollers

76

Else_IPM-BATES_ch003.qxd  6/27/2006  12:58 PM  Page 76



Part 2

Interfacing
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4

Input & Output

We can now proceed to the main business of this book – describing a range of
input & output techniques which will help you to design microcontroller cir-
cuits. Today, the typical MCU-based consumer product can be extremely com-
plex, and contains a wide range of technologies around the main controller.
The mobile phone is a good example; in addition to the sophisticated digital
communications subsystem which provides its main function, it can also have
a full-colour, medium resolution liquid crystal display (LCD) screen, camera,
sound system and so on. A detailed understanding of these technologies re-
quires a very high level of engineering skill. To help develop this skill, some
simpler equivalent technologies must be studied – for example, we will see
how to display character-based information on a low-resolution monochrome
alphanumeric LCD, and ignore its graphics capabilities for now. 

Switch Input

The simplest input is a switch or push button. This can operate with just one
additional support component, a pull-up resistor, but there are still some sig-
nificant issues to consider, such as input loading and debouncing. We have
seen in the BINX hardware how a simple push button or switch is interfaced
with a pull-up resistor. Let us make sure we understand how this works
(Figure 4.1).
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When the switch is open, the output voltage of the circuit is pulled up to �5
V via the resistor. Another way to look at it is that there is no current in the re-
sistor (assuming there is no load on the output), so there is no volt drop, and
the output voltage must be the same as the supply (�5 V). When the switch is
closed the output is connected direct to 0 V; the resistor prevents the supply
being shorted to ground. 

The resistor value is not critical, but if there is any load on the output, the
pull-up must be significantly lower in value than the load, for the digital volt-
age levels to be valid. On the other hand, its value should be as high as possi-
ble to minimise wasted power, especially if the circuit is battery-powered. Let
us say the load on the output (Ri) was equivalent to 400k (100 �A with a 5 V
supply), the pull-up resistor (Rp) should be 100k or less, so that the output volt-
age with the switch open would be at least 4 V. The minimum voltage which
will be reliably recognised as logic 1 at a PIC input is 2.0 V, and the maximum
voltage recognised as a logic 0 is 0.8 V, assuming a �5 V supply. The input
leakage current is actually only about 1 �A. If power conservation is not criti-
cal, a 10k resistor is a reasonable choice.

If a PIC input is open circuit, it is pulled up to Vdd (normally �5 V)
internally, that is, it floats high. On some ports (Port B), weak pull-ups can
be enabled to eliminate the need for external pull-up resistors. The switch
symbol assumes toggle mode operation – the switch remains in the set position
until changed. Push buttons normally assumed to be closed only when
held – the toggle operation can be implemented in software if required, to
obtain a push-on, push-off operation.

Interfacing PIC Microcontrollers
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0V 

5V 

Output, Vo

Switch 

Pull-up
Resistor

Rp

Input 
Resistance
Ri 

Vo = 5.Ri/(Rp+Ri)

Debounce 
Capacitor 

PIC 

Figure 4.1 Input switch
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Switch Debouncing

When the contacts close in any mechanical switch or push button, they tend to
bounce open before settling in closed position. In normal life, this is not notice-
able or significant, but in microsystems it is liable to cause circuit misbehaviour
if ignored. The effect generally lasts a few milliseconds, but if the switch is sam-
pled at high speed, it can appear that it has been operated several times. 

On the other hand, the sequence of the program may be such that the switch
bounce does not adversely affect the correct operation of the system. For ex-
ample, if the program does not recheck the input until the bouncing has fin-
ished anyway, no specific debouncing is needed.

In Figure 4.2 (a), the output voltage from a switch jumps back up to 5 V due
to the switch contacts bouncing open. If a suitable capacitor is connected
across the switch, as in Figure 4.2 (b) it is initially charged up to 5 V. When the
contacts close, it is quickly discharged by the short circuit. However, it can
only recharge via the pull-up resistor, which takes more time. If the switch
closes again before the logic 0 minimum threshold is crossed (0.8 V), the volt-
age is prevented from going back to logic 1. The capacitor needs to be large
enough to give a slow voltage rise in the charging phase, while not being so
high in value as to cause a large discharge current through the switch contacts
when the contacts close, or making the rise time too long when the switch
is opened. With a 10k pull-up resistor, a 10 nF capacitor would give a time
constant of 100 ms, which should be more than adequate.

Input & Output
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(a)

(b)

Time

+5V 

0.8V

Switch closes

Figure 4.2 Switch hardware debounce (a) without debounce capacitor; (b) with debounce
capacitor
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The circuit shown in Figure 4.3 will be used to illustrate debouncing. A bi-
nary display count is to be incremented under manual control, via a switch
input, one step at a time. The circuit now includes the ICD programming con-
nections with a 6-way connector, as would be required in the actual hardware.
These will not always be shown, but will be required if the ICD method is to be
used when debugging the real circuit. To accommodate these connections, the
LEDs have been moved to Port D, and spare lines in Port B used for the inputs.

If the switch input is not debounced, several counts might be registered. The
debounce process shown in Program 4.1 (LED1S) uses the same software
delay routine previously used to provide delays between each output step. Note
that the simulated switch model has a delay of 1 ms to represent the bounce ef-
fect, which does not, unfortunately, accurately model the real switch behaviour.
However, it can still be seen that if the software delay is commented out, the
count is not reliable.

Interfacing PIC Microcontrollers
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Figure 4.3 LED counter with ICD interface
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
;    Source File: LED1S.ASM 
; Author: MPB
; Date: 2-12-05
; 
; Output binary count is stepped manually
;    and reset with push buttons.  
; Demonstrates software delay switch debounce
; Hardware: BIN4X simulation 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

 PROCESSOR 16F877 ; Define MCU type 
__CONFIG 0x3733 ; Set config fuses 

; Register Label Equates.................................... 

PORTB EQU     06 ; Port B Data Register
PORTD EQU     08 ; Port D Data Register
TRISD EQU 88 ; Port B Direction Register 
Timer   EQU  20 ; GPR used as delay counter 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; Initialise Port B (Port A defaults to inputs)............. 

BANKSEL TRISD ; Select bank 1
MOVLW b'00000000'   ; Port B Direction Code 
MOVWF TRISD ; Load the DDR code into F86 
BANKSEL PORTD ; Select bank 0

 GOTO reset  ; Jump to main loop

; 'delay' subroutine ........................................

delay MOVWF Timer ; Copy W to timer register
down    DECFSZ  Timer ; Decrement timer register

   GOTO down  ; and repeat until zero 
 RETURN   ; Jump back to main program

; Start main loop ...........................................

reset   CLRF PORTD   ; Clear LEDs  

start   BTFSS PORTB,1   ; Reset? 
GOTO  reset ; Yes - clear LEDs 

   BTFSC PORTB,2   ; Step on? 
   GOTO start ; No - wait

MOVLW 0FF   ; Delay count literal 
 CALL delay  ; Wait for count 

   BTFSS PORTB,2   ; Step on? 
   GOTO start ; Yes – wait 
   INCF PORTD ; Increment LEDs  
   GOTO start ; Repeat always

   END  ; Terminate source code 

Program 4.1 Software debouncing
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Timer and Interrupts

The main problem with the delay loop method is that MCU time is being
wasted (at 5 Mhz instruction rate, 5000 instruction cycles could be com-
pleted in 1 ms). In a high performance system (high speed, large data
throughput), this is very inefficient, so the use of a hardware timer would be
preferred. This option allows the MCU to proceed with other tasks while car-
rying out a timing operation concurrently. In addition, the switch problem is
a good opportunity to examine the use of hardware timers and interrupts in
general.

If a hardware timer is started when the switch is first closed, the closure can
be confirmed by retesting the input after a time delay to check if it is still
closed. Alternatively, the switch input can be processed after the button is re-
leased, rather than when it is closed. The system responds when the switch is
released rather than when it is pressed, again avoiding the bounce problem.

The same virtual hardware (Figure 4.3) will be used for Program 4.2
(LED1H) which illustrates the use of a hardware timer. TMR0 (Timer0) is lo-
cated at file register address 01. It operates as an 8-bit binary up counter,
driven from an external or internal clock source. The count increments with
each input pulse, and a flag is set when it overflows from FF to 00. It can be
pre-loaded with a value so that the time out flag is set after the required inter-
val. For example, if it is pre-loaded with the number 15610, it will overflow
after 100 counts (25610). A block diagram of Timer0 is shown in Figure 4.4.

Timer0 has a pre-scaler available at its input, which divides the number of
input pulses by a factor of 2, 4, 8, 16, 32, 64, 128 or 256, which increases the
range of the count but reduces its accuracy. For timing purposes, the internal
clock is usually selected, which is the instruction clock seen at CLKOUT in RC
mode (fosc/4). Thus the register is incremented once per instruction cycle (there
are 1 or 2 cycles per instruction), without the pre-scaler. At 10 kHz, it will
count in steps of 100 �s.

Interrupts are another way of increasing the program efficiency. They allow
external devices or internal events to force a change in the execution sequence
of the MCU. When an interrupt occurs, in the PIC the program jumps to pro-
gram address 004, and continues from there until it sees a Return From
Interrupt (RETFIE) instruction. It then resumes at the original point, the return
address having been stored automatically on the stack as part of the interrupt
process. Typically, a GOTO ISR (Interrupt Service Routine) is placed at the in-
terrupt address 004, and the ISR placed elsewhere in memory using ORG. The
interrupt source is identified by the associated flag (in this case, Timer0 over-
flow flag). This has an associated interrupt enable bit to enable the MCU to re-
spond to this particular source, and a global enable bit to disable all interrupts

Interfacing PIC Microcontrollers
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
;    Source File: LED1H.ASM 
; Author: MPB
; Date: 2-12-05
; 
; Output binary count incremented 
;    and reset with push buttons.  
; Uses hardware timer to debounce input switch 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

 PROCESSOR 16F877 ; Define MCU type 
__CONFIG 0x3733 ; Set config fuses 

; Register Label Equates.................................... 

PORTB   EQU 06 ; Port B Data Register
PORTD   EQU  08 ; Port D Data Register
TRISD EQU 88 ; Port D Direction Register 

TMR0 EQU 01 ; Hardware Timer Register
INTCON EQU 0B ; Interrupt Control Register 
OPTREG EQU 81 ; Option Register 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 ORG 000  ; Start of program memory
 NOP   ; For ICD mode 
 GOTO init  ; Jump to main program

; Interrupt Service Routine ................................ 

 ORG 004 
 BCF INTCON,2 ; Reset TMR0 interrupt flag 
 RETFIE   ; Return from interrupt 

; Initialise Port D (Port B defaults to inputs)............. 

init NOP ; BANKSEL cannot be labelled 
BANKSEL TRISD ; Select bank 1
MOVLW   b'00000000'  ; Port B Direction Code 
MOVWF TRISD ; Load the DDR code into F86 

; Initialise Timer0 ........................................ 

MOVLW b'11011000' ; TMR0 initialisation code
MOVWF OPTREG ; Int clock, no prescale 
BANKSEL PORTD ; Select bank 0
MOVLW b'10100000' ; INTCON init. code
MOVWF INTCON ; Enable TMR0 interrupt 

; Start main loop ...........................................

reset   CLRF PORTD   ; Clear Port B Data

start   BTFSS PORTB,1   ; Test reset button
GOTO  reset ; and reset Port B if pressed 

   BTFSC PORTB,2   ; Test step button 
   GOTO start ; and repeat if not pressed 

 CLRF TMR0  ; Reset timer 
wait BTFSS INTCON,2 ; Check for time out 
 GOTO wait  ; Wait if not 
stepin BTFSS PORTB,2 ; Check step button

GOTO stepin ; and wait until released 
   INCF PORTD ; Increment output at Port B  
   GOTO start ; Repeat main loop always 

   END  ; Terminate source code...... 

Program 4.2 Hardware timer debouncing
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by default. If more than one interrupt source is enabled, the program must test
the flags to see which is active, as part of the ISR.

In program LED1H, Timer0 is initialised to make a full count of 256 in-
struction cycles. At 10 kHz, this gives a delay of about 26 ms. This is more than
enough for debouncing. The OPTION register is set up for the timer to oper-
ate from the instruction clock with no pre-scaling. The INTCON register is ini-
tialised to enable the timer interrupt. When the timer times out, the program
jumps to the interrupt service routine at address 004, resets the time out flag,
and returns. The program then waits for the button to be released, and incre-
ments the LED count.
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Bit Timer Interrupt Bit Label & Function

2
T0IF
TMR0 Overflow Interrupt Flag 

0 = No Overflow
1 = Overflow

5 T0IE
TMR0 Overflow Interrupt Enable

0 = Disable 
1 = Enable 

7
GIE
Global Interrupt Enable

0 = Disable 
1 = Enable 

Prescaler Division Ratio 
Bit Timer Control Bit Label & Function  2  4  8 16 32 64 128 256

 0 PS0   Prescaler Rate Select Bit 0  0  1  0  1  0  1  0  1 

 1 PS1   Prescaler Rate Select Bit 1  0  0  1  1  0  0  1  1 

 2 PS2   Prescaler Rate Select Bit 2  0  0  0  0  1  1  1  1 

 3 PSA   Prescaler Assignment Bit  0 =  Select Prescaler for TMR0
 1 =  Deselect Prescaler for TMR0

 4 T0SE   TMR0 Source Edge Select Bit  0 =  Increment on rising edge of RA4
 1 =  Increment on falling edge of RA4 

 5 T0CS TMR0 Clock source Select Bit  0 =  Instruction Clock = Ext Clock/4 
 1 =  select RA4 Input 

Pre-
scale

Enable

X X X X X X X X
Prescaler

CLKIN/4

RA4 

Pre-
scale 
Value
Select

Load / Read
TMR0 Register

TMR0
Overflow 

TMR0 Input 

1 X 1 X X 1 X X

Bit  7 6 5 4 3 2 1 0 
INTCON Register 

X X 0 1 1 0 0 0 OPTION Register
Bit    7 6 5 4 3 2 1 0 

Interrupt or Poll

Edge 
Select 

Input 
Select

TMR0 Register

Figure 4.4 Timer0 operation
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Keypad Input

A keypad is simply an array of push buttons connected in rows and columns,
so that each can be tested for closure with the minimum number of connections
(Figure 4.5). There are 12 keys on a phone type pad (0–9, #, ∗), arranged in a
3�4 matrix. The columns are labelled 1, 2, 3 and the rows A, B, C, D. If we
assume that all the rows and columns are initially high, a keystroke can be de-
tected by setting each row low in turn and checking each column for a zero.

In the KEYPAD circuit in Figure 4.6, the 7 keypad pins are connected to Port
D. Bits 4–7 are initialised as outputs, and bits 0–2 used as inputs. These input
pins are pulled high to logic 1. The output rows are also initially set to 1. If a
0 is now output on row A, there is no effect on the inputs unless a button in row
A is pressed. If these are checked in turn for a 0, a button in this row which is
pressed can be identified as a specific combination of output and input bits.

A simple way to achieve this result is to increment a count of keys tested
when each is checked, so that when a button is detected, the scan of the key-
board is terminated with current key number in the counter. This works be-
cause the (non-zero) numbers on the keypad arranged in order: 

Row A � 1, 2, 3

Row B � 4, 5, 6

Row C � 7, 8, 9

Row D � *, 0, #

Following this system, the star symbol is represented by a count of 10 (0Ah),
zero by 11(0Bh) and hash by 12 (0C).
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1                  2    etc
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B

etc

Figure 4.5 Keypad connections
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The keypad read operation (Program 4.3) steps through the buttons in this
way, incrementing a key count, and quits the scanning routine when a button is
detected, with the corresponding count of keys stored. If no button is pressed, it
repeats. The program then displays the button number on a 7-segment display,
with arbitrary symbols representing star and hash. 

7-Segment LED Display

The standard 7-segment LED display in the keypad application consists of
illuminated segments arranged to show numerical symbols when switched on
in the appropriate combination. Each segment is driven separately from Port
C via a current-limiting resistor. Numbers 0–9 can be displayed, but for a full
range of alphanumeric characters, more segments (e.g. starburst LED) or a
dot matrix display is more versatile. The codes for 0–9, ∗ and # are shown
in Table 4.1.
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Figure 4.6 Keypad circuit
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;  
; KEYPAD.ASM MPB  Ver 1.0 28-8-05
;  
; Reads keypad and shows digit on display 
; Design file KEYPAD.DSN
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 PROCESSOR 16F877

PCL EQU 002 ; Program Counter
PORTC EQU 007 ; 7-Segment display
PORTD EQU 008  ; 3x4 keypad

TRISC EQU 087  ; Data direction
TRISD EQU 088  ; registers

Key EQU 020  ; Count of keys

; Initialise ports.........................................

 BANKSEL TRISC ; Display 
 CLRW ; all outputs 

MOVWF TRISC  ; 
 MOVLW B'00000111' ; Keypad

MOVWF TRISD ; bidirectional 

 BANKSEL PORTC ; Display off 
 CLRF PORTC ; initially

GOTO main ; jump to main

; Check a row of keys .....................................

row INCF Key ; Count first key
 BTFSS PORTD,0 ; Check key 

GOTO found ; and quit if on

INCF Key ; and repeat
BTFSS PORTD,1 ; for second

 GOTO found ; key 

INCF Key ; and repeat
BTFSS PORTD,2 ; for third 

 GOTO found ; key 
GOTO next ; go for next row

; Scan the keypad..........................................

scan CLRF Key ; Zero key count
BSF 3,0 ; Set Carry Flag 
BCF PORTD,4 ; Select first row

newrow GOTO row ; check row

next BSF PORTD,3 ; Set fill bit 
RLF PORTD ; Select next row
BTFSC 3,0 ; 0 into carry flag? 
GOTO newrow ; if not, next row 
GOTO scan ; if so, start again

found RETURN ; quit with key count 

; Display code table.......................................

table MOVF Key,W  ; Get key count
ADDWF PCL ; and calculate jump
NOP ; into table  
RETLW B'00001100' ; Code for '1' 
RETLW B'10110110' ; Code for '2' 
RETLW B'10011110' ; Code for '3' 
RETLW B'11001100' ; Code for '4' 
RETLW B'11011010' ; Code for '5' 
RETLW B'11111010' ; Code for '6' 
RETLW B'00001110' ; Code for '7' 
RETLW B'11111110' ; Code for '8' 
RETLW B'11001110' ; Code for '9' 
RETLW B'10010010' ; Code for '*' 
RETLW B'01111110' ; Code for '0' 
RETLW B'11101100' ; Code for '#' 

; Output display code......................................

show CALL table ; Get display code 
MOVWF PORTC ; and show it

 RETURN 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Read keypad & display....

main MOVLW 0FF ; Set all outputs
MOVWF PORTD ; to keypad high 
CALL scan ; Get key number 
CALL show ; and dsiplay it 
GOTO main ; and repeat

END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Program 4.3 Keypad program
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The segments are labelled a–g, and are assumed to operate active high
(1 � ON). The binary code required must then be worked out for each charac-
ter to be displayed, depending on the order in which the outputs are connected
to the segments. In this case, bit 1 � a, through to bit 7 � g, with bit 0 not used.
Hash is displayed as ‘H’ and star as three horizontal bars (S is already used for
5). As only 7 bits are needed, the LSB is assumed to be 0 when converting into
hexadecimal. In any case, it is preferable to put the binary code in the program.
Codes for other types of display can be worked out in the same way.

The PIC output provides enough current to drive an LED (unlike standard
logic outputs), but for a display element requiring more than 20 mA to oper-
ate, additional current drive must be added to the hardware, usually in the
form of a bipolar transistor. This interface will be covered later. An alterna-
tive to the plain 7-segment display is a binary code decimal (BCD) module;
this receives BCD input and displays the corresponding number. In BCD 
0 � 00002, 1 � 00012 and so on to 9 � 10012, and therefore only needs 4 in-
puts (plus a common terminal). 

These displays are usually provided with one common terminal, connected
to the anodes or cathodes of the LEDs. An active high display will have a
common cathode and individual anodes, an active low-type (ON � 0) will
have a common anode. 

Liquid Crystal Display

The LCD is now a very common choice for graphical and alphanumeric dis-
plays. These range from small, 7-segment monochrome numerical types
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a

b

c

d

e

f

g

Key Segment Hex Segment Labels

g f e d c b a - LSD�0

1 0 0 0 0 1 1 0 0 0C
2 1 0 1 1 0 1 1 0 B6
3 1 0 0 1 1 1 1 0 9E
4 1 1 0 0 1 1 0 0 CC
5 1 1 0 1 1 0 1 0 DA
6 1 1 1 1 1 0 1 0 FA
7 0 0 0 0 1 1 1 0 0E
8 1 1 1 1 1 1 1 0 FE
9 1 1 0 0 1 1 1 0 CE
# 1 1 1 0 1 1 0 0 EC
0 0 1 1 1 1 1 1 0 7E
∗ 1 0 0 1 0 0 1 0 92

Table 4.1 7-Segment codes
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such as those used in digital multimeters (typically 3 ½ digits, maximum
reading 1.999) to large, full colour, high-resolution screens which can
display full video. Here we shall concentrate on the small monochrome, al-
phanumeric type which displays alphabetical, numerical and symbolic
characters from the standard ASCII character set. This type can also display
low-resolution graphics, but we will stick to simple examples. A circuit is
shown in Figure 4.7.

The display is a standard LM016L which displays 2 lines of 16 characters
(16�2). Each character is 5�8 pixels, making it 80�16 pixels overall. In the
demo program, a fixed message is displayed on line 1, showing all the numer-
ical digits. The second line finishes with a character that counts up from 0 to
9 and repeats, to demonstrate a variable display. The display receives ASCII
codes for each character at the data inputs (D0–D7). The data is presented to
the display inputs by the MCU, and latched in by pulsing the E (Enable) input.
The RW (Read/Write) line can be tied low (write mode), as the LCD is re-
ceiving data only.

The RS (Register Select) input allows commands to be sent to the display.
RS�0 selects command mode, RS�1 data mode. The display itself contains a
microcontroller; the standard chip in this type of display is the Hitachi
HD44780. It must be initialised according to the data and display options re-
quired. In this example, the data is being sent in 4-bit mode. The 8-bit code for
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Figure 4.7 LCD display connections
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each ASCII character is sent in two halves; high nibble (a small byte!) first, low
nibble second. This saves on I/O pins and allows the LCD to be driven using
only 6 lines of a single port, while making the software only slightly more com-
plex. The command set for the display controller is shown in Table 4.2.

If we now turn to the demonstration program, we can interpret the com-
mands sent during the display initialisation sequence, by comparing the hex
codes with the binary commands. It can be seen that the display must be ini-
tially set to default operating mode, before selecting the required mode (4-bit,
2 lines), and resetting. Note that the commands are differentiated by the num-
ber of leading zeros (Table 4.3) (Program 4.4).

We will analyse the LCD program in detail as it contains a number of fea-
tures which we will see again. In order to facilitate this, a pseudocode outline
is given in Figure 4.8
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(a) Commands

Instruction Code Description

Clear display 0000 0001 Clear display and reset address
Home cursor 0000 001x Reset display location address
Entry mode 0000 01MS Set cursor move and display shift
Display control 0000 1DCB Display & cursor enable
Shift control 0001 PRxx Moves cursor and shifts display
Function control 001L NFxx Data mode, line number, font
CGRAM address 01gg gggg Send character generator RAM address
DDRAM address 1ddd dddd Send display data RAM address

X Don’t care
M Cursor move direction 1 � right 0 � left
S Enable whole display shift � 1
D Whole display on � 1
C Cursor on � 1
B Blinking cursor on � 1
P Display shift � 1, cursor move � 0
R Shift right � 1, shift left � 0
L 8-Bits � 1, 4-bits � 0
N 2 Lines � 1, 1 line � 0
F 5 � 10 character � 1, 5 � 8 � 0
g Character generator RAM address bit
d Data RAM address bit

(b) Character addresses (16 � 2 display)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

Table 4.2 LCD operation
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The program has three main processes:

• Output line 1 fixed message ‘CONST:0123456789’
• Output line 2 fixed message ‘VARIABLE �’
• Output variable count 0-9 at line 2, position 12

The main program (last in the source code list) is very short, comprising:

• Initialise the MCU and LCD
• Output fixed messages
• Output count

The program is divided into functional blocks accordingly. Note that standard
register labels are defined by including the standard file P16F877.INC, which
contains a list of all labels for the SFRs and control bits, for example, PORTD,
STATUS, Z. This is more convenient than having to declare them in each pro-
gram, and the include files supplied by Microchip define a standard set of la-
bels which all programmers can use.

To send the data and commands to the display, the output data is initially
masked so that only the high nibble is sent. The low bits are cleared. However,
since the low bits control the display (RS and E), these have to be set up after
the data have been output in the port high bits. In particular, an RS flag bit is
set up in a dummy register ‘Select’ to indicate whether the current output is
command or data, and copied to RD1 after the data set-up.

After each output, a 1 ms delay is executed to allow the LCD controller
time to process the input and display it. An exact timing loop (Onems)
is achieved by padding the delay loop to 4 cycles with a NOP, and
executing it 249 times. With the additional instructions and subroutine
jumps, the delay is exactly 250 � 4 � 1000 µs. This is then used by another
loop (Xms) to obtain delays in whole milliseconds. It is also used to generate
a 1 ms pulse at E to latch the data and commands into the LCD controller
input port.
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Hex Binary Type Meaning

32 0011 0010 Function control 8-bit data, 1 line, 5�8 character 
28 0010 1000 Function control 4-bit data, 2 lines, 5�8 character
0C 0000 1100 Display control Enable display, cursor off, blink off
06 0000 0110 Entry mode Cursor auto-increment right, shift off
01 0000 0001 Clear display Clear all characters
80 1000 0000 DDRAM address Reset display memory address to 00

Table 4.3 LCD initialisation command code sequence
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; LCD.ASM MPB   4-12-05
; 
; Outputs fixed and variable characters
; to 16x2 LCD in 4-bit mode
; 
; Version 2.0: Initialisation modified 
; Status: Tested OK in simulation mode 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 PROCESSOR 16F877 
; Clock = XT 4MHz, standard fuse settings
 __CONFIG 0x3731

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

INCLUDE "P16F877.INC" ; Standard labels

Timer1 EQU 20 ; 1ms count register
TimerX EQU 21 ; Xms count register
Var EQU 22 ; Output variable
Point EQU 23 ; Program table pointer
Select EQU 24 ; Copy of RS bit 
OutCod EQU 25 ; Temp store for output

RS EQU 1 ; Register select bit
E EQU 2  ; Display enable

; PROGRAM BEGINS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

ORG 0 ; Place machine code
NOP ; for ICD mode

BANKSEL TRISD ; Select bank 1
 CLRW ; All outputs

MOVWF TRISD ; Initialise display port
BANKSEL PORTD ; Select bank 0
CLRF PORTD ; Clear display outputs

GOTO Start ; Jump to main program

; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; 1ms delay with 1us cycle time (1000 cycles)------------------- 

Onems MOVLW D'249' ; Count for 1ms delay
 MOVWF Timer1 ; Load count
Loop1 NOP ; Pad for 4 cycle loop
 DECFSZ Timer1 ; Count 

GOTO Loop1 ; until Z 
 RETURN ; and finish

; Delay Xms, X received in W ----------------------------------- 

Xms MOVWF TimerX ; Count for X ms
LoopX CALL Onems  ; Delay 1ms

DECFSZ TimerX ; Repeat X times  
GOTO LoopX ; until Z 

 RETURN ; and finish

; Generate data/command clock siganl E ------------------------- 

PulseE BSF PORTD,E ; Set E high
CALL Onems ; Delay 1ms
BCF PORTD,E ; Reset E low
CALL Onems ; Delay 1ms

 RETURN ; done

; Send a command byte in two nibbles from RB4 - RB7 ------------ 

Send MOVWF OutCod ; Store output code
ANDLW 0F0 ; Clear low nybble
MOVWF PORTD ; Output high nybble

 BTFSC Select,RS ; Test RS bit
BSF PORTD,RS ; and set for data
CALL PulseE ; and clock display
CALL Onems ; wait 1ms for display

Program 4.4 LCD source code 
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; Table of fixed characters to send ---------------------------- 

Line1 ADDWF PCL ; Modify program counter
RETLW 'C' ; Pointer = 0
RETLW 'O' ; Pointer = 1
RETLW 'N' ; Pointer = 2
RETLW 'S' ; Pointer = 3
RETLW 'T' ; Pointer = 4
RETLW ':' ; Pointer = 5
RETLW '0' ; Pointer = 6
RETLW '1' ; Pointer = 7
RETLW '2' ; Pointer = 8
RETLW '3' ; Pointer = 9
RETLW '4' ; Pointer = 10
RETLW '5' ; Pointer = 11
RETLW '6' ; Pointer = 12
RETLW '7' ; Pointer = 13
RETLW '8' ; Pointer = 14
RETLW '9' ; Pointer = 15

Line2 ADDWF PCL ; Modify program counter
RETLW 'V' ; Pointer = 0
RETLW 'A' ; Pointer = 1
RETLW 'R' ; Pointer = 2
RETLW 'I' ; Pointer = 3
RETLW 'A' ; Pointer = 4
RETLW 'B' ; Pointer = 5
RETLW 'L' ; Pointer = 6
RETLW 'E' ; Pointer = 7
RETLW ' ' ; Pointer = 8
RETLW '=' ; Pointer = 9
RETLW ' ' ; Pointer = 10

; Initialise the display ----------------------------------------

Init MOVLW D'100' ; Load count 100ms delay
CALL Xms ; and wait for display
MOVLW 0F0 ; Mask for select code
MOVWF Select ; High nybble not masked

MOVLW 0x30 ; Load initial nibble
MOVWF PORTD ; and output it to display
CALL PulseE ; Latch initial code
MOVLW D'5' ; Set delay 5ms
CALL Xms ; and wait
CALL PulseE ; Latch initial code again

 CALL Onems ; Wait 1ms
CALL PulseE ; Latch initial code again
BCF PORTD,4 ; Set 4-bit mode
CALL PulseE ; Latch it

MOVLW 0x28 ; Set 4-bit mode, 2 lines 
CALL Send ; and send code
MOVLW 0x08 ; Switch off display
CALL Send ; and send code
MOVLW 0x01 ; Clear display
CALL Send ; and send code
MOVLW 0x06 ; Enable cursor auto inc
CALL Send ; and send code
MOVLW 0x80 ; Zero display address
CALL Send ; and send code
MOVLW 0x0C ; Turn on display
CALL Send ; and send code

 RETURN ; Done

; Send the fixed message to the display ------------------------ 

OutMes CLRF Point ; Reset table pointer
BSF Select,RS ; Select data mode

SWAPF OutCod ; Swap low/high nybbles
 MOVF OutCod,W ; Retrieve output code

ANDLW 0F0 ; Clear low nybble
MOVWF PORTD ; Output low nybble

 BTFSC Select,RS ; Test RS bit
BSF PORTD,RS ; and set for data
CALL PulseE ; and clock display
CALL Onems ; wait 1ms for display

 RETURN ; done

Program 4.4 Continued
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The fixed messages are generated from program data tables using ADDWF
PCL to jump into the table using the number in W, and RETLW to return the
ASCII codes. The assembler generates the ASCII code in response to the sin-
gle quotes which enclose the character. To fetch the required code, the table
pointer is added to the program counter at the top of the table. The table pointer
is also checked each time to see the end of the table has been reached.

The output variable is just a count from 0 to 9, but to obtain the correspon-
ding ASCII code, 30h must be added, because the ASCII for 0 is 30h, for 1 is
31h and so on. The ASCII code table is shown in Table 4.4. A 250 ms delay is
executed between each output to make the count visible.
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; Output variable count to display (0-9) endlessly ------------- 

OutVar CLRF Var ; Clear variable number
MOVLW 0X30 ; Load offset to be added 
ADDWF Var ; to make ASCII code (30-39) 

Next MOVF Var,W ; Load the code
 BSF Select,RS ; Select data mode

CALL Send ; and send code

MOVLW 0xCB ; code to move cursor back
 BCF Select,RS ; Select command mode

CALL Send ; and send code
MOVLW D'250' ; Load count to wait 250ms
CALL Xms ; so numbers are visible

 INCF Var ; Next number
 MOVF Var,W ; Load number

SUBLW 0x3A ; Check for last (10=A)
BTFSS STATUS,Z ; and skip if last
GOTO Next ; or do next number
GOTO OutVar ; Repeat from number Z

; MAIN PROGRAM ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Start CALL Init ; Initialise the display
CALL OutMes ; Display fixed characters
GOTO OutVar ; Display an endless count

 END ; of source code ;;;;;;;;; 

Mess1 MOVF Point,W ; and load it
CALL Line1 ; Get ASCII code from table 
CALL Send ; and do it
INCF Point ; point to next character
MOVF Point,W ; and load the pointer
SUBLW D'16' ; check for last table item
BTFSS STATUS,Z ; and finish if 16 done
GOTO Mess1 ; Output character code

MOVLW 0xC0 ; Move cursor to line 2  
 BCF Select,RS ; Select command mode

CALL Send ; and send code
CLRF Point ; Reset table pointer

Mess2 MOVF Point,W ; and load it
CALL Line2 ; Get fixed character

 BSF Select,RS ; Select data mode
CALL Send ; and send code

 INCF Point ; next character
MOVF Point,W ; Reload pointer
SUBLW D'11' ; and check for last

 BTFSS STATUS,Z ; Skip if last
GOTO Mess2 ; or send next

 RETURN ; done

Program 4.4 Continued
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Project LCD 
Program to demonstrate fixed and
variable output of alphanumeric characters 
 to 16x2 LCD (simulation only) 

HARDWARE
ISIS simulation file LCD.DSN 

 MCU 16F877A
 Clock = XT 4MHz

LCD Data = RD4 – RD7 
 RS = RD1
 E = RD2
 RW = 0

FIRMWARE

 Initialise 
LCD output = Port D
Wait 100ms for LCD to start  
LCD: 4-bit data, 2 lines, auto cursor 
Reset LCD

Display message line 1 
Reset table pointer  
REPEAT 

Get next code
Send ASCII code

UNTIL 16 characters done 

Display message line 2
Position cursor 
Reset table pointer  
REPEAT 

Get next code
Send ASCII code

UNTIL 11 characters done 

Display incrementing count
REPEAT 

Set Count = 0 
  LOOP

Calculate ASCII 
Send ASCII code
Increment Count 
Reset cursor
Delay 250ms 

  UNTIL Count = 9 
 ALWAYS

Send ASCII code
Mask low nibble
Output high nibble
Pulse E
Wait 1ms
Swap nibbles 
Output low nibble 
Pulse E
Wait 1ms
Return

Figure 4.8 LCD program outline
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The primary set of characters consists of upper and lower case letters, num-
bers and most of the other characters found on a standard keyboard. This
comes to 95 characters, represented by codes from 3210 to 12610 inclusive.
With an 8-bit code, 256 characters are possible, so the remaining ones are used
for special language character sets, for example accented characters, Greek,
Arabic or Chinese. The character set can be programmed into the display RAM
as required, or ordered as a ROM implementation. Further details can be ob-
tained from the display data sheet. 

SUMMARY 4

• Switch inputs generally use pull-ups and debouncing
• The hardware timer operates independently of the program 
• The keypad is a set of switches scanned in rows and columns
• 7-segment LEDs are the simplest form of alphanumeric display
• The alphanumeric LCD receives ASCII codes for display in rows
• The LCD also needs command codes for control operations 
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High Bit
Low Bits 0010 0011 0100 0101 0110 0111

0000 Space 0 @ P ` p
0001 ! 1 A Q a q
0010 “ 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 ‘ 7 G W g w
1000 ( 8 H X h x
1001 ) 9 I Y i y
1010 ∗ : J Z j z
1011 � ; K [ k {
1100 , � L \ l |
1101 - � M ] m }
1110 . � N � n ~
1111 / ? O – o

Table 4.4 ASCII character codes
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ASSESSMENT 4

1 Explain why a pull-up resistor needed with a switch input. (3)

2 State three methods of switch debouncing. (3)

3 Briefly explain why hardware timers are useful in MCUs. (3)

4 Explain how a pre-scaler extends the timer period. (3)

5 Explain why the plain 7-segment LED display needs a code table. (3)

6 Explain why a BCD encoded display does not need a code table. (3)

7 Briefly explain the scanning process used to read a keypad button. (3)

8 Explain briefly how the LM016L LCD can be driven with only six outputs. (3)

9 State the function of inputs RS and E in the LM016L LCD. (3)

10 State the ASCII code for ‘#’ in hexadecimal. (3)

11 Draw a block diagram of the circuit with a keypad and 7-segment display,
indicating the main components and signals in the system. (5)

12 Describe the software precautions needed to obtain correct operation 
of the LCD in 4-bit mode when the same port is used for control and 
data connections. (5)

ASSIGNMENTS 4

4.1 Keypad Test

Run the keypad system simulation, KEYPAD.DSN. Ensure that the correct
display is obtained when the keypad is operated. Represent the program using
a flowchart and pseudocode. Explain the advantages of each. Explain why
switch debouncing is not necessary in this particular application. 

4.2 LCD Test

Run the LCD system simulation, LCD.DSN. Ensure that correct operation is
obtained; fixed messages should be followed by an incrementing count. Enable
debug mode by hitting pause instead of run, and select PIC CPU Source Code
in the debug menu; also select PIC CPU Registers. Ensure that the debug win-
dows are opened. 
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Single step in the source code window using the ‘step into’ button. Follow
through the initialisation until the delay routine is entered. Why is the ‘step
out’ button now useful? Start again using ‘step over’ – note the effect. Why is
‘step over’ useful?

Single step through the output sequence, displaying the fixed characters one
at a time, then the count. Note the codes output at Port D and check them
against the ASCII table given.

4.3 LCD Control

Construct a timing diagram for the output sequence obtained to the LCD in
LCD.DSN. for one complete character, by recording the changes at Port D, and
referring to the simulation timer. Show traces for all six outputs. Obtain a tim-
ing diagram using the simulation graph feature, and check that this is consis-
tent with your manually constructed version.

Interfacing PIC Microcontrollers

100

Else_IPM-BATES_CH004.qxd  6/29/2006  11:07 AM  Page 100



5

Data Processing

Most microcontroller programs need to process data using arithmetic or logi-
cal operations. The main types of data in general processor systems are num-
bers and characters. Characters are not too much of a problem as there are only
26 letters in the alphabet and 10 numerical characters. Even allowing for upper
and lower case, that is only 62 codes are required. The basic ASCII character
set thus only requires a 7-bit code, which also provides for most other key-
board symbols (see previous chapter for table of ASCII codes). Use of the
eighth bit allows special character sets to be added. 

Numerical data is a bit more of a problem, as an 8-bit code can only
represent numbers 0–255; so some additional methods are needed to handle
larger (and smaller) numbers, so that calculations can be performed with a
useful degree of precision.

Number Systems

Computers work with binary numbers, but humans prefer to work in decimal.
However, these number systems both follow the same basic rules: 

1. Select a range of digit symbols to use (e.g. 10 symbols in decimal)
2. Count from zero up to the maximum value in single digits (0–9 in decimal)
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3. Increment the digit to the left of the first digit (to 1)
4. Reset the previous column to zero
5. Count up again in the units column to the maximum
6. Increment the next digit again
7. When each column is at the maximum value, increment the next and reset
8. Use more columns as necessary for larger numbers

Hopefully we all know how to count in decimal (denary is the official name).
The base of the number system is the number of digits used (10). Binary is
base 2, hex base 16, octal base 8. Any base can be use in theory, but in prac-
tice some are more useful than others. 

Historically, base 12 has been used extensively (hours, minutes, angles, old
English money), and is useful because it can be divided by 2, 3, 4 and 6. But
this is not a true number system because there are no discrete symbols for 10
and 11. Similarly, BCD is not a proper number system (see later for details)
because its binary count stops at 9. Hexadecimal is a true number system
because it uses discrete symbols for 10(A) – 15(F). It is useful because it
provides a compact way of representing binary, the native number system of
all digital computers and controllers.

Denary

Zero was a very important invention, because number systems depend on it.
Another important idea is column weighting, and you can see the significance
by simply analysing how the denary system works (Table 5.1).

The number is calculated as follows:

Total value � � (column weighting � digit value) [� � sum of]

This may seem to be obvious, but it is important to state it clearly, as we
will be implementing numerical processing which uses this structure. Denary
is also the reference system, that is other systems are described by reference
to it.
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Column weight 1000 � 103 100 � 102 10 � 101 1 � 100

Example 7 3 9 5
Value 7 � 103 3 � 102 9 � 101 5 � 100

Total value 7000 � 300 � 90 � 5 � 7395

Table 5.1 Structure of a denary number
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Binary

Computers work in binary because it was found to be the most efficient and
precise way to represent numbers electronically. Before the necessary digital hard-
ware was developed, computers were used in which analogue voltages represented
denary values. Linear amplifier (op-amp) circuits provided the processing, and
these are well suited to mathematical processes such as integration and differen-
tiation, but the accuracy was limited by the signal quality. On the other hand, the
accuracy of the digital computer can be increased (in theory) to any required
degree of precision by simply increasing the number of binary digits. Processing
in 32 bits (now common), for example, provides a potential degree of precision of
1 part in 232 (4294967296), and even a modest 8 bits gives an accuracy of 1 part
in 256, better than 0.5% error at full scale (Table 5.2).

The result of the analysis of the structure of a typical binary number shows
that the decimal value can be worked out as follows:

Total value � Σ (column weight of non-zero bits)

Notice the pattern of the column weightings – it is the base number to the
power 0, 1, 2, 3, etc. This is the meaning of the base number.

The maximum number for a given number of bits is obtained when all the
bits are 1. In a 8-bit number, the maximum value is 111111112 � 25510 (the
subscript indicates the number base). This is calculated as 28�1, that is, two to
the power of the base minus 1. 

The number of different codes, including zero, is 28 � 256. This is impor-
tant in defining memory capacity, where an extra bit on the address doubles the
memory. Important reference points are 210 � 1024 bytes (1 kb), 216 (64 kb),
220 (1 Mb) and 230 (1 Gb). The highest address in a 1 kb memory, for example,
is 1023.

Hexadecimal

The same principle is applied to the number system with base 16. The problem
here was that extra numerical symbols were required, so symbols which are
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Column weight 8 � 23 4 � 22 2 � 21 1 � 20

Example 1 0 0 1
Value 1 � 8 � 8 0 � 4 � 0 0 � 2 � 0 1 � 1 � 1

Total value 8 � 0 � 0 � 1 � 9

Table 5.2 Structure of a binary number
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normally used as letters were simply adopted as numbers: A16 � 1010 to
F16 � 1510 (Table 5.3).

Note the pattern in the progression of the hex column weight – the 
weighting is 016, 1016, 10016, 100016, etc. This will apply to all number
systems – the column weight is a progression of 0n, 10n, 100n, 1000n, etc
where n is the base. It can also be seen that the conversion from hex to denary
is not simple, but the conversion from hex to binary is, which is why hex is
useful.

Other Number Systems

Numbers can be represented using any base by following the rules outlined
above. Octal (base 8) is sometimes used in computing, but will not be consid-
ered here. Numbers with a base greater than 16 would need additional
symbols, so, in theory, one could carry on using letters up to Z.

Binary Coded Decimal

As mentioned previously, BCD is not a proper number system, but it is
useful as an intermediate system between binary and decimal. In BCD, the
numbers 0–9 are represented by their binary equivalent, and stored as 4-bit
numbers. These may then be converted into ASCII code to send to a display
(e.g. the alphanumeric LCD seen later) or into pure binary for processing.
Alternatively, the data can be processed in BCD by using appropriate algo-
rithms (Table 5.4).

By studying these examples, general rules for BCD processing can 
be deduced. When adding two single digit numbers (Table 5.5), the first
(Num1) incremented and the second (Num2) decremented. If the Num2
reaches zero, Num1 can be stored as the single digit result. However, if Num1
reaches 10, Num2 is stored as the least significant digit of the result, and the
MSD set to 1.

This type of process can be devised and implemented for all arithmetic
operations. The advantage is that the results can be input from a keyboard 
as BCD, and output as ASCII without conversion. However, if the arithmetic is

Interfacing PIC Microcontrollers

104

Example 9 B 0 F
Column weight 100016 � 4096 � 163 10016 � 256 � 162 1016 � 16 � 161 116 � 1 � 160

Value 9 � 4096 � 36864 B � 11 � 256 � 2816 0 � 16 � 0 F � 15 � 1 � 15

Total value 36864 � 2816 � 0 � 15 = 39695

Table 5.3 Structure of a hex number
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more complex, conversion into pure binary or floating point (FP) format may
be necessary.

Floating Point Formats

Numbers have a limited range in the context of computer storage and process-
ing, depending on how they are represented and stored. The number of bytes
which will be allocated to store a number must be set up in advance of running
a program. For example, a plain 16-bit binary number ranges from 0 to 65535
(216�1), and requires 2 bytes oxf memory. Since negative numbers are usually
required, the MSB � 1 may be used to indicate a negative integer, leaving
only 15 bits for the number. The range is then from � 32767 to � 32767.

