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1 Introduction

Innovations in mobile communication, e-commerce, entertainment, and medicine

all have roots in advances in semiconductor processing, which continually reduce

the minimum feature size of transistors and wires, the basic building blocks of

chips. This continual reduction supports ever-increasing numbers of transistors on

a single chip, enabling them to perform increasingly sophisticated tasks. In addi-

tion, smaller transistors and wires have less resistance and capacitance, enabling

both the higher performance and lower power that the integrated circuit market

continually demands.

These manufacturing advances, however, also change the design challenges

faced by circuit designers and the computer-aided-design (CAD) tools that sup-

port their design efforts. Beginning in the 1980s, wire resistance became

an important factor to consider in performance and is now also important

in analyzing voltage drops in power grids and long wires. Starting in the

1990s, higher mutual capacitance exacerbated the impact of cross-talk, which is

now addressed by a new range of timing and noise analysis tools. And today, as

the transistor’s feature size approaches fundamental atomic limits, transistors act

less like ideal switches and wires act less like ideal electrical connections. In

addition, the increased variations both within a single chip and between chips

can be substantial, making precise estimates of their timing and power character-

istics virtually impossible [1]. Consequently, modern CAD tools must conserva-

tively account for these new non-ideal transistor characteristics as well as their

variability.

As part of this ever-changing technological backdrop, the relative merits of

different circuit design styles change. The predominant circuit design style is

synchronous design with complementary metal-oxide–semiconductor (CMOS)

static logic gates and a global clock to regulate state changes. However, as process

variability increases and the challenges of routing a global clock across a large

chip become increasingly problematic, radically different design styles such as

asynchronous design have become an increasingly interesting alternative. In its

most general form, asynchronous design removes the global clock in favor of

distributed local handshaking to control data transfer and changes of state. While

academic research in this area can be traced back to the 1950s [2], it has taken until

the late 1990s and 2000s for this technology to mature. Several start-up companies

have begun to commercialize asynchronous design as a competitive advantage for



a wide variety of applications [45][46][47][48]. However, the mass application of

asynchronous design has been an elusive goal for academic researchers and, while

recent advances are promising, only time will tell whether this technology will take

a larger foothold in the very-large-scale integration (VLSI) world.

There are many different types of integrated circuits (ICs) and the design style

choice for a particular application depends on the relative performance, power,

volume, and other market demands of the device. For example, traditionally, low-

volume specialized products with only moderate power and performance require-

ments can use field programmable gate arrays (FPGAs), which provide reduced

time to market and low design risk, primarily because of their reprogrammable

nature. Higher-volume products with more aggressive power and performance

requirements often require application specific integrated circuits (ASICs), which

come at the cost of the increased design and verification effort associated with the

finalizing of the manufacturing process.

Products that require significant programmability may also contain some type

of microprocessor to enable software support. Products which require significant

storage will contain large banks of on-chip memories. Both micro-processors and

memory blocks are available on modern FPGAs and can be integrated into an

ASIC in the form of intellectual property cores. In addition, dedicated chips for

memory are critical in complex system design and can store billions of bits of data

either in volatile or non-volatile forms.

Chips with high volumes, such as microprocessors, memory chips, and FPGAs,

may be able to support full-custom techniques with advanced circuit styles, such as

asynchronous design. In fact, asynchronous techniques have been used in memory

for years and a recent start-up is the commercializing of high-speed FPGAs, which

has been enabled by high-speed asynchronous circuits [42][43][48].

Most ASICs, however, rely on semi-custom techniques in which more con-

strained design styles are used. The relative simplicity of the constrained design

style enables the development of CAD tools that automate large portions of the

design process, significantly reducing design time. For asynchronous design to be

adopted for ASICs, existing CAD tool suites must be enhanced with scripts and

new tools to support asynchronous circuits. This chapter provides an overview of

the general issues that guide this design choice. In doing so, it identifies the

potential advantages of asynchronous design and the remaining challenges for

its widespread adoption.

1.1 Synchronous design basics

Synchronous design has been the dominant methodology since the 1960s. In

synchronous design, the system consists of sub-systems controlled by one or more

clocks that synchronize tasks and the communication between blocks. In tradi-

tional semi-custom synchronous ASIC flows, combinational logic is placed in

between banks of flip-flops (FFs) that store the data, as shown in Figure 1.1.
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The combinational block must complete its operation within one clock cycle under

all possible input combinations, from all reachable states, in the worst-case operat-

ing environment. In this way, the clock ensures synchronization among combina-

tional blocks by guaranteeing that the output of every combinational block is valid

and ready to be stored before the next clock period begins. In fact, the data at the

inputs of the FFs may exhibit glitches or hazards, as long as they are guaranteed to

settle before the sampling clock edge arrives. In order to guarantee that the data is

stable when sampled, the clock period should account for the worst-case delay

including clock skew and all process variations.

Typical semi-custom design flows use a fixed set of library cells that have been

carefully designed, verified, and characterized to support synthesis, placement,

routing, and post-layout verification tasks. This library is generally limited to

static CMOS gates, which, compared with more advanced dynamic logic families,

have higher noise margins and thus require far less analog verification. The cells

have accurate table-based characterization to support static timing and noise

analysis rather than more computationally intensive analog simulation. In par-

ticular, timing constraints are reduced to the setup and hold times on FFs, which

static timing analysis tools can verify reliably with minimal user input. This

constrained methodology has facilitated the development of mature suites of

CAD tools that yield relatively short, 12-month, design times.

Full-custom flows use more labor-intensive advanced design styles and less

automated tools to obtain higher performance and lower power. In particular,

full-custom ICs have clock frequencies that are three to eight times higher than

those for semi-custom flows, owing, to their advanced architectures, micro-

architectures, circuit styles, and manufacturing processes [4]. The differences

include: the use of advanced pipelining, clock-tree design, registers, dynamic logic,

and time borrowing; more careful logic design, cell design, wire sizing, floor-

planning, placement, and management of wires; the better management of process

variation; and, finally, accessibility to faster manufacturing processes.