Data Processing
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Calculation Add Add with carry Multiply

In decimal 2 � 3 � 5 7 � 8 � 15 3 x 7 � 21
In BCD 0010 (7 �3) � 5 7 � 7 � 7

� 0011 � 10 � 5 � (7 � 3) � (4 � 6) � 1
� 0101 � 15 � 21 

Table 5.4 BCD calculations

BCDADD
Process to add two single digit BCD numbers with one or two digit result

Load Num1, Num2 ; Get initial values
Clear MSD, LSD ; Assign two digit store for result

REPEAT
Increment Num1 ; Start adding
Decrement Num2 ; Adjust number being added

IF Num2 � 0 ; Single digit result
LSD � Num1 ; Store result 
RETURN ; and quit

UNTIL Num1 � 10 ; Check for carry out of LSD

LSD � Num2 ; Two digit result
MSD � 1 ; Result of carry out
RETURN ; done

Table 5.5 Process for BCD add with carry
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However, as numbers get bigger (and smaller), the number of bits needed will
be excessive.

An alternative format is needed to represent large and small numbers. On a
calculator, scientific notation is used, base 10. For example, 2.3615 � 1073 is
a large number, 6.9248 � 10�23 is a small one. The decimal part is called the
mantissa and the range multiplier the exponent. 

Computers work in base 2, so an example of a large negative number could
be � 1.011001010 � 210011, and a small positive one 1.0101001101 �
2�01001. We have to decide on the number of bits to use, which in turn deter-
mines the precision and range of the number itself. 32-bit numbers are suffi-
cient for most purposes, but the bits available must be allocated in groups as
mantissa, sign, exponent and exponent sign. This gives the FP numerical type
(meaning the decimal point can move according to the exponent). Standard
forms use 1 bit to represent the sign, 23 bits for the mantissa and 8 bits for the
exponent and its sign. To illustrate the form of a floating-point number, the
conversion of this type into decimal will be detailed in section ‘Floating
Point’.

Conversion

Conversion between numerical types is often required in microprocessor
systems. Data may be input in ASCII, processed in binary or FP format, 
and output in BCD. Machine code is normally displayed in hexadecimal, 
since binary is cumbersome, so we need to know how to perform this
conversion. FP formats are needed to extend the range and precision of
numerical data.

Binary to Decimal

The structure of binary numbers has been described above. The value of a num-
ber is found by multiplying each digit by its decimal column weight and adding.
The weighting of the digits in binary is (from the LSB) 1, 2, 4, 8, 16 … or 20, 21,
22, 23 … that is, the base of the number system is raised to the power 1, 2, 3 …
The conversion process for a sample 8-bit binary number is therefore:

1001 01102 = (128 � 1) + (64 � 0)+(32 � 0) +(16 � 1)
+(8 � 0) + (4 � 1) + (2 � 1) + (1 � 0)

= 128 + 16 + 4 + 2 
= 15010
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We can see that the process can be simplified to just adding the column
weight for the bits that are not zero.

Decimal to Binary

The process is reversed for conversion from decimal to binary. The binary num-
ber is divided by two, the remainder recorded as a digit, and the result divided
by two again, until the result is zero. For the same number:

150/2 = 75 rem 0(LSB)
75/2 = 37 rem 1
37/2 = 18 rem 1
18/2 = 9 rem 0
9/2 = 4 rem 1
4/2 = 2 rem 0
2/2 = 1 rem 0
1/2 = 0 rem 1(MSB)

We then see that the binary result is obtained by transcribing the column of
remainder bits from the bottom up (MSB to LSB).

Binary and Hex

Binary to hex conversion is simple – that is why hex is used. Each group of
four bits are converted into the corresponding hex digit, starting with the least
significant four, and padding with leading zeros if necessary:

1001 1111 0011 1101 = 9F3D16
9 F 3 D

The reverse process is just as trivial, where each hex digit is converted into
a group of four bits, in order.

The result can be checked by converting both into decimal. First binary to
decimal:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1

= 215 + 212 + 211 + 210 + 29 + 28

+ 25 + 24 + 23 + 22 + 20 

= 32768 + 4096 + 2048 + 1024 + 512 + 256
+ 32 + 16 + 8 + 4 + 1

= = 4076510
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Now hex to decimal:

9F3D16

� (9 � 163) + (15 � 162) 
+ (3 � 161) + (13 � 160)

� 36864 + 3840 + 48 + 13

� 4076510

Binary and BCD

This conversion is often needed in MCU systems, since the manual input and
displayed output tend to use BCD (or ASCII, which can be derived from it),
while the internal calculations are performed in binary.

The input from a numeric keypad may often be in BCD, that is, binary num-
bers 0–9 representing each key. When multidigit numbers are input, the keys
are pressed in the sequence from the highest significant digit to lowest. This
sequence must be converted into the corresponding binary after the sequence
is complete, typically by pressing an enter key. The decimal input number may
have any number of digits, from zero to the maximum allowed by the binary
number to which it is converted. 

Let us assume the system handles 16-bit positive integers only; the range
will be 0�6553510. We will therefore limit the input to four digits, with a max-
imum of 999910. The key inputs will be stored in temporary registers, and then
converted into the equivalent 16-bit binary when an enter key is pressed. 

The process will have to detect if four, or fewer, digits have been entered. It
must then add the lowest digit (last key) to a previously cleared register pair 
(2 � 8 bits), multiply the next digit by 10, add the result to the running total,
multiply the next by 100, add it to the total, and multiply the highest digit (first
key) by 1000, and add it to the total. It is described in Figure 5.1 for 4-digit
input, but this process can be extended as far as the integer size allows.

A set of registers is assigned and cleared, and a keypad scanning routine reads
in keys as 4-bit BCD codes stored in the low nibble of the BCD registers. The
codes are shifted after each input stroke, from BCD3 to BCD4, BCD2 to BCD3,
BCD1 to BCD2 and BCD0 to BCD1, to allow the next input digit to be stored
in BCD0. A maximum of four digits are stored in BCD4–BCD1 as result. If
return code is detected as input before 4 keys have been entered, the loop quits
with the digits in the correct registers, with the leading digits left at zero.

If a 12-button telephone style keypad is used, ‘*’ could be used as return
(enter), and ‘#’ to restart the input sequence (clear). These could be assigned
codes A16 and B16, with the keys 0–9 assigned the corresponding BCD code.
The digits are then multiplied by their digit weighting and added to a running

Interfacing PIC Microcontrollers
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total in a pair of 8-bit registers. The multiplication can be implemented by a
simple adding loop, or shifting and adding if speed is important (see below).
Note that the calculated subtotals must be added in low byte, high byte order,
and the carry flag handled to obtain the correct 16-bit total.

Binary to BCD conversion for output may be implemented as the inverse
process: divide by 1000, 100 and 10 and store the results as BCD digits. The
last remainder is the units digit. These processes are illustrated in the calcula-
tor program in Chapter 6.

BCD and ASCII

The ASCII code for ‘0’ is 30h, the code for ‘1’ is 31h and so on until up to 39h
for ‘9’. Therefore to convert the BCD or binary code for a number into ASCII,
add 30h. To convert ASCII into BCD, subtract 30h. This process is used to
display BCD data on an LCD display which receives characters as ASCII code,
as in the calculator program. 

Data Processing
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BCDTOBIN

Converts 4 digits BCD keypad input into 16-bit binary
Inputs: Up to 4 BCD codes 0 – 9
Output: 16-bit binary code 

Declare Registers 

BCD0,BCD1,BCD2,BCD3,BCD4 ; BCD digits
BINHI,BINLO ; 16 bit result 
Keycount ; Count of keys
Clear all registers ; Result = 0000 

Read in BCD digits from keypad 

REPEAT
Read number key into BCD0 ; Get button 
Shift all BCD digits left ; Store it 

 Increment Keycount ; How many? 
UNTIL Return OR Keycount = 4 ; Done 

Calculate binary 

Add BCD1 to BINLO ; Add ones (max 9) 
Multiply BCD2 by 10 ; Calc tens
Add BCD2 to BINLO ; Add tens (max 99 
Multiply BCD3 by 100 ; Calc hundreds 
Add BCD3 to BINHI+BINLO ; Add huns. (max 999)
Multiply BCD4 by 1000 ; Calc thousands
Add BCD4 to BINHI+BINLO ; Add thous. (max 9999) 

RETURN

Figure 5.1 BCD to binary conversion
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Variable Types

In high-level languages, such as C, the variables to be used in a program must
be declared in advance, and the correct storage space allocated before running
the program. In PIC programs, all data locations (GPRs) are 8 bits, so they will
need to be used in groups to represent 16-bit (2 bytes) or even 32-bit 
(4 bytes) numbers. In assembly language, these registers can be assigned using
label equates at the top of the program.

Integer

An 8-bit location can only store numbers from 0 to 255 in binary. This is an
obvious limitation in programs that may need to calculate results up to say, four
significant decimal digits (0–9999), with negative as well as positive numbers.
16-bit integers can represent decimal values from �32767 to �32767, which
cover this range comfortably. The main problem with 16-bit calculations is that
the carry/borrow bit must be handled correctly during addition and subtraction
to give the right result. Once this is achieved, multiplication and division can
be implemented. Long integers use 32-bits for a greater range.

Floating Point

If the range available with integers is insufficient, or decimal numbers must be
represented, FP format must be used. A common standard is IEEE 754 format,
which allows 32-bit single precision and 64-bit double precision representa-
tions. In the 32-bit form, the sign is the MSB (Bit 31), the exponent the next
eight bits (30–23), and the mantissa the remaining 23 bits (22�0). The
exponent represents binary numbers from �126 to �127, with 01111111
(12710) representing zero, to provide for negative exponents. The mantissa
always starts with 1, so this does not need to be encoded. The bits have the
fractional bit weightings of 0.5, 0.25, 0.125… as shown in Table 5.6.

The exponent value is calculated by converting the binary exponent value into
decimal, adding 127 to normalise the range, and raising 2 to this power. The
mantissa is found by adding the weightings of the fraction bits to form a
number in the range 0 to 1. Then 1 is added to give a mantissa range of
1.0000… to 1.9999… The result can be calculated as a decimal, and converted
into scientific notation. 

The example given uses relatively few mantissa bits to keep the calculation
simple; more decimal places will be added to the number by using the
smaller fraction bits. The range of the 32-bit FP point number is greater than
10�44 to 10+38. An alternative format uses bit 23 as the sign bit, leaving the
complete high byte representing the exponent, which is probably easier to
process.

Interfacing PIC Microcontrollers
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Only advanced programmers are likely to be writing code to manipulate FP
numbers direct, and when programming in higher-level languages, the
format is pre-defined and functions are provided to handle FP numbers. To
perform arithmetic operations, the usual rules can be applied to numbers in
this form; for example, to multiply, the exponents are added and the mantissas
multiplied.

Characters and Strings

The standard coding of characters for text storage and transmission is ASCII;
the code table has already been provided in Table 4.4. These codes are recog-
nised by standard alphanumeric displays and in serial communications inter-
faces, and is the default storage format for plain text files.

A string is a sequence of characters which might be handled as a complete
data object. A list of characters may be stored in a contiguous (adjacent) set of

Data Processing

111

Bit 31 30 29 28 27 26 25 24 23
Sign Exponent

Weight �7 �6 �5 �4 �3 �2 �1 0 Weight � 2n

(n)

1 1 0 0 1 0 0 1 0

Fraction

Bit 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Weight(n) �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15 �16 �17 �18 �19 �20 �21 �22 �23

1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example
Sign � 1 � negative mantissa

Exponent: Binary � 128�16�2 � 142
Exponent � 142–127 � �15
Exponent multiplier � 2�15

Fraction: 2�1 � 2�3 � 2�4 � 2�6 � 1/2 � 1/8 � 1/16 � 1/64
� 0.5 � 0.125 � 0.0625 � 0.015625
� 0.703125

Mantissa: Fraction � 1 � 1.703125

Number: � 1.703125 � 2�15 � �1.703125 � 32768
� �55808

Result: �5.5808 � 104

Table 5.6 Structure of a 32-bit floating point number
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memory locations and accessed using a table pointer which is incremented
automatically for each memory read. The processor may then only need the
first location, and the number of locations to be read, to access the string.

The simplest method of string access is illustrated in the LCD demo Program
4.4 using the program counter as a pointer. Alternatively, the File Select
Register can be used to access a block of GPRs containing character codes.
Note that the PIC assembler generates ASCII codes automatically when the
operand is given as a character in single quotes.

Arithmetic

Some form of calculation is needed in most programs, even if it is a simple
subtraction to determine whether an input is greater or less than a required
level. At the other extreme, a computer-aided design program may carry out
millions of operations per second when drawing a 3-D graphic. Games pro-
grams are also among the most demanding processor powers, because 3-D
graphics must be generated at maximum speed. Here, we will cover just the ba-
sics so that simple control and communication processes that include common
arithmetic operations can be attempted.

Add

A simple calculation is adding the two numbers whose result is 255 or less, the
maximum for an 8-bit location. In PIC assembler, ADDWF will give the right
result with no further adjustment required. The conversion into decimal of
each binary number is also shown to confirm that the result is correct.

ADD (Result � 256)
0111 0100 � 64�32�16�4 � 116

�0011 0101 � 32�16�4�1 � 53
1010 1001 � 128�32�8�1 � 169

Carry bits 11 1

Note the carry from some bits to the next, which are internally handled, until
there is a carry out from the most significant bit. This occurs when the result
is higher than 255.

ADD (Result � 255)
0111 0100 � 116

�1001 0000 � 144
Carry out 1 0000 0100 � 26010

Interfacing PIC Microcontrollers
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This carry out is recorded in the Carry bit of the status register. It is
accessed there as necessary, for example, added to the next most significant
byte of a multibyte number. The carry bit from the low byte addition must be
added to the next byte to obtain the right result. The sample calculation is
also shown in hex:

ADD (Multiple bytes)
0111 0101 0101 0111 � 7557
0001 1000 1100 1011 � 18CB

�1000 1110 0010 0010 � 8E2216
Carry bits 111 11 1 11 111 11
Carry from low to high byte in bold

Subtract

Subtract is straightforward if a number is subtracted from a larger one. A bor-
row from one column becomes a 2 in the previous column, and as the answer
is positive, no further processing is needed.

1100 1011 � 203
� 0110 0010 � � 98

0110 1001 � 105

If a borrow is required into the MSB, the carry flag is used. Therefore, the
carry flag must be set before a subtract operation so that 1 is available to bor-
row:

1 1100 1011 � 256 � 203
� 1110 0010 � � 226

1110 1001 � 233

In this example, the borrow bit represents the least significant bit of the next
byte, which has a value of 25610. In multibyte subtraction the carry flag is used
to transfer the borrow from one byte to the next. If the borrow is taken, the next
highest byte must be decremented to ‘take’ the borrow from it.

Another method of subtraction uses the 2s complement form, which is out-
lined below, in Section ‘Negative Integers’.

Multiply

A simple algorithm for multiplication is successive addition. For example:

3 � 4 � 4 � 4 � 4 
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That is, add 4 three times. The process is detailed below:

MULTIPLY BY ADDING

Clear a Result register
Load a Count register with Num1

Loop
Add Num2 to Result
Decrement Count

Until Count � 0

The result of the multiplication is then left in the Result register.

An alternative method is shift and add, which is more efficient for larger
numbers. This is based on conventional long multiplication. However, when
implemented in binary, the process can be simplified because the multiplier
contains only 1s and 0s:

1101 � 13 (multiplicand)
� 0110 � � 6 (multiplier)
0000

11010
110100

0000000
01001110 � 78

Where the multiplier is a 0, the result must be 0, so that operation can be
skipped, and the non-zero subtotals are obtained by shifting, and then adding
to a running total:

MULTIPLY BY SHIFTING

Clear a Result register
Point to Bit0 in multiplier

Loop
If multiplier bit is 1, add multiplicand to Result
Shift multiplicand left
Increment multiplier bit pointer

Until last bit done

This process can be implemented in hardware within the MCU for higher
processing speed; the 18-series PIC chips, for example, have a multiply oper-
ation in the instruction set.
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Divide

Divide is the inverse of multiply, so can be implemented using successive
subtraction. The divisor is subtracted from the dividend, and a counter incre-
mented. This process is repeated until the result goes negative; this is detected
by the carry flag being cleared, so it must be set before the process starts. The
remainder is then corrected by adding the divisor back on to the negative
dividend, leaving a positive remainder in the dividend register, and decrementing
the result in the counter to compensate for going one step too far.

DIVIDE
Load Dividend register
Load Divisor register
Set Carry flag

Loop
Subtract Divisor from Dividend
Increment Result

Until Carry flag clear

Add Divisor back onto Dividend
Decrement Result

Again, a divide instruction may be provided in higher performance MCUs.

Negative Integers

We have seen above that negative numbers can be represented by the positive
number, accompanied by an extra bit to represent the sign. Usually, 0 � positive
and 1 � negative. However, this does not allow the full range of arithmetic oper-
ations to be applied. A more coherent system is needed for complex calculations. 

In general, when a number is subtracted from a smaller one, a negative re-
sult is obtained. When implemented in a binary counter, the negative numbers
are represented by a register being decremented from zero. Assuming an 8-bit
register is used, the negative going count from zero is shown below in the left
column, with its hex equivalent:

0000 00002 �� 0016 �� 00010
----------------------------------
1111 1111 �� FF �� �001
1111 1110 �� FE �� �002
1111 1101 �� FD �� �003
1111 1100 �� FC �� �004
1111 1011 �� FB �� �005
---- ---- -- ---
---- ---- -- ---
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1000 0010 �� 82 �� �126 
1000 0001 �� 81 �� �127
1000 0000 �� 80 �� �128
0111 1111 �� 7F �� �129
---- ---- -- ---
---- ---- -- ---
0000 0010 �� 02 �� �254
0000 0001 �� 01 �� �255

The number obtained by decrementing a register from 0 is called the 2s
complement of the corresponding positive number seen in the right column.
This method can be used to represent a valid negative subtraction result. For
example, to calculate 2�7 � �5:

HEX BINARY

(1) 02 1 0000 0010
� 07 � 0000 0111

FB (�5) 1111 1011

The 7 is subtracted from 10216 (0216 plus 10016 borrow in) to give the 2s
complement result.

If a positive number is added to a 2s complement negative number, the
answer is correct if the carry out of the register is ignored. For example, to
calculate –4�7�3:

(�4) � FC FC 1111 1100
� 07 0000 0111
1 03 1 0000 0011

2s Complement Conversion

The corresponding positive number can be calculated from the 2s complement
negative number by applying the process:

INVERT ALL BITS, THEN ADD 1

For example:

Invert bits Add 1

�00310 �� FD �� 1111 1101 → 0000 0010 → 0000 0011 �� 310
�12710 �� 81 �� 1000 0001 → 0111 1110 → 0111 1111 �� 12710
�12910 �� 7F �� 0111 1111 → 1000 0000 → 1000 0001 �� 12910
�25510 �� 01 �� 0000 0001 → 1111 1110 → 1111 1111 �� 25510
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Conversion to the 2s complement negative form from the positive number is
achieved by the inverse process:

SUBTRACT 1, THEN INVERT ALL BITS

For example:

Subtract 1 Invert bits

1 �� 0000 0001 → 0000 0000 → 1111 1111 �� FF �� �001
63 �� 0011 1111 → 0011 1110 → 1100 0001 �� C1 �� �063

128 �� 1000 0000 → 0111 1111 → 1000 0000 �� 80 �� �128
255 �� 1111 1111 → 1111 1110 → 0000 0001 �� 01 �� �255

In this way, 2s complement form allows the usual arithmetic operations to be
applied to negative binary numbers with the correct result. �255 is the limit
of the 8-bit 2s complement range, but more bits can be used if necessary.

SUMMARY 5

• Digital information is stored as numerical or character data
• A number system uses a base set of digits and column weighting
• Base 2, 10 and 16 are most useful in microsystems
• BCD and FP numerical formats are often required
• The decimal equivalent is the sum of column-weighted products
• The number equivalent is the remainders of division by the base
• The main numerical types are integers and FP
• The standard character code is ASCII, with text stored as strings
• Multiplication and division can be implemented using add and subtract
• Shift and add or subtract, or hardware, is more efficient
• Negative numbers can be represented by a sign bit or 2s complement

ASSESSMENT 5

1 Calculate the range of integers represented by an unsigned 64-bit number. (3)

2 State the ASCII codes for ‘A’, ‘z’ and ‘*’ in hexadecimal. (3)

3 Convert 100100112 into decimal. (3)

4 Convert 123410 into binary. (3)
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5 Convert 3FB016 into binary and decimal. (3)

6 List the 4 components of a standard 32-bit floating point number,
and the number of bits used for each. (3)

7 Multiply 10012 � 01012 in binary. Do not write down the zero products. (3)

8 Check the answer to (7) by converting into integer decimal. (3)

9 Divide 145 by 23 by successive subtraction in integer decimal. (3)

10 Calculate the binary 2s complement form of –9910 in hexadecimal. (3)

11 Outline a process to multiply two 8-bit numbers and store the result in 
another register pair. Label the four registers clearly. (5)

12 Outline a process to convert an 8-bit integer to its 2s complement negative
representation, and subtract it from another number. (5)

ASSIGNMENTS 5

5.1 Floating Point Multiplication

(a) Multiply the following 32-bit floating point numbers, in binary, showing
all the steps. Do not use a calculator at this stage. The sign bit is the MSB,
the exponent the next eight bits.

1 00101101 01101010000000000000000

0 00001011 10011000000000000000000

(b) Convert both numbers and the result into decimal scientific form and
check the result using a calculator.

5.2 8-Bit Multiplication

(a) Write a subroutine for the for the PIC 16F877 to multiply two 8-bit binary
numbers using simple adding loop, and store the result using suitably la-
belled registers.

(b) Write a subroutine for the for the PIC 16F877 to multiply two 8-bit binary
numbers by shifting and adding, and store the result using suitably labelled
registers.

(c) Calculate the total time taken (in instruction cycles) by each method and
show which is more efficient. 
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5.3 C Variable Types

Investigate and tabulate the numeric and character types supported by a
standard ‘C’ language compiler, indicating the bit usage and memory
requirements of each type. 

Data Processing
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6

CALCULATE, COMPARE & CAPTURE

In this chapter, applications will be described which illustrate the use of the
keypad, LCD display and hardware timers as well as some of the virtual in-
struments available for simulated circuit operation.

Calculator

The circuit for a calculator which will perform simple arithmetic operations in
the 16F877 MCU, using a calculator keypad and 16�2 LCD display, is shown
in Figure 6.1.

The keypad has 16 keys: 10 numeric buttons, 4 arithmetic operations, equals
and clear. The results obtained are displayed on the first line of the LCD
display, which receives the characters as ASCII codes in 4-bit mode (see
Chapter 4). To keep it simple, the program is limited to single digit input and
double-digit results. This allows the algorithms for the arithmetic operations
to be more easily understood, while the same principles can be extended to
multi-digit calculations. 

The calculator operates as follows:

• To perform a calculation, press a number key, then an operation key, then
another number and then equals. 

• The calculation and result are displayed. For the divide operation, the
result is displayed as result and remainder. 
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• The clear key will then erase the current display, and a new calculation
can be entered. If an invalid key sequence is entered, the program should
be restarted.

In order to leave Port B available for in-circuit programming and debugging
(ICD), the peripheral devices are connected to Ports C and D. Remember that
Ports A and E default to analogue inputs, and so have to be initialised for use
as digital I/O, and that a clock circuit is not necessary in simulation mode. In
the real hardware, clock and power supply must be added to the circuit, plus
the ICD connections, if this is to be the programming method. The 16-button
keypad is scanned by row and column as previously described (Chapter 4). The
row outputs are programmed to default high. Each is then taken low in turn by
outputting a 0 at RC0 to RC3. The column inputs default high due to pull-up
resistors. If a button is pressed in a particular row, it can be identified by the
combination of zeros on row and column. In this example, the ASCII code for
the key is generated for each individual key, giving a rather lengthy scanning
process, but one that is simple to understand. All keys are passed to the display
routines so that they appear on the LCD immediately. 

The LCD operates in 4-bit mode, as before (Chapter 4). The ASCII codes
are sent in high nibble, low nibble order, and each nibble is latched into the dis-
play by pulsing input E. The R/W (read/not write) line is tied low, as reading
from the display is not required. RS (Register Select) is set high for data input
and low for commands. 

Now refer to the program outline and source code listing, Figure 6.2 and
Program 6.1. The standard P16F877 register label file is included, and the
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CALC
Single digit calculator produces two digit results. 
Hardware: x12 keypad, 2x16 LCD, P16F887 MCU 

MAIN
Initialise

PortC = keypad  
RC0 – RC3 = output rows
RC4 – RC7 = input columns 

PortD = LCD 
RD1, RD2 = control bits  
RD4– RD7 = data bits

 CALL Initialise display

Scan Keypad 
 REPEAT 

CALL Keypad input, Delay 50ms for debounce
 CALL Keypad input, Check key released

IF first key, load Num1, Display character and restart loop
IF second key, load sign, Display character and restart loop
IF third key, load Num2 Display character and restart loop

 IF fourth key, CALL Calculate result 
IF fifth key, Clear display

ALWAYS

SUBROUTINES

Included LCD driver routines 
Initialise display
Display character 

Keypad Input 
Check row A, IF key pressed, load ASCII code
Check row B, IF key pressed, load ASCII code
Check row C, IF key pressed, load ASCII code 
Check row D, IF key pressed, load ASCII code 
ELSE load zero code

Calculate result 
IF key = ‘+’, Add
IF key = ‘-‘, Subtract 
IF key = ‘x’, Multiply
IF key = ‘/’, Divide

Add Add Num1 + Num2
 Load result, CALL Two digits

Subtract Subtract Num1 – Num2
IF result negative, load minus sign, CALL Display character

 Load result, CALL Display character

Multiply
REPEAT 

  Add Num1 to Result 
  Decrement Num2
 UNTIL Num2 = 0 
 Load result, CALL Two digits

Divide
REPEAT 

Subtract Num2 from Num1
  Increment Result
 UNTIL Num1 negative 

Add Num2 back onto Num1 for Remainder 
 Load Result, CALL Display character
 Load Remainder, CALL Display character

Two digits 
Divide result by 10, load MSD, CALL Display character
Load LSD, CALL Display character

Figure 6.2 Calculator program outline
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 
; CALC.ASM MPB Ver 1.0 28-8-05
; 
; Simple calculator  
; Single digit input, two digit results 
; Integer handling only
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 PROCESSOR 16F877
; Clock = XT 4MHz, standard fuse settings 
 __CONFIG 0x3731

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 INCLUDE "C:\BOOK2\APPS\P16F877A.INC" 

Char EQU 30 ; Display character code
Num1 EQU 31 ; First number input
Num2 EQU 32 ; Second number input 
Result EQU 33 ; Calculated result 
Oper EQU 34 ; Operation code store
Temp EQU 35 ; Temporary register for subtract
Kcount EQU 36 ; Count of keys hit 
Kcode EQU 37 ; ASCII code for key 
Msd EQU 38 ; Most significant digit of result
Lsd EQU 39 ; Least significant digit of result
Kval EQU 40 ; Key numerical value

RS EQU 1 ; Register select output bit 
E EQU 2 ; Display data strobe 

; Program begins ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Default start address
NOP ; required for ICD mode

BANKSEL TRISC ; Select bank 1
MOVLW B'11110000' ; Keypad direction code
MOVWF TRISC  ; 
CLRF TRISD ; Display port is output

BANKSEL PORTC ; Select bank 0
 MOVLW 0FF ;

MOVWF PORTC ; Set keypad outputs high
CLRF PORTD ; Clear display outputs 
GOTO start ; Jump to main program 

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

start CALL Init ; Initialise the display 
MOVLW 0x80 ; position to home cursor
BCF Select,RS ; Select command mode
CALL Send ; and send code

CLRW Char ; ASCII = 0 
CLRW Kval ; Key value = 0 
CLRW DFlag ; Digit flags = 0

scan CALL keyin ; Scan keypad
MOVF Char,1 ; test character code
BTFSS STATUS,Z ; key pressed?
GOTO keyon ; yes - wait for release 
GOTO scan ; no - scan again

keyon MOVF Char,W ; Copy..
MOVWF Kcode ; ..ASCIIcode 
MOVLW D'50' ; delay for.. 
CALL Xms ; ..50ms debounce

wait CALL keyin ; scan keypad again
MOVF Char,1 ; test character code
BTFSS STATUS,Z ; key pressed?
GOTO wait ; no - rescan
CALL disout ; yes - show symbol
INCF Kcount ; inc count..
MOVF Kcount,W ; ..of keys pressed
ADDWF PCL ; jump into table

 NOP 
GOTO first ; process first key
GOTO scan ; get operation key
GOTO second ; process second symbol

 GOTO calc ; calculate result 
 GOTO clear ; clear display 
first MOVF Kval,W ; store..
 MOVWF Num1 ; first num 

GOTO scan ; and get op key 
second MOVF Kval,W ; store..

MOVWF Num2 ; second number
GOTO scan ; and get equals key 

Program 6.1 Single-digit calculator
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; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Include LCD driver routine

 INCLUDE "C:\BOOK2\APPS\SUBS\LCD.INC"

; Scan keypad .............................................

keyin MOVLW 00F ; deselect..
MOVWF PORTC ; ..all rows
BCF PORTC,0 ; select row A 
CALL Onems ; wait output stable
BTFSC PORTC,4 ; button 7?

 GOTO b8 ; no
 MOVLW '7' ; yes 

MOVWF Char ; load key code
 MOVLW 07 ; and 

MOVWF Kval ; key value 
 RETURN 
b8 BTFSC PORTC,5 ; button 8?
 GOTO b9 ; no

MOVLW '8' ; yes  
 MOVWF Char
 MOVLW 08
 MOVWF Kval
 RETURN 
b9 BTFSC PORTC,6 ; button 9?
 GOTO bd ; no
 MOVLW '9' ; yes 
 MOVWF Char
 MOVLW 09
 MOVWF Kval
 RETURN 
bd BTFSC PORTC,7 ; button /?
 GOTO rowb ; no
 MOVLW '/' ; yes 

MOVWF Char ; store key code 
MOVWF Oper ; store operator symbol

 RETURN 

rowb BSF PORTC,0 ; select row B 
 BCF PORTC,1 
 CALL Onems 

BTFSC PORTC,4 ; button 4?
 GOTO b5 ; no
 MOVLW '4' ; yes 
 MOVWF Char
 MOVLW 04
 MOVWF Kval
 RETURN 
b5 BTFSC PORTC,5 ; button 5?
 GOTO b6 ; no
 MOVLW '5' ; yes 
 MOVWF Char
 MOVLW 05
 MOVWF Kval
 RETURN 
b6 BTFSC PORTC,6 ; button 6?
 GOTO bm ; no
 MOVLW '6' ; yes 
 MOVWF Char
 MOVLW 06
 MOVWF Kval
 RETURN 
bm BTFSC PORTC,7 ; button x?
 GOTO rowc ; no
 MOVLW 'x' ; yes 
 MOVWF Char
 MOVWF Oper
 RETURN 
rowc BSF PORTC,1 ; select row C 
 BCF PORTC,2 
 CALL Onems 

BTFSC PORTC,4 ; button 1?
 GOTO b2 ; no
 MOVLW '1' ; yes 
 MOVWF Char
 MOVLW 01
 MOVWF Kval
 RETURN 

b2 BTFSC PORTC,5 ; button 2?
 GOTO b3 ; no
 MOVLW '2' ; yes 
 MOVWF Char
 MOVLW 02
 MOVWF Kval
 RETURN 

Program 6.1 Continued
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b3 BTFSC PORTC,6 ; button 3?
 GOTO bs ; no
 MOVLW '3' ; yes 
 MOVWF Char
 MOVLW 03
 MOVWF Kval
 RETURN 
bs BTFSC PORTC,7 ; button -?
 GOTO rowd ; no
 MOVLW '-' ; yes 
 MOVWF Char
 MOVWF Oper
 RETURN 
rowd BSF PORTC,2 ; select row D 
 BCF PORTC,3 
 CALL Onems 

BTFSC PORTC,4 ; button C?
 GOTO b0 ; no
 MOVLW 'c' ; yes 
 MOVWF Char
 MOVWF Oper
 RETURN 
b0 BTFSC PORTC,5 ; button 0?
 GOTO be ; no
 MOVLW '0' ; yes 
 MOVWF Char
 MOVLW 00
 MOVWF Kval
 RETURN 

be BTFSC PORTC,6 ; button =?
 GOTO bp ; no
 MOVLW '=' ; yes 
 MOVWF Char
 RETURN 
bp BTFSC PORTC,7 ; button +?
 GOTO done ; no
 MOVLW '+' ; yes 
 MOVWF Char
 MOVWF Oper
 RETURN 
done BSF PORTC,3 ; clear last row 

CLRF Char ; character code = 0 
 RETURN 
; Write display ...........................................
disout MOVF Kcode,W ; Load the code

BSF Select,RS ; Select data mode 
CALL Send ; and send code

 RETURN 
; Process operations ......................................

calc MOVF Oper,W ; check for add
MOVWF Temp ; load input op code
MOVLW '+' ; load plus code

 SUBWF Temp ; compare 
BTFSC STATUS,Z ; and check if same
GOTO add ; yes, jump to op

MOVF Oper,W ; check for subtract  
 MOVWF Temp
 MOVLW '-'
 SUBWF Temp
 BTFSC STATUS,Z
 GOTO sub

MOVF Oper,W ; check for multiply  
 MOVWF Temp
 MOVLW 'x'
 SUBWF Temp
 BTFSC STATUS,Z
 GOTO mul

MOVF Oper,W ; check for divide 
 MOVWF Temp
 MOVLW '/'
 SUBWF Temp
 BTFSC STATUS,Z
 GOTO div

GOTO scan ; rescan if key invalid 

Program 6.1 Continued
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; Calclate results from 2 input numbers ...................

add MOVF Num1,W ; get first number 
ADDWF Num2,W ; add second
MOVWF Result ; and store result 

 GOTO outres ; display result 

sub BSF STATUS,C ; Negative detect flag
MOVF Num2,W ; get first number 
SUBWF Num1,W ; subtract second
MOVWF Result ; and store result 

BTFSS STATUS,C ; answer negative? 
GOTO minus ; yes, minus result

 GOTO outres ; display result 

minus MOVLW '-' ; load minus sign
BSF Select,RS ; Select data mode 
CALL Send ; and send symbol

COMF Result ; invert all bits
INCF Result ; add 1

 GOTO outres ; display result 

mul MOVF Num1,W ; get first number 
CLRF Result ; total to Z 

add1 ADDWF Result ; add to total 
DECFSZ Num2 ; num2 times and
GOTO add1 ; repeat if not done
GOTO outres ; done, display result

div CLRF Result ; total to Z 
MOVF Num2,W ; get divisor
BCF STATUS,C ; set C flag

sub1 INCF Result ; count loop start 
SUBWF Num1 ; subtract

 BTFSS STATUS,Z ; exact answer? 
 GOTO neg ; no

GOTO outres ; yes, display answer
neg BTFSC STATUS,C ; gone negative?

GOTO sub1 ; no - repeat
DECF Result ; correct the result 
MOVF Num2,W ; get divisor
ADDWF Num1 ; calc remainder
MOVF Result,W ; load result
ADDLW 030 ; convert to ASCII 
BSF Select,RS ; Select data mode 
CALL Send ; and send result

MOVLW 'r' ; indicate remainder 
 CALL Send
 MOVF Num1,W

ADDLW 030 ; convert to ASCII 
 CALL Send
 GOTO scan
; Convert binary to BCD ...................................

outres MOVF Result,W ; load result
MOVWF Lsd ; into low digit store
CLRF Msd ; high digit = 0
BSF STATUS,C ; set C flag
MOVLW D'10'  ; load 10

again SUBWF Lsd ; sub 10 from result
INCF Msd ; inc high digit
BTFSC STATUS,C ; check if negative
GOTO again ; no, keep going
ADDWF Lsd ; yes, add 10 back
DECF Msd ; inc high digit

; display 2 digit BCD result ..............................

MOVF Msd,W ; load high digit result
BTFSC STATUS,Z ; check if Z
GOTO lowd ; yes, dont display Msd 

ADDLW 030 ; convert to ASCII 
BSF Select,RS ; Select data mode 
CALL Send ; and send Msd 

lowd MOVF Lsd,W ; load low digit result
ADDLW 030 ; convert to ASCII 
BSF Select,RS ; Select data mode 
CALL Send ; and send Msd 

GOTO scan ; scan for clear key
; Restart ................................................ 

clear MOVLW 01 ; code to clear display 
BCF Select,RS ; Select data mode 
CALL Send ; and send code
CLRF Kcount ; reset count of keys
GOTO scan ; and rescan keypad

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Program 6.1 Continued
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initialisation of the ports as required by the hardware connections is carried
out. A separate file for the LCD initialisation and operation has been created
(LCD.INI) to keep the source code size down and to provide a re-usable file
for future programs. This is included at the top of the subroutine section. It
contains the LCD initialisation sequence (inid) and code transmission block
(send), as seen in the LCD demo program in Chapter 4. 

The main program sequence calls the keypad scanning routine to detect a
key, in which the key code is stored, and then delays for switch debouncing and
release. The input key is displayed, and the program then jumps to a routine to
handle each input in a sequence of five buttons (Num1, Operation, Num2,
Equals and Clear). The calculation routine uses the operation input code to se-
lect the required process: add, subtract, multiply or divide. The binary result of
the calculation is passed to a routine to convert it into BCD, then ASCII, and
send it to the display. The result of the divide, being a single digit result and re-
mainder, is sent direct to the display. The clear operation sends a command to
the display to clear the last set of characters.

The program is highly structured to make it easier to understand (hope-
fully!). In longer programs, care must be taken not to exceed the stack depth
when using multiple levels of subroutine in structured programs.

Pulse Output

This program illustrates the use of a hardware timer to generate an output
waveform whose period can be controlled by push buttons.

The hardware configuration is shown in Figure 6.3, as a screenshot. The pulse
output is generated at the output of Timer1, RC2, which is initialised for output.
A pulse output is generated with a fixed 1 ms positive pulse, and a variable inter-
val between pulses that can be adjusted manually. A virtual oscilloscope displays
the output waveform, which initially runs at 100 Hz. The output is fed to a
sounder, which causes the simulator to generate an audible output via the PC
soundcard. The effect of pressing each button can thus be heard as well as dis-
played. Note that hardware debouncing has been used (capacitors across the but-
tons) to simplify the software.

The main purpose of this example is to illustrate the use of Timer1 compare
mode. This requires pre-loading a register with a reference binary number,
with which a count register is continuously compared in the timer hardware.
When a match is detected, an interrupt is generated which calls the interrupt
service routine (ISR). This allows the input to be processed immediately,
preserving the accurate timing of program operation.

Interfacing PIC Microcontrollers
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The Timer1 compare mode is illustrated in Figure 6.4. It uses a pair of regis-
ters, TMR1H (high byte) and TMR1L (low byte), to record a 16-bit count, driven
by the MCU instruction clock. In the system simulation, the clock is set to 4
MHz, giving a 1 MHz instruction clock (1 instruction takes four clock cycles).
The timer therefore counts in microseconds. The reference register pair,
CCPR1H and CCPR1L, is pre-loaded with a value which is continuously com-
pared with the 16-bit timer count (default 271016 � 10 00010). With this value
loaded, the compare becomes true after 10 ms, the interrupt generated, and the
output set high. The ISR resets the interrupt, tests the buttons to see if the pre-set
value should be changed, waits 1 ms and then clears the output to zero. The de-
fault output is therefore a 1 ms high pulse, followed by a 9 ms interval. This
process repeats, giving a pulse waveform with an output period of 10 ms overall.

The source code shows the initialisation required for the interrupt opera-
tion. The interrupt vector (GOTO isr) is loaded at address 004, so the initial
execution sequence has to jump over this location. The port, timer and inter-
rupt registers are then set up (Figure 6.4 (b)). The timer is started, and the sin-
gle instruction main loop then runs, waiting for the interrupt. 

Timer1 counts up to 10000, and the interrupt is triggered. The interrupt
flag is first cleared, and the counter reset to zero. The next 10 ms period starts
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Figure 6.3 Pulse output simulation
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immediately, because the counter runs continuously. The buttons are checked, and
the compare register value incremented or decremented to change the output pe-
riod if one of them is pressed. A check is also made for zero at the upper and lower
end of the period adjustment range, to prevent the compare value rolling over or
under between 00 00 and FF FF. This would cause the output frequency to jump
between the minimum and maximum value, which is undesirable in this case. 

The 1 ms pulse period is generated as a software delay, which runs in paral-
lel with the hardware timer count. After 1 ms, the output is cleared to zero, but
the hardware count continues until the next interrupt occurs. This is an impor-
tant point – the hardware timer continues independently of the program se-
quence, until the next interrupt is processed, allowing the timing operation and
program to be executed simultaneously (Figure 6.5) (Program 6.2).

Period Measurement

An alternative mode of operation for Timer1 is capture mode. This allows
counter value in the 16-bit timer register (TMR1H � TMR1L) to be captured in
mid-count; the capture is triggered by the input RC2 changing state. A pre-scaler
can be included between the input and capture enable so that the capture is only
triggered every 4th or 16th pulse at the input, thereby reducing the capture rate.

Interfacing PIC Microcontrollers
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(a)

(b) 

Register Load Effect
PIE1 0000 0100 Enable Timer 1 interrupt 
INTCON 1100 0000 Enable peripheral interrupts 
CCP1CON 0000 1000 Compare mode – set output pin on match
CCPR1H 027H Initial value for high byte compare
CCPR1L 010H Initial value for low byte compare 
T1CON 0000 0001 Enable timer with internal clock 

CCPR1H

Comparator 

CCPR1L

TMR1H TMR1L 

Set Interrupt
Flag (CCP1IF) 

Set/Clear
Pin RC2

Preload 

Instruction
Clock 

Figure 6.4 Timer1 compare registers: (a) timer1 block diagram; (b) control registers
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This method is used here to measure the period of a pulse waveform, which
is fed in at RC2, the CCP1 module input. The module is set up to generate an
interrupt when the input changes from high to low, once per cycle. The timer
counts instruction clock cycles continuously, and the count reached is stored in
the CCP1 register pair on each interrupt, and the count then restarted.

The main program itself continuously converts the 16-bit contents of CCP1
into 5-digit BCD, and displays the result on the LCD. It could wait for the next
interrupt in an idle loop, as in the pulse output program, but this program high-
lights that the MCU can continue processing while the timer counts. The binary
is converted into BCD using a simple subtraction loop for each digit, from ten
thousands to tens (see Chapter 5). The remainder at the end is the unit’s value. 

The simulation uses a virtual signal generator to provide a variable fre-
quency square wave at RC2. The 16�2 LCD is connected and driven as 
detailed in Chapter 4. The signal generator appears full size when the simula-
tion is running, as long as it is selected in the debug menu. The frequency can
be adjusted as the simulation runs, and the display responds accordingly, dis-
playing the period in microseconds. Auto-ranging the display to milliseconds
is one possible program enhancement which could be attempted.

The system operates correctly over the audio range, 15 Hz–50 kHz. The ab-
solute maximum count is 65536 �s (16-bit count), and the minimum period is
limited by the time taken to reset the interrupt and start counting again (less
than 20 �s) (Figures 6.6–6.8) (Program 6.3).
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PULSE 
Generates a variable interval pulse output
controlled by up/down buttons 
Hardware: P16F877 (4MHz), sounder 

MAIN
Initialise

  RC2/CCP1 = Pulse output 
RDO,RD1 = Up/Down buttons 
Timer1 Compare Mode & Interrupt

Wait for interrupt

SUBROUTINE 
 1ms delay

INTERRUPT SERVICE ROUTINE
 Reset interrupt 

IF Increase Frequency button pressed 
  Decrement pulse interval

IF Decrease Frequency button pressed
  Increm ent pulse interval 

Generate 1ms pulse 

Figure 6.5 Pulse program outline

Else_IPM-BATES_CH006.qxd  6/29/2006  11:37 AM  Page 131



Interfacing PIC Microcontrollers

132

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; PULSE.ASM  MPB  21-8-05
; 
; Generates timed output interval
; using Timer 2 in compare mode
; Timer interrupt sets output, cleared after 1ms 
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 PROCESSOR 16F877
; Clock = XT 4MHz, standard fuse settings 
 __CONFIG 0x3731

; LABEL EQUATES .................................... 

INCLUDE "P16F877.INC" ; Standard register labels

Count EQU 20 ; soft timer 

; Program begins ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

ORG 0 ; Place machine code
 NOP ; for ICD mode

GOTO init ; Jump over ISR vector

ORG 4 ; ISR vector address 
GOTO isr ; run ISR

init NOP
BANKSEL TRISC ; Select bank 1
MOVLW B'11111011' ; RC2 = output
MOVWF TRISC ; Initialise display port
MOVLW B'00000100' ; Timer1 interrupt.. 
MOVWF PIE1 ; ..enable

BANKSEL PORTC ; Select bank 0
 CLRF PORTC ; Clear output

MOVLW B'11000000' ; Peripheral interupt..
 MOVWF INTCON ; ..enable
 MOVLW B'00001000' ; Compare mode.. 

MOVWF CCP1CON ; ..set output on match
 MOVLW 027 ; Initial value..

MOVWF CCPR1H ; .. for high byte (10ms)
 MOVLW 010 ; Initial value..

MOVWF CCPR1L ; .. for low byte (10ms)
MOVLW B'00000001' ; Timer1 enable..
MOVWF T1CON ; internal clock (1MHz)

GOTO start ; Jump to main program 

; SUBROUTINES............................................

; 1ms delay with 1us cycle time (1000 cycles) 

onems MOVLW D'249' ; Count for 1ms delay  
MOVWF Count  ; Load count 

loop NOP ; Pad for 4 cycle loop
 DECFSZ Count ; Count
 GOTO loop ; until Z
 RETURN ; and finish

; INTERRUPT SERVICE ROUTINE..............................

; Reset interrupt, check buttons, generate 1ms pulse 

isr CLRF PIR1 ; clear interrupt flags 
CLRF TMR1H ; clear timer high.. 
CLRF TMR1L ; ..and low byte 

BTFSC PORTD,0 ; dec frequency button?
 GOTO other ; no

INCFSZ CCPR1H ; yes, inc period, zero?
 GOTO other ; no

DECF CCPR1H ; yes, step back

other BTFSC PORTD,1 ; inc frequency button? 
 GOTO wait ; no

DECFSZ CCPR1H ; yes, inc period, zero?
 GOTO wait ; no

INCF CCPR1H ; yes, step back

wait CALL onems ; wait 1ms 
BCF CCP1CON,3  ; clear output
BSF CCP1CON,3  ; re-enable timer mode

 RETFIE ; return to main program 

;------------------------------------------------------------------ 
; Main loop
;------------------------------------------------------------------ 

start GOTO start ; wait for timer interrupt
 END ; of source code 

Program 6.2 Pulse output
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Figure 6.6 Input timing simulation

(a)

(b)

Register Setting Flags Function
PIE1 0000 0100 CCP1IE Enable CCP1 interrupt 
INTCON 1100 0000 GIE, PEIE Enable peripheral interrupts 
CCP1CON 0000 0100 CCP1M0 - 3 Capture mode – every falling edge
T1CON 0000 0001 TMR1ON Enable timer with internal clock 
PIR1 0000 0X00 CCP1IF CCP1 interrupt flag 

CCPR1H CCPR1L

TMR1H TMR1L

Set Interrupt 
Flag (CCP1IF)

Pulse Input 
Pin RC2

Instruction 
Clock

Prescale &
Edge select Capture 

Enable 

Figure 6.7 Capture registers (a) timer registers; (b) control registers
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TIMIN
Measure pulse waveform input period and display
P16F877 (4MHz), audio signal source, !6x2 LCD 

MAIN
Intialise

  PortD = LCD outputs 
  Capture mode & interrupt
  Initalise LCD 
  Enable capture interrupt

REPEAT
Convert 16-bit count to 5 BCD digits
Display input square wave period

SUBROUTINES  

Convert 16-bit count to 5 BCD digits
  Load 16-bit number 
  Clear registers 

Tents, Thous, Hunds, Tens, Ones 
  REPEAT 

   Subtract 10000 from number
  UNTIL Tents negative
  Restore Tents and remainder 
  REPEAT 

   Subtract 1000 from remainder
  UNTIL Thous negative 

Restore Thous and remainder
  REPEAT 

   Subtract 100 from remainder
  UNTIL Hunds negative
  Restore Hunds and remainder
  REPEAT 

   Subtract 10 from remainder
  UNTIL Tens negative

Restore Tens and store remainder Ones

Display input square wave period 
  Display ‘T=’
  Supress leading zeros 
  Display digits in ASCII 
  Display ‘us’

INTERRUPT SERVICE ROUTINE
  Clear Timer 1 Count Registers 
  Reset interrupt flag

ALWAYS

Figure 6.8 Input period program outline
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; TIMIN.ASM MPB 25-8-05
; 
; Measure input period using Timer1 16-bit capture
; and display in microseconds 
; 
; STATUS: Capture working 
; Display working 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 PROCESSOR 16F877 

; Clock = XT 4MHz, standard fuse settings: 

 __CONFIG 0x3731

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877.INC" ; Standard register labels

; Local label equates..................................... 

Hibyte EQU 020 
Lobyte EQU 021 

Tents EQU 022 
Thous EQU 023 
Hunds EQU 024 
Tens EQU 025 
Ones EQU 026 

; Program begins ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Place machine code
NOP ; Required for ICD mode

 GOTO init

ORG 4 ; Interrupt vector adress
GOTO ISR ; jump to service routine

init NOP 
BANKSEL TRISD ; Select bank 1
CLRF TRISD ; Initialise display port
CLRF PIE1 ; Disable peripheral interrupts 

BANKSEL PORTD ; Select bank 0 
CLRF PORTD ; Clear display outputs

 MOVLW B'11000000' ; Enable..
MOVWF INTCON ; ..peripheral interrupts
MOVLW B'00000100' ; Capture mode:
MOVWF CCP1CON ; ..every falling edge
MOVLW B'00000001' ; Enable..
MOVWF T1CON ; ..Timer 1

GOTO start ; Jump to main program

; INTERRUPT SERVICE ROUTINE ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ISR CLRF TMR1L 
 CLRF TMR1H 

BCF PIR1,CCP1IF ; Reset interrupt flag 
 RETFIE

Program 6.3 Input period measurement
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; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "LCD2.INC" ; Include display routines 
;----------------------------------------------------------------
; Convert 16 bit binary result to 5 digits
;----------------------------------------------------------------

conv MOVF CCPR1L,W ; Get high byte
MOVWF Lobyte ; and store
MOVF CCPR1H,W ; Get low byte
MOVWF Hibyte ; and store

MOVLW 06 ; Correction value 
BCF STATUS,C ; prepare carry flag
ADDWF Lobyte ; add correction
BTFSC STATUS,C ; and carry

 INCF Hibyte ; in required

CLRF Tents ; clear ten thousands register
CLRF Thous ; clear thousands register
CLRF Hunds ; clear hundreds register
CLRF Tens ; clear tens register
CLRF Ones ; clear ones register

; Subtract 10000d (2710h) and count ...........................

sub10 MOVLW 010 ; get low byte to sub
BSF STATUS,C ; get ready to subtract
SUBWF Lobyte ; sub 10h from low byte

 BTFSC STATUS,C ; borrow required?
GOTO sub27 ; no - sub high byte

MOVF Hibyte,F ; yes - check high byte
 BTFSS STATUS,Z ; zero? 

GOTO take1 ; no - take borrow

MOVLW 010 ; yes - load low byte to add
BCF STATUS,C ; get ready to add 
ADDWF Lobyte ; restore low byte

 GOTO subE8 ; next digit

take1 DECF Hibyte ; take borrow

sub27 MOVLW 027 ; get high byte to sub
BSF STATUS,C ; get ready to subtract
SUBWF Hibyte ; sub from high byte

 BTFSS STATUS,C ; borrow taken?
GOTO done1 ; yes - restore remainder
INCF Tents ; no - count ten thousand
GOTO sub10 ; sub 10000 again

done1 MOVLW 010 ; restore..
BCF STATUS,C ; get ready to add 
ADDWF Lobyte ; restore low byte
BTFSC STATUS,C ; Carry into high byte?
INCF Hibyte ; yes - add carry to high byte

 MOVLW 027 ; restore..
 ADDWF Hibyte ; ..high byte

; Subtract 1000d (03E8) and count.................................

subE8 MOVLW 0E8 ; get low byte to sub
BSF STATUS,C ; get ready to subtract
SUBWF Lobyte ; sub from low byte

 BTFSC STATUS,C ; borrow required?
GOTO sub03 ; no - do high byte

MOVF Hibyte,F ; yes - check high byte
 BTFSS STATUS,Z ; zero? 

GOTO take2 ; no - take borrow

MOVLW 0E8 ; load low byte to add
BCF STATUS,C ; get ready to add 
ADDWF Lobyte ; restore low byte

 GOTO sub64 ; next digit

take2 DECF Hibyte ; take borrow

sub03 MOVLW 03 ; get high byte
BSF STATUS,C ; get ready to subtract
SUBWF Hibyte ; sub from high byte

 BTFSS STATUS,C ; borrow taken?
GOTO done2 ; yes - restore high byte
INCF Thous ; no - count ten thousand
GOTO subE8 ; sub 1000 again 

done2 MOVLW 0E8 ; restore..
BCF STATUS,C ; get ready to add 
ADDWF Lobyte ; restore low byte
BTFSC STATUS,C ; Carry into high byte?
INCF Hibyte ; yes - add carry to high byte

 MOVLW 03 ; restore..
 ADDWF Hibyte ; ..high byte

Program 6.3 Continued
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; Subtract 100d (064h) and count.................................

sub64 MOVLW 064 ; get low byte
BSF STATUS,C ; get ready to subtract
SUBWF Lobyte ; sub from low byte

 BTFSC STATUS,C ; borrow required?
GOTO inchun ; no - inc count 

MOVF Hibyte,F ; yes - check high byte
 BTFSS STATUS,Z ; zero? 

GOTO take3 ; no - take borrow

MOVLW 064 ; load low byte to add
BCF STATUS,C ; get ready to add 
ADDWF Lobyte ; restore low byte

 GOTO subA ; next digit

take3 DECF Hibyte ; take borrow

inchun INCF Hunds ; count hundred
GOTO sub64 ; sub 100 again

; Subtract 10d (0Ah) and count, leaving remainder.................

subA MOVLW 0A ; get low byte to sub
BSF STATUS,C ; get ready to subtract
SUBWF Lobyte ; sub from low byte

 BTFSS STATUS,C ; borrow required?
GOTO rest4 ; yes - restore byte
INCF Tens ; no - count one hundred
GOTO subA ; and repeat

rest4 ADDWF Lobyte ; restore low byte
 MOVF Lobyte,W ; copy remainder..

MOVWF Ones ; to ones register

 RETURN ; done

;--------------------------------------------------------------- 
; Display period in microseconds
;--------------------------------------------------------------- 

disp BSF Select,RS ; Set display data mode

 MOVLW 'T' ; Time period
CALL send ; Display it
MOVLW ' ' ; Space 
CALL send ; Display it

 MOVLW '=' ; Equals
CALL send ; Display it
MOVLW ' ' ; Space 
CALL send ; Display it

; Supress leading zeros......................................... 

MOVF Tents,F ; Check digit
 BTFSS STATUS,Z ; zero? 

GOTO show1 ; no - show it

MOVF Thous,F ; Check digit
 BTFSS STATUS,Z ; zero? 

GOTO show2 ; no - show it

MOVF Hunds,F ; Check digit
 BTFSS STATUS,Z ; zero? 

GOTO show3 ; no - show it

MOVF Tens,F ; Check digit
 BTFSS STATUS,Z ; zero? 

GOTO show4 ; no - show it

MOVF Ones,F ; Check digit
 BTFSS STATUS,Z ; zero? 

GOTO show5 ; no - show it

; Display digits of period.....................................

show1 MOVLW 030 ; Load ASCII offset
ADDWF Tents,W ; Add digit value
CALL send ; Display it

show2 MOVLW 030 ; Load ASCII offset
ADDWF Thous,W ; Add digit value
CALL send ; Display it

show3 MOVLW 030 ; Load ASCII offset
ADDWF Hunds,W ; Add digit value
CALL send ; Display it

show4 MOVLW 030 ; Load ASCII offset
ADDWF Tens,W ; Add digit value
CALL send ; Display it

show5 MOVLW 030 ; Load ASCII offset
ADDWF Ones,W ; Add digit value
CALL send ; Display it

Program 6.3 Continued
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SUMMARY 6

• The calculator demo performs single-digit arithmetic, using a keypad input
and LCD display

• The output pulse generator uses hardware timer compare mode and a
virtual oscilloscope to display the output

• Input period measurement uses the timer in capture mode and a virtual sig-
nal generator to provide the input

ASSESSMENT 6 Total (40)

1 Describe briefly how the keypad code is generated in the CALC application. (3)

2 State the advantages of using an include file for the LCD driver routines in 
the CALC application. (3)

Interfacing PIC Microcontrollers
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; Show fixed characters......................................... 

MOVLW ' ' ; Space 
CALL send ; Display it

 MOVLW 'u' ; micro 
CALL send ; Display it

 MOVLW 's' ; secs
CALL send ; Display it
MOVLW ' ' ; Space 
CALL send ; Display it
MOVLW ' ' ; Space 
CALL send ; Display it

; Home cursor .................................................

BCF Select,RS ; Set display command mode
MOVLW 0x80 ; Code to home cursor

 CALL send ; Do it
 RETURN ; done

;--------------------------------------------------------------- 
; MAIN LOOP
;--------------------------------------------------------------- 
start CALL inid ; Initialise display

BANKSEL PIE1 ; Select Bank 1
BSF PIE1,CCP1IE ; Enable capture interrupt 
BANKSEL PORTD ; Select Bank 0
BCF PIR1,CCP1IF ; Clear CCP1 interrupt flag

loop CALL conv ; Convert 16 bits to 5 digits
CALL disp ; Display period in microsecs 

 GOTO loop

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Program 6.3 Continued
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3 Outline the process required to display the negative result of a subtraction 
correctly on an LCD. (3)

4 State the meaning of the term ‘capture’ mode in an MCU timer. (3)

5 Explain why the main PULSE program consists of only one statement. (3)

6 Explain why the initial value in the timer preload registers in the PULSE 
program is 2710h. (3)

7 Explain why the ‘INCF CCPR1H’ instruction is needed in PULSE. (3)

8 Describe briefly the role of the carry flag in the division process. (3)

9 Explain the meaning of the term ‘compare’ mode in an MCU timer. (3)

10 Identify the Timer 1 interrupt flag by register and bit label. (3)

11 Describe the process for converting an 8-bit binary number to three ASCII 
digits for display. (5)

12 Describe the process for converting 16-bit binary into 5-digit BCD. (5)

ASSIGNMENTS 6

6.1 BCD Addition

Outline a process to read a sequence of decimal keys into the MCU which is
terminated with the ‘�’ key. A further sequence of digits is terminated with the
‘�’ key. The numbers must then be added and the result displayed. Take ac-
count of the fact that the numbers may not be the same length. Do not write a
source code program.

6.2 CCP Control

Refer to the PIC 16F877 data manual. Check the setup codes for capture and
compare modes, and identify the function of each bit in the control registers
initialised in the demo programs. Then check the setup of the interrupt in each
program, and again identify the function of each relevant bit in the control reg-
isters. Explain the significance of each setup option. Why is the use of the
hardware timer helpful in these applications? Consider if there are any alter-
native methods to achieve the same results.

Calculate, Compare & Capture
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6.3 Pulse Detection

A remote control receiver module generates a pulse whose length is controlled
by the lever position on the transmitter console. The controller in the receiving
system needs to determine the pulse length as short, mid-length or long.
Outline a routine to check if an input pulse is longer than 1.4 ms, shorter that
1.2 ms, or in between these limits, switching on a ‘long’ or ‘short’ output bit
accordingly, with neither for a mid-length pulse.

Interfacing PIC Microcontrollers
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7

Analogue Interfacing

Many control applications require the measurement of analogue variables,
such as voltage, temperature, pressure, speed and so on. Selected PIC MCUs
incorporate analogue inputs, which are connected to an analogue to digital
converter (ADC); this outputs a 10-bit binary representation of an input volt-
age. This result is then accurate to 1 part in 1024 (210), better than 0.1% at full
scale, and precise enough for most purposes. In some cases, it is only neces-
sary to use 8 bits of the conversion, which gives an accuracy of 1 part in 256
(<0.5%).

In this chapter, programs to handle 8-bit and 10-bit data will be presented,
and the additional software overhead required to achieve the higher accuracy
can be seen. The ADC is controlled from special function registers ADCON0
and ADCON1, and can generate a peripheral interrupt if required. The output
from the converter is stored in ADRESH (analogue to digital conversion result,
high byte) and ADRESL (low byte). 

8-bit Conversion

The processing for an 8-bit result is simpler, so this will be described first. The
ADC converts an analogue input voltage in the range 0–2.55 V to 10-bit
binary, but only the upper 8 bits of the result are used, giving a resolution of
10 mV per bit (1/256 � 2.56 V).
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8-bit Conversion Circuit

A test circuit to demonstrate 8-bit conversion and display is shown in Figure
7.1. The 16F877 MCU has eight analogue inputs available, at RA0, RA1, RA2,
RA3, RA5, RE0, RE1 and RE2. These have alternate labels AN0–AN7 for this
function. RA2 and RA3 may be used as reference voltage inputs, setting the
minimum and maximum values for the measured voltage range. These inputs
default to analogue operation, so the register ADCON1 has to be initialised
explicitly to use these pins for digital input or output.

INPUT & OUTPUT

The test voltage input at RA0 (analogue input AN0) is derived from a pot
across the 5 V supply. A reference voltage is provided at RA3 (AN3), which
sets the maximum voltage to be converted, and thus the conversion factor
required in the software. The minimum value defaults to 0 V. The 2.7 V zener
diode provides a constant reference voltage; it is supplied via a current limit-
ing resistor, so that the zener operates at the current specified for optimum
voltage stability. This is then divided down across the reference voltage pot
RV1 and a 10k fixed resistor. The range across the pot is about 2.7–2.4 V, and
is adjusted for 2.56 V, which gives a convenient conversion factor. The LCD is
connected to Port D to operate in 4-bit mode and display the voltage, as
described in Chapter 4.

Interfacing PIC Microcontrollers
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Figure 7.1 8-bit analogue input test circuit
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ADC OPERATION

A block diagram of the ADC module is shown in Figure 7.2. The inputs are
connected to a function selector block which sets up each pin for analogue or
digital operation according to the 4-bit control code loaded into the A/D port
configuration control bits, PCFG0–PCFG3 in ADCON1. The code used, 0011,
sets Port E as digital I/O, and Port A as analogue inputs with AN3 as the
positive reference input.

The analogue inputs are then fed to a multiplexer which allows one of the
eight inputs to be selected at any one time. This is controlled by the three ana-
logue channel select bits, CHS0–CHS2 in ADCON0. In this case, channel 0 is
selected (000), RA0 input. If more than one channel is to be sampled, these
select bits need to be changed between ADC conversions. The conversion is
triggered by setting the GO/DONE bit, which is later cleared automatically to
indicate that the conversion is complete. 

ADC CLOCK

The speed of the conversion is selected by bits ADSC1 and ADSC0. The ADC
operates by successive approximation; this means that the input voltage is fed
to a comparator, and if the voltage is higher than 50% of the range, the MSB
of the result is set high. The voltage is then checked against the mid-point of
the remaining range, and the next bit set high or low accordingly, and so on for
10 bits. This takes a significant amount of time: the minimum conversion time
is 1.6 �s per bit, making 16 µs for a 10-bit conversion. The ADC clock speed
must be selected such that this minimum time requirement is satisfied; the
MCU clock is divided by 2, 8 or 32 as necessary. Our simulated test circuit is
clocked at 4 MHz. This gives a clock period of 0.25 �s. We need a conversion
time of at least 1.6 �s; if we select the divide by 8 option, the ADC clock period
will then be 8 � 0.25 = 2 �s, which is just longer than the minimum required.
The select bits are therefore set to 01 (Figure 7.2 (b)). 

SETTLING TIME

The input of the ADC has a sample and hold circuit, to ensure that the voltage
sampled is constant during the conversion process. This contains an RC low-
pass filter with a time constant of about 20 �s. Therefore, if the input voltage
changes suddenly, the sample and hold circuit will take time to respond. This
needs to be taken into account, depending on the type of signal being measured.
If sampling speed is not critical, a settling time delay of at least 20 �s should be
included in the conversion sequence. In the test circuit, this is not a problem.

RESULT REGISTERS

When the conversion is complete, the result is placed in the result register pair,
ADRESH and ADRESL, the GO/DONE bit cleared by the ADC controller,

Analogue Interfacing
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(a) 

(b)

Register  Setting Flags Function 
ADRESH XXXX XXXX ADC result high byte
ADRESL XXXX XXXX ADC result low byte
ADCON0 0100 0X01 ADCS1,0  

GO/DONE, ADON 
Conversion frequency select 
ADC start, ADC enable

ADCON1 0000 0011 ADFM, PCFG3-0 Result justify, ADC input mode control
INTCON 1100 0000 GIE,PEIE Peripheral interrupt enable
PIE1 0100 0000 ADIE ADC interrupt enable 
PIR1 0100 0000 ADIF ADC interrupt flag 

(c)

ADFM = 1   Right justified 

ADFM = 0    Left justified

 R = Result bits

   -         + 

Analogue
to 

Digital 
Converter

ADC
MUX

ADC Control Registers (ADCON0, ADCON1) 

Channel
select 

bits

Analogue
Inputs

RA0
RA1
RA2
RA3
RA5
RE0
RE1
RE2

External
reference
voltages

Select
external

or internal
reference

voltage.

Input
Function 
Select

Set mix of
analogue
or digital

inputs GO/ 
DONE 

Divider

Clock rate
select 

System
clock 

Vss  Vdd 

Vadc

Internal reference voltages 

RA3

RA2

ADRESH

ADRESL 

  ADIF

0000 00RR RRRR RRRR

RRRR RRRR RR00 0000

ADRESH ADRESL

Figure 7.2 ADC operation: (a) ADC block diagram; (b) ADC control registers; (c) result regis-
ters configuration
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and the ADIF interrupt flag is set. Since the result is only 10 bits, the posi-
tioning in the 16-bit result register pair can be selected, so that the high 8 bits
are in ADRESH (left justified), or the low 8 bits are in ADRESL (right justi-
fied) (Figure 7.2 (c)). Obviously, to retain 10-bit resolution, both parts must be
processed, so right justification will probably be more convenient in this case. 

If only 8 bits resolution is required, the process can be simplified. If the result
is right justified, the low 8 bits in ADRESL will record the low bits of the
conversion, meaning that only voltages up to 25% of the full range will be
processed, but at full resolution. If the result is left justified, the high byte will be
processed, which will represent the full voltage range, but at reduced resolution.

In our test circuit, the reference voltage is 2.56 V, and the justify bit ADFM
= 0, selecting left justify. Only ADRESH then needs to be processed, giving re-
sults for the full range at 8-bit resolution, which is about 1% at mid-range. The
result will be shown on the LCD as 3 digits, 0.00–2.55. The test input pot gives
0–5 V, but only 0–2.50 will be displayed. Over range inputs will be displayed
as 2.55 V.

8-bit Conversion Program

The test program is outlined in Figure 7.3, and the source code listed in
Program 7.1. The output port and ADC control registers are initialised in the
first block, with the LCD include file providing the display initialisation, and
driver routines. The main loop contains subroutine calls to read the ADC input,
convert from binary to BCD and display it. The routine to read the ADC sets
the GO/DONE bit and then polls it until it is cleared at the end of the conver-
sion. The 8-bit result from ADRESH is converted to three BCD digits by the
subtraction algorithm described previously. Full-scale input is 255, which is
displayed as 2.55 V. 

10-bit Conversion

Figure 7.4 shows a circuit, which demonstrates 10-bit, full resolution, analogue
to digital conversion. The reference voltage circuit now provides a reference of
4.096 V, giving a wider range of 0–4.095 V. With this reference voltage, and a
maximum binary result of 1023 (210−1), the conversion output will increase at
4 mV per bit. The result is displayed as a 4-digit fixed point decimal.

The reference voltage circuit is a little different from the 8-bit circuit. The
zener voltage is divided down using fixed-value resistors, and the final voltage
tweaked by adjusting the current to the zener. This gives a finer adjustment
than using the calibration pot in the voltage divider chain.

Analogue Interfacing
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The data acquisition process is similar to the 8-bit system above, but the
binary to BCD conversion process is rather more complicated. The result is
required in the range 0–4095, so the original result (0–1023) is shifted left
twice to multiply it by four. One thousand (03E8) is then loop subtracted from
the result to calculate the number of thousands in the number. Correct borrow
handling between the high and low byte is particularly important. The process
stops when the remainder is less that 1000. The hundreds digit is calculated in
a similar way, but the tens calculation is a little easier as the maximum
remainder from the previous stage is 99, so the high byte borrow handling is
not necessary. This process is outlined in Figure 7.5, and the source code
shown in Program 7.2.
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ADC8 
Convert the analogue input to 8-bits and display
Hardware: P16F877 (4MHz), Vref+ = 2.56, 16x2 LCD 

Initialise 
PortA = Analogue inputs (default) 
PortC = LCD outputs
ADC = Select f/8, RA0 input, left justify result, enable
LCD = default setup (include LCD driver routines) 

Main
 REPEAT 

Get ADC 8-bit input
Convert to BCD
Display on LCD

ALWAYS

Subroutines

Get ADC 8-bit input
Start ADC and wait for done
Store result

Convert to BCD 
Calculate hundreds digit
Calculate tens digit 
Remainder = ones digit 

Display on LCD
Home cursor
Convert BCD to ASCII
Send hundreds, point, tens, ones
Send ‘Volts’

Include 
 LCD routines

Figure 7.3 ADC test program outline 
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; Project: Interfacing PICs  
; Source File Name:  VINTEST.ASM   
; Devised by:  MPB   
; Date:   19 -12-05 
; Status:   Fi nal version 
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
;  Demonstrates simple analogue input 
; using an external reference voltage of 2.56V 
; The 8-bit result is converted to BCD for display 
; as a voltage using the standard LCD routines. 
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 PROCESSOR 16F877 
; Clock = XT 4MHz, standard fuse settings 
 __CONFIG 0x3731 
 
; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 #INCLUDE "P16F877A.INC"  ; standard labels   
 
; GPR 70 - 75 allocated to included LCD display routine 
 
count EQU 30 ; Counter for ADC setup delay 
ADbin EQU 31 ; Binary input value 
huns EQU 32 ; Hundreds digit in decimal value 
tens EQU 33 ; Tens digit in decimal value 
ones EQU 34 ; Ones digit in decimal value 
 
; PROGRAM BEGINS ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
 ORG 0  ; Default start address  
 NOP   ; required for ICD mode 
  
; Port & display setup ------------------------------------------------- 
 
 BANKSEL TRISC  ; Select bank 1 
 CLRF TRISD  ; Display port is output 
 MOVLW B'00000011' ; Analogue input setup code 
 MOVWF ADCON1  ; Left justify result,  
    ; Port A = analogue inputs 
 
 BANKSEL  PORTC  ; Select bank 0 
 CLRF PORTD  ; Clear display outputs 
 MOVLW B'01000001' ; Analogue input setup code 
 MOVWF ADCON0  ; f/8, RA0, done, enable   
 
 CALL inid  ; Initialise the display 
 
; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
start CALL getADC  ; read input 
 CALL condec  ; convert to decimal 
 CALL putLCD  ; display input 
 GOTO start  ; jump to main loop 
 
; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
 
; Read ADC input and store --------------------------------------------- 
 
getADC BSF ADCON0,GO ; start ADC.. 
wait BTFSC ADCON0,GO ; ..and wait for finish 
 GOTO wait 
 MOVF ADRESH,W  ; store result high byte 
 RETURN       
  
; Convert input to decimal --------------------------------------------- 
 
condec MOVWF ADbin  ; get ADC result 
 CLRF huns  ; zero hundreds digit 
 CLRF tens  ; zero tens digit 
 CLRF ones  ; zero ones digit 
 
 

Program 7.1 8-bit analogue input
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; Calclulate hundreds --------------------------------------------------

 BSF STATUS,C  ; set carry for subtract
 MOVLW D'100'  ; load 100 
sub1 SUBWF ADbin ; and subtract from result

INCF huns ; count number of loops 
BTFSC STATUS,C ; and check if done 

 GOTO sub1  ; no, carry on

ADDWF ADbin ; yes, add 100 back on
 DECF huns  ; and correct loop count

; Calculate tens digit -------------------------------------------------

 BSF STATUS,C  ; repeat process for tens
MOVLW D'10' ; load 10

sub2 SUBWF ADbin ; and subtract from result
INCF tens ; count number of loops 
BTFSC STATUS,C ; and check if done 

 GOTO sub2  ; no, carry on

ADDWF ADbin ; yes, add 100 back on
 DECF tens  ; and correct loop count
 MOVF ADbin,W  ; load remainder 

MOVWF ones ; and store as ones digit 

 RETURN   ; done

; Output to display ----------------------------------------------------

putLCD BCF Select,RS ; set display command mode
 MOVLW 080  ; code to home cursor 
 CALL send  ; output it to display

BSF Select,RS ; and restore data mode

; Convert digits to ASCII and display ----------------------------------

 MOVLW 030  ; load ASCII offset 
 ADDWF huns  ; convert hundreds to ASCII 
 ADDWF tens  ; convert tens to ASCII 
 ADDWF ones  ; convert ones to ASCII 

 MOVF huns,W  ; load hundreds code
CALL send ; and send to display 

 MOVLW '.'  ; load point code
 CALL send  ; and output 
 MOVF tens,W  ; load tens code
 CALL send  ; and output 
 MOVF ones,W  ; load ones code
 CALL send  ; and output 
 MOVLW ' '  ; load space code
 CALL send  ; and output 
 MOVLW 'V'  ; load volts code
 CALL send  ; and output 
 MOVLW 'o'  ; load volts code
 CALL send  ; and output 
 MOVLW 'l'  ; load volts code
 CALL send  ; and output 
 MOVLW 't'  ; load volts code
 CALL send  ; and output 
 MOVLW 's'  ; load volts code
 CALL send  ; and output 

 RETURN   ; done

; INCLUDED ROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Include LCD driver routines 
; 
 #INCLUDE "LCDIS.INC" 
; Contains routines: 
; inid: Initialises display 
; onems: 1 ms delay 
; xms: X ms delay 
; Receives X in W 
; send: Sends a character to display 
; Receives: Control code in W (Select,RS=0) 
; ASCII character code in W (RS=1)

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Program 7.1 Continued
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Amplifier Interfaces

Having developed the analogue input conversion and display process, we can
move on to the interfacing hardware itself. Input signals often need condition-
ing before being fed to the MCU analogue inputs. This can involve amplifiers
to increase the signal amplitude, attenuators to reduce it, and filters to change
the frequency response. For now, we will limit ourselves to DC signals and
amplifiers, as these are most frequently used in MCU applications and are more
straightforward. For processing of AC signals, standard references should be
consulted. 

Figure 7.6 shows a range of different amplifiers connected to the PIC MCU.
They are connected to RA0 by a multi-way switch, so that the output of each
may be displayed, using the previously developed 8-bit conversion and display
program (Program 7.1). The basic op-amp configurations are summarised in
Figure 7.7.

The op-amp (IC amplifier) is a high-gain amplifier with inverting and non-
inverting inputs, with the output voltage controlled by the input differential
voltage. However, since the differential gain is very high, typically >1,00,000,
the operating input differential voltage is very small. As a result, we can as-
sume that the gain and bandwidth (frequency response) are controlled by the
external components only, and are independent of the amplifier itself. 
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Figure 7.4 10-bit conversion circuit
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When used as a linear amplifier, the feedback must be negative. Essentially,
this means the feedback signal path must be connected to the minus input
terminal. The basic rules for ideal op-amp circuit analysis are as follows:

• Differential gain � � (for voltage applied between + and – terminals)
• Differential voltage � 0 (terminals + and – are at the same voltage) 
• Input resistance = � (zero input current at + and – terminals)
• Output impedance = 0 (infinite current can be sunk or source at the output)
• Bandwidth = � (all frequencies are amplified equally)
• Feedback is negative (signal connected from output to – terminal)

These rules allow amplifier circuit analysis to be greatly simplified, and give
results which are accurate enough for most applications.

IC (integrated circuit) amplifiers can operate with dual or single supplies.
Dual supplies, which are the norm, make the circuit design easier, because the
output can swing positive and negative around 0 V. �/� 15 V and �/� 5 V
are typical supply values, with 15 V supplies giving a higher output voltage
swing. 
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ADC10
Load 10-bit, right justified binary (0-1023) 
Multiply by 4 (0-4092) by shift left 
Clear BCD registers

 REPEAT 
Subtract E816 from low byte
Subtract 316 from high byte 
Increment thousands digit

UNTIL remainder < 03E816 (1000) 

 REPEAT 
Subtract 6416 from low byte
Borrow from high byte
Increment hundreds digit 

UNTIL remainder < 6416 (100)

 REPEAT 
Subtract 10 from low byte 
Increment tens digit 

UNTIL remainder < 10

Remainder = ones digits

RETURN 

Figure 7.5 10-bit binary conversion routine outline 
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Program 7.2 10-bit conversion

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 
; Project: Interfacing PICs
; Source File Name: TENBIT.ASM
; Devised by: MPB 
; Date: 20-12-05
; Status: Final 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 
; Demonstrates 10-bit voltage measurement
; using an external reference voltage of 4.096V,  
; giving 4mV per bit, and an resolution of 0.1%.
; The result is converted to BCD for display 
; as a voltage using the standard LCD routines.
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 PROCESSOR 16F877 
; Clock = XT 4MHz, standard fuse settings
 __CONFIG 0x3731

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877A.INC"  
; standard register labels

;----------------------------------------------------------
; User register labels
;----------------------------------------------------------
; GPR 20 - 2F allocated to included LCD display routine

count EQU 30 ; Counter for ADC setup delay
ADhi EQU 31 ; Binary input high byte
ADlo EQU 32 ; Binary input low byte
thos EQU 33 ; Thousands digit in decimal 
huns EQU 34 ; Hundreds digit in decimal value
tens EQU 35 ; Tens digit in decimal value
ones EQU 36 ; Ones digit in decimal value

;----------------------------------------------------------
; PROGRAM BEGINS 
;----------------------------------------------------------

ORG 0 ; Default start address
NOP ; required for ICD mode

;----------------------------------------------------------

; Port & display setup

BANKSEL TRISC ; Select bank 1
CLRF TRISD ; Display port is output
MOVLW B'10000011' ; Analogue input setup code
MOVWF ADCON1 ; Right justify result,

; Port A = analogue inputs
; with external reference

BANKSEL PORTC ; Select bank 0 
CLRF PORTD ; Clear display outputs
MOVLW B'01000001' ; Analogue input setup code
MOVWF ADCON0 ; f/8, RA0, done, enable

CALL inid ; Initialise the display

;----------------------------------------------------------
; MAIN LOOP
;----------------------------------------------------------

start CALL getADC ; read input
CALL con4 ; convert to decimal
CALL putLCD ; display input
GOTO start ; jump to main loop
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;----------------------------------------------------------- 
; SUBROUTINES 
;----------------------------------------------------------- 
; Read ADC input and store 
;----------------------------------------------------------- 

getADC MOVLW 007 ; load counter
 MOVWF count 
down DECFSZ count ; and delay 20us
 GOTO down

BSF ADCON0,GO ; start ADC..
wait BTFSC ADCON0,GO ; ..and wait for finish
 GOTO wait
 RETURN
;----------------------------------------------------------- 
; Convert 10-bit input to decimal 
;----------------------------------------------------------- 

con4 MOVF ADRESH,W ; get ADC result
 MOVWF ADhi ; high bits

BANKSEL ADRESL ; in bank 1
MOVF ADRESL,W ; get ADC result
BANKSEL ADRESH ; default bank 0 
MOVWF ADlo ; low byte

; Multiply by 4 for result 0 - 4096 by shifting left.........

BCF STATUS,C ; rotate 0 into LSB and 
RLF ADlo ; shift low byte left
BTFSS STATUS,C ; carry out?
GOTO rot1 ; no, leave carry clear
BSF STATUS,C ; rotate 1 into LSB and 

rot1 RLF ADhi ; shift high byte left

BCF STATUS,C ; rotate 0 into LSB
RLF ADlo ; rotate low byte left again
BTFSS STATUS,C ; carry out?
GOTO rot2 ; no, leave carry clear
BSF STATUS,C ; rotate 1 into LSB and 

rot2 RLF ADhi ; shift high byte left

; Clear BCD registers........................................

clrbcd CLRF thos ; zero thousands digit
CLRF huns ; zero hundreds digit
CLRF tens ; zero tens digit
CLRF ones ; zero ones digit

; Calclulate thousands low byte .............................

tholo MOVF ADhi,F ; check high byte
BTFSC STATUS,Z ; high byte zero?
GOTO hunlo ; yes, next digit

BSF STATUS,C ; set carry for subtract 
MOVLW 0E8 ; load low byte of 1000
SUBWF ADlo ; and subtract low byte
BTFSC STATUS,C ; borrow from high bits?
GOTO thohi ; no, do high byte
DECF ADhi ; yes, subtract borrow 

; Calculate thousands high byte..............................

thohi BSF STATUS,C ; set carry for subtract
MOVLW 003 ; load high byte of 1000
SUBWF ADhi ; subtract from high byte

 BTFSC STATUS,C ; result negative?
GOTO incth ; no, inc digit and repeat

ADDWF ADhi ; yes, restore high byte

; Restore remainder when done ...............................

BCF STATUS,C ; clear carry for add
MOVLW 0E8 ; load low byte of 1000
ADDWF ADlo ; add to low byte
BTFSC STATUS,C ; carry out?
INCF ADhi ; yes, inc high byte
GOTO hunlo ; and do next digit

; Increment thousands digit and repeat.......................

incth INCF thos ; inc digit
GOTO tholo ; and repeat

Program 7.2 Continued
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; Calclulate hundreds .......................................

hunlo MOVLW 064 ; load 100
BSF STATUS,C ; set carry for subtract 
SUBWF ADlo ; and subtract low byte

 BTFSC STATUS,C ; result negative?
GOTO inch ; no, inc hundreds & repeat

MOVF ADhi,F ; yes, test high byte
 BTFSC STATUS,Z ; zero? 
 GOTO remh ; yes, done

DECF ADhi ; no, subtract borrow
inch INCF huns ; inc hundreds digit

GOTO hunlo ; and repeat

remh ADDWF ADlo ; restore onto low byte

; Calculate tens digit...................................... 

subt MOVLW D'10' ; load 10
BSF STATUS,C ; set carry for subtract 
SUBWF ADlo ; and subtract from result
BTFSS STATUS,C ; and check if done
GOTO remt ; yes, restore remainder
INCF tens ; no, count number of loops 
GOTO subt ; and repeat

; Restore remainder......................................... 

remt ADDWF ADlo ; yes, add 10 back on
 MOVF ADlo,W ; load remainder

MOVWF ones ; and store as ones digit 

 RETURN ; done

;----------------------------------------------------------- 
; Output to display
;----------------------------------------------------------- 

putLCD BCF Select,RS ; set display command mode
MOVLW 080 ; code to home cursor
CALL send ; output it to display
BSF Select,RS ; and restore data mode

; Convert digits to ASCII and display....................... 

MOVLW 030 ; load ASCII offset
ADDWF thos ; convert thousands to ASCII
ADDWF huns ; convert hundreds to ASCII 
ADDWF tens ; convert tens to ASCII
ADDWF ones ; convert ones to ASCII

MOVF thos,W ; load thousands code
CALL send ; and send to display
MOVLW '.' ; load point code
CALL send ; and output
MOVF huns,W ; load hundreds code
CALL send ; and send to display
MOVF tens,W ; load tens code
CALL send ; and output
MOVF ones,W ; load ones code
CALL send ; and output
MOVLW ' ' ; load space code
CALL send ; and output
MOVLW 'V' ; load volts code
CALL send ; and output
MOVLW 'o' ; load volts code
CALL send ; and output
MOVLW 'l' ; load volts code
CALL send ; and output
MOVLW 't' ; load volts code
CALL send ; and output
MOVLW 's' ; load volts code
CALL send ; and output

 RETURN ; done

;----------------------------------------------------------
; INCLUDED ROUTINES
;----------------------------------------------------------
; Include LCD driver routine; 
 INCLUDE "LCDIS.INC"; 
; Contains routines:
; init: Initialises display
; onems: 1 ms delay
; xms: X ms delay
; Receives X in W
; send: sends a character to display
; Receives: Control code in W (Select,RS=0)
;  ASCII character code in W (RS=1)

; 
;----------------------------------------------------------
 END ; of source code

Program 7.2 Continued
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Figure 7.6 Basic amplifier interface circuits 
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Rf   Ri

∴ Vo = - (Rf/Ri + 1).Vi

∴ Vo = - (Rf/R1).Vi + ((Rf/R1) + 1).Vr

0 – Vi

If = Vo – Vr  =  
Rf   Ri

Vr – Vi

Figure 7.7 Basic amplifier configurations: (a) non-inverting amplifier; (b) inverting amplifier;
(c) inverting amplifier with offset; (d) unity gain buffer; (e) summing amplifier; (f) difference
amplifier
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On the other hand, it is convenient in microprocessor systems to use the
same single supply used by the digital circuits, �5 V, and to avoid the need to
provide separate dual op-amp supplies. Some op-amps are designed specifi-
cally to operate with a single supply, such as the LM324 type used in the
examples here. However, �5 V provides only a limited voltage swing; the low-
est output may not reach 0 V, and the maximum will typically be even more
limited, possibly less than 4 V, depending on the op-amp type. 

The output does not usually reach the supply values due to residual volt
drops across internal components. The 324, for example, can only reach about
3.5 V, so circuits have to operate within this limited output swing. The 8-bit
range in the demo circuits is limited to 2.56 V, so that the amp outputs are op-
erating comfortably within the upper limit, but we cannot assume that voltages
near zero will be represented accurately. In the test circuits, therefore, output
swing will be limited, and offsets introduced to allow the amplifier to operate
within its limits. 

Non-inverting Amplifier

The basic configuration for the non-inverting amp is shown in Figure 7.7 (a).
The input is applied to the � terminal, and feedback and gain controlled by the
resistor network Rf and R1. If we assume that the voltage between the terminals
is zero (rule 2), the voltage at the − terminal must be the same as the voltage
at the � terminal. We can then write down an equation for the feedback net-
work using Ohm’s law applied to each resistor, assuming the current flow is
from the output through the resistors to ground. This is possible because it is
assumed that none of the current is lost at the input terminal, as it has infinite
input resistance (rule 3). A simple re-arrangement of the equation allows us to
predict the output voltage in terms of the resistor values.

V0 � (Rf /R1 � 1)V1

The main advantage of this configuration is that the input impedance is very
high (in theory, infinite). The loading on the signal source is therefore negligible.
The disadvantage is that the input is operating with an offset voltage, which
reduces its accuracy, particularly with a single supply, as is the case in our demo
circuit. In addition, the high input impedance makes it susceptible to noise. 

In the demonstration non-inverting amplifier shown in the test circuit, Figure
7.6, the feedback resistors are both 10k, giving a gain of 10k/10k � 1 � 2. The
test input pot RV2 is connected to provide 0–2.5 V, so the output should, in the-
ory, be 0–5.0 V. In practice, the 324-simulation model provides a minimum
output of 0.03 V and a maximum of about 4.0 V, due to the output stage limi-
tations. An output offset (constant error) of 3 mV is also evident – if this is a
potential problem, an op-amp with inherently low offset, or one with offset
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adjustment, can be used, or an external offset adjustment included in the cir-
cuit design.

Inverting Amplifier

The analysis is even simpler for this configuration, since the input terminals
are at 0 V. The equation for the feedback current predicts that

V0 = −(Rf/R1)V1

The negative sign indicates that the output is inverted, that is, it goes nega-
tive when the input is going positive, and vice versa. Unfortunately, the input
impedance is inherently low, being equal to the value of R1. A significant input
current is required to or from the signal source for this configuration to work
correctly. However, with symmetrical supplies, it can operate with zero offset,
which reduces errors. 

In the demo circuit (Figure 7.6), the inverting amplifier is operating with an
offset of 1 V. The + terminal is connected to a reference voltage of 1.000 V pro-
duced by a voltage divider across the supply. It is fed to the input terminal via
a 10k, which helps to equalise the input offset currents at the � and – termi-
nals. The gain (G) is 20k/10k � 2, and the output polarity inverted. Analysis
(Figure 7.7 (c)) shows that the output voltage is given by

V0 � (G�1)Vr�GVi

If Vr � 1.00 and G � 2.00
V0 � 3�2Vi

Unity Gain Buffer

This is a special case of the non-inverting amplifier, where the feedback is
100%, that is, zero feedback resistance, giving a gain of 1 (Figure 7.7 (d)). The
output voltage is then the same as the input voltages. So what is the point of
the circuit? It is to provide current gain. The input current is very small (large
input resistance at the + terminal) but the output current can be large, giving a
high current gain. In practice, with standard op-amps, the output current would
typically be limited to about 20 mA, but high current output IC amps are avail-
able, or a further current driver stage can be added using a discrete transistor.

Summing Amplifier

This is a development of the inverting amplifier, which has additional inputs.
Only two are shown in Figure 7.7 (e), but more are possible. The output is
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determined by the sum of the input voltages, taking into account the input re-
sistor weightings.

�V0 � G1V1 � G2V2 � G3V3 � …

where G1 � Rf/R1, G2 � Rf/R2 …

For a summing amplifier with offset, as seen in the demo circuits, it can be
shown that

V0 � Vr (nG � 1)�G (V1 � V2 � … Vn)

for an amplifier with identical input resistors (same gain for each input). 