FF

Comb
logic

PI PO

Clk

Figure 1.1. Traditional synchronous ASIC, showing the combinational logic and flip-flop.

The primary inputs and outputs are denoted PI and PO.
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In particular, full-custom designs can use a variety of forms of dynamic logic

which offer significant improvements in performance and power consumption [1]

[3][6]–[8]. For example, the application of dynamic logic in the IBM 1.0 GHz

design yields 50% to 100% higher performance compared with its static logic

equivalent [8]. In addition, advanced FFs and latches can reduce the overhead

associated with clock skew and latch delays [7]. Moreover, latch delays can even

be removed by means of multiple overlapping clocks and dynamic logic, in a

widely used technique recently named skew-tolerant domino logic [6].

However, dynamic logic has lower noise margins than its static counterpart.

Dynamic logic is also more difficult to characterize using table-based methods,

and static timing analysis tools tend to have less accurate results for such circuits

[3]. Consequently, more careful analog-level noise and timing verification is

required. Managing this verification, along with the other more manual aspects

of full-custom design, typically results in a significant increase in design time.

1.2 Challenges in synchronous design

Synchronous design has been the predominant design methodology largely because

of the simplicity and efficiency provided by the global clock. The registers decom-

pose the design into acyclic islands of combinational logic which facilitate efficient

design, synthesis, and analysis algorithms. However, the global nature of the clock

also leads to increasing design and automation challenges. In particular, the time-to-

market advantage of standard-cell-based ASIC designs is being subverted by the

increasingly difficult design challenges posed by modern semiconductor processes

[4]. These challenges affect both high-performance and low-power ASICs, as

described below.

1.2.1 Computer-aided design for high-performance

In earlier submicron designs, architecture, logic, and technology-mapping design

could proceed before and somewhat independently from the placement and

routing of the cells, power grid, and clocks because wire delays were negligible

compared with gate delays. In deep-submicron design, however, interconnect has

not scaled to the same degree as gates, and cross-talk between wires leads to

substantial changes in wire delay. Consequently, wire delay increasingly accounts

for a larger fraction of the critical path. In particular, the delays of long-range

wires may account for up to 70% of the critical path of some high-performance

designs [36]. This change in relative importance has caused the traditional separ-

ation of logic synthesis and physical design tasks to break down, because synthesis

cannot now properly account for the actual wire delays and other geometrical

effects. Since the late 1990s, this timing-closure problem and disconnect between

synthesis and physical design has forced numerous shipment schedules to slip.
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As a consequence, tighter integration of these CAD tools has been developed

and a wide range of post-placement optimization, including gate resizing,

buffer insertion, and wire width optimization, have become an essential part

of CAD tool suites. In addition, sophisticated cross-talk analysis techniques

that account for the switching window of various wires have been developed to

determine the impact in delay associated with increasingly large cross-coupling

capacitances. Understanding the impact of cross-talk during post-placement

optimization is computationally challenging owing to the inherent feedback

between accurate cross-talk analysis and post-placement optimizations. For

example, switching windows can shift dramatically owing to buffer insertion,

resulting in significant changes in the delay of neighboring wires. This computa-

tional challenge forces CAD tools to rely on approximations that yield non-

optimal designs.

Despite the continued advances of modern CAD tools, the overall impact of

these challenges has been an increasingly large performance gap between full-

custom integrated circuits (ICs) and semi-custom ASICs. Moreover, it is predicted

that high-performance semi-custom designs will remain three times slower than

their full-custom counterparts despite all the potential advances in CAD tools [4].

In particular, conventional wisdom suggests that semi-custom CAD tools may

never support dynamic logic because of the added complexity of noise and timing

constraints and the lack of dynamic cell libraries.

1.2.2 Computer-aided design for low-power devices

As manufacturing feature sizes have decreased, transistors have become increas-

ingly leaky and power budgets have become increasingly difficult to meet. This has

motivated a range of improvements to the low-power ASIC flow. In particular,

low-leakage power-efficient cell design, multiple supply voltages on a single die,

gated power supplies, and more advanced clock-gating techniques are continually

being developed and incorporated in ASIC flows. In addition, a few full-custom

techniques for low power have also been explored and are just emerging in ASIC

tools; these techniques include low-voltage swings for long-range wires. However,

these low-swing circuits have reduced noise margins, which necessitates careful

wire planning, shielding, and some analog verification. Moreover, it is well known

that low-power latches can be used instead of flip-flops to reduce clock-tree

capacitance.

1.3 Asynchronous design basics

As a result of the increasing limitations and growing complexity of semi-custom

synchronous design, asynchronous circuits are gaining in interest. In the absence

of a global clock that controls register and state updating, asynchronous designs

rely on handshaking to transfer data between functional blocks. One common way
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to design asynchronous circuits is to organize the data transfer in channels that

group a bundle of data wires using handshaking signals. The channels are uni-

directional and typically point-to-point; they are represented as arrows in Figure 1.2.

Notice that the bi-directional communication of data between blocks A and

B requires two channels in opposite directions.

Many different design styles have been proposed for asynchronous circuits.

They differ in the method in which data is encoded in channels, the handshaking

protocol, and the number and type of timing assumptions required for the designs

to work properly. These different design tradeoffs make it difficult to make

general statements regarding the relative merits of the various benefits typically

associated with asynchronous design. In particular, some design styles yield low

power but are best suited for low-performance applications. Others yield high

performance at the expense of more power and additional timing assumptions.

All, however, provide a rigorous framework for exploring alternatives to syn-

chronous design.

1.4 Asynchronous design flows

There are many different possible design flows for asynchronous circuits. Here we

describe three, to demonstrate the diversity of flows being explored.

The first of these design flows is called refinement and involves the decom-

position of asynchronous blocks into a hierarchical network of leaf cells, where a

leaf cell is the smallest block that communicates with its neighbors via channels.