The demo circuit was tested as follows:

Rf � 20k and R1 � 10k ∴ Rf/R1 � 2 � G

Vr � 1.000 V V1 � 0.585 V V2 = 0.866 V

Predicted output voltage

Vop = (4 +1)−2 (0.585 + 0.866) = 5−2.90 = 2.10 V

Simulation output voltage Vos = 2.11 V

Difference Amplifier

The difference amplifier (Figure 7.7 (f)) gives an output which is proportional
to the difference between the input voltages. The mathematical model is again
derived by analysing the current flow in the feedback path, and calculating the
voltage at the � terminal from the voltage divider connected to it. This gives
the relationship

V0 � Rf/R1 (V2V1) � G (V2−V1)

if the resistors connected to both terminals have the same values, as shown. V2
is the input on the � terminal, V1 on the − terminal. This circuit can be used
with sensors that have a positive offset on their output, to bring the output volt-
ages into the right range (0–3.5 V with a �5 V single supply).

Universal Amplifier

The above types of amplifier can be regarded as special cases of the universal
amplifier (Figure 7.8). This has both difference and summing inputs, and can
be adapted to applications where a combination of these is required.
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The universal amplifier can have any number of inputs and outputs, but to
make the mathematical model as simple as possible, we will set the following
conditions:

• the number of inverting inputs is equal to the number of non-inverting in-
puts

• the input resistors (Ri) are all equal

• the feedback resistors (Rf) are equal

By summing the current at the op-amp input terminals, we can show that

V0 = Rf /Ri (V2 + V4 + V6 + …) − (V1 + V3 + V5 + …)

The output voltage is given by the arithmetic sum of the input voltages
multiplied by the gain, where the non-inverting (+) inputs are even numbered
and the inverting (−) odd. The amplifier then behaves as a combination
summing and difference amplifier, allowing positive and negative signals and
offset inputs to be added as required.

Analogue Interfacing

159

Current sums 

If =   Vo – Vx =   (Vx – V1)   +   (Vx – V3)   +   (Vx – V5)  
Rf   R1  R3  R5

Ir  =    Vx − 0    =   (V2  – Vx)   +   (V4 – Vx)   +  (V6 – Vx) 
Rf R2  R4 R6

Assume  R1 = R2 = R3 = R4 = R5 = R6 = Ri 

Then  Vo =  Rf /Ri  ( V2 + V4 + V6 ) − ( V1 + V3 + V5 ) 
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Figure 7.8 Universal amplifier
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Transient & Frequency Response

Real circuits have stray capacitance associated with the signal conductors and
components, especially when fabricated in IC form, where planar components
are formed in close proximity. This affects the response to switching and AC
signals. It can be represented by a capacitor across the feedback resistor in our
op-amp circuits. Such a component may often be deliberately included in an
amplifier design, as it improves general stability and rejection of noise in DC
amplifiers, and controls the bandwidth in AC applications (Figure 7.9 (a)).
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Cut-off frequency, fc
=  1 / (2π Rf Cf) 
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Figure 7.9 Feedback capacitance: (a) basic circuit; (b) transient response; (c) frequency re-
sponse
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Transient Behaviour

If the input is switched rapidly between DC values, e.g. a step input from 0 to
+1 V, the circuit with capacitative feedback acts as an integrator, and a
response such as that in Figure 7.9 (b) is obtained. The output rises slowly,
following an exponential curve, and may not reach the final value before the
input is reversed. This shows why DC switching frequencies are limited in all
active digital and analogue circuits – the outputs may not reach the required
levels if the switching is too fast.

This transient effect must be anticipated with switched inputs to the micro-
controller ADC, especially as the ADC itself has an RC sample and hold input.
If a relatively large value of capacitor is used with a large (or infinite) resist-
ance, the curve is so extended that it appears to be a straight line. This inte-
grator circuit can be used to generate a triangular or sawtooth waveform.

Frequency Response

So far, we have assumed that DC voltages are being used, but the amplifier
analysis also applies equally to AC signals, except that at higher frequencies
the amplifier circuits will be affected by limited frequency response. Any real
amplifier has limited bandwidth; DC-coupled amplifiers work at 0 Hz, but an
upper frequency limit always applies. Many op-amps have internal or external
compensation to deliberately limit the bandwidth to a known frequency, and to
improve overall stability (op-amps have a tendency to turn spontaneously into
oscillators for no obvious reason!). 

A first-order frequency response is shown in Figure 7.9 (c). At higher
frequencies, the feedback capacitor has a low impedance (AC resistance)
compared with the feedback resistor. The resistor is therefore bypassed by a
lower parallel impedance, reducing the gain, G. The frequency at which the im-
pedance of the resistor and capacitor are equal is called the cut-off frequency.
Above this frequency, the gain rolls off at 20 dB per decade of frequency. This
appears as a straight line if plotted on logarithmic axes. The cut-off frequency
can be deliberately reduced by increasing the capacitance value in the feedback
path. External compensation pins are sometimes provided to connect the addi-
tional capacitance.

Instrumentation Amplifier

Many sensors that need to be connected to a microcontroller analogue input have
a rather small output signal. In addition, it may only be available as a differential
voltage output, that is between two points with a large common mode voltage.
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Strain gauges are usually connected in this way; they might measure small
changes in the shape of a mechanical part under stress, such as a strut in a crane
jib. The sensor typically consists of four strain-sensitive resistors connected in a
bridge arrangement, such that a change in their resistance due to stretching is
output as a small differential voltage, typically in the range 0–10 mV.

A sensitive amplifier is needed, with a high gain and high input resistance,
which reduces the current drawn from the sensor and hence the errors. A sin-
gle-stage non-inverting amplifier has a high input resistance, but does not have
differential inputs. The difference amplifier has these, but has low input re-
sistances. In addition, if configured for a high gain, with a high value for Rf,
the feedback current is small, and thus the amplifier is more susceptible to
noise and offset errors.

The solution is an instrumentation amplifier, which combines the required
features (Figure 7.10). It is made up of two stages: the main difference ampli-
fier and a pair of high impedance input stages. In order to see some of the lim-
itations, our standard single supply op-amp, LM324, has been used, but the
performance can be improved by selecting a higher specification op-amp, or
buying the instrumentation amplifier as a special package.

The gain of the amplifier is set by the ratio of feedback resistor chain con-
nected between the outputs of the input stages, from the relationship

G = 1 + 2R2/R1 where R2 = 10k and R1 = 202R

∴ G = 1 + 20000/202 = 100

This provides the required gain. The input maximum differential voltage is
10 mV, the output differential is 1.00 V. This is then fed to the differential out-
put stage, which has unity gain, whose role is to provide a single ended output
(i.e., measured with respect to 0 V).

Current Loop

If a DC signal is to be transmitted over a long connection, say more than 1 m,
the resistance in the line will cause a volt drop, which will affect the accuracy
of the received voltage. In this case it is better to represent the measurement as
a current, rather than a voltage, since the current in a closed loop cannot be
lost, except at the load.

If the operation of a simple inverting amplifier is considered ideal, the current
in the feedback resistor must be the same as the current in the input resistor. If
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the input voltage and input resistance are constant, the feedback current will be
constant, with the output voltage of the op-amp adjusting itself for any change
in the feedback resistance value. This leads us to a general design for a constant
current source, derived from a constant voltage at the input.

In Figure 7.11, a zener diode provides the constant voltage, and the current
in the feedback path will then be constant (within limits), and independent of
the feedback resistance value. This principle can be applied to obtain a current
in this path, which is controlled by a variable input voltage from a sensor.

In Figure 7.12, a demonstration circuit is shown which will give an output
change of 1.00 V for an input change of 100 mV, that is, an overall gain of 10.
However, the significant feature is the current loop formed by the feedback
path of the line driver. A long connection between this stage and the output dif-
ferential amplifier represents a line which can have a variable resistance, de-
pending on the length and cabling type. We need the output to be independent
of the variation of this resistance, which is represented by variable 10R pots.

R5 and R6 (100R) are the input and feedback resistors in the line driver ampli-
fier. The input stage is a simple non-inverting amplifier with a gain of 10,
which feeds a voltage to the line driver, which changes by 1.00 V when the test
switch is operated. The current switches between 0 and 10 mA, to give 1.00 V
across the line driver feedback resistor, R6. This is connected across the inputs
of the unity gain output differential amplifier. The output of a standard op-amp
is limited to about 25 mA, so the line must operate at less than this value. On
the other hand, the higher the current, the better the signal-to-noise ratio is
likely to be.

Since the current loop is implemented using single supply op-amps running
at 5 V, the amplifiers are all offset by 1.50 V, to avoid voltage outputs near 0 V.
The output switching is then between 1.50 V and 2.50 V. This is achieved to
within about 1% in the simulation, the error being mainly due to variation in
the individual amplifier offset conditions. The exact common offset of 1.50 V
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is derived from a stack of two diodes supplied with a current, which can be
tweaked to obtain the desired volt drop. If power diodes are used, heating ef-
fects can be reduced (remember, the diode volt drop changes by 2 mV/°C).
This offset will also assist in interfacing sensors which may need to go nega-
tive with respect to the reference level.

The standard current loop sensor interface operates at 4–20 mA, and is de-
signed to provide power to the remote sensor as well as allowing it to control
the current drawn from an external supply. The operating range is therefore 16
mA, convenient for converting to digital form. If zero current is detected, this
will normally be interpreted as a fault condition, for example, an open circuit
in the current loop.

Comparators

Comparators are a different type of op-amp circuit. Here the op-amp is used in
open loop mode (no negative feedback) to compare two input voltages on the
+ and – terminals, and switch the output high or low depending on the relative
polarity. If the + terminal is positive with respect to the – terminal, the output
will go high, and vice versa. 
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A specific type of op-amp is normally used for this type of application,
which has an open collector output. The output transistor switching circuit has
to be completed by an external pull-up (load) resistor. This allows the output
switching voltage to be different from the comparator supply voltage, which is
useful for interfacing circuits operating at, say, �/� 15 V or with a 24 V sin-
gle supply, which must be connected to a TTL MCU input or output. The
switching speed can be increased by using a lower value pull-up resistor, at the
cost of higher power consumption. Some MCUs have comparator inputs built
in, as a simple form of analogue input.

Three types of comparator circuit are shown in Figure 7.13. The default chip
type used here is the TLC339, a quad comparator.

Simple Comparator

The comparator detects whether the input is above or below the reference volt-
age. The circuit shown (Figure 7.13 (a)) has a reference voltage of 2.5 V ap-
plied to the - terminal. As the input changes, the output switches at this volt-
age. The transfer characteristic shows the effect by plotting the output against
the input voltage. The reference voltage can be changed as required, giving a
different switching level. The output of the comparator is connected to an LED
indicator in the load circuit, which is useful, but not essential. The open col-
lector output provides sufficient output current to drive an LED (~10 mA),
without any additional driver stage.

Trigger Comparator

The output voltage in this circuit (Figure 7.13 (b)) is fed back to the � termi-
nal to set the reference level, which changes depending on whether the output
is high or low. The switching level therefore depends on the previous setting of
the output. This gives two switching levels: the output switches at a higher
voltage when increasing from low to high and at a lower voltage when de-
creasing from high to low. In the circuit shown, the LED circuit affects the
switching level, and may be omitted. Notice that the input is applied to the −
terminal, so the transfer characteristic is inverted. When identifying circuits,
positive feedback indicates a comparator, or an oscillator.

The trigger circuit is often incorporated into digital signal paths as it helps
to reduce noise (unwanted high frequencies). In a simple TTL gate, noise on a
slowly changing input signal might cause multiple transitions at the output;
with a schmitt trigger input (as it is known), once the gate has changed state,
it does not change back unless there is a relatively large change in the input in
the opposite direction. The PIC MCU has schmitt trigger inputs on the port
input buffers for improved noise immunity.
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Figure 7.13 Comparators: (a) simple comparator; (b) trigger comparator; (c) window com-
parator
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Window Comparator

In this circuit, two comparators give a range of input voltages between which
the output is high, and low when outside this range (or vice versa). Comparator
C output is low when the voltage is below about 1.6 V, and comparator B out-
put is low above about 3.3 V. Between these voltages, neither is low, allowing
the output to rise to 5 V. The open collectors allow this connection, while it is
not allowed with the complementary output drivers in standard op-amps. The
circuit is used to detect when a voltage is within or outside a given range,
which could be used, for example, in a simple voltage tester giving a pass/fail
output.

Op-amp Selection

There are three main types of op-amp for linear applications, plus the open col-
lector comparator type for switching applications,

• Bipolar (e.g. LM324, LM741)
• CMOS (e.g. CA3140)
• BiFet (e.g. TL074)

The 741 is the original, standard, general purpose single op-amp in an 8-pin
package. It is based on bipolar transistor technology, with internal compensa-
tion (feedback capacitance) to provide a stable, low bandwidth device for DC
and audio range applications. The LM324 is a similar type of quad device,
designed for single 5 V supply operation. The CMOS type uses FETs (field
effect transistors), which have very low input current requirements, and there-
fore provide low power, high input impedance amplifiers. The BiFet type com-
bines advantages of the bipolar and FET types in one chip. FET inputs provide
high input impedance and low input currents (but not necessarily low offset
voltages), while bipolar outputs are more robust (specifically, less vulnerable
to high-voltage static electricity in the environment).

Op-amps are available which offer high precision, low noise, low power con-
sumption, high bandwidth, high output current, and low input currents in vari-
ous combinations. When designing analogue signal conditioning for specific
applications, an op-amp with the optimum combination of features should be
selected.

Analogue Output

Analogue output from microcontrollers is less commonly required than
input, because many output loads can be driven by a digital signal. Relays

Interfacing PIC Microcontrollers

168

Else_IPM-BATES_ch007.qxd  6/29/2006  11:38 AM  Page 168



and solenoids only need a slow switching current driver, while heaters and
motors can be controlled using PWM, because the switched output current is
effectively averaged by the inductive load. 

The Digital to Analogue Converter (DAC) is, however, commonly found in
digital signal processors, where an analogue signal is converted to digital
form for processing and storage, and then back to analogue, as in a digital
audio system.

DAC Types

A range of techniques are available to convert a binary output to a corre-
sponding voltage. The typical DAC uses a ladder network of precision resis-
tors to produce a bit-weighted output voltage. A summing amplifier can also
be used, with the input resistor values in a power-of-two series: 1k, 2k, 4k, 8k,
16k, 32k, 64k and 128k for example. In all cases, an output sum voltage is
produced as follows: the bit connected to the most significant bit input, if set,
provides half the output voltage, the second bit a quarter, the third bit an
eighth and so on. 

In the general DAC shown in Figure 7.14, the output step size and maximum
level are set by a reference input, as in the ADC. A reference voltage of 2.56
V, for example, would give a bit step of 0.01 V in an 8-bit DAC, since there are
256 (28) output levels. That is, the least significant bit will produce a change
of 10 mV; this is the resolution of the converter. Some converters, such the
standard DAC0808 shown in Figure 7.15, use a current reference input, and a
current output, which can be converted to voltage by precision resistors. These
resistors need to be at least as accurate as the DAC itself. For an 8-bit DAC,
the resolution is 1 part in 256, or slightly better than 0.5% at full scale, or 1%
at mid-range. A 10-bit DAC has a resolution of 1/1024, about 0.1%, at full
scale and 1/512, and about 0.2%, at the mid-value. The resolution increases
with the output level, since the step size is fixed.

In the schematic of the test circuit (Figure 7.15), two DACS are demon-
strated, a standard 8-bit DAC0808 and a more recent device, the 12-bit
MCP4921 from Microchip, which uses the SPI serial interface.

Parallel DAC

The parallel converter (PDAC) has an 8-bit digital input. The reference level
must be provided as a calibrated current, derived from the supply (�5 V) via
a pre-set pot, which allows the maximum output to be adjusted to 2.55 V. For
greater accuracy, a stable reference voltage should be used in the current
source. The PDAC is then set to operate at 10 mV/bit. It also has a current out-
put, so that a current loop output can be easily implemented for onward signal
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transmission. In this case, a general purpose JFET (high impedance) input
TL074 converts the output current into a voltage of 0–2.55 V. A precision
resistor must be used in the feedback path if necessary. A –5 V supply allows
operation down to 0 V.

The output in the test circuit can be controlled manually from the
UP/DOWN push buttons, and monitored on the voltmeter. When the run but-
ton is pressed, the PDAC is driven with an incrementing output at maximum
possible frequency, as determined by the MCU clock rate. Each output step
takes three instruction cycles (INCF � GOTO). A sawtooth waveform is pro-
duced (Figure 7.16); if this is viewed on the oscilloscope, significant overshoot
(ringing) can be seen on each step, and a large overshoot occurs on the falling
edge. This overshoot could cause problems in subsequent stages of the system,
so suitable filtering should always be considered on a digitally generated wave-
form. Here, the amplifier is damped with the 100 pF across the feedback-
resistance. On the other hand, too much damping causes the waveform to lose
its sharpness.
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Figure 7.14 Basic digital to analogue converter: (a) general DAC hardware; (b) output voltage
steps

Else_IPM-BATES_ch007.qxd  6/29/2006  11:38 AM  Page 170



171

Figure 7.15 DACS schematic 

Figure 7.16 Screenshot of PDAC waveform 
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;************************************************************
; DACS.ASM  MPB 11-2-06
; 
; Test program for parallel and serial D/A Converters
; DAC0808 & MCP4921. Proteus simulation DACS.DSN 
; 
;************************************************************

 PROCESSOR 16F877
 INCLUDE "P16F877.INC" 
 __CONFIG 0X3731

Hibyte EQU 020 ; SPI data high byte
Lobyte EQU 021 ; SPI data low byte 

ORG 0 ; Load at default range 
 NOP  ; for ICD operations

; Initialise parallel and serial ports ----------------------

 BANKSEL TRISD
CLRF TRISD ; Parallel port
BCF TRISC,5 ; Serial data
BCF TRISC,3 ; Serial clock 
BCF TRISC,0 ; Chip select
CLRF SSPSTAT ; default SPI mode 

 BANKSEL PORTD
CLRF PORTD ; zero PDAC
CLRF SSPCON ; default SPI mode 

MOVLW B'00111001' ; Initial SDAC data
MOVWF Hibyte ; and store

 MOVLW B'11111111' 
 MOVWF Lobyte

; Check buttons ---------------------------------------------

up BTFSC PORTB,1 ; Test UP button 
GOTO down ; and jump if off

 INCF PORTD ; Increment PDAC 
 INCF Hibyte ; Increment SDAC 
waitup BTFSS PORTB,1 ; Wait for.. 

GOTO waitup ; button release

down BTFSC PORTB,2 ; Test DOWN button
GOTO spi ; and jump if off

 DECF PORTD ; Decrement PDAC 
 DECF Hibyte ; Decrement SDAC 
waitdo BTFSS PORTB,2 ; Wait for.. 

GOTO waitdo ; button release

; Send 16-bit data to SDAC via SPI port ---------------------

spi BSF SSPCON,SSPEN ; Enable SPI port

BCF PORTC,0 ; Enable SDAC chip 
MOVF Hibyte,W ; Get high data
MOVWF SSPBUF ; and send it

waithi BTFSS PIR1,SSPIF ; Wait for.. 
GOTO waithi ; SPI interrupt 

 BCF PIR1,SSPIF ; Reset interrupt

MOVF Lobyte,W ; Get low data
MOVWF SSPBUF ; and send it

waitlo BTFSS PIR1,SSPIF ; Wait for.. 
GOTO waitlo ; SPI interrupt 

 BCF PIR1,SSPIF ; Reset interrupt

BSF PORTC,0 ; Disable SDAC chip

; Run output loop until reset -------------------------------

BTFSC PORTB,0 ; Test run button
GOTO up ; and repeat loop

run INCF PORTD ; Increment PDAC 
GOTO run ; repeat until reset

 END ;----------------------------------------------

Program 7.3 DACS test program source code
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Other standard waveforms can be generated in a similar way. A square wave
simply requires the output to be switched between maximum and minimum
output values, with a controlled delay. A triangular wave is similar to the saw-
tooth, except that the falling edge is decremented rather than rolling over to
zero. A sine wave can be generated from a program data table, which holds
pre-calculated instantaneous voltage values. In fact, any arbitrary waveform
can be generated in digital mode.

The test program is listed in Program 7.3. The software and initialisation re-
quired to drive the PDAC is relatively simple.

Serial DAC

Many transducers are now provided with signal input and output using a
standard serial data transfer protocol, such as SPI and I2C. The serial con-
verter (SDAC) used here uses the SPI interface, which allows 12-bit output
to be transferred on two lines (clock and data). The SPI interface is de-
scribed in detail later in Chapter 9. It is easy to use, since the transfer is trig-
gered by simply writing the data to the serial port buffer register (SSPBUF).
The serial port interrupt flag is polled until it indicates that the data has
been sent.

The SDAC needs 2 bytes for each data transmission. The most significant
4 bits of the first byte are used for control functions (0011). The low nibble
contains the high 4 bits of the data, and the second byte the remaining 8.
These are simply written one after the other to the output buffer. The chip se-
lect must then be taken high to trigger the transfer of the data to the output
of the SDAC. More details are given in the device data sheet of the
MCP4921. 

The output voltage range is set in the usual way by a voltage reference input.
The output has 212 steps (4096), so a reference voltage of 4.096 V gives a
conversion factor of 1 mV/bit. The resolution is 16 times better than the 8-bit
PDAC. The SDAC output can also reach 0 V without a negative supply. The serial
interface is inherently slower than the parallel, but fewer MCU I/O pins are
needed.

SUMMARY 7

• The PIC analogue to digital converter input provides 8-bit or 10-bit con-
version

• One of eight analogue inputs in the 16F877 connects to the A/D module
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• The conversion result is found in FSRs ADRESH and ADRESL
• A suitable reference voltage is used to set the maximum input voltage
• Linear amplifier stages may be needed to provide input signal condition-

ing
• Analogue sensors need interfacing for correcting gain and offset
• A comparator converts voltage levels to a switched input
• A digital to analogue converter converts parallel or serial data into a

voltage

ASSESSMENT 7 Total (40)

1 Calculate the percentage accuracy per bit of a 12-bit ADC at full scale. (3)

2 Explain why a 2.56 V reference voltage is convenient for an 8-bit ADC input. (3)

3 State the function of the CHSx bits in ADCON0. (3)

4 Calculate the maximum sampling frequency for a 10-bit input if 2 µs per bit is 
allowed and no settling time is needed. (3)

5 Explain the difference between left and right justified ADC results. (3)

6 State the gain, input resistance and output resistance of an ideal amplifier. (3)

7 State the device number of a single supply op-amp, and one advantage and one
disadvantage of using a single supply amplifier. (3)

8 Calculate the gain of a simple non-inverting IC amplifier, if the input resistor is 
1k0 and the feedback resistor 19k. (3)

9 Calculate the output voltages of (a) a summing amplifier and (b) a difference
amplifier if the input voltages are 1.0 V and 0.5 V, and the gain of both is 2
(assume positive output voltages only). (3)

10 Describe the general effect of a capacitor across the feedback resistor in an IC
amplifier stage. (3)

11 Design an IC amplifier stage to give an output which changes from
0 V to �2.0 V when the input changes from �1.5 V to �1.00 V, assuming the
feedback resistor is 10k. (5)

12 The trigger comparator in Figure 7.10 (b) is fed with a triangular wave. Sketch 
the input and output on the same time axis, and show how output changes over one 
cycle of the input. Add some (�1 V) noise to the input and show the effect on 
the output. Label the drawing to indicate the benefits of the circuit. (5)
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ASSIGNMENTS 7

7.1 Analogue Input

Modify the 8-bit conversion program so that the input measures from 0.00 to
0.64 V, by right justifying the result and processing ADRESL. When the input
is 0.5 V, the display should show 0.500 V. What is the resolution of the voltage
measurement. What is displayed when the input voltage is above 0.64 V, and
why? Provide a program outline in suitable form.

7.2 Amplifier Test

Run the simulation of the basic amplifier interfaces. By suitable adjustment of
the input voltages, record a set of values for each amplifier input and output,
and demonstrate that the expressions given for the gain of each type is valid.
Evaluate the accuracy of the outputs obtained in simulation mode, as a per-
centage. Construct the equivalent physical circuits, compare the performance
with the simulated and ideal performance, and account for any discrepancies. 

7.3 Summing DAC

Construct an IC summing amplifier in the circuit simulator with eight input
resistors with the values 1k, 2k, 4k, 8k, 16k, 32k, 64k and 128k, and feedback
resistor of 1k, using the LM324 (select a part with a simulation model at-
tached). Connect each input to �5 V via a toggle switch, and the reference (�)
input to 2.5 V derived from a voltage divider across the supply. Run the simu-
lation and close the switches in reverse order (128k first). Record the output
voltages obtained, and demonstrate that the circuit acts as a DAC. Compare its
performance, ease of use and other relevant factors with the DACs as shown in
Figure 7.15. 
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8

Power Outputs

In this chapter, we will concentrate on power outputs. The microcontroller or
microprocessor port only provides a limited amount of current: about 20 mA
in the case of PIC, and even less for standard microprocessor ports. Therefore,
if we want to drive an output device that needs more current than this, some
kind of current amplifier or switch is needed.

Current Drivers

All solid-state current drivers and switches are derived from the semiconduc-
tor technology which is the basis of the transistor. The bipolar transistor was
the first to be developed, and is still extensively used as it is robust and easy to
design around. The FET (field effect transistor) was later developed alongside
integrated circuits, because it generally has a higher input impedance and con-
sumes less power in high-density circuits. In addition, the power FET has some
distinct advantages over its bipolar equivalent, and is used extensively in motor
control and similar applications.

Switched Bipolar Transistor Interfaces

One advantage of the bipolar junction transistor (BJT) is that there are only
two basic types, NPN and PNP, so it is easier to design with. It is a current
amplifier, that is, a small base current controls a larger (typically � 100)
current in the collector. The emitter is the common terminal as far as current
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flow is concerned (Figure 8.1 (a)). In the equivalent circuit (Figure 8.1 (b)),
the base behaves as a diode junction, with a forward volt drop about 0.6 V
in normal operation. The base current controls a current source, which rep-
resents the collector–emitter junction. The NPN has conventional current
flow out of the emitter, and the PNP into the emitter. This is indicated by the
arrowhead in the transistor symbol. The NPN is illustrated in Figure 8.1.
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Figure 8.1 Bipolar transistor: (a) terminals; (b) equivalent circuit; (c) simple interface circuit
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In the most common configuration, a signal is connected to the base of the
transistor via a current limiting resistor (Figure 8.1 (c)). This then controls the
larger current flow in a load connected to the collector. This is referred to as
common emitter operation. We are assuming that the input to the interface is
coming from the MCU output port. �5 V applied to the base resistance causes
the transistor to switch on, drawing current through the load resistor, and caus-
ing the voltage at the collector to go low. The supply voltage to the transistor
can be some higher value (12 V in this case), which allows more power to be
dissipated in the load for a given collector current.

The circuit can be biased with a voltage divider on the base to operate as a
linear amplifier, but this option is explained in detail in most introductory
electronics texts, and will not be considered further here. We will focus on the
switching mode of operation where the output voltage swings over its full
range, and the transistor is saturated when on. In this case, the output voltage
can be close to zero. Almost the full supply voltage is applied across the load,
and a current flows, which depends on the load resistance value. A simple re-
sistor load will act as a small heater, dissipating power P � V 2/R.
Alternatively, a filament lamp will convert some of this power into light, or a
motor into torque.

When the transistor is off, the output is pulled up to supply via the load re-
sistance, and the load no longer dissipates power, as the voltage across it and
the current through it are both low. The transistor dissipation is given as PT �
Vc Ic, where Vc and Ic are the collector voltage and current. When the transistor
is off, Ic is small, and when the transistor is on, Vc is small, so that in both cases
the transistor dissipates only a small amount of power. Therefore, minimal
power is wasted in the transistor, and it may not need a heat sink, unless oper-
ating at a high switching frequency.

The PNP transistor operates in the inverse mode, with all current flows re-
versed. This may be useful with negative supplies or to provide a grounded load.

In Figure 8.2, some bipolar switching circuits are illustrated; in each case the
transistor is on, and the same base and load resistors are used for comparison.
In circuit (a), the basic common emitter switch is shown, using a �12 V load
supply. The current gain is 118/4.3 � 27, relatively low because the TIP31 is a
power transistor, which generally has a lower current gain (specified as hFE).
The power dissipated in the load is about 118 mA � 11.8 V � 1.4 W. The
switch simulates the MCU output operating at TTL levels. The load, however,
has to be connected to the positive output supply, which may not be convenient.

In circuit (b), the load has one terminal connected to ground, so when it is
off, both load terminals are at 0 V, which is generally preferred. The disadvan-
tage here is that it is not so easy to interface to a higher voltage output supply,
so �5 V is used to supply the transistor. The current gain is higher (40), but
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the power output is limited (122 mW). By changing to a PNP transistor in cir-
cuit (c), the common emitter configuration can be used with a grounded load.
The power output is increased to 240 mW with the same supply voltage.

FET Interfaces

One advantage the FET has over the bipolar transistor is its high input imped-
ance. There is a considerable variety of types, depending on the construction
and characteristics, so we will concentrate here on one device that has the most
convenient operating parameters: the VN66. This can handle up to about 1 A,
and operates with its input switching between 0 V and 5 V, so it can be con-
nected directly to digital outputs. 

As can be seen in Figure 8.2 (d), the input current is extremely small, around
10�27 A, because it is an insulated gate (IGFET) device. The channel (load)
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Figure 8.2 PNP and common collector: (a) common emitter switch; (b) common collector
grounded load; (c) PNP CE switch grounded load; (d) FET interface
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current is controlled by the voltage at the gate (input), and negligible input cur-
rent is drawn, giving almost infinite current gain. The power dissipation in the
load is limited to 245 mW, because there is a significant forward resistance as-
sociated with the FET channel.

The FET therefore provides very high current gain, negligible loading on the
MCU output and convenient interfacing if the appropriate device is selected.
To avoid noise effects at the high impedance input, loading to ground is
needed: the LED performs this function and indicates the output condition if
enough current is available from the MCU output to operate it.

Relays & Motors

In control systems, the load on the output circuit of the MCU is often an elec-
tromagnetic device. This includes any actuator which uses a coil to convert
electrical energy into motion, such as a solenoid, relay, loudspeaker or motor.
When current is passed through a coil, the resulting magnetic field interacts
with another magnet (permanent or electrically powered) or simple soft iron
core. A solenoid is simply a coil containing a steel pin or yoke, which is at-
tracted to the electromagnetic coil by the induction of an opposing magnetic
pole. This motion can be used to operate a valve, a set of electrical contacts
(relay) or any other mechanical device. In a motor, a set of coils interacts with
permanent magnets or electromagnets to create a turning force and rotation.

Relay

Figure 8.3 shows the most common electromagnetic devices. The relay (a)
consists of a coil that attracts a pivoted mild steel yoke, which in turn operates
a set of changeover contacts. These are used to control an output circuit, which
will usually control a high power load circuit. The relay provides complete
electrical isolation, and a very high off resistance (air gap). Unfortunately, it is
generally unreliable due to wear and sparking at the contacts, and is slow, be-
cause of inertia in the switch mechanism.

DC Motor

The simple DC motor (b) has a rectangular conductor, representing the arma-
ture windings, set in a magnetic field. The field may be provided by permanent
magnets in small motors, or field windings in larger ones. A current is passed
through the conductor, which causes a cylindrical magnetic field around it.
This interacts with the planar magnetic field provided by the field magnets or
windings, causing a tangential force on the rotor, which provides the motor
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torque. To allow for rotation, the current is supplied to the armature via slip
rings and brushes. In order to maintain the torque in the same direction, the
current has to be reversed every half revolution, so the slip ring is split to form
a commutator.
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Figure 8.3 Electromagnetic devices: (a) relay operation; (b) basic motor configuration;
(c) motor operating principle
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A cross section is shown in (c). The current in and out of the page is repre-
sented by the cross and the dot on the respective rotor conductors. The circular
rotor field caused by the rotor current is not shown (for clarity), but it is gener-
ated according to the right-hand screw rule. The distortion of the magnetic field
due to the interaction with the rotor field can be seen. If you imagine the field as
elastic bands, the force is generated as though the bands are trying to straighten.

Real Motors

The single turn armature described above needs further development to pro-
vide reasonable efficiency, output power and torque, principally by adding
turns to the armature and rotor to increase the field strength. Small DC motors
typically have a small number of armature windings with a permanent field
magnet. It is a useful exercise to take apart a small, cheap, modelling DC
motor and study its construction. It will typically have three armature windings
and a six-segment commutator. The asymmetric windings provide more con-
sistent torque as the rotor moves through a complete revolution. 

The brushes and commutator are a weak point in the traditional motor
design; mechanical wear and sparking which occurs as the current switches
means that the DC motor is relatively unreliable, with limited operating life.
Brushless DC motors improve on this by using a permanent magnet rotor,
which eliminates the need to supply current to the armature, but these are lim-
ited in size and power. Similarly, stepper motors use a rotating magnetic field
to move a passive rotor. They can be moved one step at a time, and can there-
fore be positioned accurately without feedback, but are complex to drive,
inefficient and limited in power.

Larger motors tend to be three-phase AC motors. These use a rotating magnetic
field generated by the three phases of the supply grid, giving high efficiency
and output power in a compact unit, and an accurate, constant speed, usually
3000 rpm from a 50 Hz supply (1 revolution per cycle). 

Power Output Interfacing

Figure 8.4 shows a selection of power output interfaces. The PIC has a simple
program attached, which simply switches on each output in turn when the but-
ton is pressed.

Relay Interface

A relay can be used for either DC or AC loads, as the switch contacts will hap-
pily conduct in both directions. The relay coil is powered by a bipolar transistor,
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since the PIC cannot provide enough current. When the coil is activated, the con-
tacts change over, completing the load circuit, which operates a lamp. Other high
power loads such as heaters and motors can also be interfaced in this way, as long
as simple on–off, but infrequent, switching is needed. The transistor is selected
for sufficient collector current handling, and the base resistor to give plenty of
base current, which is calculated from the required coil current:

Coil current � 40 mA � collector current

� Base current � 40 mA/100 � 400 �A

� Base resistor � (5�0.6) � 400 � 10�6 � 17.6 k� � 10 k�

The relay has a diode connected across the coil; this is a sensible precau-
tion for all DC inductive loads (anything with a coil such as a motor or 
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solenoid). When the coil is switched off, a large reverse voltage may be gen-
erated as the magnetic field collapses (this is the way the spark is generated
in a car ignition). The diode protects the transistor from the back EMF by
forward conduction. In normal operation, the diode is reverse biased and
has no effect.

The relay is selected for the load current and voltage requirements, and the
interface designed to provide the necessary coil operating current. However, it
is slow, consumes a fairly large amount of power (40 mA � 5 V � 200 mW),
and is relatively unreliable.

The relay provides low on resistance and high off resistance. However, it
wastes a relatively large amount of power in the coil, is slow and unreliable due
to wear on the contacts. An alternative is the solid-state relay, which is typi-
cally designed to switch AC loads from digital outputs with a solid-state de-
vice. It contains TTL buffering, isolation and triac (see below) drive in one
package, with high reliability and switching speed. 

Triac Interface

A relay can be used to control a DC or an AC load, as it operates as a me-
chanical switch. However, it has significant disadvantages, as outlined above.
A solid-state switch, such as a transistor, is inherently more reliable, since it
has no moving parts; but the transistor can only handle current in one direc-
tion, so is unsuitable for AC loads. The thyristor is an alternative type of solid-
state switch; it has a latching mode of operation such that when switched on,
it stays on, until the current falls to zero. It can therefore be pulse operated, and
used to rectify AC current. By switching on at different points in the AC cycle,
the average current can be controlled, allowing the power to the load to be var-
ied. However, it only passes current in one direction, providing DC power only.

The triac is basically two thyristors connected back to back, with a common
gate (trigger) input, allowing current flow in both directions. The full AC wave
can then be utilised, with switching at the same point in the positive and neg-
ative half cycles of the current. A microcontroller can be used to carry out this
function; the AC signal is monitored through its cycle, and the thyristor
switched on at the required point in the cycle using a timer. 

In Figure 8.4, a simple MCU triac interface is shown. An opto-coupler is
used to isolate the control system from the high voltage load circuit. This con-
tains an LED and phototransistor, which conducts when the light from the
LED falls on its base. There is therefore no electrical connection between the
two devices, and it will isolate output circuits operating at high voltage. When
the MCU output is high, the opto-switch is on, and the voltage at terminal 1 of
the triac is applied to the gate, turning the triac on when the voltage passes
through zero. When the switch is off, the triac does not come on. 
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This example is manually controlled, but the output power could be controlled
by monitoring the AC voltage via a feedback voltage divider and sampling it at
an analogue input. An MCU timer would then be employed to control the delay
between the zero crossing point in the cycle and the trigger point, where the
triac is switched on each half cycle. A block diagram for this system is shown
in Figure 8.5 (c).
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Figure 8.5 Thyristor and triac control: (a) thyristor; (b) triac; (c) MCU control
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Oscillator Interface

If an output is required at a set frequency, it can be generated in a variety of
ways. A software loop can set the output, delay, clear the output, delay and re-
peat. However, this will prevent the processor from carrying out other useful
tasks in the meantime. Using a hardware timer and interrupts is one option; but
if these MCU resources are required for other tasks, the oscillator function can
be delegated to external hardware, so that the MCU simply switches an output
to enable the oscillator. 

A simple low-frequency oscillator can be implemented using a 555 Timer
chip; the same chip can also be used for generating timed pulses and delays. In
Figure 8.4, it drives a loudspeaker via a bipolar transistor. Input R on the chip
enables the oscillator, and C2 controls the frequency.

This is an illustration of a very important design principle. A given interface can
be implemented principally in hardware or software. The software implementa-
tion will use more MCU resources in terms of both the available peripheral inter-
faces, processor time, and programming effort. The hardware approach saves on
these resources, but involves additional cost, both in hardware design effort and
components for each system produced. Software, on the other hand, once written,
has a negligible reproduction cost.

Motor Interfacing

As discussed above, the basic function of a motor is to convert electrical input cur-
rent into output mechanical power (torque). All use electromagnetic coils to pro-
vide this conversion, and need current switches or amplifiers to operate them
from an MCU. 

A simple method of controlling AC motors is to use a relay as switch.
Another is to use a triac to control the current, as outlined above, but in prac-
tice there are some tricky issues associated with controlling inductive loads
with thyristors and triacs which require reference to specialist texts. Three-
phase motors require, in simple terms, each phase to be controlled by a sepa-
rate device, but simultaneously, that is, three relays or triacs operated by the
same controller. 

Three typical small motor interfaces are shown in Figure 8.6, a DC motor, a
DC servo and a stepper motor. The motors can be operated in turn by pressing
the select button. Operating parameters (speed, position, direction) can then be
changed via the additional push buttons. The control program outline is given
in Figure 8.7, and the source code in Program 8.1. The operation of each in-
terface will be explained in turn.
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PWM Speed Control

The DC motor is controlled from the PWM output of the PIC MCU (see
Chapter 6), via a power FET VN66. This has an operating current of about 1 A
maximum, giving a maximum motor input rating of 12 W at the operating
voltage of 12 V. The motor characteristics can be set in the simulation, so a
minimum motor resistance of about 10 � would be suitable, as the FET itself
has a forward resistance of about 1 �.

The VN66 is a convenient device to use as it operates at TTL level gate volt-
ages; that is, 0 V switches it off, �5 V switches it on (threshold about 1 V). It
has a very high input impedance, so reliability is improved by adding shunt
resistance to the gate, to improve the noise immunity. The diode across the
motor is required to cut off the back EMF from the inductive load.

When the system is started and the DC motor selected, a default PWM
output is generated with 50% mark/space ratio. The MSR (mark space ratio)
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; Project: Interfacing PICs  
; Source File Name: MOTORS.ASM 
; Devised by: MPB 
; Date: 19-8-05 
; Status: Working 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
;  Demonstrates DC, SERVO & STEPPER MOTOR control 
; Select motor and direction using push button inputs 
; DC Motor PWM speed control - working 
; DC Servo position control - rollover not fixed 
; Stepper direction control - working 
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 PROCESSOR 16F877 
; Clock = XT 4MHz, standard fuse settings 
 __CONFIG 0x3731 

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877A.INC"  
; standard register labels  

;---------------------------------------------------------- 
; User register labels 
;---------------------------------------------------------- 

Count1 EQU 20 ; delay counter 
Count2 EQU 21 ; delay counter 
Target EQU 22 ; servo target position 

;---------------------------------------------------------- 
; PROGRAM BEGINS 
;---------------------------------------------------------- 

ORG 0 ; Default start address  
NOP ; required for ICD mode 

;----------------------------------------------------------  
; Port & PWM setup 

init NOP 
BANKSEL TRISB ; Select control registers 
CLRF TRISC ; Output for dc motors 
CLRF TRISD ; Output for stepper 
MOVLW B'00000010' ; Analogue input setup code 

; PortA = analogue inputs 
; Vref = Vdd 

MOVWF ADCON1 ; Port E = digital inputs 
MOVLW D'249' ; PWM = 4kHz 
MOVWF PR2 ; TMR2 preload value 

BANKSEL PORTB ; Select output registers 
CLRF PORTC ; Outputs off 
CLRF PORTD ; Outputs off 
MOVLW B'01000001' ; Analogue input setup code 
MOVWF ADCON0 ; f/8, RA0, done, enable  
MOVLW D'128' ; intial servo position 

 MOVWF Target 

;---------------------------------------------------------- 
; MAIN LOOP 
;---------------------------------------------------------- 

but0 BTFSC PORTE,0 ; wait for select button 
 GOTO but0

MOVLW B'00001100' ; Select PWM mode 
 MOVWF CCP1CON ;

MOVLW D'128' ; PWM = 50% 
 MOVWF CCPR1L ; 

but1 BTFSS PORTE,0 ; wait for button release 
 GOTO but1

CALL motor ; check for speed change 
BTFSC PORTE,0 ; wait for select button 

 GOTO but1
MOVLW B'00000000' ; deselect PWM mode 

 MOVWF CCP1CON ;
CLRF PORTC ; switch off outputs 

but2 BTFSS PORTE,0 ; wait for button release 
 GOTO but2

CALL servo ; move servo cw or ccw 
BTFSC PORTE,0 ; wait for select button 

 GOTO but2
CLRF PORTC ; switch off servo 

but3 BTFSS PORTE,0 ; wait for button release 
 GOTO but3

CALL step ; output one step cycle  
BTFSC PORTE,0 ; wait for select button 
GOTO but3
CLRF PORTD ; disable stepper outputs 

GOTO but0 ; start again 

Program 8.1 Motor control program
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;----------------------------------------------------------- 
; SUBROUTINES 
;----------------------------------------------------------- 

; Change dc motor speed by one step and wait 1ms 
; to debounce and control rate of change.................... 

motor BSF PORTC,1 ; switch on motor LED 

BTFSS PORTE,1 ; inc speed? 
 INCF CCPR1L ; yes 

MOVLW D'248' ; max speed? 
 SUBWF CCPR1L,W 
 BTFSS STATUS,Z 
 GOTO lower ; no 

DECF CCPR1L ; yes - dec speed 

lower BTFSS PORTE,2 ; dec speed? 
DECFSZ CCPR1L ; yes - min speed? 
GOTO done ; no 
INCF CCPR1L ; yes - inc speed 

done CALL onems ; 1ms debounce 
 RETURN

; Move servo 10 bits cw or ccw................................ 

servo BSF PORTC,4 ; switch on servo LED 
BSF PORTC,7 ; enable drive chip 

BTFSC PORTE,1 ; move forward? 
 GOTO rev ; no 

wait1 BTFSS PORTE,1 ; yes- wait for button.. 
 GOTO wait1 ; ..release 

MOVLW D'10' ; add 10...  
ADDWF Target ; ..to servo target position 

 BSF PORTC,5 ; move.. 
BCF PORTC,6 ; .. forward 

getfor CALL getADC  ; get position 
BSF STATUS,C ; set carry flag 
MOVF Target,W ; load position 
SUBWF ADRESH ; compare with target  
BTFSS STATUS,C ; far enough? 
GOTO getfor ; no - repeat 

BCF PORTC,5 ; yes - stop 
MOVLW D'250' ; wait 250ms .. 
CALL xms ; .. before next step 

rev BTFSC PORTE,2 ; move reverse? 
 RETURN ; no 

wait2 BTFSS PORTE,2 ; yes- wait for button.. 
 GOTO wait2 ; ..release 

MOVLW D'10' ; yes - sub 10 from...  
SUBWF Target ; .. servo target position 
BCF PORTC,5 ; move .. 

 BSF PORTC,6 ; ..reverse 

getrev CALL getADC  ; get position 
BSF STATUS,C ; set carry flag 
MOVF Target,W ; load position 
SUBWF ADRESH ; compare with target  
BTFSC STATUS,C ; far enough? 
GOTO getrev ; no - repeat 

BCF PORTC,6 ; yes - stop 
MOVLW D'250' ; wait 250ms .. 
CALL xms ; .. before next step 

 RETURN

; Output one cycle of stepper clock......................... 

step BSF PORTD,0 ; switch on stepper LED 
BSF PORTD,1 ; enable stepper drive 

BTFSS PORTE,1 ; test cw button 
BSF PORTD,2 ; select clockwise 
BTFSS PORTE,2 ; test ccw button 
BCF PORTD,2 ; select counter-clockwise

BSF PORTD,3 ; clock high 
MOVLW D'25' ; load delay time 

 CALL xms 
BCF PORTD,3 ; clock low 
MOVLW D'25' ; load delay time 

 CALL xms 

 RETURN

; Stepper software delay ................................... 

xms MOVWF Count2 ; receive x ms in W 
down2 CALL onems 
 DECFSZ Count2 
 GOTO down2 
 RETURN

onems MOVLW D'249' ; delay one millisec 
 MOVWF Count1 
down1 NOP 
 DECFSZ Count1 
 GOTO down1 
 RETURN

; Read ADC input and store ................................. 

getADC BSF ADCON0,GO ; start ADC.. 
wait BTFSC ADCON0,GO ; ..and wait for finish 
 GOTO wait

MOVF ADRESH,W ; store result, high 8 bits 
 RETURN
;---------------------------------------------------------- 

END ; of source code 

Program 8.1 Continued
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can then be increased and decreased using the up/down buttons. Note that the
software has to check each time the MSR is modified for the maximum (FF)
or minimum (00) value, to prevent rollover and rollunder of the PWM value.

DC Motor Position Control

DC motors cannot be positioned accurately without some kind of feedback; in
applications such as printers and robot arms, the DC motors have feedback de-
vices, which allow the controller to monitor the motor shaft position, speed or
acceleration. 

In digital control systems, this is usually achieved by using a slotted wheel
and opto-sensor attached to the motor shaft. This may often be followed by a
gearbox in the drive chain, for example, in robot arm where the output range
of movement is less that 360°. The controller counts the pulses from the wheel
to determine how far the output has moved; also, the pulse frequency can be
converted to speed. In a printer, the linear position of the print head is moni-
tored by a graduated strip attached to the traverse mechanism. The accuracy of
the system can be further improved by interpolation; this means the reference
strip has a sinusoidal pattern so that each cycle can be subdivided by a contin-
uous variation in the sensor signal.

The system block diagram shown in Figure 8.7 represents a general purpose
position or speed controller. The motor has a slotted or perforated wheel
attached. Say there are 100 slots, then there will be 200 edges, giving a reso-
lution of 360/200 � 1.8°. The motor is driven via a current amplifier with a
PWM signal; the speed can then be controlled, and ramped up and down to
prevent the motor from overshooting the target position. The MCU may act as
a slave device, receiving a position or speed command from a master con-
troller, carrying it out, and then signalling completion of the operation.

An alternative speed control system could use a tachogenerator to measure the
speed. This is a small DC generator that outputs a voltage or current in proportion
to the speed of the shaft, operating in the inverse mode to a DC motor. The
analogue tacho signal can then be used to control the speed. Analogue position
control is even simpler, in principle. A pot is attached to the motor shaft, and pro-
vides a voltage, which represents the position. An all analogue position controller
can be implemented with op-amps, which will position the output according to an
analogue input signal from a pot, DAC or amplifier. The main problem is that the
pot only has a range of about 300°, and may not allow continuous rotation.

A servo motor is one that incorporates a position feedback element. In Figure
8.6, the DC servo has a built-in pot, which provides a voltage representing the
position, between �5 and 0 V. The motor is driven from an L6202 full bridge
driver. This is an IC, which provides drive to the motor in either direction under
digital control. A block diagram of the chip is shown in Figure 8.8.
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MOTORS
Test DC motor PWM speed, DC position step servo and 
stepper motor direction with push button inputs, using P16F877 (4MHz) 

Main
 Initialise 

Port A = Analogue inputs, servo pot = RA0 
Port C = Outputs, DC motors
Port D = Outputs, stepper motor 
Port E = Digital inputs, push buttons: Select, Up, Down
PWM rate = 4kHz 
Servo target value = 128

Wait for ‘Select’ button
 REPEAT 

Select PWM mode, 50% MSR 

REPEAT 
 CALL Motor
UNTIL ‘Select’ button pressed again

REPEAT 
CALL Servo 

UNTIL ‘Select’ button pressed again 

REPEAT 
 CALL Step
UNTIL ‘Select’ button pressed again

 ALWAYS

Subroutines
Motor 

IF ‘Up’ button pressed
Increment speed unless maximum

IF ‘Down’ button pressed
Decrement speed unless minimum

RETURN

Servo
IF ‘Up’ button pressed

Add 10 to target position
Move forward, until target position reached

IF ‘Down’ button pressed
Subtract 10 from target position
Move reverse, until target position reached

RETURN

Step
IF ‘Up’ button pressed

Select forward mode
IF ‘Down’ button pressed

Select reverse mode
Output one drive pulse 
RETURN

Figure 8.7 Motor test program outline
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The bridge circuit contains four power FETs connected such that when two
are switched on together, current flows through the load. When the other pair
is on, the current in the load is reversed. In a motor, the direction of rotation is
reversed. The FETs are represented as simple switches. They are controlled
from a simple logic circuit (see the L6202 data sheet), as summarised in the
function table. Forward and reverse are selected by setting the IN1 and IN2 in-
puts to opposite logic states. 

The chip operates from the motor supply voltage (�12 V) and the digital
logic supply is derived from it, so no separate �5 V supply is needed. A
current sensing resistor can be inserted in the 0 V connection, so that the
current flow in either direction can be monitored for control purposes.
Bootstrap capacitors must be fitted as shown in Figure 8.6 to ensure reliable
switching of the bridge FETs. Although the FETs are protected internally with
diodes, a series CR snubber network is connected across the output terminals
to further protect the driver chip from current switching transients.

The test program allows the user to move the servo in steps. The required
position is represented by an 8-bit number, which is initially set to the mid-
value of 128. If the ‘up’ button is pressed, the value is increased by 10, and the
servo started in the forward direction. The actual position is monitored from
the servo pot voltage read in via AD0. When the input value matches the tar-
get value, the drive is stopped. The servo is moved in the reverse direction in
the same way.

Stepper Motor Control

The third subcircuit in Figure 8.6 is the stepper motor interface. This also uses
dedicated hardware, because a current driver chip would be needed in any
case, and the stepper controller incorporates sequencing logic, which reduces
the software burden. The stepper motor has a set of windings distributed
around the stator, and a passive rotor, with fixed or induced magnetic poles.
Incremental movement of the rotor is achieved by activating the windings in a
suitable sequence.
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Figure 8.8 Digital position control system
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In Figure 8.9 (a), the stepper motor stator has 16 poles and the rotor 4
north poles which are attracted to the active pairs of rotor south poles. There
are four sets of windings, A, B, C, D, connected sequence around the stator.
These windings have their other ends connected to common terminals.
This gives a total of six connections to the motor, with two pairs of centre-
tapped windings. This allows the motor to be driven in different modes,
while keeping the number of connections to a minimum. In the test circuit,
the common terminals are connected to the power supply (�12 V), and the
individual coil terminals driven from the sequencer (active low) (Figure
8.10). 

In normal, full-step mode, the coil sets are activated in pairs (Figure 8.9 (b))
and the rotor moves half a pole per step, giving 24 steps per revolution. The
step size is then 360/24 � 15°. This mode provides full torque but lower posi-
tional resolution. In half-step mode, the rotor moves by a quarter pole per step,
7.5°, providing twice as many steps per revolution, but less torque, since only
one coil pair is activated at a time. 

There are two chips forming the stepper drive interface. The L297 controller
provides the stepping sequence on outputs A, B, C and D, and the L298 full
bridge driver provides the drive current needed by the motor windings. The
drive mode (full or half step) is fixed in full step by tying the step mode select
input low. The active low reset is tied high. The MCU provides an enable sig-
nal, and selects the direction of rotation (clockwise (CW) or counter-clockwise
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(a)

(b)

EN IN1 IN2 S1 S2 S3 S4 Motor
0 x x off off off off off 
1 0 0 off ON off ON off 
1 1 0 ON off off ON FORWARD
1 0 1 off ON ON off REVERSE
1 1 1 ON off ON off off 

DC
Motor

Control
Logic 

IN1

IN2

ENABLE

+12V

S1   S2

S3   S4

Vs OUT1 

OUT2

SENSE

Figure 8.9 Full bridge driver: (a) block diagram; (b) function table
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(CCW)), and the test program outputs clock pulses at a frequency of 20 Hz, so
that the stepping effect can be seen. When the stepper test is selected in the
MCU program, the motor rotates CW by default, with the ‘down’ button
changing the direction to CCW, and the ‘up’ button back to CW.

If the windings are left active in any position, that position can be held
against a load torque. Even when powered down, stepper motors tend to have
a residual torque, which holds the shaft in the last position selected, until an
external torque is applied. Thus, the motor can be moved and held to a set
angle, without feedback.
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Figure 8.10 Stepper motor operation: (a) windings sequence; (b) drive sequence (normal
mode)

Else_IPM-BATES_ch008.qxd  6/27/2006  2:25 PM  Page 197



However, there is a lower limit to the step time required, which translates into
a maximum operating frequency and speed. If starting from stationary, the
speed may need to be increased gradually, until the rotor inertia gained will
allow the motor to run at its maximum speed. The speed also needs to be
ramped down when stopping, if correct position is to be maintained. 

SUMMARY 8

• Power loads on MCU systems need a current amplifier or switch
• The bipolar transistor has current gain of 20–200 with low input resistance
• The FET provides a voltage controlled current with high input resistance
• The relay is an electromagnetic coil-operated switch
• The DC motor converts current into torque
• AC loads need a thyristor or triac to control the load current
• The speed of a DC motor can be controlled by PWM
• A DC servo provides analogue position feedback
• A shaft encoder provides digital speed and position feedback
• The stepper motor can be positioned without feedback

ASSESSMENT 8 Total (40)

1 State how an NPN and PNP resistor can be differentiated on a schematic, and 
a notional value for the base-emitter volt drop and the typical current gain. (3)

2 Describe the useful characteristics of the VN66 FET. (3)

3 State two advantages and one disadvantage of the relay as an interface device. (3)

4 Explain why the DC motor needs a commutator, and the problems this causes. (3)

5 Explain the main functional difference between a thyristor and triac. (3)

6 Explain how an oscillator can be implemented in hardware or software. (3)

7 Explain how PWM allows the dissipation in a power load to be controlled. (3)

8 Explain, using a suitable diagram, how a bridge driver allows a DC motor to 
drive in both directions. (3)

Interfacing PIC Microcontrollers
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9 Sketch the waveforms used to drive a typical stepper motor, and their meaning. (3)

10 A stepper motor has a step size of 15°. Its maximum step rate is 100 Hz. 
Calculate the maximum speed in revs per second. (3)

11 Calculate the speed of a shaft in rpm if the MCU timer connected to a shaft 
encoder with 50 slots counts 200 in 100 ms. (5)

12 Compare the advantages and disadvantages of the DC and stepper motor for 
position control. (5)

ASSIGNMENTS 8

8.1 DC Motor Speed Control

Obtain two small DC permanent magnet motors, mount them in line and con-
nect the shafts together using a suitable flexible coupling, as a motor and
tachogenerator. Apply a variable voltage supply to one motor and note the out-
put voltage from the other (generator). Interface the motor to an MCU with
analogue input for unidirectional PWM drive. Write an application program to
operate the system under closed loop control. Drive the motor at a default mid-
range speed, while comparing the tacho output with a set value. Use push
buttons to increment and decrement the speed, and a two-digit display show-
ing the speed in revs per second.

8.2 Stepper Motor Characteristics

In the simulation software, select the standard stepper motor drive chip, and
connect up the interactive stepper motor. Operate the stepper drive clock
from a push button input and note the output sequence obtained. Draw 
the input clock and outputs accurately on a time axis and compare with
Figure 8.9(b). 

Obtain the data sheet for a stepper motor, and examine the torque/speed
characteristic, and specifications for holding torque. Explain the significance
of this characteristic in designing a robot arm with a stepper drive.
Consider the maximum speed of operation and load handling for a single
arm section, which is rotating in a vertical plane directly driven with a
stepper motor at one end and a load at the other, starting from the horizontal
position.

Power Outputs
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8.3 AC Power Control

Convert the block diagram for AC control (Figure 8.5(c)) into a simulation
circuit. Write a control program which samples the instantaneous AC supply
voltage and triggers the triac at around the peak voltage. Incorporate push
buttons to increment and decrement the power delivered. Display the output
current on the virtual oscilloscope.

Interfacing PIC Microcontrollers
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9

Serial Communication

Serial communication only requires one signal connection, so the total number
of hardware connections in a data link can be reduced to two or three, includ-
ing ground. A synchronous link may have a clock signal alongside the data, for
timing the transfer; an asynchronous one does not. This simplifies the wiring
where there are numerous peripheral devices for the MCU to communicate
with, or the connection is long distance. Within the microcontroller domain,
we tend to use the simpler forms of serial communications; the three PIC
16F877 serial interfaces described here are the USART, SPI (Serial Peripheral
Interface) and I2C (Inter-Integrated circuit).

USART

The Universal Synchronous Asynchronous Receiver Transmitter (USART)
provides the type of basic serial communication originally developed for dumb
terminals to communicate with mainframe computers; it was later adopted for
the COM port of the PC to interface to the mouse and other serial peripherals.
When converted into a higher transmission voltage, for distance transmission,
it is known as RS232. It can therefore, with additional interfacing, be used by
the PIC to communicate with a PC. It is therefore helpful for us that the PC re-
tains a standard COM port (9-pin D-type connector), even though, in general
use, it has been superseded by USB. Compared with the USART, USB is fast,
but complex, being more akin to a networking protocol; for this reason, it is

Else_IPM-BATES_ch009.qxd  6/29/2006  11:40 AM  Page 201

201



not yet commonly provided in microcontrollers. RS232 is also the protocol
used to connect to the standard PIC programmer to a host PC.

PIC USART

In the PIC 16F877, the USART is accessed through pins RB6 and RB7. It has two
modes of operation, synchronous (using a separate clock signal) and asynchro-
nous (no clock connection). The asynchronous mode is probably used more often,
as other methods of synchronous transmission are available in the PIC, as we will
see. In asynchronous mode, RB6 acts as a data transmit (TX) output, and RB7 as
data receive input (RX) (16F877 data sheet, section 10.2). Data is usually trans-
mitted in 8-bit words (9 is an option), with the least significant bit sent first. The
receiver must sample the input at the same rate as the data is sent, so standard
clock (baud) rates are used. 9600 baud is used in our example here, meaning that
the bits are transmitted at about 10k bits/s. Separate transmit and receive lines are
used, so it is possible for these operations to be carried out simultaneously.

In the block diagram in Figure 9.1, the PIC is connected to a PC. The PIC
USART output itself operates at TTL voltages, and needs an external serial
line driver to convert its output into a higher symmetrical line voltage. This
is necessary because a simple baseband data signal is attenuated down a line,
due to the distributed resistance and capacitance of the cabling. The standard
RS232 interface operates with a higher line voltage so that the signal can be

Interfacing PIC Microcontrollers
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Figure 9.1 USART: (a) connections to PC; (b) signal at PIC port
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transmitted further before being overcome by noise and interference. A typical
link distance for RS232 is around 10 m with symmetrical voltages of up to
�/�25V. �/�12 V is more typical. The signal is also inverted with respect to
the TTL version as shown in Figure 9.1 (b).

We will assume initially that the MCU is transmitting. The sender and receiver
have to be initialised to use the same baud rate, number of data bits (default 8)
and number of stop bits (default 1). The transmit (TX) output is high when idle
(external line negative). When the serial buffer register (TXREG) is written, the
data is automatically sent as follows. The start of the byte transmission is sig-
nalled by the line going low for one clock period (start bit). The following 8 bits
are then output from the transmit register, at intervals determined by the selected
baud rate. In the diagram, the bits are shown as both high and low, to indicate
that either is possible, depending on the particular data word. After the last data
bit, the line is taken high by the transmitter for one clock period (stop bit), and
that is the end of that transmission. The line is left high if there is no more data;
another word can be transmitted after a delay, or immediately following. The pro-
tocol is thus about as simple as it is possible to get. The data is often ASCII
coded, as the USART is frequently used to transmit character-based messages.

The receiver must be initialised to read in the data at the same baud rate. At
9600 baud, the bit period is about 100 �s. When the falling edge of the start bit
is detected, the receiver must wait for 1.5 bit periods, then sample the line for
the first data bit (LSB), read the next after a further clock cycle and so on until
the set number of bits has been read in. The stop bit confirms the end of the
byte, and another transmission can start. An interrupt flag is used to signal to
the receiver MCU that there is data waiting. It must be read from RCREG be-
fore the next byte arrives.

The PIC data sheet has details of the operation of the USART interface. The
data is loaded into TXREG (FSR 19h) and transferred automatically to the
transmit register when it is ready to send. The shift clock is derived from a
baud rate generator, which uses the value in SPBRG (FSR 99h) in its counter.
This counter has a post-scaler which divides the output by 16 or 64, depend-
ing on the setting of control bit BRGH, so that all the standard baud rates can
be achieved using an 8-bit counter. The value to be pre-loaded into this regis-
ter to obtain a given baud rate is listed in tables in the MCU data. The error as-
sociated with each counter value and post-scaler setting is also specified, so
that the best option can be selected. The value 25d is used in the demo pro-
gram, with BRGH � 1 giving an error of only 0.16% from the exact value for
9600 baud. However, a considerable error can be tolerated because sampling
only needs to be synchronised over 10 or 11 cycles at the receiver (start � 8/9
data � stop bit). It can be seen from these tables that the error can be up to
10%, and the system should still work.

Serial Communication
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Test System

The USART test system is shown in Figure 9.2. A simulated terminal is connected
to the USART port, and an oscilloscope allows the data signal to be observed. A
BCD-encoded 7-segment display is attached to Port D to display the data as they
are received by the MCU. It displays the decimal digit for a 4-bit pure binary input. 

When the system is started, the PIC generates a user prompt for the virtual
terminal, which then waits for the user to input characters at the keyboard. The
terminal displays the input character and generates corresponding ASCII code
in RS232 format, which is received by the PIC. The code is read from RXREG,
and a BCD value is derived (subtract 30h) and output on the BCD display; only
numerical characters give the correct display.

The test program is outlined in Figure 9.3, and the source code in Program 9.1.
Once the USART module has been initialised, a code is transmitted and received
by simply writing or reading the port buffer registers. To send, the byte is moved
into TXREG, and the program then waits for the corresponding interrupt
flag, TXIF, to be set. To receive, the reception-enable bit, CREN, is set, and
the program waits for the interrupt bit, RCIF, to be set to indicate that a byte
has been received in RCREG. This is then copied to a suitable storage location
for processing. The USART module handles the received and transmit protocols
transparently.

Interfacing PIC Microcontrollers
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Figure 9.2 USART simulation
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SPI

The Master Synchronous Serial Port (MSSP) module in the PIC provides
two main types of communication: SPI and I2C (usually pronounced I
squared C). These are used for communication between processors and slower
peripheral devices within a single system. SPI is simpler and faster, using a
hardware addressing system. I2C is more complex, with software addressing,
rather like a simple network protocol, so would be used in larger multi-
processor systems, and for access to serial memory and suitable transducer
interfaces.

SPI is a synchronous protocol, that is, it has a separate clock signal connec-
tion to control the send and receive operations (Figure 9.4). 8-bit data is
clocked in and out of the SPI shift register by a set of eight clock pulses, which
are either internally generated, or detected at the clock input. No start and stop
bits are necessary, and it is faster than the USART in any case, operating at up
to 5 MHz if the MCU clock is 20 MHz. 

Serial Communication
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SERCOM
Program to demonstrate USART operation by
outputting a fixed message to a simulated terminal, 
reading numerical input from it, displaying it in BCD, 
and sending it back to the terminal.

Initialise 
Port D: BCD display outputs
USART: 8 bits, asynchronous mode

9600 baud (4MHz clock)
Enable

Main
Write message from ASCII table to terminal

 REPEAT 
Read input, display and echo

 ALWAYS

Subroutines
Write message from ASCII table to terminal

REPEAT 
Get character from table 
Output to terminal 

UNTIL all done 

Read input, display and echo
Get input character 
Convert to BCD and display
Echo character back to terminal 

Figure 9.3 USART program outline
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; SERCOM.ASM   MPB 10-9-05
;............................................................... 
;  
; Test RS232 communications using the
; USART Asynchronous Transmit and Receive
; 
; The Proteus Virtual Terminal allows ASCII characters  
; to be generated from the keyboard and displayed. 
; The program outputs a fixed message to the display 
; from a table, and then displays numbers input from the 
; terminal on a BCD 7-segment LED display.
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PROCESSOR 16F877 ; define MPU 
__CONFIG 0x3731 ; XT clock (4MHz) 

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877.INC" ; Standard labels

 Point EQU 020 
 Inchar EQU 021 

; Initialise ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Place machine code
NOP ; Required for ICD mode

BANKSEL TRISD ; Select bank 1
 CLRF TRISD ; Display outputs

BCF TXSTA,TX9 ; Select 8-bit tx
 BCF TXSTA,TXEN ; Disable transmission 

BCF TXSTA,SYNC ; Asynchronous mode
BSF TXSTA,BRGH ; High baud rate

MOVLW D'25' ; Baud rate value ..
MOVWF SPBRG ; .. 9600 baud, 4MHz
BSF TXSTA,TXEN ; Enable transmission

BANKSEL RCSTA ; Select bank 0
BSF RCSTA,SPEN ; Enable serial port

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

CALL write ; Message on terminal
readin CALL read ; Get input from terminal

GOTO readin ; Keep reading until reset

; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Write message to terminal......................................

write CLRF Point ; Table pointer = 0 
next MOVF Point,W ; Load table pointer

CALL mestab ; Get character 
CALL sencom ; Output to terminal 
INCF Point ; Point to next
MOVLW D'14' ; Number of chars + 1 

 SUBWF Point,W ; Check pointer 
BTFSS STATUS,Z ; Last character done?
GOTO next ; No - next

 RETURN ; All done

Program 9.1 USART serial communication
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One processor must act as a master, generating the clock. Others act as
slaves, using the master clock for sending and receiving. The SPI signals are
listed below, with the 16F877 pin allocations:

• Serial Clock (SCK) (RC3)
• Serial Data In (SDI) (RC4)
• Serial Data Out (SDO) (RC5)
• Slave Select (!SS) (RA5)

The test system (Figure 9.5) consists of three processors, a master, a slave
transmitter and a slave receiver. The slave transmitter has a BCD switch con-
nected to Port D, which generates the test data. The binary code 0–9 is read in
to the transmitter and sent to the master controller via the SPI link. The send
is enabled via the !SS input of the slave, by an active low signal from the mas-
ter, RC0. The clock is supplied by the master to shift the data out of SSPSR
shift register in the slave, and shift it into SSPSR in the master at the same
time. The master then retransmits the same data to the slave receiver by the
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Program 9.1 Continued

; Read input numbers from terminal...............................

read BSF RCSTA,CREN ; Enable reception
waitin BTFSS PIR1,RCIF ; Character received? 

GOTO waitin ; no - wait

MOVF RCREG,W ; get input character
MOVWF Inchar ; store input character
MOVLW 030 ; ASCII number offset

 SUBWF Inchar,W ; Calculate number
MOVWF PORTD ; display it

 RETURN ; done

; Transmit a character ..........................................

sencom MOVWF TXREG ; load transmit register
waitot BTFSS PIR1,TXIF ; sent?
 GOTO waitot ; no
 RETURN ; yes

; Table of message characters....................................

mestab ADDWF PCL ; Modify program counter 
RETLW 'E' ; Point = 0 
RETLW 'N' ; Point = 1 
RETLW 'T' ; Point = 2 
RETLW 'E' ; Point = 3 
RETLW 'R' ; Point = 4 
RETLW ' ' ; Point = 5 
RETLW 'N' ; Point = 6 
RETLW 'U' ; Point = 7 
RETLW 'M'; ; Point = 8 
RETLW 'B' ; Point = 9 
RETLW 'E' ; Point = 10
RETLW 'R' ; Point = 11
RETLW ':' ; Point = 12
RETLW ' ' ; Point = 13

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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same method. The slave receiver does not need a slave select input to enable
reception, as it is already initialised to expect only SPI data input. 

Each chip needs its own program to operate the SPI port. The three programs
are listed as Programs 9.2 (master), 9.3 (slave transmitter) and 9.4 (slave receiver).
All chips run at 4 MHz, giving an SPI clock period of 1 �s. The SPI outputs (SCK
and SDO) need to be set as outputs in each MCU. The operation is controlled by
SFRs SSPSTAT (Synchronous Serial Port Status register, address 94h) and
SSPCON (Synchronous Serial Port Control register, address 14h).

In the master program, the default-operating mode is selected by clearing all bits
in both of these control registers. SSPSTAT bits mainly provide signal-timing op-
tions. The low nibble of SSPCON sets the overall mode, master or slave (0000 �
master). In the slave transmitter, the bits are set to 0100 (slave mode, slave select
enabled). In the slave receiver, they are set to 0101 (slave mode, slave select
disabled). Bit SSPEN enables the SPI module prior to use in all three processors. 

The slave transmitter initiates the data transfer by simply writing the data read
in from the switches to the SSPBUF (Synchronous Serial Port Buffer). When
clock pulses are input at SCK from the master, the bits in SSPBUF are shifted out
on the falling edge of each pulse. The slave transmitter program waits for the
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(a)

(b)

Master

Serial Data Out, SDO
Serial Data In, SDI
Serial Clock, SCK

Slave Select     SS1
Outputs     SS2

SS3
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Slave 1

SDO 
SDI
SCK 

!SS 

Slave 2

SDO 
SDI
SCK 

!SS 

7     6      5      4     3      2     1      0 

Data bits 

SDO/SDI 

SCK 

Figure 9.4 SPI operation: (a) SPI connections; (b) SPI signals
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SSPIF (SSP Interrupt Flag) to be set to indicate that the data have been sent. In the
master, the clock is started by a dummy write to the SSPBUF register. The master
program then waits for the interrupt flag to indicate that the data has been received. 

The test data is then rewritten to SSPBUF, which initiates the data output
cycle. The master program again waits for SSPIF to indicate that the master
transmission cycle is complete. This transmission is picked up by the slave re-
ceiver under control of the master clock. It simply waits for the interrupt flag
to indicate that a data byte has been received, and copies it to the BCD 7-seg-
ment display, to indicate to the user a successful data cycle. 

Serial Communication
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Figure 9.5 SPI Test Circuit

Else_IPM-BATES_ch009.qxd  6/29/2006  11:40 AM  Page 209



I2C

I2C is a more versatile system level serial data transfer method. It only needs
two bus connected signals; clock (SCL) and data (SDA) lines (Figure 9.6).
These allow a master controller to be connected to up to 1023 other devices.
These can include other MCUs, memory devices, analogue converters and so
on. The example used here is access to an external EEPROM memory, which
would be used to expand the non-volatile data storage in an MCU system, and

Interfacing PIC Microcontrollers
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; 
; SPIM.ASM MPB 13-9-05
;............................................................... 
; 
; SPI Master program
;  
; Outputs clock to slave transmitter, receives BCD data
; and sends it to slave receiver for display
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PROCESSOR 16F877 ; define MPU 
__CONFIG 0x3731 ; XT clock (4MHz) 

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877.INC" ; Standard labels

Store EQU 020 

; Initialise ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Place machine code
NOP ; Required for ICD mode

 BANKSEL TRISC
BCF TRISC,5 ; Serial data (SDO) output
BCF TRISC,3 ; Serial clock (SCK) output 
BCF TRISC,0 ; Slave select (SS) output
CLRW SSPSTAT ; Default clock timing

 BANKSEL PORTD
BSF PORTC,0 ; Reset slave transmitter
CLRF SSPCON ; SPI master mode, 1MHz

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

BSF SSPCON,SSPEN ; Enable SPI mode
again BCF PORTC,0 ; Enable slave tx

MOVWF SSPBUF ; Rewrite buffer to start
waitin BTFSS PIR1,SSPIF ; wait for SPI interrupt

GOTO waitin ; for data received

BCF PIR1,SSPIF ; clear interrupt flag
MOVF SSPBUF,W ; read SPI buffer
MOVWF Store ; store BCD value
BSF PORTC,0 ; Disable slave tx
MOVWF SSPBUF ; Reload SPI buffer

waits BTFSS PIR1,SSPIF ; wait for SPI interrupt
GOTO waits ; for data sent
BCF PIR1,SSPIF ; clear interrupt flag
GOTO again ; repeat main loop

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Program 9.2 SPI master program
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is used in a general purpose PIC base module described in Chapter 11. The
memory used here is a Microchip 24AA128, which stores 16 kb of data (128k
bits); the system simulation is shown in Figure 9.7. 

It can be seen that the signal lines have to be pulled up to 5 V so that any one
of the devices connected to it can control the line by pulling it down; this al-
lows slaves to acknowledge operations initiated by the master. The transmitted
byte has a start bit (low) and an 8-bit address or data byte (MSB first), termi-
nated with an acknowledge from the slave. Each bit is accompanied by a clock
pulse in the same way as SPI. Clock speeds are programmed by preloading the
baud rate generator with a suitable value, giving speeds of up to 1 MHz.

Control, Address and Data Format

The system uses a software addressing system, where the external device and a
location within it can be selected in the same way as a conventional address de-
coding system (see Chapter 11). On the chip used here, there are three hardware
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; SPIST.ASM MPB 14-9-05
;............................................................... 
; SPI Slave Transmitter program
; Waits for !SS and transmits switch BCD data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PROCESSOR 16F877 ; define MPU 
__CONFIG 0x3731 ; XT clock (4MHz) 

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

INCLUDE "P16F877.INC" ; Standard labels

; Initialise ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

ORG 0 ; Place machine code
NOP ; Required for ICD mode

 BANKSEL TRISC
BCF TRISC,5 ; Serial data output 
CLRW SSPSTAT ; Default clock timing

 BANKSEL PORTD
MOVLW B'00000100' ; SPI slave mode with SS
MOVWF SSPCON ; SPI clock = 1MHz 
BSF SSPCON,SSPEN ; Enable SPI mode

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

start MOVF PORTD,W ; Read BCD switch
MOVWF SSPBUF ; Write SPI buffer 

wait BTFSS PIR1,SSPIF ; wait for SPI interrupt
 GOTO wait

BCF PIR1,SSPIF ; clear interrupt flag
GOTO start ; repeat main loop

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Program 9.3 SPI slave transmit program
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
; SPISR.ASM MPB 14-9-05
;............................................................... 
; SPI Slave Receiver program 
; Waits for BCD data sent from master and displays it
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PROCESSOR 16F877 ; define MPU 
__CONFIG 0x3731 ; XT clock (4MHz)
INCLUDE "P16F877.INC" ; Standard labels

; Initialise ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Place machine code
NOP ; Required for ICD mode

 BANKSEL TRISD
 CLRF TRISD ; Display outputs

CLRF SSPSTAT ; Default clock timing

 BANKSEL PORTD
MOVLW B'00000101' ; SPI slave, SS disabled
MOVWF SSPCON ; SPI clock = 1MHz 

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

BSF SSPCON,SSPEN ; Enable SPI mode
wait BTFSS PIR1,SSPIF ; wait for SPI interrupt
 GOTO wait

MOVF SSPBUF,W ; get data
MOVWF PORTD ; and display 
BCF PIR1,SSPIF ; clear interrupt flag
GOTO wait ; repeat main loop

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Program 9.4 SPI slave receive program

(a)

(b)

Master Slave1 Slave2
+5V 

SDA 
SCL 

7     6     5      4      3      2     1      0 SDA 

SCL 

Acknowledge Address / Data bits Start

Figure 9.6 Inter-IC bus (I2C): (a) I2C connections; (b) I2C signals
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address selection pins, which allow it to be allocated in one of eight 3-bit
addresses within the same system. Thus, a total of 16 � 8 � 128 kb could be
installed. The location required within the chip is selected by 14-bit address
supplied by the master controller as part of the access cycle. The chip is differ-
entiated from other I2C devices on the bus by a 4-bit code (1010) in the control
word. The data sheet for the 24AA128 memory chip details the required
signalling very clearly.

The format of the data blocks for write and read are shown in Table 9.1. To
write a byte to memory, the control code is sent first. This alerts the memory
that a write is coming, when the control code and chip select bits match its own
control code and hardware address (set up on chip address inputs). The control
code is 1010, the chip address is 000 and the read/not write bit is 0, to indicate
a write. This chip-select byte is followed by the location address to write to,
which is 14 bits for this device. The high address bits are sent first, with bits
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Figure 9.7 I2C simulation
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A14 and A15 having no effect (X � don’t care). The address is followed by the
eight data bits to be written to the location specified.

The read sequence is 5 bytes in total. The first three are the same as for the
write, where the chip is selected and location address is written to the address
latches within the memory chip. A control byte to request a read operation is
then sent, and the data returned from the selected location by the slave device.

Transmission Control

The clock and data lines are high when idle. The write and read sequences are
initiated by a start bit sequence generated by the master controller (24AA128
data sheet, Figure 4-1). The transmission starts when the data line goes low;
the clock then starts and an address or data bit output during the clock high
period, which is latched into the slave receive shift register on the falling
clock edge. After the eighth bit, the master (MCU) releases the data line, to
allow the slave (EEPROM) to hold the line low to acknowledge the bits have
been received. At the end of the next (ninth) clock high period, the slave re-
leases the data line and the master can transmit the first bit of the next byte
(Figure 4-2).

In the memory write sequence, when the acknowledge is generated after the
data byte has been received, and the master stops and both lines go high. In the
memory read sequence, the master stops after the address write has been sent,
and restarts in order to send a read control byte. It will then read the eight data
bits returned by the memory chip, but does not generate an acknowledge. The
master then stops, and the lines go idle again.
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Byte Function Bits Description

Write byte
1 Control byte 1 0 1 0 CS2 CS1 CS0 0 Control code, chip select

address, WRITE
2 Address high byte X X A13 A12 A11 A10 A9 A8 Memory page select
3 Address low byte A7 A6 A5 A4 A3 A2 A1 A0 Memory location select
4 Data D7 D6 D5 D4 D3 D2 D1 D0 Data
Read byte
1 Control byte 1 0 1 0 CS2 CS1 CS0 0 Control code, chip select 

address, WRITE
2 Address high byte X X A13 A12 A11 A10 A9 A8 Memory page select
3 Address low byte A7 A6 A5 A4 A3 A2 A1 A0 Memory location select
4 Control byte 1 0 1 0 CS2 CS1 CS0 1 Control code, chip select 

address, READ
5 Data D7 D6 D5 D4 D3 D2 D1 D0 Data

Table 9.1 I2C sequences for random serial memory access (10-bit address)
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The test program reads and writes every location (16384 addresses) by this
method. The maximum write cycle time specified is 5 ms (16384 � 0.005 �
82 s). It therefore takes a considerable time to complete this test. If the memory
is being accessed sequentially, as is frequently the case, the overall access time
can be reduced by using the page read and address auto-increment features of
the chip, which are explained in the EEPROM data sheet.

In the test software (Program 9.5), the control operations are broken down
as much as possible so that each step can be identified. The program outline
(Figure 9.8) shows that the data write and read operations are carried out one

SMEM1 
Serial memory access using I2C serial bus

MAIN PROGRAM ---------------------------------------------------------------------------------------- 

Initialise 

Loop
Write a byte to memory
Read the same byte from memory
IF end of memory page, increment page number

Until end of memory

SUBROUTINES -------------------------------------------------------------------------------------------

Initialise 
SSPCON2: Set Acknowledge flags inactive + status bits inactive
SSPSTAT: Slew rate control disabled + status bits inactive
SSPADD: Load with baud rate count value
SSPCON: Set SSP enable bit, select I2C master mode
OPTION:  TMR0: internal clock, divide by 64 

Write a byte to memory
Generate start condition 
Send write control byte for memory chip 
Send address bytes to memory chip
Send data byte to memory chip 
Send stop bit to memory chip 
Wait 10ms using TMR0 

Read the byte from memory
Generate start condition 
Send write control byte for memory chip 
Send address bytes to memory chip
Send read control byte for memory chip 
Wait until data received 
Send acknowledge and stop bits
Store received data byte 

Figure 9.8 I2C program outline
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;  
; I2CMEM.ASM MPB 7-1-06 
;  
; Test program for 24AA128 I2C 16k byte serial  
; memory with P16F877A (4MHz XT) 
; Demonstrates single byte write and read
; with 10-bit address.
; 
; Write data from 0x20
; High address 0x21
; Low address   0x22
; Read data back to 0x23
;  
; Version: Final 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;  

 PROCESSOR 16F877A 
 __CONFIG 3FF1 
 INCLUDE "P16F877A.INC" 

; Data, address & control registers ;;;;;;;;;;;;;;;;;;;;;;; 

SenReg EQU 0x20 ; Send data store 
HiReg EQU 0x21 ; High address store
LoReg EQU 0x22 ; Low address store 
RecReg EQU 0x23 ; Receive data store
ConReg EQU 0x24 ; Control byte store
Temp EQU 0x25 ; Scratchpad location 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

ORG 0 ; Program start address

 CLRF SenReg  ; Zeroise data 
CLRF HiReg ; Zeroise high address 
CLRF LoReg ; Zeroise low address 
GOTO begin ; jump to main program 

; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; Wait for interrupt flag SSPIF for send/recive done ... 

wint NOP ; BANKSEL has address 
BANKSEL PIR1 ; Select bank  
BCF PIR1,SSPIF ; reset interrupt flag 

win NOP 
BTFSS PIR1,SSPIF ; wait for..

 GOTO win  ; ..transmit done 
 RETURN  ; Done 
; Send a byte --------------------------------------------- 

send NOP ; Select..  
 BANKSEL SSPBUF  ; .. bank 
 MOVWF SSPBUF  ; Send address/data 

CALL wint ; Wait until sent 
 RETURN  ; Done 

Program 9.5 I2C memory test
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Program 9.5 Continued

; Routines to send start, control, address, data, stop ----  

sencon NOP ; GENERATE START BIT
 BANKSEL PIR1  ;

BCF PIR1,SSPIF ; Clear interrupt flag 
BANKSEL  SSPCON2 ; select register page 
BSF SSPCON2,ACKSTAT ; Set acknowledge flag 
BSF SSPCON2,SEN ; Generate start bit 

 CALL wint  ; wait till done

MOVF ConReg,W ; SEND CONTROL BYTE 
CALL send ; Memory ID & address 

 RETURN  ; done 
;---------------------------------------------------------- 
senadd NOP ; SEND ADDRESS BYTES
 BANKSEL SSPCON  ;

MOVF HiReg,W ; load address high byte 
 CALL send  ; and send 

MOVF LoReg,W ; load address low byte
 CALL send  ; and send 
 RETURN 
;---------------------------------------------------------- 

sendat MOVF SenReg,W ; SEND DATA BYTE
 CALL send  ; and send 
 RETURN  ; done 
;---------------------------------------------------------- 
senstop NOP ; GENERATE STOP BIT 
 BANKSEL SSPCON2  ;

BSF SSPCON2,PEN ; Generate stop bit 
 CALL wint  ; wait till done
 RETURN  ; done 
;---------------------------------------------------------- 
senack NOP ; ACKNOWLEDGE 
 BANKSEL SSPCON2  ;

BSF SSPCON2,ACKDT ; Set ack. bit high 
BSF SSPCON2,ACKEN ; Initiate ack.sequence
CALL wint ; Wait for ack. done

 RETURN  ; done 
;---------------------------------------------------------- 
wait NOP ; WAIT FOR WRITE DONE 
 BANKSEL TMR0  ;

MOVLW d'156' ; Set starting value
MOVWF TMR0 ; and load into timer 
BANKSEL INTCON ; 64 x 156us = 10ms 
BCF INTCON,T0IF ; Reset timer out flag 

wem BTFSS INTCON,T0IF ; Wait 10ms 
 GOTO wem  ; for timeout 
 BANKSEL TMR0  ; default bank 

RETURN ; Byte write done.... 
; Initialisation sequence --------------------------------- 

init NOP ; INITIALISE
 BANKSEL SSPCON2  ;

MOVLW b'01100000' ; Set ACKSTAT,ACKDT bits 
 MOVWF SSPCON2  ; Reset SEN,ACK bits
 MOVLW b'10000000' ;

MOVWF SSPSTAT ; Speed & signal levels
 MOVLW 0x13  ; Clock = 50kHz 

MOVWF SSPADD ; Load baud rate count-1 
 BANKSEL SSPCON  ;
 MOVLW b'00101000' ;

MOVWF SSPCON ; Set mode & enable 
BCF PIR1,SSPIF ; clear interrupt flag 
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; Initialise TIMER0 for write delay ------------------------ 

 BANKSEL OPTION_REG ; SETUP TIMER0 
MOVLW B'11000101' ; TIMER0 setup code 
MOVWF OPTION_REG ; Internal clock,1/64 

 BANKSEL TMR0  ; Default bank 
 RETURN  ; Done 

; Write a test byte to given address ----------------------- 

writeb MOVLW 0xA0 ; Control byte for WRITE 
 MOVWF ConReg  ; Load it

CALL sencon ; Send control byte 
CALL senadd ; Send address bytes

 CALL sendat  ; Send data byte
 CALL senstop  ; Send stop bit 
 CALL wait  ; Wait 10ms for write 
 RETURN 

; Read the byte from given address --------------------------

readb MOVLW 0xA0 ; Control byte to WRITE
MOVWF ConReg ; address to memory 
CALL sencon ; Send control byte 
CALL senadd ; Send address bytes

 CALL senstop  ; Stop 

MOVLW 0xA1 ; Control byte to READ 
 MOVWF ConReg  ; data from memory 

CALL sencon ; Send control byte 
 BANKSEL SSPCON2 

BSF SSPCON2,RCEN ; Enable receive mode 
war BTFSS SSPSTAT,BF ; Check ... 

GOTO war ; for read done 
CALL senack ; send NOT acknowledge 

 CALL senstop  ; send stop bit 

MOVF SSPBUF,W ; Read receive buffer 
 MOVWF RecReg  ; and store it 
 RETURN  ; Done 

; MAIN PROGRAM  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

begin CALL init ; Initialise for I2C
next CALL writeb ; write the test byte 

CALL readb ; and read it back 
 INCF SenReg  ; next data 
 INCF LoReg  ; next location 

BTFSS STATUS,Z ; end of memory block? 
GOTO next ; no, next location 

 INCF HiReg  ; next block

 MOVF HiReg,W  ; copy high address byte 
 MOVWF Temp  ; store it 

MOVLW 0x40 ; Last block = 3F
 SUBWF Temp  ; Compare 

BTFSS STATUS,Z ; Finish if block = 40xx 
GOTO next ; next memory block.. 

 SLEEP  ; .. unless done

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

Program 9.5 Continued
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after the other on the same location, but the address resent for the read so that
read and write sequences can be used separately in other programs. In real ap-
plications, a sequential read or write is more likely; this can be completed more
quickly for a sequential data block, especially the read, because the memory
has an automatic increment mode for the addressing, so only the first address
needs to be sent.

The read and write operations use the same subroutines to generate the
transmission control operations, which are

• Generate start bit
• Send control byte
• Send address bytes
• Send data byte
• Generate stop bit
• Generate acknowledge
• Wait 10 ms for write completion

Table 9.2 summarises the registers and bits used in the test program (see the
master mode timing diagram in the 16F877 data sheet, Figure 9-14). 
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Register Address Bit/s Bit name Active Function

SSPBUF 13h All --------- Data SSP send/receive buffer register
(Data) /add

SSPCON 14h 3-0 SSPMx 1000 SSP mode select bits
(Control) 5 SSPEN 1 SSP enable bit
SSPCON2 91h 0 SEN 1 Initiate start of transmission
(Control) 2 PEN 1 Initiate stop condition

3 RCEN 1 Receive mode-enable bit
4 ACKEN 1 Initiate acknowledge sequence
5 ACKDT 1 Acknowledge data bit setting
6 ACKSTAT 0 Acknowledge received from slave

SSPSTAT 94h 0 BF 1 SSP buffer is full
(Status) 2 R/W 1 Read/write bit – transmit in progress

6 CKE 0 I2C clock mode 

SSPADD 93h All --------- 0x13 Baud rate count
(Preload)
PIR1 0Ch 3 SSPIF 1 SSP interrupt flag

Table 9.2 I2C master mode, selected bits
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The shift register used to send and receive the data bits is not directly
accessible. The buffer register SSPBUF holds the data until the shift register
is ready to send it (transmit mode), or receives it when the shift is finished
in receive mode. The send operation is triggered by setting the Send
Enable (SEN) bit, and the Buffer Full (BF) flag indicates that the data
have been loaded. The interrupt flag (SSPIF) is automatically set to indicate
start of transmission, and must be cleared in software if necessary. The
Acknowledge Status (ACKSTAT) bit is cleared by an acknowledge from the
slave, to indicate that the byte has been received. SSPIF is then set again to in-
dicate the end of the byte transmission, and the buffer can then be written with
the next byte.

If data is to be received by the master, the read/write bit is set in
the control word, and the receive mode enabled by setting RCEN bit. The
BF flag is set when the data have been received, and the buffer must be
read (unloaded) before another data byte is received, or sent. Full details
are provided for all I2C transmit and receive modes in the PIC data sheet.
The EEPROM data sheet explains the requirements for that particular
peripheral.