Each leaf cell is typically implemented with a small set of transistors, typically

between 10 and 100. Early attempts to automate this process are encouraging,

but as of today industry relies on significant manual effort and a large re-usable

library of macro cells (functional blocks, registers, and crossbars) and leaf cells.

This technique was pioneered by Alain Martin at Caltech and has been applied

to several asynchronous microprocessors [9] and digital-signal processing

chips [25]. It has been commercialized by Fulcrum Microsystems and has led

A B

C D

Figure 1.2. Asynchronous blocks communicating using channels.
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to circuit designs whose performance exceeds that available through semi-custom

standard-cell design flows (see e.g. [9]).

The second design flow involves re-using synchronous synthesis tools and

translating a synchronous gate-level netlist (which conveys connectivity informa-

tion) into an equivalent asynchronous netlist. This involves removing the global

clock and replacing it with local handshaking circuitry. This flow has the benefits

of reducing the barrier of adoption for asynchronous design and employing the

power of synchronous synthesis tools. This approach was initially proposed by a

start-up company called Theseus Logic [28] and subsequent results are encour-

aging [26]–[32]. Nevertheless, more work is necessary for it to produce circuits that

compete with manual decomposition.

The third design flow is based on syntax-directed translation from a high-level

language that includes handshaking primitives such as sends and receives [15]–[17].

Syntax-directed translation makes the high-level estimation of power and per-

formance characteristics computationally efficient and enables designers to con-

trol the resulting circuits more directly by altering the high-level language

specification. The results of the translation are typically far from optimal, and

forms of peep-hole optimization at gate level are needed to improve efficiency.

This technique was pioneered by several researchers at Phillips Research and is now

being commercialized by Handshake Solutions. It has produced very-low-power

designs from a digital compact cassette (DCC) error detector [15], an 80C51

micro-controller [14], and an Advanced RISC Machines (ARM) micro-processor

[44] that compare quite favorably with their synchronous counterparts.

There are also significant differences in back-end flows for these design flows.

Some rely on using synchronous standard-cell libraries while others rely on the

advantage of using non-standard gates such as C-elements and domino logic. In

both cases, however, commercial place and route flows are being explored to

automate the physical design.

In addition, commercial static timing and power analysis tools are used to verify

timing assumptions pre- and post-layout, and synchronous test tools are being

adopted for both automated test generation and test coverage analysis. In all these

cases, the presence of combinational cycles in asynchronous circuits is a distin-

guishing feature that often stretches the capabilities of these tools and requires

novel approaches.

1.5 Potential advantages of asynchronous design

Asynchronous circuits have demonstrated potential benefits in many aspects of

system design (e.g. [9][18]–[23]). Their advantages include improvements in high-

performance, low-power, ease of use and reduced electromagnetic interference

(EMI) but these are not universally applicable. Some advantages may be applica-

tion specific and dependent on the particular asynchronous circuit design style.

Others depend on whether the comparison is made with semi-custom or full-custom
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synchronous design or, more generally, the level of effort put into the comparable

synchronous design.

1.5.1 High performance

Performance can be measured in terms of system latency or throughput or a

combination of the two. The potential for high performance in asynchronous

design stems from a number of factors. Several of these are inherent in any design

lacking a global clock and are independent of the asynchronous design style. They

include the following:

� Absence of clock skew Clock skew is defined as the arrival time difference of

the clock signal to different parts of the circuit. In traditional standard-cell

design, the clock period may need to be increased to ensure correct operation in

the presence of clock skew, yielding slower circuits. In recent design flows,

however, a portion of this skew is regarded as useful skew and is accounted

for during logic synthesis, thus mitigating the impact on the feasible clock

frequency. Moreover, in full-custom design, more sophisticated clock-tree

analysis and design reduce this effect further. Nevertheless, as process variations

increase, the clock-skew impact on clock frequencies is likely to grow.
� Average-case performance Synchronous circuit designers have to consider the

worst-case scenario when setting the clock speed to ensure that all the data has

stabilized before being sampled. However, many asynchronous designs, including

those that use static logic, can have average-case delay due to a data-dependent

data flow and/or functional units that exhibit data-dependent delay [37]. In both

cases, the average-case delay may be less than the synchronous worst-case delay.

Other performance advantages are specific to different sub-classes of asynchron-

ous designs and include the following:

� Application of domino logic As mentioned earlier, domino logic is often used in

high-performance full-custom synchronous designs because its logical effort is

lower than that required for static logic [6]. Domino logic is limited to full-

custom design flows because of its reduced noise margin and because its timing

assumptions are not currently supported by semi-custom design tools. Some

asynchronous design flows embed domino logic within a pipeline template [22]

[25]. Instead of a clock that controls the precharge and evaluate transistors,

distinct asynchronous control signals are used. Recent research advances

are aimed at determining whether these templates can be designed within a

standard-cell flow for asynchronous design [33]–[36]. Compared with current

ASIC synchronous flows, they have the potential performance advantages of

dynamic logic as well as removal of the latency overhead and setup margins

associated with explicit flip-flops and latches.
� Automatic adaptation to physical properties The delay on a path may change

owing to variations in the fabrication process, temperature, or power supply
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voltage. Synchronous system designers must consider the worst case and set the

clock period accordingly. Many asynchronous circuits can adapt robustly to

changing conditions, yielding improved performance [22][24]. This is far more

difficult to achieve in a synchronous design, as the variations can be local

whereas the impact on the clock is far more global.
� At-speed testing Asynchronous design styles that embed data and validity into

the same wires provide a potential additional performance advantage. In

principle, it is possible to add logic to verify whether the asynchronous data

arrives before a fixed clock, both during performance testing and/or on-line.

This enables mixed asynchronous–synchronous designs which avoid the large

margins associated with synchronous application-specific ICs, for which per-

formance testing would not be affordable.

1.5.2 Low power

The constant activity of a global clock causes synchronous systems to consume

power even though some parts of the circuit may not be processing any data. Even

though clock gating can avoid the sending of the clock signal to the un-active

blocks, the clock driver still has to constantly provide a powerful clock that

reaches all parts of the circuit. The removal of the global clock in favor of

power-efficient control circuits can sometimes lead to significant power savings.

Moreover, asynchronous architectures can reduce power consumption by mini-

mizing data movement to only where and when it is needed.

The event-driven nature of asynchronous design leads to circuits with low

standby power, which provides a significant advantage in mobile applications that

must react to external stimuli (e.g. smart cards [9] and pagers [12]). The alternative

in synchronous design would be a standby-power-inefficient circuit that continu-

ally polls external signals.

A third power advantage of some asynchronous design techniques is the appli-

cation of level-sensitive latches. Latches have less input capacitance and consume

less switching power than comparable flip-flops, and their use can lead to sub-

stantial savings in power [13].

However, these power advantages are not universal in asynchronous design

styles. In particular, some asynchronous circuits designed for high performance

have more average transitions per data bit than comparable synchronous designs,

owing to the dual-rail or other multi-rail data encoding and/or completion-detection

logic. While the performance advantage associated with some techniques may be

turned into lower power through voltage scaling, the overall power saving is not as

clear and is likely to be application dependent.

1.5.3 Modularity and ease of design

Another advantage of asynchronous design is the modularity that comes from the

send and receive channel-based discipline. Blocks that communicate using the
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same handshaking discipline can very easily be connected, offering a plug-and-play

approach to design. Moreover, the handshaking discipline offers an immediate

notion of flow control within the design. If some stage is not ready to receive new

tokens then the sender will block until the receiver is ready.

In general, well-designed asynchronous circuits are one form of latency-insensitive

design, and they make changing the level of pipelining late in the design cycle

substantially less disruptive. This is particularly advantageous in enabling long

wires to be pipelined late in the design cycle, as we will explore in Chapter 4.

More generally, asynchronous circuits provide an effective component in

designs that are globally asynchronous and locally synchronous. They can offer

the high-throughput low-latency power-efficient interconnect technology that is

essential to creating the backbone of networks on chips. This has been the focus of

Silistix, an asynchronous start-up company out of the University of Manchester

[45]. We will explore this aspect of asynchronous design in Chapter 14.

1.5.4 Reduced electromagnetic interference

In a synchronous design, all activity is locked into a very precise frequency. The

result is that nearly all the energy is concentrated in very narrow spectral bands

around the clock frequency and its harmonics. Therefore, there is substantial

electromagnetic noise at these frequencies, which can adversely affect neighboring

analog circuits. Activity in an asynchronous circuit is uncorrelated, resulting in a

more distributed noise spectrum and lower peak noise. A good example of this

is the Amulet 2e asynchronous micro-processor, which displayed a lower overall

emission level and much less severe harmonic peaks than similar clocked

circuits [20].

1.6 Challenges in asynchronous design

Despite these advantages, which have been evident for some time, asynchronous

circuits are only now gaining acceptance in industry. Two main reasons have to do

with the challenges they present in testing and debugging and the general lack of

CAD tools that support asynchronous design.

1.6.1 Testing and debugging

Testing for synchronous ASICs is made very efficient by the use of specialized

scannable flip-flops, advanced tools for automated test-pattern generation, and

IEEE test circuit standards such as the Joint Test Action Group (JTAG). The

basic challenge associated with many asynchronous design styles is the presence of

loops in the circuit that are not cut by specific latches or flip-flops. Many of these

loops must be cut with additional circuitry in order to achieve sufficient observ-

ability and controllability in the circuit for test purposes and, perhaps more
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importantly, for automated test-pattern-generation techniques to be applicable.

Research in this area is extensive (e.g. [39][40]) but the commercialization of these

techniques is only just beginning.

In addition, in comparison with synchronous design, asynchronous design can

be difficult to debug. In synchronous design, when the circuit fails one can lower

the clock frequency and investigate the failure. In asynchronous designs, however,

there is no clock and the circuit operates at the maximum possible speed. The lack

of this natural control can make debugging more challenging.

1.6.2 Industry-supported CAD tools

Only one start-up company, Handshake Solutions, has developed a commercially

supported design flow for asynchronous circuits [46]. It is based on their propri-

etary language Haste and a syntax-directed design flow. It is geared toward low-

power circuits and uses commercially available static CMOS libraries. All other

asynchronous start-up companies use internal flows to design chips or intellectual

property cores (e.g. [47]).

Although research shows that it is possible to design asynchronous circuits with

common industry-supported CAD tools that are geared for synchronous design

(e.g. [28]), this process in general requires modifications to fool these tools into

thinking that the design is synchronous, making logic, timing, and performance

verification more challenging. Whether traditional electronic design automation

(EDA) companies or another start-up will put efforts into completing and opti-

mizing these flows will depend on the industrial demand for asynchronous circuits.

However, this demand depends on the ease of designing high-quality asynchron-

ous circuits and integrating them into otherwise synchronous systems, which in

turn depends on the availability of CAD tools optimized for asynchronous design.

Solving this “catch-22” situation depends on many factors, including the growing

limitations of synchronous design and the collaboration between academia and

industry.

1.7 Organization of the book

In summary, asynchronous design embodies a wide range of circuit families and

handshaking disciplines that hold out a promise of low power, high performance,

low electromagnetic emissions, and ease of use. This book provides an introduc-

tion to this diverse area of VLSI from a designer’s point of view. Our goal is to

enable designers to appreciate the many asynchronous design choices that may be

readily available in the near future.

To do this in an organized fashion, we have divided the remainder of this book

into three parts. The first focuses on general asynchronous architectures without

going into implementation details. In particular, in Chapter 2 we discuss the

variety of handshaking disciplines available and how handshaking is used to
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synchronize the behavior among asynchronous blocks forming sequential,

parallel, and pipelined implementations. In Chapter 3 we explain how these

handshaking forms can be modeled at an abstract level and, in particular, focus

on a means of modeling them in the well-known Verilog hardware description

language. In Chapters 4 and 5 we consider the unique performance analysis and

optimization techniques specific to asynchronous design, with an emphasis on

asynchronous pipelines. Chapter 6 completes this part of the book with an expla-

nation of the deadlock issues associated with asynchronous architectures.