It can be seen that I2C needs relatively complex software control, while SPI
needs extra connections for hardware device selection, but is faster. The
USART will be used for longer inter-system connections, typically to a PC
host. In due course, full network access and USB will also doubtless be inte-
grated into standard microcontrollers.

SUMMARY 9

• The USART block provides asynchronous serial communication at low
speed with a PC host and similar remote systems over a distance of a few
metres using separate send and receive lines

• The SPI bus provides synchronous serial access to other on-board master
or slave devices using a separate clock and data line, with hardware slave
selection

• The I2C bus provides synchronous serial access to other on-board master
or slave devices using a separate clock and data line, with hardware chip
selection and software slave location/register addressing

Interfacing PIC Microcontrollers

220

Else_IPM-BATES_ch009.qxd  6/29/2006  11:40 AM  Page 220



ASSESSMENT 9 Total (40)

1 Explain why the RS232 type protocol is described as asynchronous. (3)

2 Explain why the signal is sent at up to 50 V peak to peak on the RS232 line. (3)

3 State the minimum number of bit periods required to send an 8-bit data byte
in the RS232 format. (3)

4 State the send and receive signal names in RS232. Explain why is it possible
to send and receive simultaneously. (3)

5 Explain why SPI signals have a more limited transmission range than RS232. (3)

6 Describe the function of the signal !SS in the SPI system. How does I2C
implement the same function? (3)

7 How is the completion of an SPI receive sequence detected in a PIC program? (3)

8 Summarise why a data byte takes longer to send in the I2C system, compared
with SPI. (3)

9 How is the correct reception of a data byte acknowledged by an I2C slave
device? (3)

10 Describe how the time taken for a block write to serial memory can be
reduced, compared with a single byte operation. (3)

11 Sketch the RS232 signal as it appears at the output of the line driver
(assume �/�12 V). Label all relevant features. (5)

12 Explain the function of each group of bits in the I2C control byte. (5)

ASSIGNMENTS 9

9.1 RS232 Output Test

Write a test program for the PIC 16F877, running at 4 MHz. Initialise for 8
data bits, 1 stop bit at 9600 baud and output the same code AAh repeatedly to
the RS232 port. Test in simulation mode.
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Monitor the output signal on the virtual oscilloscope, and measure the overall
time per byte, and the bit period. Compare this with the value specified in the
data sheet. Change the data to 81h and show that the display is correct for this
data. Change the baud rate to 19200 and confirm that the display is correct.
Compare the bit time with the specification. Try sending ASCII, and confirm
that the codes are as shown in the ASCII table.

Transfer the application to prototype hardware and confirm that the appropri-
ate output is obtained on an oscilloscope.

9.2 SPI and I2C Debuggers

The SPI and I2C debugger are found in the list of Proteus virtual instruments.
They allow these signals to be monitored when the design for a serial commu-
nication system is simulated. Use the instruments to monitor the signals in the
demonstration systems. Write a full report on the interpretation of the displays
obtained, and how to use these devices to aid the development of serial systems.

9.3 Serial Memory System

Modify the serial memory test program to carry out a page write and read
(refer to the serial memory data sheet). Estimate the time saved compared with
the byte write and read process.

Expand the I2C memory system to 128k, and modify the test program to ensure
that all devices can be successfully written and read. Estimate the time required
to test every location, and modify the program to test a sample of locations in
each chip to indicate its correct function within a reasonable timescale, say 10 s.
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10

Sensor Interfacing

A wide variety of sensors are used in digital control systems and interfacing
them requires a good understanding of linear amplifier design and signal con-
ditioning techniques. Connection to an MCU is simplified if the sensor itself
contains built-in signal conditioning, such that the output is linear, reasonably
large, conveniently scaled and pre-calibrated. The LM35 temperature sensor is
a good example, giving an output of 10 mV/°C, starting at 0°C � 0 mV, but it
needs an ADC input. Increasingly, sensors are incorporating all the necessary
signal processing and serial data outputs, so that interface design is simplified
or eliminated. For example, Microchip supplies a range of temperature sensors
with I2C output. 

Sensors

A sensor is an essential device that responds to some environmental variable
and converts it into electrical output. This signal may then need to be condi-
tioned (filtered, amplified, attenuated, converted) to allow the MCU to receive
the input in a usable form. Digital sensors may provide a direct input at TTL
levels, while some analogue inputs might need a high-performance amplifier
or complex digital processing.

Digital Sensors

The simplest form of digital sensor is a switch. A manually operated push but-
ton or toggle switch may only need a pull-up resistor, or possibly debouncing
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via a parallel capacitor, hardware latch or software process, as outlined in
Chapter 4. A micro-switch can be attached to a mechanical system so that it
detects the position of, say, the guard on a machine tool. The machine con-
troller can then be programmed not to start until the guard is closed. The
micro-switch may often have an extended operating lever to make it more
sensitive.

One disadvantage of the switch or relay contact is that physical wear causes
unreliable operation. This problem can be overcome by using a switch which
has no moving parts, or is specially designed for reliability. A reed switch is
enclosed in a vacuum and operated by the proximity of a magnet to the sprung
contacts, which are gold-plated to reduce corrosion effects. The vacuum pre-
vents burning at the contacts due to high-voltage discharge as they open or
bounce with an inductive load.

Opto-electrical devices have no moving parts, and are therefore inherently
more reliable. An LED and phototransistor are connected in separate circuits,
with the transistor operating as a light-activated switch. The opto-isolator in-
cludes both in a single package, providing electrical isolation between con-
trol and load circuits, which may operate at high voltage. The signal to noise
ratio may also be improved, and the digital signal thus ‘cleaned up’. The
same devices are used in an opto-detector where the light beam is interrupted
by a moving object, grating or perforated wheel; this arrangement can be
used to monitor position, speed or acceleration. Light transmission or re-
flection may be used, depending on measurement. The reflective type can be
used as a simple proximity sensor, while position detection often uses a
transmissive system.

The inkjet printer provides a good example of a position system. A plastic
strip with a fine grating is used to provide position feedback for the print
head. The simple periodic grating can be made more precise by grading the
light transmission sinusoidally over a cycle, allowing calculation of fractions
of a cycle (interpolation). Axis position in machine tools can be controlled
down to about 1 �m by this means. If a pair of gratings is used, offset by 90°,
the direction of travel can be detected by the phase relationship. To establish
absolute position, a reference position is needed from which relative motion
can be calculated. For example, a robot arm may need to be started from a
known ‘home’ position. Alternatively, a Gray code can be used on the opto-
disk; each sector has a unique combination of light and dark bands, so that the
absolute position of the stationary shaft can be detected by a set of sensors,
one for each band. The pattern is a modified binary code which only changes
1 bit at a time, to prevent incorrect data being sampled on the sector bound-
aries (Figure 10.1).

Some sensors have a built-in data processing so that an MCU compatible
signal is produced; for example, the measured variable may be converted

Interfacing PIC Microcontrollers

224

Else_IPM-BATES_ch010.qxd  7/11/2006  2:55 PM  Page 224



into a periodic TTL signal. This can be fed into a digital input, and the fre-
quency determined in software by using a timer/counter to measure the
number of pulses in unit time, or the period. Analogue to digital converter
chips are available which convert the measured voltage into frequency, or
transmit the binary form of the measurement in a standard serial format,
such as I2C.

Analogue Sensors

Analogue sensors produce a variable output, which may be voltage, resistance
or current. In microcontroller systems, they are usually converted into a voltage
in a range suitable for an input comparator (high/low detection) or analogue to
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225

(a)

(b)

(c )

Reference Mark 
Track +90 
Track 0

Motion of encoder strip 

Output from
opto-sensors 

Figure 10.1 Incremental encoder: (a) linear encoder; (b) sinusoidal output; (c) Gray code opto-
disk (10 bit)
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digital conversion. Suitable signal conditioning may be needed using ampli-
fiers, filters and so on, to produce a clean signal, controlling noise, drift, inter-
ference and so on, with the required output range. 

Sensors have certain characteristics which should be specified in the data
sheet:

• Sensitivity
• Offset
• Range
• Linearity
• Error
• Accuracy
• Resolution
• Stability
• Reference level
• Transfer function
• Interdependence

The meaning of some of these is illustrated in Figure 10.2. 

SENSITIVITY

The ideal sensor characteristic is shown in the characteristic y � m1x. The sensor
has a large change in its output for a small change in its input; that is, it has high
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Output 

Input 

y = x 

y = m2x 
% error 

y = m1x 
high sensitivity

y = m3x + c1
constant error 

y = -m4x + c2 

negative sensitivity

c2

c1

y = ke-ax 

non-linear

Reference level, r0

c0

Range limited 
linearity 

Figure 10.2 Sensor characteristics
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sensitivity. The output could be fed directly into the analogue input of the MCU.
The line also goes through the origin, meaning no offset adjustment is required –
a linear pot would give this result. If the sensor has low sensitivity ( y � m2x), an
amplifier may be needed to bring the output up to the required level. 

OFFSET

Unfortunately, many sensors have considerable offset in their output. This means,
that over range for which they are useful, the lowest output has a large positive
constant added (y � m3x � c). This has to be subtracted in the amplifier interface
to bring the output back into the required range, where maximum resolution can
be obtained. The same can be achieved in software, but this is likely to result in a
loss of resolution. Temperature sensors tend to behave in this way, as their char-
acteristic often has its origin at absolute zero (�273°C). The sensor may have off-
set and negative sensitivity, such as the silicon diode temperature characteristic 
( y � �m4x �c2). In this case, an inverting amplifier with offset is needed.

LINEARITY

The ideal characteristic is a perfect straight line, so that the output is exactly
proportional to the input. This linearity then has to be maintained through the
signal conditioning and conversion processes. Metal temperature sensors tend
to deviate from linearity at higher temperatures, as their melting point is ap-
proached, which limits the useful range. The deviation from linearity is usually
expressed as a maximum percentage error over the specified range, but care
must be taken to establish whether this is a constant over the range, or a pro-
portion of the output level. These two cases are illustrated by the dotted lines in
Figure 10.2, indicating the possible error due to non-linearity and other factors. 

REFERENCE LEVEL

If the sensitivity is specified, we still need to know a pair of reference values to
place the characteristic. In a temperature sensing resistor (TSR), this may be
given as the reference resistance at 25°C (e.g. 1 k�). The sensitivity may then
be quoted as the resistance ratio – the proportional change over 100°C. For a
TSR, this is typically 1.37. This means that at 125°C, the resistance of the 1 k�
sensor will be 1.37 k�.

TRANSFER FUNCTION

Linear sensors are easier to interface for absolute measurement purposes, but
some that are non-linear may have other advantages. The thermistor, for example,
has a negative exponential characteristic, but it has high sensitivity, so is often
used to detect whether a temperature is outside an acceptable range. If the sensor
is to be used for measurement, the transfer function must be known precisely in
order to design the interface to produce the correct output.
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ERROR

Many factors may contribute to sensor error: limitations in linearity, accuracy,
resolution, stability and so on. Accuracy is evaluated by comparison with a stan-
dard. A temperature of 25°C is only meaningful if Celsius is an agreed scale, in
this case based on the freezing and boiling points of water. Resolution is the de-
gree of precision in the measurement: 25.00°C (�/�0.005) is a more accurate
measurement that 25°C (�/�0.5). However, this precision must be justified by
the overall precision of the measurement system. Poor stability may appear as
drift, a change in the sensor output over time. This may be caused by short-term
heating effects when the circuit is first switched on, or the sensor performance
may deteriorate over the long term, and the measurement become inaccurate.
Recalibration of accurate measurement systems is often required at specified
intervals, by comparing the output with one that is known to be correct.
Interdependence in the sensor may also be significant; for example, the output
of a humidity sensor may change with temperature, so this incidental variable
must be controlled so that the required output is not affected.

Sensor Types

There is an enormous range of specialist sensors developed for specific ap-
plications in the engineering field. Some of the more commonly used sensors
will be outlined here. Table 10.1 shows some basic position sensing devices,
Table 10.2 different temperature sensors and Table 10.3 light, humidity and
strain measurement techniques.

Position

POTENTIOMETER

A potentiometer can be used as a simple position sensor. The voltage output
represents the angular setting of the shaft. It has limited range (about 300°) and
is subject to noise and unreliability due to wear between the wiper contact and
the track. There are therefore a range of more reliable position transducers,
which tend to be more expensive.

LVDT

A linear variable differential transformer (LVDT) uses electromagnetic coils to
detect the position of a mild steel rod which forms a mobile core. The input
coils are driven by an AC signal, and the rod position controls the amount of
flux linked to the output coil, giving a variable peak–to-peak output. It needs
a high-frequency AC-supply, and is relatively complex to construct, but reli-
able and accurate.
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Transducer Description Applications Evaluation

Linear potentiometer Linear position sensing Physical wear causes

Resistive track with Faders and multi-turn,
unreliability, but cheap

adjustable wiper pre-sets, medium-scale
and simple.

position. DC supply linear displacement.
across track gives a
variable voltage at
the wiper representing
absolute linear position.

Rotary Rotary position Physical wear
potentiometer sensing causes unreliability,

Rotary version senses Manual pots and
but cheap and

absolute shaft position pre-sets, any shaft
simple. Wire wound

as voltage or with a range of 
are more robust, but 

resistance (connect movement less than
may have limited 

one end an wiper 300 degrees. May be
resolution.

together to form two used with float for liquid
variable resistance). level sensing.
Log scaling also
available.

Capacitor plate Linear position No physical
separation sensing contact, so more 

Capacitance is Sensitive transducer reliable. Needs more 

proportional to plate for small changes in complex drive and 

separation (d is position. Plate overlap interfacing.

normally small) Small can also varied,
change in d gives a although change may
large change in be less linear
C. Requires a high due to edge effects.
frequency drive signal
to detect changes in
reactance.

Capacitor dielectric Level or position No physical
sensing contact, so more

Capacitance depends The dielectric reliable Needs more

on dielectric material, may be any insulating complex drive and

effectively producing material, liquid or interfacing involving 
two capacitors in powder. A solid AC to DC conversion
parallel whose values dielectric can detect Simple to construct.
add. Requires a high linear motion
frequency drive signal as its position is varied.
to detect changes in 
reactance.

Magnetic flux Position/motion sensing Versatile sensor,

The flux linkage, Magnetic circuits can be pulse detector is

therefore the output used in various ways to simple, but flux

voltage varies with the detect position, motion, linkage types may

position of the ferrite or vibration. Linear need more complex

core Alternatively, the voltage differential drive and detector

measured inductance transformer, electric Involving AC to DC

of a single coil will guitar pick-up, rev conversion.

increase as the ferrite counter (magnet on
is inserted further. A shaft �stationary coil).
permanent magnet may No physical contact 
be used to create a required.
pulse of current as it
moves past a coil.

Table 10.1 Position sensors

+V 0V

Vo

+V 0V
Vo

C ∝ d 

d

Iac

Variable
Level

Air

Dielectric

˜
Input Iac Output Vac 

Coil Core

Core

Else_IPM-BATES_ch010.qxd  7/11/2006  2:55 PM  Page 229



230

Transducer Description Applications Evaluation

Metal resistance Temperature Metal resistance sensors operate
temperature sensor measurement over a wide range of temperatures,

A metal film or solid sensor Measurement over the 
but may suffer from non-linearity 

has the linear characteristic range �50°C to 600°C.
at outside a limited range

shown (within limits). The The Self-heating may 
Sensitivity low, but 

offset must be compensated be significant, as 
inexpensive and

in the amplifier interface. reasonable current is
large range.

The sensitivity is typically needed to reduce noise.
of the order of 4 �/°C.

Thermistor High temperature The main advantage
sensing is high sensitivity,

The thermistor is a  solid 
It is typically used in 

that is, a large
semiconductor whose resistance

applications such as
change in resistance

falls rapidly with temperature
detecting overheating 

over a relatively
increase. Following a

in system components
small temperature

negative exponential curve.
such as transformers

range. However, it
The rod is large and design

and motors, triggering
is non-linear, making

for high current use, 
load shedding or

it difficult to obtain
while the bead is small  

shutdown, up to about
an absolute temper-

and responds rapidly 
150°C.

ature measurement.
to temperature change Therefore, most
over the range above useful for limit
room temperature. sensing.

Thermocouple High temperature The interface is complex, requiring
measurement cold junction temperature control 

This is based on the junction of two
As the sensor is all

and a high-gain amplifier.
dissimilar metals, e.g. iron and 

metal, high temperatures
This is worthwhile because the

copper, generating a small
can be measured.

output is accurate over a
voltage, as in a battery.

An interface with a
wide range of temperatures.

The large offset voltage from
high gain (instrumentation)each junction is cancelled out by
amplifier is needed.connecting the measuring junction
The interface is usually (hot) and another (cold) 
provided in the form of athermocouple in opposite polarity.
self-contained controller, withOnly the voltage difference
cold junction temperaturedue to the temperature
control and curve difference then appears at the
compensation.terminals.

Silicon diode Temperature sensing This can be used as a cheap 
The volt drop across a A simple signal diode and simple temperature sensor.

forward biased silicon can be used An Probably best used for level

diode p–n junction interface amplifier will detection, but is surprisingly

depends on be needed giving a accurate if used in a carefully

temperature, dropping gain of about �10 designed circuit.

by about 2 mV/°C. (inverting), with offset
A constant current is adjust. In addition, 
needed, as the volt a constant current
drop also depends source should used
on this. to supply the diode.

Integrated Temp Temperature This is a versatile
sensor measurement sensor, and the first 

This is based on silicon General purpose low 
choice for a low cost,

junction temperature temperature sensing
low temperature 

sensing. An amplifier is with reasonable 
MCU-based system.

built in, giving a calibrated accuracy. Can be 
It is easy to interface,

output of typically operated  from �5 V,  
does not need

10 mV/°C, over the so is easy to intergrate
calibrating and is

range of �50 to � into digital systems.
inexpensive.

150°C. The accuracy 
Response may be

is around �/� 0.5°C.
slow due to size.

Table 10.2 Temperature sensors

Rod 

Bead

Temp. (T) 

R 
 R= ke−βT 

Hot (Vh) 

Cold (Vc) 

Vd

Vd = Vh - Vc

Vd

Id (Constant)

Vd

Temp

0.6V

-2mV/°C 

+5V 0V
 10mV/°C 

Resistance

 R = αT + c 

R 

Temp. 

Else_IPM-BATES_ch010.qxd  7/11/2006  2:55 PM  Page 230



231

Phototransistor Light sensing A high sensitivity
The phototransistor The transistor provides detector, but difficult
has no base connection, inherent gain (about to obtain a calibrated
but it is exposed to 100) making the device output. It is therefore
light by transparent quite sensitive. It is more frequently used
encapsulation. The incorporated in opto in digital systems for
base current is generated -couplers and detectors, isolation and
by light energy absorbed which usually use position/speed
by the charge carriers. infra-red light from measurement using
With a load resistance, an LED, which reduces a counter.
the collector voltage interference from
varies with base current visible light sources.
in the usual way.

Light-dependent Light measurement The CdS cell
resistor provides an accurate
The LDR uses a CdS The LDR is the standard output over a wide
(cadmium disulphide) cell cell used in light meters and range, but interfacing
which is sensitive to visible cameras, since photographic for a calibrated
light over a wide range exposure is also calculated output via an MCU
from dark to bright sunlight. on a log scale A coarse level requires conversion
If the light input (lux) voltage can be obtained of the log scale,
and resistance are with a simple series either via an
plotted on decade scales, resistance e.g. dark, accurate log amplifier
a straight line is obtained. overcast, sun. or in software.

Humidity Humidity measurement Plain sensors requiring
A capacitor with an Environmental monitoring is the an HF AC signal to drive
absorbent dielectric general area of applications, the detection system
can vary in either for weather recording, available, or devices with 
capacitance value product testing or production integrated signal conditioning 
depending on the control. are simpler to interface.
humidity of the 
surrounding air.

Strain gauge Stress, strain, position Relatively simple and
measurement reliable method of

This is simply a folded Typically used to monitoring small
conductor mounted on measure the mechanical defor-
a flexible sheet whose deformation in a mations. The high
resistance increases mechanical component gain amplifier is
as it is stretched. It is under load (e.g. crane susceptible
frequently used in jib) for safety monitoring to noise and
groups of four where purposes. Can also be interference, and
the pairs on opposite used to measure motion may need careful
sides of the bridge are at the end of fixed circuit design
mounted on the same beam to measure to obtain a stable
side of a component force applied or weight output.
under extension, and A high gain, differential
the other pair on the (instrumentation)
opposite side which is amplifier is needed.
under compression, 
so that the differential 
voltage is maximised

Pressure Differential pressure Piezoresistive
measurement sensors, accurately

If a set of strain gauges For measurement trimmed during
are mounted on both relative to atmosphere manufacture, and
sides of a diaphragm one side of the gauge integrated amplifier
as shown, they will will be exposed to provide accurate
respond to deformation atmosphere, the other output over selected
as a result of a differential to higher-pressure air ranges.
pressure. The output voltages or gas. If a vacuum 
from each pair can be is used on one side,
added to give a absolute pressure
measurement. may be gauged.

Table 10.3 Other sensors

Net pressure

R 

Vo

+5V

0V

Log L

Log R

Vd

+5V 

0V

Bridge
output

Strain

Absorbent
dielectric 

Transducer Description Applications Evaluation
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CAPACITOR

The capacitor principle provides opportunities to measure distance and level. If
considered as a pair of flat plates, separated by an air gap, a small change in the
gap will give a large change in the capacitance, since they are inversely propor-
tional; if the gap is doubled, the capacitance is halved. If an insulator is partially
inserted, the capacitance also changes. This can make a simple but effective
level sensor for insulating materials such as oil, powder and granules. A pair of
vertical plates is all that is required. However, actually measuring resulting
small changes in capacitance is not so straightforward. A high-frequency sens-
ing signal may need to be converted into clean direct voltage for input to a dig-
ital controller.

ULTRASONIC

Ultrasonic ranging is another technique for distance measurement. The speed
of sound travelling over a few metres and reflecting from a solid object gives
the kind of delay, in milliseconds, which is suitable for measurement by a hard-
ware timer in a microcontroller. A short burst of high-frequency sound (e.g. 40
kHz) is transmitted, and should be finished by the time the reflection returns,
avoiding the signals being confused by the receiver. 

Speed

DIGITAL

The speed or position of a DC motor cannot be controlled accurately
without feedback. Digital feedback from the incremental encoder described
above is the most common method in processor systems, since the output
from the opto-detector is easily converted into a TTL signal. The position
relative to a known start position is calculated by counting the encoder
pulses, and the speed can then readily be determined from the pulse
frequency. This can be used to control the dynamic behaviour of the motor,
by accelerating and decelerating to provide optimum speed, accuracy and
output power.

ANALOGUE

For analogue feedback of speed, a tachogenerator can be used; this is essen-
tially a permanent magnet DC motor run as a generator. An output voltage is
generated which is proportional to the speed of rotation. The voltage induced
in the armature is proportional to the velocity at which the windings cut across
the field. This is illustrated by the diagrams of the DC motor in Chapter 8. If
the tacho is attached to the output shaft of a motor controlled using PWM, the
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tacho voltage can be converted by the MCU and used to modify the PWM out-
put to the motor, giving closed loop speed control. Alternatively, an incremen-
tal encoder can be used, and the motor output controlled such that a set input
frequency is obtained from the encoder.

Temperature

Temperature is another commonly required measurement, and there is variety
of temperature sensors available for different applications and temperature
ranges. If measurement or control is needed in the range of around room tem-
perature, an integrated sensor and amplifier such as the LM35 is a versatile
device which is easy to interface. It produces a calibrated output of 10 mV/°C,
starting at 0°C with an output of 0 mV, that is, no offset. This can be fed
directly into the PIC analogue input if the full range of �50°C to �150°C
is used. This will give a sensor output range of 2.00 V, or 0.00 V – 1.00 V
over the range 0–100°C. For smaller ranges, an amplifier might be advis-
able, to make full use of the resolution of the ADC input. For example, to
measure 0–50°C:

Temp range � 50°C

Input range used � 0�2.56 V (8-bit conversion, VREF � 2.56 V)

Let maximum � 2.56 � 20 � 51.2°C

Then conversion factor � 2.56/5.12 � 50 mV/°C

Output of sensor � 10 mV/°C

Gain of amplifier required � 50 mV/10 mV � 5.0

A non-inverting amplifier with a gain of 5 will be included in the circuit (see
Chapter 7). Note that if a single supply amplifier is used, the sensor will only
go down to about �2°C. 

DIODE

The forward volt drop of a silicon diode junction is usually estimated as 0.6 V.
However, this depends on the junction temperature; the voltage falls by 2
mV/°C as the temperature rises, as the charge carriers gain thermal energy, and
need less electrical energy to cross the junction. The temperature sensitivity is
quite consistent, so the simple signal diode can be used as a cheap and cheer-
ful alternative to the specialist sensors, especially if a simple high/low opera-
tion only is needed. A constant current source is advisable, since the forward
volt drop also depends on the current.

Sensor Interfacing
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METALS

Metals have a reasonably linear temperature coefficient of resistance over
limited ranges. Metal film resistors are produced which operate up to about
150°C, with platinum sensors working up to 600°C. The temperature coeffi-
cient is typically around 3–4000 ppm (parts per million), which is equivalent
to 0.3%/°C. If the resistance at the reference temperature is, say, 1 k�, the
resistance change over 100°C would be 300–400 �. A constant current is
needed to convert the resistance change into a linear voltage change. If a 1
k� temperature-sensing resistor is supplied with a constant 1 mA, the volt-
age at the reference temperature, 25°C, would be 1.00 V, and the change at
125°C would be 370 mV, taking it to 1.37 V. An accuracy of around 3% may
be expected.

THERMOCOUPLE

Higher temperatures may be measured using a thermocouple. This is simply a
junction of two dissimilar metals, which produces a battery effect, producing
a small EMF. The voltage is proportional to temperature, but has a large offset,
since it depends on absolute temperature. This is compensated for by a cold
junction, connected in series, with the opposite polarity, and maintained at a
known lower temperature (say 0°C). The difference of voltage is then due to
the temperature difference between the cold and hot junctions.

THERMISTOR

Thermistors are made from a single piece of semiconductor material, where
the charge carrier mobility, therefore the resistance, depends on temperature.
The response is exponential, giving a relatively large change for a small
change in temperature, and a particularly high sensitivity. Unfortunately, it is
non-linear, so is difficult to convert for precise measurement purposes. The
thermistor therefore tends to be used as a safety sensor, to detect if a compo-
nent such as a motor or transformer is overheating. The bead type could be
used with a comparator to provide warning of overheating in a microcontroller
output load.

Strain

The strain gauge is simple in principle. A temperature-stable alloy conductor
is folded onto a flexible substrate which lengthens when the gauge is stretched
(strained). The resistance increases as the conductor becomes longer and thin-
ner. This can be used to measure small changes in the shape of mechanical
components, and hence the forces exerted upon them. They are used
to measure the behaviour of, for example, bridges and cranes, under load, often
for safety purposes. The strain gauge can measure displacement by the
same means.
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The change in the resistance is rather small, maybe less than 1%. This sits on
top of an unstrained resistance of typically 120 �. To detect the change, while
eliminating the fixed resistance, four gauges are connected in a bridge arrange-
ment and a differential voltage is measured. The gauges are fixed to opposite
sides of the mechanical component, such that opposing pairs are in compres-
sion and tension. This provides maximum differential voltage for a given strain.
All the gauges are subject to the same temperature, eliminating this incidental
effect on the metal conductors. A constant voltage is supplied through the
bridge, and the difference voltage fed to a high gain, high input impedance am-
plifier. The instrumentation amplifier described in Chapter 7 is a good choice.
Care must be taken in arranging the input connections, as the gauges will be
highly susceptible to interference. The amplifier should be placed as near as
possible to the gauges, and connected with screened leads, and plenty of signal
decoupling. The output must then be scaled to suit the MCU ADC input.

Pressure can be measured using an array of strain gauges attached to a di-
aphragm, which is subjected to the differential pressure, and the displacement
measured. Measurement with respect to atmosphere is more straightforward,
with absolute pressure requiring a controlled reference. Laser-trimmed piezore-
sistive gauge elements are used in low-cost miniature pressure sensors.

Humidity

There are various methods of measuring humidity, which is the proportion of
water vapour in air, quoted as a percentage. The electrical properties of an
absorbent material change with humidity, and the variation in conductivity or
capacitance, can be measured. Low-cost sensors tend to give a small variation
in capacitance, measured in a few picofarads, so a high-frequency activation
signal and sensitive amplifier are needed.

Light

There are numerous sensors for measuring light intensity: phototransistor, photo-
diode, light-dependent resistor (LDR, or cadmium disulphide cell), photovoltaic
cell and so on. The phototransistor is commonly used in digital applications, in
opto-isolators, proximity detectors, wireless data links and slotted wheel detec-
tors. It has built-in gain, so is more sensitive than the photodiode. Infra-red (IR)
light tends to be used to minimise interference from visible light sources, such as
fluorescent lights, which nevertheless, can still be a problem. The LDR is more
likely to be used for visible light, as its response is linear (when plotted log R vs.
log L) over a wide range, and it has a high sensitivity in the visible frequencies.
The CdS cell is widely used in photographic light measurement, for these reasons.
Conversion into a linear scale is difficult, because of the wide range of light
intensity levels between dark and sunlight.
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Amplifier Design

In order to design the interface between a sensor and the MCU, we need to
specify the performance of a linear amplifier which will translate the output of
the sensor into a suitable input for the MCU, which is in the right range for the
amplifier to handle and allows a convenient conversion factor to be used in the
ADC. For example, our standard temperature sensor with built-in signal con-
ditioning produces an output of 10 mV per degree C, with an output range of
�55 to �150°C. Let us assume it is to be interfaced to a PIC MCU to meas-
ure between 10 and 35°C.

Gain

At 10°C, the input will be 10 � 10 � 100 mV. At 35°C, it will be 35 � 10 �
350 mV. The gain is calculated as the required change in the output divided by
the range of the input. Now if we are using a single supply op-amp package,
such as the LM324, the output range is strictly limited. The output only goes
down to about 50 mV and up to about 3.5 V. So if we assume an output swing
of 2.5 V is available, the gain required � 2.5/(0.35–0.1) � 10.

Offset

As in this case, sensors often have a positive offset, so the output range has to
be shifted down. With a gain of 10, the output at the lowest temperature will
be 100 mV � 10 � 1.00 V, and at the highest 350 mV � 10 � 3.50 V. This can
be shifted down by 1.00 V, so that the output range will be 0–2.50 V. This also
allows us to use a reference voltage of 2.56 V, just above the required maxi-
mum, which gives a convenient 8-bit conversion factor (10 mV/bit). Including
0 V in the output means that we will lose the lowest degree or two from the
range. If this is not acceptable, the offset can be adjusted to suit, so that the out-
put ranges from 0.5 to 3.0 V. In this case, the negative reference voltage for the
ADC should be modified to 0.5 V, and the positive reference to 3.06 V. If nec-
essary, corrections can also be made in software.

Frequency Response

Since we are measuring direct voltages, it is sensible to restrict the frequency
response of the amplifier to low frequencies, as any instability in operation
tends to produce high-frequency oscillation and incorrect DC readings. A
moderate value of capacitance across the feedback network will reduce the fre-
quency response by reducing the feedback impedance at high frequency.
However, too high a value will slow down the response time, so this needs to
be considered if transient behaviour is a significant consideration.

Interfacing PIC Microcontrollers

236

Else_IPM-BATES_ch010.qxd  7/11/2006  2:55 PM  Page 236



Calibration

A circuit which meets these requirements is shown in Figure 10.3. It is based
on a non-inverting amplifier configuration, with the offset added as a positive
voltage at the reference input. The temperature sensor input is represented by
three selected levels, corresponding to the minimum (100 mV), mid-range
(225 mV) and maximum (350 mV) output voltage. The gain is notionally 10,
but is adjusted by the reference input resistance. The offset input is notionally
100 mV, but is also adjustable. 

Calibration of the amplifier normally consists of adjusting the gain and the
offset at the minimum and maximum output levels, assuming that it is linear
in between these values. However, there is a problem with the single supply
case – the minimum output is not reached because the amplifier cannot reach
the supply rail voltage (0.000 V). In the simulation, the minimum reached is
about 80 mV. The output gives a resolution of 100 mV/°C, so readings from 10
to 11°C will be affected, leaving an operating range of 11–35°C. This will be
accepted. If unacceptable, the operating range can be modified by adjusting
the offset input voltage and recalibrating.

Sensor Interfacing
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Figure 10.3 Gain and offset adjustment
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Therefore, in this circuit, we will calibrate the amplifier by adjusting the
offset to approximately the correct value at the mid-output level (1.280 V),
and then adjusting the gain to give the right output at the maximum level
(2.500). These steps are then repeated until the reading is correct at the mid
and max values. This is usually necessary because the gain and offset inter-
act, that is, adjusting one affects the other. In practice, multi-turn pre-set pots
(typically 10 turns) are often used to give greater sensitivity or range to the
adjustment.

In this circuit, a relatively small offset voltage is required, and it is obtained
by taking the forward volt drop of a standard signal diode (about 0.7 V) and di-
viding it down to around 100 mV. A fine adjustment of this is then obtained by
‘squeezing’ the diode voltage via its current supply. A diode current of about
10 mA is used, dissipating about 10 � 0.7 � 7 mW in the diode. It is possible
that self-heating in the diode could cause some temperature instability. If nec-
essary, a more stable reference circuit design should be used, or, at the very
least, the circuit temperature should be allowed to reach a steady state before
the calibration procedure is attempted. 

The accuracy of the sensor is quoted as �/�0.5°C, and the interface needs
to match this. The output changes by 100 mV/°C, so 0.5°C � 50 mV. At mid-
range, 22.5°C, the output is 1.28 V, and the allowed range is 1.23–1.33 V. The
accuracy of the amplifier should in fact be better than �/�10 mV, and this is
more than adequate. The ADC will be working at 2.56 V/256 � 10 mV/bit, the
same resolution.

Weather Station

To illustrate sensor interfacing, a weather station measuring temperature, light,
pressure and humidity will be designed. These variables will be sampled at an
interval of 5 minutes (12/hour) and data stored for a period of up to 10 days.
The specification is detailed in Table 10.4.

The system will be based on a general purpose module using the PIC
16F877, an LCD and a serial memory, details of which will be provided in the
next chapter. It has a 12-button keypad, 16 � 2 line backlit display and a 16 kb
serial memory (Figure 10.4). Each variable will occupy eight characters on
screen in run mode. If sampled at 8-bit resolution, one sample for each sensor
� 1 byte of data. Over 10 days, the system will store 10 � 24 � 12 � 4 �
11520 bytes of data. The user should be able to reset, run and read back data
manually. Optionally, an RS232 link to host computer will allow the data to be
downloaded for further analysis and long-term storage.
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The ADC inputs will be connected to this module via a 10-way ribbon cable,
with the analogue interfaces built on a separate board. A sensor was selected
for each weather variable, primarily based on the range required, ease of inter-
facing and low cost. An analogue interface was then developed to provide the
gain and offset required for each. Signal filtering was not considered in detail,
but the possibility of controlling high-frequency interference and noise always
needs to borne in mind. Typically, some low-pass filtering or decoupling may
be included in the interface as a pre-caution when conditioning DC signals.
This may be in the form of a simple first-order CR network in the input, and
an integrating capacitance connected across the feedback resistance in the
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Input Range Display (Max 8 Chars)

Temperature �25°C to �75°C Temp:XX (7)
Light Dark, dusk, dull, cloud, sun XXXXX (5)
Pressure 850–1100 millibar mbar:XXXX (8)
Humidity 0–100% Relative humidity RH:XXX% (7)
Precision 8-bits �1% @ mid range
Storage 10 days @ 12 samples/h 11520 bytes
User Run, recall data Essential
interface Display/set date and time Desirable
Host Data download to database and Desirable
interface spreadsheet

Table 10.4 Weather station specification

MCU 

Temp Sensor 
-25°C to +75°C 

Light Sensor 
1 – 106 lux 

Gain = 2

Pressure Sensor 
850mb – 1100mb 

Humidity Sensor 
0 – 100% RH Attenuation 

= 0.645 

Gain = 1

Gain = 69

LCD 
2 X 16

Keypad 
3x4 

EEPROM
16kb

10mV/°C 

5 levels (0 - 2.5V) 

-21.75mV to +14.5mV

0.145mV/mb

0.8V – 3.9V

0.31V/%

0 – 2.00V

20mV/°C 

0 – 2.55V

Offset = +250mV 

0 – 2.55V

10mV/mb

Offset = +1.50V

0 – 2.55V

Figure 10.4 Block diagram of weather station
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amplifier stage. The maximum source resistance allowed at the PIC ADC input
is 10 k�; a low-pass filter with a 1 k� series resistance and 100 nF decoupling
capacitor will give a cut-off frequency of around 2 kHz.

Temperature Sensor Input

The default choice for this sensor is the LM35 type. The performance is ade-
quate for this application, and it is possible to connect it direct to the ADC
input. In this case, the LM35C is used which allows negative temperatures to
be measured. To provide these as a positive voltage with single supply, the sen-
sor negative supply is connected to ground via a diode to lift the zero degrees
output to around 0.7 V. This allows the actual output voltage to go below the
zero level while remaining positive with respect to supply 0 V (Figure 10.5).
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(a)

(b)

LM35C 

+5v

Vo = -250mV
   to +750mV

0V

18k 

Figure 10.5 Temperature sensor interface: (a) sensor connections; (b) interface simulation
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The interface uses a differential amplifier with two positive and two neg-
ative inputs, based on the universal amplifier described previously. The
number of positive and negative inputs must always be equal to conform to
this model. A reference diode provides a negative input to balance the pos-
itive offset on the sensor input. The input from the sensor is simulated by a
switch which provides the maximum and minimum voltage which would be
seen at the input. A further positive input provides the offset at the ampli-
fier output to give 0.00–2.00V corresponding to the input range of 100°C.
The overall sensitivity is 20 mV/°C. A further negative input of 0 V is
needed to match the offset input. The preset feedback resistance is adjusted
for a gain of 2.00.

The circuit provides the following arithmetic sums at each end of the range
(�25°C and �75°C).

2.000 x (443 � 247�693�0) � �6 mV @ �25°C

2.000 x (1443 � 247–693–0) � �6 mV @ �75°C

The 6 mV at the output (3 mV at the input) is the offset of the amplifier,
which is allowed for in the external offset adjust (250–3 � 247 mV). Notice
that in the simulation there is a residual offset at 2.000 V output, but this is less
than 5 mV, which is acceptable (�0.5% at full scale). The reference diode cur-
rent may need to be adjusted in the real hardware by changing its 1k current
feed resistor to a value that gives the same current as that provided by the sen-
sor to its offset diode.

When converted with a 2.56 V reference, the temperature range will be rep-
resented by binary numbers equivalent to 0–200, with 50 representing 0°C.
This scaling offset can be corrected in software, prior to display. Remember
that the single supply amplifier output will not go all the way to zero, so the
actual range starts at about �23°C. In normal circumstances, this is accept-
able, as this temperature is rarely experienced in temperate climates.

Light Sensor Input

The light sensor input is designed around the standard NORP12 cadmium
disulphide-LDR. It has a spectral response which is similar to the human eye,
and is sensitive to a wide range of values of light intensity and is relatively easy
to interface. Its resistance is inversely proportional to light intensity, as shown
in Figure 10.6 (b). 

The light level is divided into five decades, from �1 lux (dark) to �10000
lux (direct sun), so the output levels are similarly divided. When the LDR is
connected in series with a 4k7 resistor across the 5 V supply, a set of voltages
is obtained which vary from 2.5 V (high resistance, dark) to 0 V (low resistance,
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light). In the simulated interface, these values are represented by switched par-
allel resistances, with the sensor voltage simply buffered by a unity gain ampli-
fier (Figure 10.6 (c)). The software can then compare the input with any chosen
set of limits, which correspond to the required light levels. The actual reading
will be stored for further analysis. 

Pressure Sensor Interface

Measurement of barometric pressure is not particularly straightforward, since
pressure measurement in usually made relative to atmosphere (1 bar � 1000
mb). For example, it is straightforward to measure a low-pressure air supply
for a pneumatic system operating at 5 bar. One side of the gauge diaphragm is
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Figure 10.6 Light sensor interface: (a) sensor connection; (b) LDR characteristic; (c) interface
simulation
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exposed to atmosphere, while the pressurised system is connected to the other
side. Small deviations from atmosphere caused by meteorological variation are
more difficult to measure accurately.

It is suggested here that one side of the gauge is connected to a closed tube rep-
resenting 1 atmosphere, while the other is exposed to the varying meteorologi-
cal pressure. Careful calibration will be required, with temperature compensation
for its effect on the fixed volume of air. This temperature measurement is avail-
able from sensor input described above.

Low-cost pressure sensors use a strain gauge bridge made up of laser-
trimmed piezo-resistive elements in a compact, robust package. A pressure in
the range of 850–1106 mbar is proposed (range � 256 mbar), allowing an 8-
bit conversion at 1 bit per mbar. Standard atmospheric pressure will then occur
at a reading of 150. 

The gauges investigated are rated in psi (pounds per square inch). 1 psi � 69
mbar, so the range required is 256/69 � 3.71 psi. A gauge is available which
measures up to 5 psi with a 10 V supply. If the supply is �5 and 0 V, the output
will be �/�2.5 psi, with a sensitivity of 5 mV/psi and offset of 2.5 V. This is
equivalent to 5/69 � 0.0725 mV/mbar. The range will then be 256 � 0.0725mV
� 18.56 mV. The amplifier gain required is therefore 2.56 V/18.56 mV � 138.

The output offset at 1000 mbar input will be 1.50 V. The low end will be cur-
tailed by the output of the single supply amp not quite being reaching zero, but
as this will be an extreme event, this is acceptable. The input and output volt-
ages are then as follows:

Input Vinzero � 0 mV 

Vinmin � 0.0725 ��140 � �10.15 mV (�140 not used)

Vinmax � 0.0725 � 100 � 7.25 mV 

Output Voutzero � 1.50 V 

Voutmin � 1.50–1.40 � 0.10 V 

Voutmax � 1.50 � 1.00 � 2.50 V

If the standard instrumentation amplifier is used (Chapter 7), gain G � 1 �
2R2/R1, where R1 and R2 are the values in the input stage.

� R2/R1 � (G�1)/2 � (138�1)/2 � 68.5 

If R1 � 1k, R2 � 68k � 470R 
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The offset voltage (�1.50 V) will be input at the non-inverting reference
input. This can also include some adjustable element to compensate for the
amplifier input offset. Figure 10.7 (b) shows the circuit simulation operating
with the maximum input.

Humidity Sensor Interface

The humidity sensor selected has integrated signal conditioning so that an
output between 0.8 and 3.9 V is produced, representing a change in relative
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Figure 10.7 Pressure sensor interface: (a) sensor connections; (b) interface simulation
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humidity of 0–100%. A simple buffered attenuator is used to shift the signal
range for input to the ADC. The output of 0 V from the single supply ampli-
fier cannot be obtained, so the output is shifted up to the range 0.5–2.50 V,
giving 20 mV/%. This offset must be removed in software, by subtracting 5010
from the 8-bit binary input.

Input range � 3.9�0.8 � 3.1 V
Output range � 2.50�0.50 � 2.00

� Required gain � 2.00/3.1 � 0.645 (attenuation)

� Use unity gain � output attenuator

Output max � 3.9 � 0.645 � 2.516
Output min � 0.8 � 0.645 � 0.516

The small residual offset is easier to eliminate in software, by adjusting
the offset correction factor, and subtracting 52 instead of 50. This allows
preferred values to be used in the attenuator, reducing component cost.
The input and output buffering of the attenuator network simply reduces
any error due to loading effects. However, the sensor is only specified
about 4% accurate normally, so this may not be absolutely necessary.
The sensor  can be supplied with individual calibration data if a more accu-
rate output is needed. Figure 10.8 shows the simulated interface operating at
100% humidity.
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Figure 10.8 Humidity sensor interface
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SUMMARY 10

• Digital sensors include switches, opto-detectors and incremental encoders
• Analogue sensors produce a variation in voltage, current or resistance
• Their main characteristics are sensitivity, range, offset, accuracy and

error
• Inputs include position, speed, temperature, pressure, light, strain, humidity
• Sensors are resistive, capacitative, inductive, semi-conductor or voltaic
• Interface signal conditioning adjusts gain, offset and frequency response 

ASSESSMENT 10 Total (40)

1 Describe how the reliability of a mechanical switch can be improved. (3)

2 Explain the meaning of interpolation in position measurement. (3)

3 Define the term sensitivity as applied to a sensor. (3)

4 Explain the difference between the terms accuracy and precision. (3)

5 State three sensors for measuring temperature, and the materials that each is 
made from. (3)

6 Explain why strain gauges are normally connected as a bridge circuit. (3)

7 State the gain required to obtain 50 mV/°C from an LM35 temperature
sensor. (3)

8 Sketch a typical linear transfer characteristic and use it to illustrate the effect 
of varying the gain and offset of the output. (3)

9 Explain why the instrumentation amplifier configuration is suitable
for interfacing a strain gauge bridge. (3)

10 From the LDR characteristic shown, state the resistance in k� of the LDR 
at 1.0 lux illumination. (3)

11 Describe an analogue and a digital method to measure the angular position 
of a shaft, and suggest an advantage of each type of sensor. (5)

12 Describe an analogue and a digital method to measure the angular speed 
of a shaft, and suggest an advantage of each type of sensor. (5)
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ASSIGNMENTS 10

10.1 Rain Gauge Design

Investigate and design a system for measuring rainfall. The cumulative rain
for each day should be displayed continuously. At midnight the total
should be logged and the gauge should be reset. Do not design the controller
itself, but specify its requirements to operate the gauge. Compare alternative
sensors for the gauge and identify the advantages and disadvantages of each
option.