The second part of the book focuses on the variety of implementation strategies

that are available for asynchronous architectures. Chapter 7 provides a detailed

overview of the different design options. Chapter 8 focuses on two common

methods of automatically synthesizing asynchronous controllers, one using state

machines and the other using event-based specifications. Chapter 9 covers the

famous micropipelines approach to asynchronous design, which uses static logic,

delay lines, and small asynchronous controllers [41]. In Chapter 10 we then cover

the syntax-directed design approach being commercialized by Handshake Solu-

tions [46]. In Chapters 11 through 13 we consider a variety of asynchronous

templates geared towards high-speed fine-grain asynchronous pipelines.

The third part of the book comprises specific design examples. Chapter 14

focuses on an asynchronous crossbar-based solution to globally asynchronous

locally synchronous design. Finally, Chapter 15 contains an asynchronous imple-

mentation of the Fano algorithm that exemplifies the benefits of asynchronous

design described throughout the book.
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2 Channel-based asynchronous design

This chapter is an introduction to asynchronous handshaking and typical

asynchronous modules, with an emphasis on asynchronous designs that follow a

channel-based discipline. The detailed implementation of these modules will be

described in later chapters.

2.1 Asynchronous channels

As mentioned earlier, asynchronous designs are often composed of a hierarchical

network of blocks, which contain ports interconnected via asynchronous channels.

These channels are simply a bundle of wires and a protocol for synchronizing

computation and communicating data between blocks. The smallest block that

communicates with its neighbors using asynchronous channels is called a leaf cell.

Larger blocks that communicate via channels may be called modules.

Numerous forms of channels have been developed that trade robustness to

timing variations with improved power and performance, and this section reviews

some of the most popular forms.

2.1.1 Bundled-data channels

Bundled-data channels consist of a single request line bundled with a uni-

directional single-rail data bus that is coupled with an acknowledgement wire.

In the typical bundled-data push channel, illustrated in Figure 2.1, the sender

initiates the communication and tells the receiver when new valid data is available.

Bundled-data channels can be implemented with two-phase handshaking, in

which there is no distinction in meaning between the rising and falling transitions

of the request and acknowledge handshaking wires. More specifically, both the

rising and falling transitions of the request wire indicate the validity of new data at

the output of the sender, and both the rising and falling transitions of the

acknowledge signal indicate that the data has been consumed by the receiver, as

illustrated in Figure 2.2. Note that after the data is consumed the sender is free to

change the data. Consequently, it is the voltage transitions of these wires that

carry meaning rather than their absolute voltage levels. Thus, this type of two-

phase protocol is often called transition signaling [9].



In contrast, in four-phase bundled-data protocols, only the request line going

high signifies the validity of data and a single transition of the acknowledge signal

identifies that the data has been consumed by the receiver and can be safely altered

by the sender. In the narrow protocol [13], also known as the early protocol [6], the

rising transition of the acknowledge signal signifies that its data has been con-

sumed and the single-rail data can be changed, as illustrated in Figure 2.3(a). After

the acknowledge signal has risen the sender resets the request line and the receiver

then resets the acknowledgement line, bringing both wires back to the initial state

in preparation for the next token transfer. By contrast, in the late [6] protocol the

data is valid from when the request falls to when the acknowledge signal falls, and

the first two phases can be considered as a warm-up in preparation for the latter

two active transitions; this is illustrated in Figure 2.3(b). In the broad protocol [13],

the signals follow the same four transitions but the falling transition of the

acknowledge signal signifies that the data can be reset, as illustrated in Figure

2.3(c). As the name implies, the time for which the data must be stable is much

larger in the broad protocol than in the narrow protocol. Also, notice that in all

these protocols the only purpose of two of the four phases of the communication is

to reset the handshaking wires in preparation of the next data transfer.

Bundled-data channels are area efficient because the request and acknowledge

line overhead is distributed over the width of the entire data bus which encodes

data with one wire per bit, as in a typical synchronous circuit. They are also power

efficient because the activity on the data bus may be low and the power consump-

tion of the handshaking wires is relatively small if the data path is wide

1st token 2nd token

req

ack

data

Figure 2.2. Transition signaling in a bundled-data push channel.

Sender

Request

Acknowledge

Single-rail data

Receiver

Figure 2.1. The elements of a bundled-data channel.
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(e.g. 64 bits). A disadvantage of bundled-data channels, however, is that they

involve a timing assumption, i.e. that the data at the receiver is valid upon the

associated transition of the request line. Moreover, unlike in a synchronous circuit

there is no associated clock that can be slowed down to ensure that this timing

assumption is satisfied. Consequently, significant margins are typically necessary

to ensure proper operation. These margins are on the forward latency path of the

circuit, which is often critical to system performance.

2.1.2 One-of-N channel

A 1-of-N channel uses N data wires to send log2 N bits of data, as illustrated in

Figure 2.4, and is typically designed with four phases. After a single data wire has

(a)

(c)

req

ack

broad

1st data

1st data

1st data

2nd data

2nd data

2nd data

req

ack

early

(b)

req

ack

late

Figure 2.3. Four-phase bundled-data push protocols: (a) early, (b) late, (c) broad.
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risen, the acknowledge wire also rises, indicating that the data has been consumed

by the receiver and that the sender can safely reset the risen data wire. Once the

sender resets the data signal, the receiver can reset the acknowledge signal,

completing the four phases. This protocol facilitates delay-insensitive communi-

cation between blocks in that the data and its validity are encoded on the same

N wires rather on separate request and data wires. Consequently, no timing

assumption is needed. This increases robustness to variations, reducing the

amount of timing verification required.

The most well-known form of this channel is dual-rail, also known as 1-of-2,

and uses two data wires or rails per bit of data, as illustrated in Figure 2.5(a). One

Sender

Acknowledge

1-of-N data

Receiver

Figure 2.4. The 1-of-N channel.

data_0

data_1

ack

1st token = 0 2nd token = 1
(a)

1st token = 1 2nd token = 3

data_0

data_3

ack

data_1

data_2

(b)

Figure 2.5. (a) The 1-of-2 (dual-rail) channel; (b) the 1-of-4 channel.
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wire is referred to as the data_1 or true wire and the other as the data_0 or false

wire. Handshaking is initiated when a data wire rises; this represents both the

value of the data wire and the validity of the data. The receiver can detect the

validity of the input data simply by ORing the data_0 and data_1 wires. In many

templates the data triggers a domino dual-rail logic datapath concurrently.

Other forms of 1-of-N datapath are also possible. A 1-of-4 channel systems

communicates two bits of data by changing only one data wire, as illustrated in

Figure 2.5(b), yielding a lower power consumption than dual-rail channels yet

with no additional data wires per bit (i.e. two data wires are still used per bit

communicated). Higher radix channels are also possible and have additional

power advantages but require more wires per data bit. For example, a 1-of-8

channels system requires 8/3 data wires per bit rather than the two data wires per

bit required by dual-rail and 1-of-4 channels. The most trivial form is a 1-of-1

channel, which has the same form as a bundled-data channel with no data and is

used to synchronize operations between sender and receiver.

It is also possible to implement 1-of-N channels with the acknowledge signal

inverted, in which case it is often referred to as an enable because a high value

indicates that the channel is ready to accept a new token. In addition, as in

bundled-data transition signaling, it is also possible to use transition signaling,

in which each transition on the 1-of-N data wires represents a new token. How-

ever, creating senders and receivers that react to both phases of the data and

control wires often leads to less efficient control circuits, owing to the substantially

lower mobility in P-transistors compared with that in N-transistors.

Various block implementations for 1-of-N channels will be discussed in

Chapters 11 and 12. In addition, block implementations that use a variant known

as a 1-of-Nþ1 channel will be discussed in Chapter 11. The 1-of-Nþ1 channel

has an additional request signal between sender and receiver to enable higher

performance.

2.1.3 Single-track 1-of-N channel

A single-track 1-of-N channel have 1-of-N data with no acknowledgement, as

illustrated in Figure 2.6.

The 1-of-N single-track channel is implemented with two phases, as illustrated

in Figure 2.7. The sender drives one of the N wires high, thereby sending a token,

and after receiving this token the receiver drives the same wire low. After driving

the wire to its desired state, the sender and receiver(s) must tri-state the wire

(i.e. hold it in a high-impedance state) to ensure that they do not try to drive it

in opposite directions at the same time. If the drivers have a drive gap, additional

staticizers are necessary to hold the wires at their driven state to combat leakage

current and noise.

The two-phase single-track protocol avoids the overhead of the reset phases

without requiring the sender and receiver to react to different transitions, yielding

substantially higher performance than four-phase protocols. Moreover, compared
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with bundled-data protocols there is no timing assumption that requiresmargins on

the forward latency; this yields additional performance improvement. In compari-

son with four-phase 1-of-N protocols there are fewer transitions per bit, resulting in

substantially lower power. In comparisonwith bundled-data channels, however, the

number of transitions per bit is often larger, yielding a higher power consumption

per bit transmitted.

Single-track handshaking has been proposed as a replacement for the hand-

shaking signals in ultra-high-performance bundled-data channels [8][10]. (Note

that in the GasP implementation [10] the default value of the request and acknow-

ledge wire is high rather than low.) Single-track handshaking was later extended to

1-of-N data for ultra-high-performance design [11]. Single-track senders and

receivers will be described in detail in Chapter 13.

2.1.4 Shared channels

Asynchronous channels are typically point-to-point channels, but it is also

possible to design shared asynchronous channels that connect more than two

blocks. In this case, multiple blocks can be designated as senders and multiple

blocks as receivers. The key to designing shared channels is to guarantee that only

a single sender and single receiver are active at a given time, i.e. all senders are, in a

mutually exclusive way, trying to drive the channel. The receivers can be designed

to receive the data on the channel mutually exclusively or they can all be required

to acknowledge receipt of the data.

Sender 1-of-N data Receiver

Figure 2.6. Single-track 1-of-N channel.

data_0

data_3

data_1

data_2

1st token = 1 2nd token = 3

Figure 2.7. Handshaking on a 1-of-4 single-track channel.
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2.1.5 Pull channels

Each channel connects an active and a passive port, where the active port initiates

a communication and the passive port responds. In push channels the sender is the

active port and starts the communication by either raising the request or raising

one of the N data wires. This represents a data-driven channel. Alternatively, if the

data transfer is initiated by the receiver then the receiver has the active port and

the channel is said to be a pull channel and represents a demand-driven channel.

In pull channels, the directions of the request and acknowledge signals are

reversed compared with those in push channels, as illustrated in Figure 2.8.

Communication is initiated when the receiver raises the request signal, requesting

data from the sender. As in push channels there are early, late, and broad data-

validity protocols that dictate when data is stable, as illustrated in Figure 2.9. In

the early scheme, once the sender has stable data at its output, it raises the

acknowledge wire. The receiver then acknowledges receipt of the data by

lowering its request signal. This allows the sender to change data and reset the

acknowledge wire, preparing for another communication. The data is stable

from acknowledge rising to request falling, which is why this protocol is some-

times also referred to as a middle data-validity protocol [6]. In the late and broad

protocols, however, note that the data must be stable in between successive

handshakes.

2.1.6 Abstract channel diagrams

It is often useful to depict asynchronous channels independently of the underlying

handshaking style. This allows the diagram to focus on an architectural view of

the design. In an abstract channel diagram, the direction of the channel arrow is in

the direction of the data transfer and the active port is designated by a dark circle,

as illustrated in Figure 2.10(a), (b). Channels without data are sometimes referred

to as 1-of-1 channels, as previously mentioned, when they are used to carry request

tokens for shared resources [17]. They are called synchronization or nonput

channels when they do not send tokens that are consumed by a receiver but, rather,

are used to manage synchronization among modules [6], as will be explained in the

next section.