10.2 Interface Design

The forward voltage drop across a silicon signal diode, used as temperature sen-
sor, falls by 2 mV/°C. The diode current is adjusted so that voltage is 650 mV
at 25°C. Design an interface that will produce an output of 0–2.50 V represent-
ing diode temperatures of 0–50°C. Test your design in simulation mode and
comment on any limitations or deviation of the circuit from ideal performance.

10.3 Sensor Comparison

Obtain the specification for three types of temperature sensor: a metal film
temperature-sensing resistor, a thermocouple and thermistor. Construct a chart
showing the sensitivity (if linear), range and total possible error at mid-range.
Investigate and establish a mathematical representation of the transfer function
for each. From the function, predict the sensor output at minimum, maximum
and mid-range temperature. Suggest at least one appropriate application for
each sensor.

Sensor Interfacing
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11

System Design

Now that we have studied a range of system components, we can put them
together to form some typical MCU-based systems. A base module will be
designed which will be used for a range of different measurement and control
applications, a parallel memory expansion scheme outlined, and the range of
PIC microcontrollers and other processor families reviewed. 

Base System

The base system can be used as a general purpose PIC board, and as the basis
for applications using the subsystems and interfaces described in the previous
chapters. A PIC 16F877 is provided with a keypad, alphanumeric display and
serial flash memory, with an RS232 serial link for connecting a PC host. The
additional components are included to run the hardware version, and provide
basic interfacing facilities: clock circuit, ICD interface, ADC reference volt-
age, ADC test input, I/O signal connector, LED indicator and buzzer.

The block diagram in Figure 11.1 shows these features. At this point, it might
be useful to review the use of block diagrams in embedded system design:

• The main elements are shown in block form and labelled accordingly
• These are connected by arrow segments indicating the nature of the signal

and the principal direction of information flow
• Serial and parallel data is represented by single and block arrows, 

respectively
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• If the signal is not digital, it should be labelled accordingly, specifying
voltage levels and signal type, with signal diagram if necessary

• The block diagram allows the I/O requirements to be identified, and the
most suitable microcontroller selected

• The block diagram is then expanded into circuit schematic

Once the application specification has been converted into a block diagram
and a suitable MCU provisionally selected, a circuit schematic can be started.
Proteus™ schematic capture provides drawing objects for the whole range of
commonly used components. Simulation models are provided with selected
devices, and some are interactive on screen to facilitate circuit testing. This is
particularly useful for interface components such as the keyboard and LCD in
the base board design. Devices are selected from the library of parts; if a listed
part does not have a simulation model attached, an equivalent can be selected.
Devices can also be created by the user.

Base Board Hardware

The base board schematic is shown in Figure 11.2. The circuit is built around
the 16F877, with ports A and E brought out to an in-line connector for the ex-
ternal interface circuits. Port D is allocated to the LCD with Port C interfacing
with the serial memory and PC host via serial ports. Port B programming pins
are brought out to the ICD connector, and remaining Port B and C pins used
for the keypad, an LED indicator and buzzer.

Port D

Port C

MCU 

RB0

RB1
Port A 

SCL
SDA

Port E 

Reset

Clock
4MHz

ICD

Vref = 2.56V

Test Input
0-2.5V

LC Display

X12
Keypad

LED 

Buzzer 

Serial
Memory

X7

X3

X7

X7 

User I/O
(digital or 
analogue)

RS232

Figure 11.1 Base module block diagram
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RESET

A manual reset is included, so that programs can be restarted when the board
is running independently. If the program appears to be malfunctioning, a hard-
ware reset is usually the first remedy. 

CLOCK

A standard crystal circuit is used, running at 4 MHz. This gives a 1 �s in-
struction execution time, which is convenient for analysing program timing.
The crystal needs to be physically near the MCU, so that additional track ca-
pacitance does not prevent the crystal from oscillating, or affect the resonant
frequency. The maximum frequency possible is 20 MHz, giving a 200 ns in-
struction cycle, or 5 million instruction cycles per second. For maximum
speed, the crystal must be replaced with a HS (High Speed) type. Note, how-
ever, that the power dissipation increases with frequency, so the supply needs
to be adequate. In addition, signals at higher frequencies tend to radiate more
easily, so clock interference affecting other signals is more likely. If the MCU
is used with other ICs in circuit, it is standard practice to decouple the supply
near to each chip with a small ceramic capacitor (e.g. 10 pF). This helps to
prevent the clock signal getting into the IC on the supply, and causing a mal-
function. The longer the board tracks are, the more likely this type of problem
is to occur. 

ICD

The ICD connections are brought out to a connector which will match the con-
nector on the ICD programmer module, which is connected in turn to the host
PC, to provide program downloading and final debugging in hardware. At this
stage, any final timing or interfacing issues which only appear in the real hard-
ware can be resolved. The PIC development system must be used for program
downloading, so the program, which has been tested by simulation must be
transferred to MPLAB. The debugging tools in MPLAB, which are more
extensive than in Proteus, may sometimes be called into use. However, the
assembler (MPASM) is the same, so the object code (PROGNAME.HEX) will
be the same when reassembled in MPLAB.

INPUT/OUTPUT

Ports A and E are attached to a connector for external circuits, allowing ana-
logue input or digital I/O on seven pins. RA3 is used for an external reference
voltage which is shown as 2.56 V, assuming 8-bit conversion will be used. If 
10-bit conversion is required, a 4.096 V reference can be substituted, as shown
in Chapter 7. A test voltage is connected to AN0, and when the test program is
running, the value will be displayed on the LCD (0.00–2.50 V). An LED and
buzzer are also provided on spare pins at Port B to provide some status indi-
cations. In the test program, the LED indicates if the input voltage is over 50%,
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and the buzzer provides some audible feedback when a button is pressed on the
keypad.

KEYPAD

The keypad interface is detailed in Chapter 4. The 12-button keypad is con-
nected in the usual way to Port C. In the test program, the outputs to the rows
(ABCD) and the inputs from the columns (123) are initially all high. The rows
are taken low in turn and the columns tested for 0. When a button is detected,
the corresponding ASCII code is returned and processed. 

LCD

The operation of the 16�2 character LCD is detailed in Chapter 4. It is con-
nected in 4-bit mode, that is, ASCII codes are fed to it in two stages, high nib-
ble then low nibble; for this reason, the data inputs are connected to the high
bits of Port D. The low bits provide the control lines RS (Register Select) and
E (Enable). The RW (Read/Write) line is connected low for writing only � it
is not necessary to use the LCD handshaking, which would require a change
in data direction, and make the software more complex. In outline, the LCD
operates as follows: a control byte is presented at the data inputs and RS set
low to select command mode. A pulse on E then latches the high nibble, with
the low nibble following in the same way. The command mode is used for op-
erations such as resetting the cursor position to the first character, or clearing
the display. The ASCII character codes are loaded by taking RS high for data
mode, and latching the code in two stages as above. The display can be ini-
tialised to auto-increment the cursor to the next space on the same line when
a character is added to the line, but needs a specific command to go to the
second line.

SERIAL MEMORY

The memory chip locations are accessed via the I2C serial interface (RC3,
RC4), as detailed in Chapter 9. Data is transferred in 1 byte packets on SDA,
preceded by addressing bytes to select the chip and the location. SCK provides
a clock pulse with each bit to latch it into the destination device. The hardware
address pins are connected low to assign the default address 0. WP (Write
Protect) allows the chip write to be disabled to prevent accidental overwriting
of important data, but it is not connected here.

PC INTERFACE

The RS232 port is connected to a 9-pin D-type connector via a standard
MAX232 chip. This converts the signal level between a higher, symmetrical
voltage of about 18 V (�/�9 V) for communication with the PC host and TTL
levels for the MCU. The line voltage is generated by an internal charge pump
from the single 5 V supply, using the externally fitted capacitors. The hardware
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handshaking lines (RTS, CTS) are not implemented. The RS232 interface is
described in Chapter 9. 

POWER SUPPLY

The �5 V power supply must have the following characteristics:

• Accurate voltage
• Sufficient current 
• Low noise & ripple

The PIC 16F877 is specified to draw less than 2 mA at 4 MHz. The LCD
module may draw up to 10 mA, and any interfacing circuits must be included
in the power supply current budget. A standard 1 A linear regulator chip should
be sufficient in most cases, as any high power loads will normally run from
the unregulated supply. A 5 V regulator circuit can be added to the circuit
if necessary, but an external plug-top regulated supply and coaxial input could
be more convenient. These typically supply at least 500 mA, while a
bench supply will provide at least 1 A. Standard IC regulators will provide
�5 V �/�0.25 V, with low noise and ripple.

Base Board Test Program

A test program which exercises all parts of the hardware, while being as simple
as possible, is always useful. If the hardware can be proved to function correctly,
the software development can then be undertaken with confidence. The base
board test program reads the analogue input, indicates if it is over 1.28 V, dis-
plays it and stores the 8-bit voltage code in the serial memory. The second part
reads the keypad and displays the key, with audible feedback (Program 11.1).

The serial memory access routine, the display driver routine and the BCD
conversion routine are allocated reserved GPR ranges in the register label
equates. These routines, as well as the analogue port read routine, are included
as separate source code files at the end of the main source listing. This allows
these routines to be re-used in future programs, ideally without modification.
Information about the way the routine is used (register requirements, parame-
ter passing and so on) is included in the header to make this as straightforward
as possible. The keypad scanning routine was modified to use a mix of Ports
B and C lines.

The directive DT has been used here to create the data table of ASCII codes
required for the display of fixed messages. It generates a sequence of RETLW
instructions for each code, which is accessed in the usual way by modifying
the program counter with ADDWF PCL (ensure that there is no page bound-
ary in the table, or it will not work correctly!). The table is terminated with a
zero, which can be detected by the output routine to terminate the message.
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 
; Project: Interfacing PICs
; Source File Name: BASE1.ASM
; Devised by: MPB 
; Date: 31-1-06
; Status: Finished 
; 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; 
; Program to exercise the 16F877 BASE module
; with 8-bit analogue input, LCD, phone keypad
; and serial memory 
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 PROCESSOR 16F877
; Clock = XT 4MHz, standard fuse settings 
 __CONFIG 0x3731

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

INCLUDE "P16F877A.INC" ; standard labels

; User register label allocation ;;;;;;;;;;;;;;;;;;;;;;;;;;

; GPR 20 - 2A local variables
; GPR 30 - 32 keyin subroutine
; GPR 60 - 65 SERMEM serial memory driver
; GPR 70 - 75 LCDIS display driver 
; GPR 77 - 7A CONDEC BCD conversion routine

LCDport EQU 08 ; assign LCD to Port D
LCDdirc EQU 88 ; data direction register

Temp EQU 20 ; temp store 
Tabin EQU 21 ; Table pointer 

; Keypad registers

Cont EQU 30 ; Delay counter 
Key EQU 31 ; Input key
Test EQU 32 ; Key check 

;----------------------------------------------------------
; MAIN PROGRAM 
;----------------------------------------------------------

ORG 0 ; Default start address 
NOP ; required for ICD mode

; Port & display setup ------------------------------------

BANKSEL TRISA ; Select bank 1
MOVLW B'11001000' ; Port B code for
MOVWF TRISB ; keypad row outputs 
MOVLW B'10010111' ; Port C code for
MOVWF TRISC ; rows and columns
CLRF TRISD ; Display port

BANKSEL PORTA ; Select bank 0
 CLRF PORTD ; Clear display 

CLRF HiReg ; memory page 0
 CLRF LoReg ; first location 

CALL inimem ; init. serial memory
CALL inid ; Initialise display 

;----------------------------------------------------------
; MAIN LOOP
;----------------------------------------------------------

start CLRW ; Select AN0 input
CALL adin ; read analogue input 
CALL condec ; convert to decimal 

 CALL putdec ; display input 
CALL store ; store in memory

 CALL putkey ; Fixed message 
CALL keyin ; scan phone keypad

 CALL send ; display key 
GOTO start ; and again

Program 11.1 Base module test program
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Program 11.1 Continued

;----------------------------------------------------------- 
; SUBROUTINES 

;----------------------------------------------------------
; Routine to scan 3x4 phone key pad 
; Returns ASCII code in W
; Output rows: RB2,RB4,RB5,RC5
; Input cols: RC0,RC1,RC2
;----------------------------------------------------------

keyin NOP
 BANKSEL TRISC

MOVLW B'10010111' ; Port C code for
MOVWF TRISC ; rows and columns

 BANKSEL PORTC

 BSF PORTB,2 ; Set 
BSF PORTB,4 ; rows

 BSF PORTB,5 ; high
 BSF PORTC,5 ; initially 

BSF Cont,0 ; Counter not zero 
 CLRF Test ; No key

; Scan keyboard -------------------------------------------

again CLRW ; No key yet 
BCF PORTB,2 ; Row 1

 NOP ; wait
 NOP 

BTFSS PORTC,0 ; key pressed?
MOVLW '1' ; yes - load ASCII 

 BTFSS PORTC,1 ; next
 MOVLW '2' ; etc 
 BTFSS PORTC,2 ;
 MOVLW '3' ;

BSF PORTB,2 ; deselect row 
; ---------------------------------------------------------

BCF PORTB,4 ; second row 
 BTFSS PORTC,0 
 MOVLW '4'
 BTFSS PORTC,1 
 MOVLW '5'
 BTFSS PORTC,2 
 MOVLW '6'
 BSF PORTB,4 
; ---------------------------------------------------------
 BCF PORTB,5 ; third row 
 BTFSS PORTC,0 
 MOVLW '7'
 BTFSS PORTC,1 
 MOVLW '8'
 BTFSS PORTC,2 
 MOVLW '9'
 BSF PORTB,5 
; ---------------------------------------------------------

BCF PORTC,5 ; fourth row 
 BTFSS PORTC,0 
 MOVLW '*'
 BTFSS PORTC,1 
 MOVLW '0'
 BTFSS PORTC,2 
 MOVLW '#'
 BSF PORTC,5 

; Test key ------------------------------------------------

MOVWF Test ; get code
MOVF Test,F ; test it
BTFSS STATUS,Z ; if code found 
GOTO once ; beep once

MOVF Key,W ; load key code and 
 RETURN ; if no key 

; Check if beep done --------------------------------------

once MOVF Cont,F ; beep already done?
 BTFSC STATUS,Z

GOTO again ; yes - scan again 

 MOVF Test,W ; store key
 MOVWF Key
; Beep ----------------------------------------------------

beep MOVLW 10 ; 10 cycles 
 MOVWF Cont

buzz BSF PORTB,0 ; one beep cycle
 CALL onems ; 2ms 
 BCF PORTB,0 
 CALL onems 

DECFSZ Cont ; last cycle?
 GOTO buzz ; no

 GOTO again ; yes 

; End of keypad routine ------------------------------------ 
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; ---------------------------------------------------------- 
; Display input test voltage on top line of LCD 
;----------------------------------------------------------- 

putdec BCF Select,RS ; set display command
mode

MOVLW 080 ; code to home cursor
CALL send ; output it to display 
BSF Select,RS  ; and restore data mode

; Convert digits to ASCII ---------------------------------- 

MOVLW 030 ; load ASCII offset
ADDWF Huns ; convert hundreds to

ASCII 
ADDWF Tens ; convert tens to ASCII
ADDWF Ones ; convert ones to ASCII

; Display voltage on line 1 -------------------------------- 

CALL volmes ; Display text on line 1 

MOVF Huns,W ; load hundreds code
CALL send ; and send to display
MOVLW '.' ; load point code
CALL send ; and output
MOVF Tens,W ; load tens code
CALL send ; and output
MOVF Ones,W ; load ones code
CALL send ; and output
MOVLW ' ' ; load space code
CALL send ; and output
MOVLW 'V' ; load volts code
CALL send ; and output

 RETURN ; done

; Store voltage in serial memory --------------------------

store BSF SSPCON,SSPEN ; Enable memory port
MOVF ADRESH,W ; Get voltage code 
MOVWF SenReg ; Load it to write
CALL writmem ; Write it to memory 
INCF LoReg ; Next location
BCF SSPCON,SSPEN ; Disable memory port

 RETURN ; done

;----------------------------------------------------------
; Display key input on bottom line of LCD
;----------------------------------------------------------

putkey BCF Select,RS ; set display command
mode

MOVLW 0C0 ; code to home cursor
CALL send ; output it to display 
BSF Select,RS  ; and restore data mode

 CALL keymes
 RETURN ; done

;----------------------------------------------------------
; Display fixed messages
;----------------------------------------------------------
volmes CLRF Tabin ; Zero table pointer
next1 MOVF Tabin,W ; Load table pointer

CALL mess1 ; Get next character 
MOVWF Temp ; Test data... 

 MOVF Temp,F ; ..for zero
BTFSC STATUS,Z ; Last letter done?
RETURN ; yes - next block 
CALL send ; no - display it
INCF Tabin ; Point to next letter
GOTO next1 ; and get it

; ---------------------------------------------------------
keymes CLRF Tabin ; Zero table pointer
next2 MOVF Tabin,W ; Load table pointer

CALL mess2 ; Get next character 
MOVWF Temp ; Test data... 

 MOVF Temp,F ; ..for zero
BTFSC STATUS,Z ; Last letter done?
RETURN ; yes - next block 
CALL send ; no - display it
INCF Tabin ; Point to next letter
GOTO next2 ; and get it

;----------------------------------------------------------
; Text strings for fixed messages 
;----------------------------------------------------------
mess1 ADDWF PCL ; Set table pointer

DT "Volts = ",0 ; Text for display

mess2 ADDWF PCL ; Set table pointer
DT "Key = ",0 ; Text for display

;------------------------------------------------------------- 

Program 11.1 Continued
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The include routines must be stored in the same application folder with the
main source code, or the full file path to the folder must be given in the include
statement. For relatively small files, it is more convenient to copy them into
each application folder, as is the case here for the standard register label file
‘P16F877.INC’. These files were created by modifying the demonstration pro-
gram for each interface into the form of a subroutine. This entails deleting the
initialisation which is common with the main program, and using a suitable
label at the start (same as the include file name), and finishing with a RETURN.
This is a simple way to start building a library of utilities for the base hardware.

As can be seen, the software design philosophy is to make the main program
as concise as possible, so that ultimately it consists of a sequence of subrou-
tine calls. This makes the program easier to understand and debug. The sub-
routines in the main program are mainly concerned with operating the display,
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;----------------------------------------------------------
; INCLUDED ROUTINES
;----------------------------------------------------------
; LCD DRIVER
; Contains routines:
; init: Initialises display
; onems: 1 ms delay
; xms: X ms delay
; Receives X in W
; send: sends a character to display
; Receives: Control code in W (Select,RS=0)
; ASCII character code in W (RS=1)
; 
 INCLUDE "LCDIS.INC" 
; 
;----------------------------------------------------------
; Convert 8 bits to 3 digit decimal 
; 
; Receives 8-bits in W
; Returns BCD diits in 'huns','tens','ones' 
; 
 INCLUDE "CONDEC.INC"; 
; 
;----------------------------------------------------------
; Read selected analogue input
; 
; Receives channel number in W 
; Returns 8-bit input in W
; 
 INCLUDE "ADIN.INC"
; 
;----------------------------------------------------------
; SERIAL MEMORY DRIVER
; Write high address into 'HiReg' 00-3F 
; Write low address into 'LoReg' 00-FF 
; Load data send into 'SenReg' 
; Read data received from 'RecReg' 
; 
; To initialise call 'inimem'
; To write call 'writmem' 
; To read call 'readmem'
; 
 INCLUDE "SERMEM.INC"
; 
;----------------------------------------------------------
 END ; of source code 
;----------------------------------------------------------

Program 11.1 Continued
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while the included routines are specific to particular interfaces. These are not
printed here, but are similar to the stand-alone demo programs, and can be in-
spected in the actual source code files provided.

Memory System

A conventional microprocessor system contains separate CPU and memory
chips. A similar arrangement can be used if we need extra memory in a PIC
system and there is no shortage of I/O pins. Parallel memory is inherently
faster than the serial memory as seen in Chapter 9, because the data is trans-
ferred 8 bits at a time. A system schematic is shown in Figure 11.3.
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Figure 11.3 Parallel memory system
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Memory System Hardware

A pair of conventional 62256 32k RAM chips are used to expand the memory
to 64k bytes. Port C in the PIC 16F877 is used as a data bus, and Port D as an
address bus. In order to reduce the number of I/O pins needed for external
memory addressing, an address latch is used to store the high byte of the 15-
bit address (D7 unused). The address is output in two stages; the high byte is
latched, selecting the high address block; the low byte is then output direct to
the memory chips low address bits to select the location. If a block read is re-
quired, the high address can remain unchanged while a page of 256 bytes is ac-
cessed (low address 00-FF). The next page can then be selected if required. By
incrementing the high byte (page select) from 00 to 7F, the whole RAM range
can be accessed in each chip. Each chip is selected individually via an address
decoder, but the pairs of bytes from corresponding locations can be put to-
gether and processed as 16-bit data within the MCU.

Each RAM chip has eight data I/O pins (D0�D7) and 15 address pins
(A0�A14). This means that each location contains 8 bits, and there are 215 �
32768 locations. An address code is fed in, and data for that address read or
written via the data pins. To select the chip, the Chip Enable (!CE) pin is taken
low. To write a location, an address code is supplied, data presented at D0�D7,
and the Write Enable (!WE) is pulsed low. To read data, the Output Enable
(!OE) is set active (low), along with the chip enable, and the data from the ad-
dress can then be read back. 

The high address byte is temporarily stored in a ‘273 latch (8-bit register),
which is operated by a master reset and clock. The 7-bit high address is pre-
sented at the inputs, and the clock pulsed high to load the latch. The MCU
then outputs the low address direct to the memory low address pins, and the
combined address selects the location. In the test program, all addresses are
accessed in turn by incrementing the low address from 00 to FF for each high
address (memory page select). The memory can be organised as 64k � 8
bytes or 32k � 16-bit words.

Memory System Software

The test program (Program 11.2) writes a traditional checkerboard pattern to
the memory chips, placing the codes 01010101 (55h) and 10101010 (AAh) in
successive locations. Adjacent memory cells are therefore all set to opposite
voltage values, and any interaction between them, for example, due to charge
leakage, is more likely to show up. The memory is written and read, the data
retrieved, and compared with the correct value. If the write and read values do
not agree, an error LED is lit. A switch has been placed in the data line D0 so
that the error detection system can be tested in the simulation. When the switch
is open, data 0 will be written to all D0 bits (open circuit data input), so all the
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least significant bits of the test data 55h will be incorrect, with the value 54h
read back (Figures 11.4 and 11.5).

The system operates in a similar way as a conventional processor, with ad-
dress decoding hardware to organise the memory access. The address decoder
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; PARMEM.ASM MPB 6-9-05
;............................................................... 
; 
; Parallel memory system
; Status: Complete
; 
; PIC 16F877 operates with expansion memory RAM 
; = 2 x 62256 32kb
; Control bits = Port B 
; Data bus = Port C 
; Address Bus = Port D
;  
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

PROCESSOR 16F877 ; define MPU 
__CONFIG 0x3731 ; XT clock 

; LABEL EQUATES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

INCLUDE "P16F877.INC" ; Standard labels

ConReg EQU 06 ; Port B = Control Register
DatReg EQU 07 ; Port C = Data Register
AddReg EQU 08 ; Port D = Address Register

HiAdd EQU 20 ; High address store

CLK0 EQU 0 ; RAM0 address buffer clock
CLK1 EQU 1 ; RAM1 address buffer clock
SelRAM EQU 2 ; RAM select bit
ResHi EQU 3 ; High address reset bit
WritEn EQU 4 ; Write enable bit
OutEn0 EQU 5 ; Output enable bit RAM0
OutEn1 EQU 6 ; Output enable bit RAM1
LED EQU 7 ; Memory error indicator

; Initialise ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

ORG 0 ; Place machine code
NOP ; Required for ICD mode

BANKSEL TRISB ; Select bank 1
CLRF TRISB ; Control output bits
CLRF TRISC ; Data bus initially output
CLRF TRISD ; Address bus output 

BANKSEL AddReg ; Select bank 0
CLRF DatReg ; Clear outputs initially 
CLRF AddReg ; Clear outputs initially 

BCF ConReg,CLK0 ; RAM0 address buffer clock
BCF ConReg,CLK1 ; RAM1 address buffer clock
BCF ConReg,SelRAM ; Select RAM0 initially
BCF ConReg,ResHi ; Reset high address latches
BSF ConReg,OutEn0 ; Disable output enable RAM0
BSF ConReg,OutEn1 ; Disable output enable RAM1
BSF ConReg,WritEn ; Disable write enable bit
BCF ConReg,LED ; Switch off error indicator

; MAIN LOOP ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

start CALL write ; test write to memory
CALL read ; test read from memory

 SLEEP ; shut down

Program 11.2 Parallel memory program source code
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; SUBROUTINES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Write checkerboard pattern to both RAMs ;;;;;;;;;;;;;;;;;;;;;;;

write BSF ConReg,ResHi ; Enable address latches 

nexwrt MOVLW 055 ; checkerboard test data
MOVWF DatReg ; output on data bus 
CALL store ; and write to RAM 

MOVLW 0AA ; checkerboard test data
MOVWF DatReg ; output on data bus 
CALL store ; and write to RAM 

BTFSS ConReg,ResHi ; all done? 
 RETURN ; yes - quit

GOTO nexwrt ; no - next byte pair
; Check data stored ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

read NOP ; required for label 
BANKSEL TRISC ; select bank 1
MOVLW 0FF ; all inputs..
MOVWF TRISC  ; ..at Port C

BANKSEL ConReg ; select default bank 0
BSF ConReg,ResHi ; Enable address latches 

BCF ConReg,SelRAM ; select RAM0
BCF ConReg,OutEn0 ; set RAM0 for output
CALL nexred ; check data in RAM0

BSF ConReg,SelRAM ; select RAM1
BCF ConReg,OutEn1 ; set RAM1 for output
CALL nexred ; check data in RAM1

 RETURN ; all done

; Load test data and check data ................................ 

nexred MOVLW 055 ; load even data byte
 CALL test ; check data

MOVLW 0AA ; load odd data byte
 CALL test ; check data

BTFSS ConReg,ResHi ; all done? 
 RETURN ; yes - quit

GOTO nexred ; no - next byte pair
; Write data to RAM .............................................

store BCF ConReg,SelRAM ; Select RAM0
BCF ConReg,WritEn ; negative pulse ..
BSF ConReg,WritEn ; ..on write enable

BSF ConReg,SelRAM ; Select RAM1
BCF ConReg,WritEn ; negative pulse ..
BSF ConReg,WritEn ; ..on write enable
INCF AddReg ; next address 
BTFSC STATUS,Z ; last address?
CALL inchi ; yes-inc. high address 

 RETURN ; no-next byte
; Test memory data ..............................................

test MOVF DatReg,F ; read data
 SUBWF DatReg,W ; compare data
 BTFSS STATUS,Z ; same? 

BSF ConReg,LED ; no - switch on LED 

INCF AddReg ; yes - next address 
BTFSC STATUS,Z ; last address in block?
CALL inchi ; yes-inc. high address 

 RETURN ; no - continue

; Select next block of RAM ......................................

inchi INCF HiAdd  ; next block 
BTFSC STATUS,Z ; all done? 

 GOTO alldon ; yes 

MOVF HiAdd,W ; no - load high address 
MOVWF AddReg ; output it

BSF ConReg,CLK0 ; clock it into latches 
 BSF ConReg,CLK1 
 BCF ConReg,CLK0 
 BCF ConReg,CLK1 

CLRF AddReg ; reset low address
 RETURN ; block done

alldon BCF ConReg,ResHi ; reset address latches 
RETURN ; all blocks done

 END ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Program 11.2 Continued
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PARMEM
Parallel memory test program  
Writes test data to both RAM chips simultaneously
Checks test data in RAM0, then RAM1

Initialisation
Control Register = Port B = outputs 

Bit 0 = RAM0 address buffer clock = 0 
Bit 1 = RAM1 address buffer clock = 0 
Bit 2 = RAM chip select bit = 0 
Bit 3 = RAM address latch reset = 0 
Bit 4 = RAM !Write enable = 1 
Bit 5 = RAM0 !Output enable = 1 
Bit 6 = RAM1 !Output enable = 1 
Bit 7 = Error indicator LED = 0

Data Register = Port C = outputs = 00
Address Register = Port D = outputs = 00

Main
Write checkerboard pattern to both RAMs
Check data stored

 Sleep

Subroutines

Write checkerboard pattern to both RAMs
 REPEAT 

Load data 55h 
Write it to current memory location address
Load data AAh
Write it to current memory location address

UNTIL all locations done

Write it to current memory location address
Write data to RAM0
Write data to RAM1
Increment low address 
IF last address, Select next page

Check data stored
Set data port for input 
Select RAM0 for output 
Check data in RAM
Select RAM1 for output 
Check data in RAM

Check data in RAM 
 REPEAT 

 Load 55h 
Compare with stored byte (even) 
Load AAh 
Compare with stored byte (odd) 

 UNTIL all done 

Compare with stored byte 
Compare bytes at current address 
IF different, switch on error LED
Increment low address 
IF end of page, Select next page

Select next page
 Increment page select 
 IF last page done 

reset high address latch
quit

 Latch high address 
 Reset low address 

Figure 11.4 Parallel memory program outline 
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chip has three inputs CBA, which receive a binary select code from the proces-
sor. The corresponding output is taken low � for example, if binary 6 is input
(110), output Y6 is selected (low), while all the others stay high. This decoder
can generate 8-chip select signals, and if attached to the high address lines of
a processor, enable the memory chips in different ranges of addresses. In our
system here, only the least significant input (A) and two outputs (Y0, Y1) are
used, giving a minimal system. The additional address decoder outputs could
be used to control extra memory chips attached to the same set of address and
data lines.

The bus system operation depends on the presence of tri-state buffers at the
output of the RAM chips. These can be switched to allow data input (!CE &
!WE � low), data output (!CE & !OE � low) or disabled (!CE & !OE � high).
In the disabled state, the outputs of the RAM are effectively disconnected from
the data bus. Only one RAM chip should be enabled at a time, otherwise there
will be contention on the bus � different data bytes present at the same time,
causing a data error. 

Extended Memory System

If this system was extended using six more RAM chips, there would be
a total of 32k � 8 bytes � 256k. A 3-bit input would be required into the
address decoder (Port E could be used) to extend the chip selection system.

Figure 11.5 Memory test simulation screen
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The high address (page select) would still be 7 bits, and the location select 8
bits, giving a total address width of 18 bits. The address decoder chip also
has some enable inputs, which disable all outputs when active � this can be
used to extend the addressing system further.

A memory map has been constructed for this extended memory design
(Figure 11.6 (b)). It contains a total of 256k locations, divided into 8 blocks of
32k (one chip), each containing 128 pages of 256 bytes. In an extended system,
consideration must be given to the amount of current required by each input
connected to the busses. The high current output of the PIC is useful here, but
the standard digital outputs of the address latches have a more limited drive
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(a)

(b)

Block 
32k 

Start
Address 

End  
Address 

0 00000 07FFF
1 08000 0FFFF
2 10000 17FFF
3 18000 1FFFF
4 20000 27FFF
5 25000 2FFFF
6 30000 37FFF
7 38000 3FFFF

(c)

Block Add (E) Page Address (Port D latched) Location Address (Port D)
Bits A17 A16  A15 A14  A13  A12 A11  A10  A9   A8 A7 A6  A5  A4  A3 A2 A1  A0

Allocation RE2 RE1  RE0 RD6  RD5  RD4 RD3  RD2  RD1  RD0 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0

MCU 

Address Bus x 8

Block Address x 3

Data Bus x 8

RAM0
32k 

CS0

RAM2
32k 

CS2

CS1

RAM1
32k

High 
Address
Latch 0

High 
Address
Latch 1

CS3

RAM3
32k

RAM4
32k 

CS4

RAM6
32k 

CS6

CS5

RAM5
32k

CS7

RAM7
32k

Address 
Decoder

Figure 11.6 256k Extended memory system: (a) block diagram; (b) memory map; (c) address
bit allocation
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capability. If necessary, current drivers should be added at the latch outputs in
the extended system.

Other PIC Chips

The PIC 16F877 is used throughout this book for simplicity � in real appli-
cations, a chip should be chosen from the PIC range which most closely
meets the design requirements, both in terms of the absolute number of I/O
pins and the special interfaces available. In addition, the program memory
size must be sufficient for the application, and the clock speed, EEPROM
space and so on, taken into account. The range is constantly expanding; new
chips with new features and different combinations of existing features are
constantly added.

The 16F877 can be used as a reference point when comparing the features
of the other chips that are available. The main criteria are

• Number of I/O pins
• Program memory size
• Peripheral set
• Data memory size
• Instruction set features

A small sample has been selected from each series for comparison from the
current manufacturers catalogue, found at www.microchip.com.

PIC 16FXXX Mid-range Series

The PIC 16FXXX chips all have the same 14-bit instruction set and run at 20
MHz (maximum clock rate). A selection of currently available devices is listed
in Table 11.1 (a).

We can see that the complexity seems to increase with the type number,
including the number of I/O pins, memory size and range of peripherals.
Most of those listed have been added since the 16F84 and the 16F877 were
introduced, and many include an internal oscillator, which can be used if
precise timing is not required. This saves on I/O pins, and means that all
pins except two (for the power supply) can be allocated to I/O devices. The
‘84A is obsolete for commercial applications, where chips are bought in
bulk, and so the price is now relatively high. It is still used in education as
a training device. 

Interfacing PIC Microcontrollers
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PIC Small MCUs

These include the 10FXXX and 12FXXX devices, of which a few examples
are listed in Table 11.1 (b) for comparison with the mid-range types. A sim-
plified 12-bit instruction set is used in these chips. The smallest has only 6
pins, so in surface mount form they are among the smallest microcontrollers
available. Obviously, these only have limited features, only an internal os-
cillator and no analogue inputs. Some 8-pin devices can offer analogue in-
puts, EEPROM and serial interfaces, in which case, the 14-bit instruction
set is used. 

PIC Power MCUs

The high power (in processing terms and in power consumption) PIC chips
are designated 18FXXXX (Table 11.1 (c)). These have a more extensive
16-bit instruction set, run at 40 MHz, and are generally optimised for
programming in ‘C’. All these examples also have a hardware multiplier
to speed up arithmetic operations, and an internal oscillator option which
runs at 8 MHz. The lowest number has been selected in each range, to show
the significance of the numbering. The number following the ‘F’ refers to
the number of pins: 1 � 18, 2 � 28, 4 � 40, 6 � 64, 8 � 80. A full range of
peripherals is available, and the largest in the group has 32k of program
memory, a total of 69 I/O pins, 16 ADC inputs and 5 hardware timers.
If even more power is needed, Microchip produces a range of digital signal
processors.

The relative cost quoted is the guide price in dollars at the time of writing.
Actual prices depend on the volume of demand, and variation between com-
peting suppliers, but the relative cost should remain a useful guide over time.
As it happens, the 12F675 has a guide price of $1.00 at the time of writing,
providing a useful reference point.

Only flash memory devices have been listed, as these are most likely to be
purchased for experimental work, application prototyping and small-scale
production. A corresponding range of OTP (one-time programmable) devices
is available which can be sourced at lower cost, for medium-scale production.
For higher production volumes, the chips can be ordered pre-programmed
from the manufacturer, either in OTP form or mask programmed. In the lat-
ter case, the programme is built in during the final stages of the chip manu-
facture, and is used to produce large numbers of MCUs at minimum cost per
chip, for applications where the code will probably not need updating during
the product lifetime. 

System Design

267

Else_IPM-BATES_CH011.qxd  7/18/2006  1:27 PM  Page 267



Interfacing P
IC

 M
icrocontrollers

268

(a) PIC mid-range 16FXXXX 8-bit flash MCUs (max clock � 20 MHz, 14-bit instructions)

MCU # # # # # ADC Timers CCP PWM Other Int Osc Relative 
Pins Instructions RAM EEPROM Total I/O Channels (�� bits) Modules Modules Interfaces (MHz) Cost

16F505 14 1024 72 � 12 � 1�8 � � � 4 0.56

16F506 14 1024 67 � 12 3 1�8 � � � 8 fp

16F627A 18 1024 224 128 16 � 2�8, 1�16 1 � � 4 1.19

16F628A 18 2048 224 128 16 � 2�8, 1�16 1 � USART 4 1.29

16F687 20 2048 128 256 18 12 1�8, 1�16 � � USART, 2�I2C 8 1.14

16F690 20 4096 256 256 18 12 2�8, 1�16 1 � USART, 2�I2C,SPI 8 1.34

16F777 40 8192 368 0 36 14 2�8, 1�16 1 3 USART, 2�I2C,SPI 8 3.46

16F818 18 1024 128 128 16 5 2�8, 1�16 1 1 2�I2C,SPI 8 1.37

16F84A 18 1024 68 64 13 � 1�8 � � � � 2.71

16F877A 40 8192 368 256 33 8 2�8, 1�16 2 2 USART, 2�I2C,SPI � 3.71

16F88 18 4096 368 256 16 7 2�8, 1�16 1 1 USART, 2�I2C,SPI 8 1.93

16F946 64 8196 336 256 53 8 2�8, 1�16 2 � USART, 2�I2C,SPI 8 2.38
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(b) PIC small flash MCUs

MCU # # # # # ADC Analogue Timers Instruction Int Relative 
Pins Instructions RAM EEPROM Total Channels Comparators (�� bits) Length Osc Cost

I/O (MHz)

10F200 6 256 16 � 4 � � 1�8 12 bits 4 0.43

10F222 6 512 23 � 4 � � 1�8 12 bits 8 fp

12F508 8 512 25 � 6 � � 1�8 12 bits 8 0.49

12F675 8 1024 64 128 6 4 1 1�8, 1�16 14 bits 4 1.00

fp � future product at the time of writing

(c) PIC power flash MCUs (max clock 40 MHz, 16-bit instructions)

MCU # # # # # ADC Timers Hardware Int Osc Relative 
Pins Instructions RAM EEPROM Total I/O Channels (�� bits) Multiplier Interfaces (MHz) Cost

18F1220 18 2048 256 256 16 7 1�8, 3�16 8�8 USART 8 2.20

18F2220 28 2048 512 256 25 10 1�8, 3�16 8�8 USART, 12C, SPI 8 3.53

18F4220 40 2048 512 256 36 13 1�8, 3�16 8�8 USART, 12C, SPI 8 3.90

18F6310 64 4096 768 � 50 12 2�8, 3�16 8�8 USART, 12C, SPI 8 3.84

18F8310 80 4096 768 � 70 12 2�8, 3�16 8�8 USART, 12C, SPI 8 4.29

18F8680 80 32768 3328 1024 69 16 2�8, 3�16 8�8 USART, 12C, SPI 8 6.98

Table 11.1 Selected PIC microcontrollers
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System Design

When designing a microcontroller application, we normally start with a spec-
ification of the functions the system is intended to perform. The appropriate
chip should then be provisionally selected. Any given design team is likely to
have a preferred choice for the type of controller, since they will have experi-
ence and development tools to support that type already. Alternative types
will probably be considered only if the default range cannot provide the fea-
tures required, or there is some other reason to change, such as designing for
a customer who uses a different range and is tooled up for products based on
this type. 

Specification

Here, our default choice is the PIC. We have to identify the features required
for the MCU, it’s interfacing and select any sensors, transducers and commu-
nication links needed.

Here is a typical specification:

A control system is required for a refrigeration unit which will maintain the
temperature within an insulated closed space, such as a temperature-con-
trolled shipping container, at a selected temperature between 1°C and 9°C.
The controller will connect to the refrigeration unit via a suitable relay, which
switches the compressor on and off. The temperature will be controlled to
within �/� 0.5°C, and settable using up/down push buttons. It must be dis-
played on a self-illuminating display, which is readable from 2 m. When the
unit is switched on, the previous temperature setting must be used. If the tem-
perature deviates from the set temperature by more than 2°C, or any other sig-
nificant fault occurs, an alarm must sound within the unit, and remotely (e.g.
in the lorry cab) with a flashing light. The design must be highly reliable, ro-
bust, moisture proof and low maintenance. It will be powered from the vehicle
12 V DC supply. 

Design Outline

The first step in the development process is to draw a block diagram, so that
the system requirements can be visualised (Figure 11.7). This also allows de-
sign requirements to be incorporated at an early stage. 

For reliable operation, it is suggested that a set of four temperature sen-
sors are installed at the four corners of the storage space. In normal opera-
tions, an average of these will displayed. If a single sensor goes faulty, we
will assume that its reading will go out of range. A ‘sensor faulty’ alarm can
be generated, say a short beep and flashing indicator. As long as the other
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three sensors agree within 2°C, the controller will continue to operate, tak-
ing an average of these three only and ignoring the faulty sensor. If more
than one sensor goes out of range, the temperature too high (high fre-
quency) or too low (low frequency) will be sounded and indicated. These
alarm conditions can be checked and demonstrated by simply unplugging
the temperature sensors.

Component Selection

The MCU needs four 8-bit analogue inputs. At mid-range, 8 bits will give a
resolution of about 1%, which is more than adequate. A total of 10 digital I/O
pins are needed. Program memory of 1k will be assumed initially, but this will
be reviewed when the code is complete. An accurate clock is not needed, so an
internal oscillator will be used, reducing the component count and improving
reliability. The PIC 16F818 seems to fit the bill, with 16 I/O pins in total, in-
cluding 5 analogue inputs. Remember, we will need an extra analogue input for
the reference voltage. It has 1k program memory, and EEPROM for storing the
previous set temperature. The hardware timers will be useful for generating the
timed outputs. If we run out of program memory, the 16F819 (2k) can be sub-
stituted at slightly higher cost. Considering the cost of failure of the unit, this
will not be significant. Both chips have an 8 MHz internal oscillator, and ICD
programming and debugging.

Good-quality push buttons with moisture proof housings will be selected.
The relay will be the default control interface for the compressor. This is likely
to be an independent diesel unit, so will have its own control unit, whose in-
terfacing requirements must be known. The display can be a single 7-segment

MCU 

Sounder

Red led

Green led

Display
digits
0-9 

Relay

Alarm 

Temp
Sensors

X4
-10°C to +20°C

Up
Down

Compressor 

Local sounder 
Local red led
Local green led 

Remote sounder 
Remote red led 
Remote green led 

Figure 11.7 Block diagram of refrigeration controller
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LED type, which is cheap, simple to interface and self-illuminating. A larger
than standard size can be used for good visibility, and these are not expensive.
Since different frequencies will be used in the alarm, loudspeakers will be
used, with the drive signals generated in software. Red LEDs for the alarm will
be used, with a high brightness LED in the remote monitor unit. A green power
LED indicating normal operation will also be incorporated into both the main
unit and the remote alarm unit. 

The temperature sensors will be housed in aluminium boxes, bonded to
the face of one side, for good thermal contact. The LM35 covers the range
with sufficient accuracy (just), but an alternative could be sought which has
a smaller range, giving greater resolution, for example �10°C to �20°C. A
local amplifier is suggested which provides a 0�20 mA current output, rep-
resenting temperatures �4°C to �16°C, with 4 mA representing 0°C. A
current-driven link is more reliable in harsh environments, and avoids the
effect of any volt drop over the length of the sensor connectors, which could
be several meters. Screened screw connectors will be used at both ends 
of the connecting cables for electrical and mechanical robustness. The
regulated 5 V supply from the main unit will be provided to the remote
sensors, with the supply 0 V connected via the cable screen. The signal 
0 V will be separated and screened, to minimise the possibility of interfer-
ence and false alarms due to the compressor switching currents or the vehi-
cle ignition system. The same connectors and cabling can be used for the
remote alarm unit, since it also needs three signal wires, and aluminium
boxes can be used for all units. The system overall design is visualised in
Figure 11.8. 
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8

12V

3 way screened cables
with screw connectors 

Temp °C

Sounder

Power Alarm

Temp sensor units  

Remote 
Monitor 
Unit

Up

Down

Compressor 
10A

Figure 11.8 Refrigeration control system 
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Circuit Design and Firmware

The circuit will not be designed in detail, as most of the relevant features have
been illustrated previously; this task will be assigned to the reader!

We are assuming a single supply of �5 V, derived from the 12 V vehicle
battery, to which it must be permanently connected. A regulator providing
sufficient current must be selected, and there will be a relatively high dissi-
pation in this component since the volt drop across it will be 12–5 � 7 V. At
a supply current of 1 A, 7 W will be dissipated, so a heat sink may be needed.
A power budget should be calculated from the consumption of the main com-
ponents when the circuit has been designed. The vehicle system can supply
plenty of power, but a back-up battery could be considered in case the sup-
ply is disconnected e.g., the container is separated from the tractor unit.