Sender

Request

Acknowledge

Single-rail data

Receiver

Figure 2.8. Pull channels in which the request and acknowledge wires are reversed.
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Figure 2.9. Data-validity schemes in four-phase pull channels: (a) early, (b) late, (c) broad.

(a)

(b)

(c)

Figure 2.10. Abstract channels: (a) push channel with data, (b) pull channel with data,
(c) synchronization or nonput channel with active side on the right.
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2.2 Sequencing and concurrency

In addition to communicating data between blocks, channels are used for sequen-

cing operations performed by the modules they connect. Clearly, a module must

receive data on its input channels before it can operate on the data and send its

result(s) on its output channel(s). However, it is often useful for the handshaking

on the input and output channels to be overlapped. The specific interleaving

chosen between the transitions on the input and output channels changes the

degree of concurrency among the associated modules, which ranges from sequential

to parallel to pipelined behavior.

2.2.1 Enclosed handshaking

A form of interleaving commonly used for sequencing is the enclosed handshake, in

which the handshaking on one channel is enclosed within the handshaking of

another channel. To illustrate this behavior we will use a two-phase protocol, as in

Figure 2.11, even though efficient implementations typically use a four-phase

protocol. Four-phase alternatives with detailed implementations will be discussed

in more detail in Chapter 10.

Notice that communications on the R synchronization channel (R1 and R2, see

Figure 2.11) are enclosed within the handshaking on the L channel (L1 and L2).

The application of this form of handshaking depends on the semantics of the

enclosed handshake. Typically, the enclosed handshake represents the completion

of some function and thus the enclosing handshake L represents the calling of a

function represented by the communication on R.

Two common applications of enclosed handshaking are described below, imple-

menting sequential and parallel behavior, respectively.

SEQ module

The handshaking on multiple active channels can be ordered, thereby ensuring

that the associated tasks are sequenced. As depicted in Figure 2.12, upon receipt of

Lreq

Lack

Rreq

Rack

L1

R1

L2

R2

L R

Figure 2.11. Enclosed handshaking for a two-phase protocol.
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a request on passive port R the sequence (SEQ) module completes a full handshake

on active port S1 followed by a full handshake on active port S2 before acknowledg-

ing R. The SEQ module is used to sequence operations associated with handshakes

on S1 and S2. Moreover, because the resulting sequence is enclosed within the

handshake on R, the acknowledgement on R indicates that the sequence is complete.

PAR module

The handshaking on multiple active channels can occur simultaneously, thereby

ensuring that the associated tasks operate in parallel. In particular, as depicted in

Figure 2.13, upon receipt of a request on port R the parallel (PAR) module

Rreq

Rack

S1req

S1ack

S2req

S2ack

SEQS1 S2

R

Figure 2.12. SEQ module using a two-phase protocol.

Rreq

Rack

P1req

P1ack

P2req

P2ack

PARP1 P2

R

Figure 2.13. PAR module using a two-phase protocol.
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completes a full handshake on port P1 in parallel (i.e. concurrently) with a full

handshake on port P2 before acknowledging R. As in the SEQ module, because

this sequence is enclosed within the handshake on R the acknowledgement on R

indicates that the pair of operations is complete. This enables this pair to be

properly sequenced with subsequent operations.

The handshaking procedure using the two-phase protocol is straightforward

and there are no variants to consider. In four-phase protocols, however, several

variants exist depending on which phases represent active handshaking rather

than being needed solely to reset the wires. In particular, an overlap of the reset

phases of one handshake with the active phases of the next handshake can reduce

control overhead and improve performance [15].

Transferer

A transferer, denoted by!, waits for a request on its passive nonput port and then

initiates a handshake on its pull input port, as illustrated in Figure 2.14. The

handshake on the pull input channel is then relayed to the push output channel in

order to pull data from its input channel and push it (i.e. transfer it) to its output

channel. Finally, the transferer completes the handshaking on its passive nonput

channel.

2.2.2 Pipelined handshaking

Pipelining can improve system performance by enabling multiple instances of an

algorithm to operate concurrently. This is achieved by decomposing the algorithm

R

OI

Rreq

T1

Ireq

Oreq

Oack

Rack

lack

T1

T1

T1

T1

T2

T2

T2

T2

T2

Figure 2.14. A transferer: (a) its symbol and (b) its timing diagram, assuming two-phase
handshaking over two requests on R.
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into steps, associating steps with pipeline stages, and enabling earlier pipeline

stages to accept new instances of the algorithm while later pipeline stages are

concurrently operating on earlier problem instances. Pipelining can be imple-

mented explicitly using parallel PAR operators or implicitly through pipelined

handshaking between blocks.

To illustrate the latter, consider a three-stage pipeline of simple buffers, each

denoted BUF, surrounded by an environment modeled by a bit generator on the

left that randomly generates tokens and a bit bucket on the right that simply

consumes tokens, as illustrated in Figure 2.15.

After consuming the data, each BUF generates its output in parallel with

acknowledging the input; this enables the previous stage to reset and generate

new tokens. One specific sequence of events is shown in Figure 2.16 for a 1-of-1

pipeline that follows the fully decoupled handshake protocol [12]. Note that the gray

arrows represent the four-phase handshaking protocol within a channel and the

Bit
gen

BUF BUF BUF
Bit

bucketC0 C1 C2 C3

Figure 2.15. Three-stage FIFO surrounded by bit-generator and bit-bucket modules.

T1 T2 T3 T4

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack
T1 T2

T1

T3

T1

T2

Figure 2.16. Four-phase full-buffer handshaking for a 1-of-1 pipeline.
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black arrows identify the interleavings of events across handshaking protocols.