The analogue conversion registers must be set up as required. Only 8-bit
conversion will be needed, and a reference voltage of 2.56 V is recommended,
since the input range is 20°C. If the amplifier output is 0.00–2.00 V, the low
end will be below the alarm limit, and therefore does not need to be accurate.
0.40 V will represent 0°C, and 2.00 V 16°C, using single supply amplifiers as
previously discussed. If 4 mA input current represents 0°C, a resistor load on
the input of 100R (use a 1% resistor) will give the right scaling.

The display can use a program look-up table for the digit display codes 0�9.
If the temperature goes to low, ‘L’ could be displayed as well as the alarm op-
erating. Similarly, ‘H’ could be displayed if too high. The alarm sounds should
use the hardware timers to generate suitable frequencies on the outputs, and the
delay times for the flashing LED warnings. 

The arithmetic processing should be straightforward, as only single digit
numbers are in use. The temperature will be read in as an 8-bit number in the
range 0�200. This should be divided by 10 (see Chapter 5) to obtain a num-
ber in the range 0�20; subtract 4 to calculate the temperature in the range �4
to �16. It will be easier to average at this stage, but more accurate with the
original 8-bit data. Similarly, checking for a faulty sensor is easier at this stage.
An open circuit sensor connection will give zero input, while the other sensors
should read approximately the same value, so they can all be compared by sub-
traction, and a sensor failure indicated if the difference between any two is
greater than, say, 3. If a sensor is mounted near the doors of the container,
opening the doors should be detected by this alarm, which may be viewed as a
useful additional feature! The average reading will be used to compare with the
set temperature.

The set temperature should be displayed when the up or down button is
pressed, and incremented by 1°C for each press. When released, the display
should revert to the measured temperature. The set temperature should be
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stored in EEPROM when the button is released. This figure should be recalled
during program initialisation.

The program outline is shown in Figure 11.9. 

Other MCU Families

The PIC is our default choice of MCU type here, but if a given application de-
mands it, the whole range of available devices from all manufacturers must be

COLD1 
Refrigeration controller:
Averages input from four temperature sensors
checks for faulty sensor, averages and switches
a relay output to the compressor 

Initialise 
Analogue inputs (5) 

4 channels + Vref
Digital Inputs (2) 

Up, Down
Digital Outputs (8)

Compressor 
Display (4)
Power, Alarm LEDs
Alarm Sounder

 Analogue control 
 Timers 

Recall stored SetTemp

Main
 REPEAT 

Read inputs
Check for faulty sensor

IF fault, set alarm
Average inputs
Check temperature

IF too high or too low, set alarm 

Check buttons
 IF ‘up’ pressed

Increment SetTemp & store
 IF ‘down’ pressed 

 Decrement SetTemp & store 
Display temperature

Switch compressor on/off
 ALWAYS

Figure 11.9 Refrigeration controller program outline 
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considered. The families of devices currently supported by Proteus are listed
below, which gives an indication of the most popular types at the current time,
at least in small embedded systems

• 8051
• ARM
• AVR
• HC11

Some conventional CPUs and supporting devices are also present, such as the
Motorola 68000 and Zilog Z80, mainly for historical reasons. The main sup-
pliers and their offerings are outlined below.

Intel/Philips

The 8051 type was the standard microcontroller for many years, originally de-
veloped by Intel in the 1980s alongside the 8085/6 range of PC processors
which dominated the business computer market. The microcontroller shares the
same assembly language with the Intel CPU range. More recently, the product
range has been supplied by Philips and others. The basic 80C51 (C�CMOS)
had 4k of mask or OTP program ROM, 128 bytes of RAM, four 8-bit ports,
three 16-bit timers and serial UART. For application prototyping, an 8051 with
EPROM program memory could be used. This memory type requires erasing
by ultra-violet light, so is mounted on the chip behind a transparent window,
making this type of chip easy to identify. It can then be reprogrammed, but this
process is much less convenient than using flash ROM, the current technology
for re-programmable MCUs. 

ARM

In 1985, the UK Acorn Computer Group pioneered the development of the
RISC (reduced instruction set computer) processor. This was based on analy-
sis of program execution in CISC (complex instruction set computers), such as
the 68000 and Intel CPUs, which showed that most of the time was spent exe-
cuting a relatively small number of the most common instructions, such as
moving data. It was decided that a CPU with a smaller instruction set, with
the more complex operations made up from this reduced set as required, would
be more efficient and faster. This proved to be the case, and a new branch of
the microprocessor tribe was created, of which the PIC MCU is one family. In
the US, Sun Microsystems developed the SPARC RISC CPU, which powered
the ground-breaking high-performance Sun workstation. ARM technology is
now licensed to manufacturers around the world. ARM processors are de-
signed for the power CPU and MCU market, and only a limited number of
their range are currently modelled in Proteus, but this selection will doubtless
be expanded in due course.
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Atmel

Atmel AVR is the most similar range to the PIC, in that it concentrates on
8-bit MCUs, and includes miniature devices. The smallest AVR MCU is cur-
rently the ATtiny11, with 1k flash program memory, 32 bytes of RAM, 6 I/O
pins and a single analogue comparator in an 8-pin package. It has a more ex-
tensive instruction set than the PIC, based on the standard 8051 assembler in-
structions, and avoids the file register paging which is so inconvenient in the
PIC. The AVR range has become popular as the next step up from the PIC, but
currently Proteus support for AVR devices is limited to the 8051 flash deriva-
tives, which it includes in its range. Currently, AVR MCUs are available in the
following categories: Automotive, CAN (controller area network), LCD, light-
ing and battery controllers, and a ‘mega’ range which extends up to a 256k pro-
gram memory device running at 16 MHz. In addition, AVR also produces
high-performance MCUs based on the ARM processor core.

Motorola/Freescale

Motorola has always been a major player in the microprocessor field. Its most
successful product may have been the 68000 CPU, which was the first popular
16-bit microprocessor, which was used in several different home computers,
including the first Apple Mac, in the 1980s. The company has also always been
prominent in embedded applications, producing its own mobile phones and
similar products for many years. The HC11 type microcontroller is an 8-bit
MCU based on the 68000 architecture and instruction set. That is, a complex
instruction set that has multiple addressing modes. As it is only available with
masked ROM program memory, it cannot be recommended for student proj-
ects and small-scale development work. Furthermore, it is now categorised as
a legacy product, that is, in production to support existing products, and not
recommended for new designs. Motorola MCUs now tend to be used in mass-
produced, high-end products using 16-bit and 32-bit processors. Since 2004,
Motorola embedded system components have been supplied by a spin-off
company, Freescale. It currently claims world leadership in automotive and
communications embedded applications, and number two spot in microcon-
trollers overall. 

ST Microelectronics

Originally a French/Italian electronics company, SGS-Thomson, ST
Microelectronics is well established in the automotive market, which accounts
for a significant part of the growth in microcontroller applications. ST entered
the low cost, flash program memory market relatively late, but offers a full
range and a free C compiler (limited memory), so should be considered in any
comparison of microcontroller suppliers.
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SUMMARY 11

• The base module can be used as the basis for a range of applications 
• It has a PIC 16F877, keypad, display and serial memory
• The parallel memory system provides up to 256k of conventional RAM
• The specification determines the choice of MCU in an embedded project

ASSESSMENT 11 Total (40)

1 How are parallel, serial and analogue signals shown in a block diagram? (3)

2 State three problems associated with a high-speed clock. (3)

3 State three characteristics that a DC power supply must have. (3)

4 State the function of an address decoder in a processor system. (3)

5 Calculate the number of locations in a memory chip with 20 address pins. 
State the memory size. (3)

6 Why would a program written for a 16F877 not work in a 10FXXXX chip? (3)

7 Explain why an OTP chip is unsuitable for development work. (3)

8 Identify an early Intel MCU, and describe its relationship with the standard PC. (3)

9 Explain briefly how the superior performance of a RISC processor is achieved. (3)

10 Identify a CPU used in the first generation of 16-bit home computers. (3)

11 State the main criteria for selecting an MCU for a given application. (5)

12 List 5 of the most significant global MCU manufacturers in 2006, other than
Microchip. (5)

ASSIGNMENTS 11

11.1 Weather Station

Design a remote weather station which can measure and display temperature,
humidity, light and pressure. Specify the accuracy of each measurement. The
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data will be up-loaded to a PC for analysis and long-term storage every week.
The data should not be lost if the power fails. Use the base module described
in this chapter, and the interfaces described in Chapter 7.

11.2 Fridge Controller

Complete the implementation of the refrigeration controller specified in this
chapter. Produce a schematic and demonstrate the simulation of the control
program implemented in stages:

• Temperature control at default value
• Temperature display of default value
• Set temperature and display
• Sensor averaging and fault detection

Select the most appropriate PIC MCU for the final design and a costed parts
list.

11.3 Multiprocessor Systems

Investigate the parallel serial port in the PIC 16F877, and show how it could
be used for passing data between two PIC MCUs in a dual processor system.
Compare this with SPI and I2C as multiprocessor communications systems, in
terms of speed, flexibility and ease of hardware and software design.

Interfacing PIC Microcontrollers
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ANSWERS TO ASSESSMENT QUESTIONS

Assessment 1 

1 Processor, memory and I/O

2 A microcontroller has processor, memory and I/O on one chip, while the
microprocessor needs separate memory and I/O chips to form a working system.

3 Output address from program counter on the address bus, select memory location
containing instruction code and copy it back to the instruction register via the data bus.

4 Flash ROM can be electrically re-written many times, but is non-volatile.

5 The data has to be converted to serial form in a shift register and transmitted one bit at
a time on a single line, while parallel data is transferred 8 (or more) bits at a time.

6 Ports A & E default to analogue input.

7 8k � 8192 � 8192 � 8 � 64536 bits

8 Place the chip in a programmer unit and open the application program in MPLAB.
Assemble it to create the hex file. Select the programmer type and download.

9 From data sheet Table 13-2:  Instruction code � 00 0000 1000 1100.
Therefore op-code = 0000001, register operand � 000 1100.

10 From data sheet Table 12-1: CP off � 11, ICD on � 0, BOD � 1, PWRT � 0,
WDT � 0. Code � 11 0111 0111 0011 � 3773H.

11 A subroutine is a programmed jump (CALL) and return; the return address is stored
automatically on the stack, so that when the routine has been completed, a RETURN
instruction causes the return address to be replaced in the program counter, taking the
execution point back to the instruction following the call. 
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The interrupt is an asynchronous external event which forces a jump to program address
004, from where an interrupt service routine is executed. This is terminated with
RETFIE, return from interrupt, to take the execution point back to the original position.
The stack is used in the same way as in the subroutine to store the return address.

12 A bit test is used to determine whether the next instruction is skipped, or not (BTFSS,
BTFSC). This is usually followed by a GOTO or CALL, to change the program
sequence. If this instruction is skipped, program execution continues on the original
path. Often, the zero flag is tested to control a branch. The zero flag test is combined
with a decrement or increment in DECFSZ and INCFSZ to provide counting loops and
similar sequences.

Assessment 2 

1 The program can be run, single stepped and paused in the actual target hardware,
allowing hardware and timing faults to be identified as well a the usual syntax and
logical errors; also the chip does not need to be removed from the application
hardware once fitted, preventing possible damage. 

2 001011, 10001100

3 END, EQU, PROCESSOR

4 GOTO, SLEEP; program will run through blank locations and repeat.

5 Address, register

6 Clock type, power up timer, watchdog timer

7 Assigns a label to a register

8 Program jumps to subroutine code, executes and returns; macro code is inserted each
time by the assembler. Program is shorter, but slower, with the subroutine, and longer,
but faster with the macro.

9 Standard header file contains a standard set of labels for registers and bits

10 END indicates end of source code to assembler

11 Start/end
Process/sequence
Input/output
Branch/selection
Subroutine/procedure/function

Answers to Assessment Questions
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12 Main
DO

If Reset pressed
Switch off LEDs

DO
Increment LEDs
Load Count
DO

Decrement Count
WHILE Count not zero

WHILE run pressed
ALWAYS

Assessment 3

1 Draw the schematic, attach the source code and assemble, and test by simulation.

2 The clock settings for simulation are set in the MCU component properties 
dialogue.

3 Clock = 10MHz, clock cycle time = 1/10 µs = 100ns, instruction time = 400ns.

4 Assembler: syntax errors. Simulation: logical errors.

5 Step into and then through a subroutine; Step over a subroutine, which is run at full
speed, and continue to step after return; Step out of subroutine at full speed, then stop
on return and resume stepping.

6 The program can be stopped at a particular point and the system status inspected; the
program otherwise executes at full speed.

7 It is a digital multi-channel display which captures data at a known sampling rate from
a group of data lines when triggered by a pre-set input combination.

8 Select simulation graph mode, draw a graph window, add signal probes to the circuit,
drag these onto the graph, run and stop the simulation and hit the space bar to display
the digital signals.

9 A netlist is a file which records the component connections in a circuit, which is used
to generate a circuit layout.

10 Program can be tested in the final hardware, interacting with real components at
relatively low cost.

Answers to Assessment Questions
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11 The conventional process is to build prototype hardware, download the program to
the MCU and test it in circuit. Simulation allows the design to be tested and
debugged before building hardware. The schematic can then be converted into a
netlist and a layout to produce the final PCB without prototyping.

12 Voltmeter – dc or ac volts. Oscilloscope – displays analogue signals at a range of
frequencies. Logic Analyser – multiple digital signals displayed on the same time
axis. The simulation graph can be expanded full screen for detailed analysis and
printed.

Assessment 4

1 If the switch is connected between the input and 0V, the pull-up resistor ensures that
the input is high when the switch is open.

2 Capacitor, software delay, timer delay

3 Hardware timers allow timing operations to proceed simultaneously with other
program processes, giving a more efficient use of the processor.

4 The timer pre-scaler is a digital frequency divider which reduces the frequency of the
input clock by a factor of 2, 4, 8 etc, which increases the timer range by the same
factor. 

5 The segments must be illuminated in the correct combination to display digits 0, 
1, 2 etc. The data table provides the required binary output code for each digit
displayed.

6 The BCD display has an internal hardware decoder so that it displays the digit
corresponding to the input binary code (0 – 9).

7 The rows are connected to MCU outputs and set high. The columns are connected to
inputs, and pulled high. Each output is taken low in turn. If a key is pressed, a low
input is detected on that column, identifying the key.

8 The LCD can operate with 4-bit input, receiving 8-bit control and data codes in 2
nibbles. An enable input strobes the data in, and a register select input indicates if the
input code is a command or display data.

9 The LCD receives 8-bit command codes and ASCII character codes. RS is the register
select input which directs these codes into the right register. The codes are loaded
when the E input is pulsed.

10 23 h

Answers to Assessment Questions
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11

12 The port can only be written with all 8 bits. If the high four bits are connected 
to the data inputs on the LCD, two of the low bits can be used for RS and E. 
When the data is written, the control bits must be modified individually after 
the data has been output. The data write must not cause unwanted command signal
outputs.

Assessment 5

1 Approx. 18�1018

2 41 h, 7Ah, 23 h

3 128 � 16 � 2 � 1 � 147d

4 Divide by 2: 617r0, 308r1, 154r0, 77r0, 38r1, 19r0, 9r1, 4r1, 2r0, 1r0, 0r1 
Remainders in reverse order gives result: 10011010010

5 0011 1111 1011 0000 b, 16 304 d

6 Sign bit 1, Exponent 8, Mantissa 23

7 1001 � 0101 � 0101 � 0101000 � 101101

8 9 � 5 � 45 � 1 � 4 � 8 � 32

9 145 � 23 � 122 � 23 � 99 � 23 � 76 � 23 � 53 � 23 � 30 � 23 � 7
Answer � 6 remainder 7

10 99d � 1100011. 2s comp. � 0011100 � 1 � 001 1101 � 1Dh

11 Declare registers: Num1, Num2 (numbers) ResLo, ResHi 
(results)

3 × 4
Keypad

RD0-2 
PIC

16F877
MCU

RD4-7 

4MHz

7-Segment
Display

(active high)

Col × 3

Row × 4 

RC1 = a

PORTC 

RC7 = g

Answers to Assessment Questions
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Clear ResLo and ResHi
Loop

Add Num1 to ResLo
If Carry set, increment ResHi
Decrement Num2

Until Num2 = 0

12 Declare registers: Num1, Num2

Load integer into Num1
Complement Num1
Increment Num1
Add Num1 to Num2
Result in Num2

Assessment 6

1 The key code is obtained by taking the row low and checking the column input. If it is
low, the ASCII code is loaded and the scan quit.

2 The code to operate the LCD only needs to be written once, saved and included into
new programs as required, saving time and effort.

3 The negative result is detected when the carry flag is cleared. A minus sign character is
displayed, and the inverse 2s complement of the result calculated and displayed.

4 In capture mode, a free-running timer value is captured and stored when a hardware
input changes.

5 After setup, the program just waits for the compare mode interrupt from Timer 1, and
the output is generated entirely within the interrupt service routine.

6 2710h is equal to 10000d. The timer is clocked at 1MHz, so the compare interrupt is
generated after 10ms, giving the period of the output.

7 To restore the value of the compare value to zero when the decrement button has taken
it negative. This prevents roll-under of the value.

8 Division can be carried out by repeat subtraction. The carry flag is set before the
process to detect if the remainder has gone negative. When this happens, the result is
corrected and stored.

9 In compare mode, a preset value is stored and continuously compared with a free
running timer register. When they match after the fixed time, the timer interrupt flag
triggers the required process.

10 PIR1, CCP1IF.

Answers to Assessment Questions
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11 The number must be broken down into hundreds, tens and units by division. This can
be achieved by repeat subtraction of 100, and 10, from the original value. The
subtraction is controlled by monitoring the carry flag. When it is cleared, the result and
remainder are corrected. The last remainder is the units value. 30h must then be added
to the digit values to convert to ASCII (eg ASCII for 1 is 31h). These codes can then
be sent to a suitable display, in the correct order.

12 A similar process is used to the above. This time, the maximum number obtained will
be 65535, so the value is first divided by 10000, then 1000, then 100, then 10. The
division result gives the corresponding denary digit, while the remainder is the units
digit. The maximum result in each case is 9; each BCD value can be converted to
ASCII and displayed.

Assessment 7

1 12-bit ADC gives 212 � 4096 steps. 100/4096 � 0.024% per step.

2 The full-scale input is divided into 28 � 256 steps for conversion to binary.  With a
2.56V reference, this converts into exactly 2.56 V / 256 � 10 mV per step.

3 Three bits are set up to select 1 of 8 input channels AN0 – AN7.

4 2 � 10 � 20 µs conversion time gives maximum frequency of 1/20 MHz � 50 kHz.

5 If the 10-bit result is left justified, the high 8 bits of the ADC result are placed in the
ADRESH register, with the low 2 in the high bits of ADRESL. If right justified, the
low 8 bits are placed in ADRESL, and the high bits in the low 2 bits of ADRESH.

6 Gain and input resistance are infinite, output resistance is zero.

7 LM324 - common single supply (5 V) can be used – restricted output swing, may not
reach zero.

8 G � 19/1 � 1 � 20

9 Vs � 2(1.0 � 0.5) � 3.0 V; Vd � 2(1.0 – 0.5) � 1.0 V

10 The capacitor slows down the output transient response, and reduces the cut off point
in the frequency response.

11 Output polarity inverted.
Generate simultaneous equations from formula for inverting amp with offset:

2.0 � (G � 1)Vr – 1.0G If G � 4
0.0 � (G � 1)Vr – 1.5G Vr � 6/5 � 1.2 V
Subtract and
2 � (1 – 1.5).G Ri � 10k � 2k5
G � �4 4

Answers to Assessment Questions
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12

Assessment 8

1 Emitter arrow-head shows direction of current, NPN out from base, PNP in.

Vbe ~ 0.6 V. Typical current gain � 100.

2 It is a voltage controlled current source, with high input impedance. Zero and +5 V
applied at the gate will switch it off and on.

3 Relay contacts have a low on resistance and high off resistance, but the operating coil
consumes significant power.

4 The DC motor needs a commutator to reverse the armature current on each half
revolution, so that the torque is developed in one direction only.

5 The thyristor switches direct current only, while the triac switches alternating current.

6 The software option can be implemented by the MCU toggling an output with a delay.
Alternatively, a separate hardware oscillator based on the 555 timer chip can be
switched on an off by the MCU.

7 Pulse Width Modulation uses a pulse waveform to control a current switch connected
to the load. If the ON time increases as a percentage of the overall period, the average
current in the load, and hence the power dissipated, increases.

8 Bridge driver:

Answers to Assessment Questions
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The switches in the bridge (FETs) are turned on in pairs to allow the current to flow in
either direction in the motor.

9 The stepper motor has four sets
of coils which are activated in 
pairs, to create a rotating magnetic
field which operates the rotor. 

10 360/15 � 24 steps/rev
Speed � 100 steps/sec → 100/24 = 4.04 revs/s

11 200 slots/100 ms → 2000 slots/s → 2000/50 = 40 revs/s → 40�60 � 2400 rpm.

12 The DC motor drive is simpler in construction, more efficient, and higher speeds and
torque are possible, but it needs a feedback system for position control, and a gearbox
for low speeds. The stepper can positioned without feedback, and holds its position,
but is less inefficient and is complex to drive.

Assessment 9

1 No separate clock is sent with the data signal.

2 To increase the signal to noise ratio, and the distance sent, by increasing the signal
amplitude.

3 10 (8 data bits � start � stop)

4 TX (TXD), RX (RXD); there are separate send and receive lines.

5 Line attenuation and noise limits the distance in proportion to the sending amplitude. SPI
signals are sent at TTL levels (5 V) only, while RS232 uses amplitude up to 50 V p-p. 

6 Slave select is a hardware input to an SPI device which enables slave transmission,
generated by the master controller. I2C uses software addressing, where the required
device and location are selected by an address sent on the serial data line.

7 SSPIF (synchronous serial interface interrupt flag) is set.

8 In I2C, a control code and address must be sent before the data, making up to 5 bytes
in all, plus control bits. In SPI, only data bits are sent as the slave device is selected in
hardware (slave select).

9 It holds the SDA line low for a bit cycle, which is detected by the master.

10 Only the start address is sent, and the memory automatically increments its internal
address pointer to the next location to fetch the next byte.

Answers to Assessment Questions
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11

12 Bits 7-4: Slave device select code (1 of 16)
Bits 4-1: Hardware chip select address (1 of 8)
Bit 0: Read/!Write bit

Assessment 10

1 Gold plated contacts, operation in a vacuum or inert gas (reed switch),
debouncing/snubbing with parallel capacitance/diodes, to reduce discharge and effect
of back emf with inductive loads.

2 If a position sensing grating has a graduated transmission or reflectance (eg sinusoidal)
when used with an optical sensor, intermediate positions can be calculated within each
grid cycle if the sensor provides a suitable analogue output.

3 The rate of change of the output divided by the rate of change of the input,
corresponding to the gradient of the characteristic.

4 Accuracy is the extent to which a measurement is consistent with the agreed standard,
precision is the smallest output change detectable; both may be expressed as a
percentage.

5 Any 3 of: temperature sensing resistor (metal film), semiconductor junction (p-type
and n-type silicon), thermocouple (dissimilar metals), thermistor (semiconductor),
resistance (platinum).

6 Strain gauges are connected as a bridge circuit to provide a differential output 
which eliminates the large offset voltage when operated with a single supply, to 
maximise the output amplitude and to provide inherent temperature 
compensation.

7 50/10 � 5
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9 The instrumentation amplifier is a differential configuration, which eliminates offset in
the source voltage, has a high input impedance suitable for the high source impedance of
the strain gauge bridge, and has a high gain suited to the low sensitivity of the bridge.

10 100 kΩ

11 A potentiometer can be used to measure the angular position of a shaft, and is simple,
inexpensive and reasonably accurate. The digital method uses an incremental encoder,
where pulses are counted as the shaft moves from a home position;  this is easy to
interface to an MCU, and is reliable.

12 Angular speed can be measured by a tachogenerator, which produces a voltage or
current in proportion to the speed of its input shaft; speed can then be measured via an
analogue input. The incremental encoder is used for speed measurement by measuring
the frequency of the pulses, and is reliable and easier to interface as it does not need an
analogue input.

Assessment 11

1 Parallel – block arrow, serial – single arrow, analogue – single arrow with labelling and
optional representation of waveform.

2 High frequency interference with other components, high power dissipation, unreliable
transmission down long connections.

3 Stable voltage, sufficient current, low noise

4 Selects an individual device to have access to a shared set of bus lines.

5 220 � 1048576 locations → 1Mb assuming 8-bit locations.

6 The instruction set is not the same, and has a different instruction length.
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7 One-time programmable chips cannot be re-programmed with a new version of the
code.

8 The Intel 8051 MCU was developed from the 8085 CPU, and uses the same instruction
set as the Intel CPUs used in PCs.

9 It has a simplified instruction set and structure, and high clock rate, for faster program
execution.

10 Motorola 68000 CPU

11 Number of I/O pins, program memory size, peripherals available, data memory,
instruction set, developer expertise, cost.

12 ARM, Atmel, Motorola/Freescale, ST Microelectronics, Philips

1

Answers to Assessment Questions
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__CONFIG directive, 42, 39
24AA128 serial flash memory, 211
2s complement, 116
3-phase motor, 185
555 timer, 189
62256 RAM chip, 260
741 op-amp, 168
7-segment LED display, 88
8051 MCU, 275

AC motors, 185
ADC (analogue to digital converter) 141, 225
ADC 10-bit conversion, 145
ADC 8-bit conversion, 141
ADC clock, 143
ADC control register, 144
ADC conversion time, 143
ADC input availability, 266
ADC multiplexer, 143
ADC sample & hold, 166
ADC settling time, 143
ADCON0 (ADC control) register, 141
ADCON1 (ADC control) register, 28, 141
ADCSx (ADC frequency select) bits, 144
Add operations, 112, 123
ADDLW (add literal to W) instruction, 19
Address, 5
Address bus, 5, 11, 260
Address decoder, 260
Address label, 14, 19
Address latch, 260
ADDWF (add W to file) instruction, 19
ADFM (ADC result justify) bit, 144

ADIF (ADC interrupt) flag, 145
ADON (ADC enable) bit, 144
ADRESH (ADC result high byte), 141
ADRESL (ADC result low byte), 141
ADSCx (ADC control bits), 143
ALU (arithmetic & logic unit), 10
Amplifier, 149
Amplifier bandwidth, 149
Amplifier design, 149, 236
Amplifier feedback, 156
Amplifier gain, 156
Amplifier interfaces, 149
Amplifier offset, 155
Analogue input, 9, 28
Analogue output, 168
Analogue sensors, 225
ANDLW (AND literal with W) instruction, 19
ANDWF (AND W with file) instruction, 19
Animation (of simulated circuit), 63
ANSI ‘C’ language, 49
ANx analogue input, 142
Arbitrary waveform, 173
Architecture of MCU, 8
ARES PCB layout, 56
Arithmetic instructions, 20
Arithmetic processing, 112
ARM MCUs, 275
ASCII character codes, 91, 96, 101
ASCII to BCD conversion, 109
Assembler code, 37
Assembler directives, 41
Assembler syntax, 39
Assembly language, 12, 37
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Atmel AVR MCUs, 276
Autorouting, 72

BANKSEL directive, 22, 42
Base module, 249
Base of number, 102
Baud rate (RS232), 202
Baud rate generator, 203
BC (branch on carry) instruction, 42
BCD (binary coded decimal), 90, 104
BCD display (LED), 90
BCD to ASCII conversion, 109
BCD to binary conversion, 108
BCF (bit clear) instruction, 19
BiFET op-amp, 168
Binary numbers, 103
Binary to BCD conversion, 109, 134
Binary to decimal conversion, 106
Binary to hexadecimal conversion, 107
Bipolar op-amp, 168
Bipolar transistor, 179
Bit, 5
Bit label, 19
Bit test & skip, 21
BJT (bipolar junction transistor), 179
BJT equivalent circuit, 180
BJT interface, 180
BJT protection, 187
Block diagrams, 249
BNC (branch if not carry) instruction, 42
BNZ (branch if not zero) instruction, 42
BODEN (brown-out detect) bit, 17
Borrow bit, 26
Breakpoint (debugging), 65
BRGH (USART control) bit, 203
Brown-out reset, 17
Brushless DC motor, 185
BSF instruction, 19
BTFSC (bit test and skip if clear) instruction, 19
BTFSS (bit test and skip if set) instruction, 19
Bus contention, 264
Byte, 5
BZ (Branch if zero) instruction, 42

C compiler, 44
C program, 44
Calculator application, 121
Calculator keypad, 122
Calibration, 238
CALL (subroutine) instruction, 20, 23

Capacitance, 56, 81
Capacitor plate sensors, 229, 233
Capture mode, 131
Carry (C) flag/bit, 25, 112
CCP availability, 268
CCP1CON register, 130
CCPIF (capture & compare interrupt) flag, 130
CCPR1H (capture & compare preload high byte)

register, 129
CCPR1L (capture & compare preload low byte)

register, 129
CD-ROM (compact disk ROM), 6
CdS (cadmium disulphide photo-cell), 231
Centronics port, 7
Character variable type, 111
Characters, 101
Clear operation, 20
Clear watchdog timer, 18
CLKIN (clock in), 10
CLKOUT (clock out), 28
Clock, 11, 252
CLRF (clear file register) instruction, 19
CLRW (clear W register) instruction, 19
CLRWDT (clear watchdog timer) instruction, 

17, 19
CMOS op-amp, 168
Code protection, 14
Column select, 87
Column weight, 102
COM (communication) port, 201
COMF (complement file register) instruction, 19
Comments, 14, 39
Comparator, 130, 165
Compare mode, 128
Complement operation, 20
Component properties, 59
Conditional branch, 21
CONFIG (configure MCU) directive, 14
Configuration word, 14
CONSTANT directive, 42
Control instructions, 21
Control lines, 5
Conversion (8-bit), 141
CPU (Central Processor Unit), 4
CPU data memory window, 61, 65
CPU register window, 61, 65
CR clock, 11, 57
CREN (USART receive enable) bit, 204
Crystal oscillator, 18
Current drivers, 179
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Current limiting resistor, 88
Current loop, 163

DAC (digital to analogue converter), 169
DAC filter, 170
DAC0808 parallel (PDAC), 169
Data, 5
Data bus, 5, 260
Data processing, 101
DC motor, 183
Debouncing, 81
Debugging, 63
DECF (decrement) instruction, 19
DECFSZ (decrement and skip if zero) instruction, 19
Decimal numbers, 102
Decimal to binary conversion, 107
Decoder, 5
Decoupling capacitors, 252
Decrement and skip if zero, 21
Decrement operation, 20
Default destination, 18
DEFINE directive, 42
Delay (software loop), 23, 46, 130
Denary numbers, 102
Destination address, 23
Difference amplifier, 155, 158
Differential gain, 149, 150
Differential voltage, 150
Digit carry, 26
Digital I/O, 7
Digital sensors, 223
Digital to analogue converter, 169
Diode temperature sensor, 230, 233
DIP (dual in-line package), 9
Divide operation, 115, 123
DT (define table) directive, 254
Dual supplies, 150
DVD (digital versatile disk), 6

E (LCD enable input), 91
ECAD (Electronic computer aided design), 55
Editing window, 58
EEPROM (electrically erasable programmable ROM),

11, 32
EEPROM size, 268, 269
Electromagnetic coil, 183
Embedded application, 4
Encoder, 224
END (source code) directive, 40, 42
ENDM (end macro) directive, 42

EPROM (erasable programmable read-only memory),
275

EQU (label equate) directive, 39
Error correction, 8
Exponent, 106
Extended memory, 264

Feedback capacitor, 160
FET (field effect transistor), 179, 182
FET channel, 182
FET gate, 183
File address, 11
File registers, 10
Flash ROM, 6, 10
Floating point (FP) numbers, 105
Floating point variable type, 110
Flowcharts, 45
Frequency response, 149, 160, 236
FSR (file select register), 11, 30
Full-step mode, 196

Gain, 149, 236
Gain & offset adjustment, 236
Gb (gigabyte), 6
Gerber file, 72
GIE (global interrupt enable) bit, 144
GO/DONE (ADC control) bit, 143
GOTO (label) instruction, 21
GPR (general purpose register), 10
Graphs (simulation), 69
Gray code, 224
Grounded load, 182

Half-step mode, 196
Hardware implementation, 70
Hardware multiplier availability, 268, 269
Hardware testing, 65
Hardware timers, 29
HC11 MCU, 275
HD44780 LCD controller, 91
HDD (hard disk drive), 6
Help files, 41
Hexadecimal numbers, 103
Hexadecimal to binary conversion, 107
HS (high speed) crystal, 18
Humidity sensor, 231, 235, 244

I/O (input/output) total, 268, 269
I2C (inter integrated circuit ) protocol, 210
I2C availability, 268, 269
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IC (integrated circuit) amplifier, 149
ICD (In-circuit debugging), 35, 73, 82, 252
IGFET (insulated gate FET), 182
INCF (increment) instruction, 19
INCFSZ (increment and skip if zero) instruction,19
In-circuit debugging, 16
In-circuit programming, 35
INCLUDE (source file) directive, 42
Include files, 42, 254
Increment & skip if zero, 21
Increment register, 20
INDF (indirect address) register, 30
Indirect addressing, 30
Inductance, 56
Inkjet printer, 224
Input resistance, 150, 156
Input/output (I/O), 4, 7, 252
Insruction length, 268, 269
Instruction, 5, 38
Instruction bus, 11
Instruction clock, 18
Instruction code, 13
Instruction decoder, 5, 11
Instruction register, 5, 11
Instruction set, 12, 14, 18
Instruction total, 268, 269
Instruction types, 20
Instrumentation amplifier, 161
INTCON (interrupt control register), 30
Integer variable type, 110
Integrated temperature sensor, 230
Internal oscillator speeds, 268, 269
Interpolation, 193
Interrupt control registers, 30
Interrupt priority, 31
Interrupt service routine, 30
Interrupts, 9, 23, 84, 129
Inverting amplifier, 157
IORLW (OR literal with W) instruction, 19
IORWF (OR W with file) instruction, 19
IRP (indirect address) bit, 30
ISIS schematic capture, 56
ISIS toolbars, 58
ISR (interrupt service routine), 23, 30, 84

Jump instructions, 21

kb (kilobyte), 6
Keypad, 87, 253
Keypad scanning, 87, 122

L297 stepper controller, 196
L298 stepper driver, 196
L6202 bridge driver, 193
Label equate, 14
Labels, 14
LCD (liquid crystal display), 90, 122, 253
LCD initialisation, 128
LDR (light dependent resistor), 231
LDR interface, 241
Least significant bit (LSB), 107
LED (light emitting diode), 11, 224
Level sensors, 229
Light sensors, 231, 235
Linear amplifier (op-amp), 150
Linear potentiometer, 229
LIST directive, 42
List file, 12, 14
Literal, 11, 14
LM016L LC display, 91
LM324 quad op-amp, 156
LM35 temperature interface, 240
Logic analyser, 67
Logic function, 56
Logic instructions, 20
Loudspeaker, 189
Low voltage programming, 17
LVDT (linear variable differential transformer), 228

Machine code, 14, 62
MACRO directive, 42
Macros, 41
Magnetic field, 183
Magnetic sensors, 229
Mantissa, 106
Mask programmed MCU, 267
MAX 232 serial line driver, 253
MAX directive, 42
Maximum value, 103
Mb (megabyte), 6
MCLR (master clear), 9, 57, 74
MCP4921 serial digital to analogue converter

(SDAC), 169, 173
MCU (Microcontroller Unit), 3
MCU properties, 60
MCU relative cost, 268, 269
MCU selection, 266
Memory, 4, 6, 253, 259, 266
Memory address, 13, 260
Memory size, 103
Memory system, 259
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Memory test, 260
Meters, 66
Microchip Inc., 4
Microcontroller, 3
Micro-switch, 224
Mnemonic, 13, 38
Mobile phone, 79
Most significant bit (MSB), 107
Motor, 183
Motor armature, 183
Motor brushes, 184
Motor commutator, 184
Motor interface, 189
Motor rotor, 184
Motorola/Freescale, 276
Move operation, 20
MOVF (move from file) instruction, 19
MOVLW ( move literal to W) instruction, 19
MOVWF ( move from W to file) instruction, 19
MPASM assembler, 12, 37
MPLAB development system, 12, 35, 252
MSR (mark space ratio), 190
MSSP (master synchronous serial port), 205
Multiply operation, 113, 123

NEG (negate file) instruction, 42
Negative feedback, 150
Negative numbers, 115
Netlist, 70
Nibble, 26
No operation, 21
NOEXPAND (macro) directive, 42
Noise immunity, 166
Non-inverting amplifier, 155
Non-volatile memory, 6
NOP (no operation) instruction, 20
NPN bipolar transistor, 179
Number conversion, 106
Number systems, 101
Numerical data, 101

Octal numbers, 104
Offset, 238
Ohms law, 55, 156
Op-amp (IC amplifier), 103, 149
Op-amp selection, 168
Op-code (operation code), 11
Open collector output, 166
Operand, 13
OPTION instruction, 22, 86

Opto-coupler, 187
Opto-detector, 224
Opto-isolator, 187, 224
Opto-sensor, 193
ORG (origin) directive, 42
OS (operating system), 6
Oscillator interface, 189
Oscilloscope, 66
OTP (one-time programmable) MCU, 267
Output resistance, 150
Overview window, 58

Page boundaries, 24
Parallel port, 7
PC (Personal Computer), 3
PC interface, 253
PCB (Printed circuit board), 56
PCB layout, 70
PCFGx (ADC control) bits, 143
PCL (program counter low byte) register, 23, 25
PCLATH (program counter high byte) latch, 22
PD (power down bit), 27
PEIE (peripheral interrupt enable) bit, 30
Pentium microprocessor, 3
Period measurement, 130
Peripheral control registers, 32
Peripheral interrupts, 30
PGM (program input), 17
Phototransistor, 224, 231
PIC 10FXXX MCUs, 267
PIC 12FXXX MCUs, 267
PIC 16F877 block diagram, 10
PIC 16F877 data sheet, 10
PIC 16F877 microcontroller, 3,8
PIC 16FXXX MCUs, 266
PIC 18FXXXX MCUs, 267
PIC output current, 57
Pick device, 59
PIE1 (peripheral interrupt enable register), 30
PIE2 (peripheral interrupt enable register), 30
Pin totals (PIC MCUs), 268, 269
Pin-out (P16F877), 9
PIR1 (peripheral interrupt flag register), 30
PIR2 (peripheral interrupt flag register), 30
PLC (program counter low), 22
PNP bipolar transistor, 179
Port A (P16F877), 9
Port B (P16F877), 9
Port C (P16F877), 9
Port control registers, 27
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Port D (P16F877), 9
Port data register, 7
Port E (P16F877), 9
Port initialisation, 27
Ports (P16F877), 27
Position control, 193
Position sensors, 228
Power dissipation, 181
Power interfacing, 185
Power outputs, 179
Power status bits, 27
Power supply, 10, 254
Power-up timer, 17
Pre-scaler, 29, 84
Pressure sensor, 231
Pressure sensor interface, 242
Processor (P16F877), 4
PROCESSOR (select) directive, 39, 42
Program (assembler), 12
Program counter, 5, 11, 22, 25
Program data table, 96
Program downloading, 73
Program execution, 11, 22
Program header, 62
Program layout, 40
Program memory, 5, 12
Program structure, 40
Programming, 9
Programming unit, 12, 35, 73
Proteus VSM (virtual system modelling), 56
Protocol, 7
Pseudocode, 46
Pull-up resistor, 80, 166
Pulse generation, 128
Push button, 80
Push button inputs, 11
PWM (pulse width modulation), 169
PWM availablity, 268
PWM speed control, 190
PWRTE (power up timer enable) bit, 17

R/W (read / write), 91
RAM (read/write memory), 6, 10
RAM size, 68, 269
Ratsnest, 72
RC (resistor/capacitor) clock, 9, 17, 62
RCREG serial receive register, 203
Reactance, 56
Reed switch, 224

Reference voltage, 157, 166
Reference voltage, 142
Refrigeration controller design, 270
Register bank, 10
Register bank select, 27
Register label, 19
Register operations, 20
Regulator, 254
Relay, 183, 186
Relay contacts, 184
Reset, 10, 252
RETFIE (return from interrupt) instruction, 19, 84
RETFIE (return from subroutine) instruction, 19, 23
RETLW (return with literal) instruction, 19, 96
RETURN (from subroutine) instruction, 20, 23
Return address, 21
Return from interrupt, 21, 24
RISC (reduced instruction set computer), 14
RLR (rotate left) instruction, 19
RMS (Root mean squared), 56
ROM (read-only memory), 6
Rotary potentiometer, 229
Rotate operation, 20
Row select, 87
RPx (register bank select) bits, 26
RRF (rotate right) instruction, 19
RS (LCD register select input), 91
RS232 interface, 253
RS232 line driver, 202
RS232 port, 8
RS232 serial protocol, 201
RS232 terminal, 204
RX (RS232 receive) line, 201
RXIF (USART receive) interrupt flag, 204

Sawtooth waveform, 170
Schematic capture, 58, 249
Schmitt trigger, 166
SCK (SPI serial clock), 207
SCL (I2C serial clock), 210
SDA (I2C serial data), 210
SDI (SPI serial data in), 207
SDO (SPI serial data out), 207
Segment labels, 90
Sensor, 223
Sensor accuracy, 228
Sensor amplifiers, 226
Sensor error, 228
Sensor interfacing, 223
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Sensor linearity, 227
Sensor offset, 227
Sensor precision, 228
Sensor reference level, 227
Sensor resolution, 228
Sensor sensitivity, 227
Sensor transfer function, 227
Sensor types, 228
Serial communications, 201
Serial DAC, 169
Serial line driver, 253
Serial memory, 253, 211
Serial port, 7
Servo-motor, 193
SET directive, 42
SFR (special function register), 10
Sign bit, 105
Signal generator, 131
Simulation, 55, 60
Simulation controls, 58
Sine waveform, 173
Skip instructions, 21
Slave port, 9
SLEEP instruction, 19, 38
Slotted wheel, 193
Software design, 44
Solenoid, 183
Source code, 12, 14
Source code debugging, 61, 64
Source code edit, 62
SPBRG (USART control) register, 203
Special function registers, 25
Special instructions, 41
Specification, 270
Speed measurement, 232
SPI (synchronous peripheral interface) protocol, 205
SPI availability, 268, 269
SPICE simulation, 55
Square waveform, 173
SS (SPI slave select line), 207
SSPBUF (synchronous serial port buffer), 208
SSPCON (synchronous serial port control register,

208
SSPEN (SSP enable bit), 208
SSPIF (SSP interrupt flag), 208
SSPSR (synchronous serial port shift register), 207
SSPSTAT (synchronous serial port status register),

208
ST Microelectronics, 276

Stack, 11, 23
Stack error, 23
Standard header file, 41
Status register, 11, 25
Stepper motor, 185, 195
Stepper sequence, 197
Strain gauge, 163, 231, 234
String variable type, 111
Structure charts, 47
SUBLW (subtract W from literal) instruction, 19
Subroutines, 22,40
Subtract operation, 113, 123
SUBWF (subtract W from file) instruction, 19
Summing amplifier, 157
SWAPF (swap nibbles) instruction, 19
Switch input, 79
Switching speed, 166
System design, 249

T0IF (timer zero interrrupt) flag, 28
T1CON (timer 1 control) register, 130
Tachogenerator, 193, 232
Temperature sensing resistor, 230, 234
Temperature sensors, 228, 233
Thermistor, 230, 234
Thermocouple, 230, 234
Thyristor control, 187
Timer (P16F877), 11, 29, 84
Timer availability, 268, 269
Timer0 (P16F877), 28, 84
Timer1 (P16F877), 29, 128
Timer2 (P16F877), 29
Timers, 11, 28, 84
Timer0 (timer zero) register, 28
Timing diagram, 69
TLC339 (quad comparator), 166
TMR0 (timer 0) register, 29
TMR1H (timer 1 high byte) register, 29, 129
TMR1L (timer 1 low byte) register, 29, 129
TMR2 (timer 2) register, 29
TO (time out) bit, 27
Transient response, 160
Triac control, 187
Triangular waveform, 173
Trigger comparator, 166
TRIS (data direction) instruction, 22
Tri-state buffers, 264
TSTF (test file register) instruction, 42
TX (RS232 transmit) line, 202
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TXIF (USART transmit interrupt) flag, 204
TXREG (serial transmit) register, 203

Ultrasonic transducers, 232
Unity gain buffer, 157
Universal amplifier, 158
USART (universal synchronous/asynchronous

receive/tramsmit), 8, 201
USART availability, 268, 269
USB (universal serial bus), 7, 201

Variable types, 110
VN66 FET, 182, 190
Volatile memory, 6

W (working register), 10
Watch window, 65
Watchdog timer, 17, 18
Weather station, 238
Window comparator, 168
Windows OS, 6

XORLW (exclusive OR literal with W) instruction, 19
XORWF (exclusive OR literal with W) instruction, 19
XT (crystal oscillator), 18
XTAL (crystal), 9, 18

Zener diode, 142
Zero (Z) flag, 21, 25
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