While the first token, T1, is passing through C2 a second token, T2, is able to enter

the C0 channel. Also notice that in this figure we have assumed that the bit bucket

is slow and therefore the signal C3ack does not rise. Consequently, tokens begin to

pile up one behind the other and towards the end of the simulation four distinct

tokens, T1, T2, T3, and T4, exist simultaneously in the pipeline. The handshaking

guarantees that each channel holds at most one token and that no token is lost,

despite the relative speed of the bit bucket. Thus the pipeline inherently provides

flow control of the tokens.

An asynchronous pipeline can have a simple linear configuration, such as the

first-in–first-out (FIFO) arrangement in Figure 2.15, or it can have non-linear

elements such as forks, joins, cycles, or rings. Despite the configuration, the

common theme of pipelining is that many data tokens that represent intermediate

results of different instances of the same algorithm can exist simultaneously in the

pipeline. We may refer to the class of leaf cells that form a pipeline stage as buffers

because they inherently store tokens on their input and output channels. The

functionality and type of buffer should be clear from the context.

Full buffers versus half buffers

While it is assumed in pipelined handshaking that a channel cannot hold more

than one token, not all types of asynchronous leaf cell support this one-token

maximum. A leaf cell is a full buffer [5], also known as a high-capacity cell [14],

when it can support distinct tokens on its input and output channels. Half-buffer

leaf cells, however, cannot support distinct tokens on their input and output

channels. More specifically, an N-stage FIFO made up of half buffers can support

a maximum of N/2 tokens. The maximum number of tokens that a pipeline can

support is called its capacity or static slack [5].

The difference between half and full buffers can be understood better by

analyzing the difference in the handshake interleavings on their input and output

channels. To appreciate this difference, consider again the operation of the three-

stage pipeline shown in Figure 2.15 (with 1-of-1 channels and a slow bit bucket)

when each buffer is changed to a half buffer that follows the simple four-phase

protocol [12]. As illustrated in Figure 2.17, C0ack� depends on C1req�, which

depends on C1ackþ, which in turn depends on C2reqþ. These dependencies imply

that the first token must pass into channel C2 before the handshake on channel C0

is complete and the latter can accept a new token. In fact, because of the

additional causality of this protocol, a token must always pass through two

buffers before the first of the two buffers completes its handshake and can accept

a second token. In other words, only every other stage can hold a distinct token.

Consequently, at the end of the simulation waveforms illustrated in Figure 2.17,

because the bit bucket is very slow tokens pile up and are present in channels C1

and C3 while channels C0 and C2 are empty.

There are full and half-buffer design templates that use bundled-data, 1-of-N,

on single-track encodings; they vary in terms of power, performance, and
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robustness. In bundled-data pipelines, the handshake circuit is independent of

the datapath but drives a local clock or enable signal that controls latches or

flip-flops. It will be studied in more detail in Chapters 9 and 10. In 1-of-N and

single-track templates, the storage transistors are often integrated within the cell

itself. They will be studied in Chapters 11–13. In all cases, notice that the acknow-

ledge signal typically means that the associated data has been consumed rather

than some operation has been completed, in contrast with the situation for an

enclosed handshake.

Non-linear pipelines

Most high-performance architectures are not linear pipelines and thus buffers with

multiple input and output channels are often needed.

A fork is a buffer with one input channel and multiple output channels. The

simplest type of fork is a two-output COPY, which simply copies the token on the

C2req

C2ack

C3req

C3ack

C0req

C0ack

C1req

C1ack

T1

T1

T1

T1

T2

T2

Figure 2.17. Four-phase half-buffer handshaking for a 1-of-1 pipeline.
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input channel to both output channels. A join is a buffer with multiple input

channels. Buffers with multiple inputs and outputs are both forks and joins.

Buffers are unconditional if they wait for input tokens on all input channels and

generate tokens on all output channels. They are conditional if the input channels

that are read or output channels that are written depend on the value of a subset of

the tokens read. A typical conditional cell is a merge, illustrated in Figure 2.18(a),

which, on the basis of the value of a select token on channel S, waits for an input

token on one of the other two input channels and then routes it to the output

channel. The merge cell is essentially a synchronous multiplexor with built-in flow

control. A typical conditional output cell is a split, illustrated in Figure 2.18(b),

which, on the basis of the value of a select token on S, routes an input token to one

of the two output channels.

As with linear buffers, non-linear buffers have inherent flow control. No token

is lost, because no buffer is allowed to overwrite a token. Moreover, as was the

case for BUF elements, both full- and half-buffer implementations of merge and

split elements exist. As an example, the timing diagram of a merge with two-phase

handshaking on A, B, and dual-rail S channels is shown in Figure 2.19. Notice

that this implementation is an example of full-buffer handshaking because tokens

can exist on both input and output channels at the same time. In particular, the

second token on A (identified by Areq�) arrives while the first output token on

O is still being acknowledged (i.e. before Oackþ).

2.3 Asynchronous memories and holding state

Notice that the SEQ and PAR modules operate on only request and acknowledge

signals or 1-of-1 channels and are thus distinct from the datapath. Despite having

an internal state variable, which is necessary to ensure the proper handshaking

sequence, these modules do not include multi-bit latches or flip-flops in which data

is stored. In pipeline buffer modules, the value of the data is stored on the channels.

Neither type of module represents a means of storing data or building a memory.

One type of asynchronous memory is a cell that stores a single variable, denoted

as VAR. It is depicted in Figure 2.20(a). It has a passive write port W attached to a

(a) (b)
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Figure 2.18. (a) Merge and (b) split non-linear conditional pipeline buffers.
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push channel and a passive read port R attached to a pull channel. Other modules

actively send data to this module to be stored and actively request to read the data

stored. To avoid malfunction, the write and read requests are assumed to be

mutually exclusive. Alternatively, one can design a VAR module with a one-bit

control port R/W, illustrated in Figure 2.20(b), which indicates whether the

module should wait for a token on its passive write port, which it will then store,

or generate a previously stored value on its active read port. Notice that with a

Areq

Aack

Breq

Back

S0

Sack

S1

Oreq

Oack

Figure 2.19. Timing diagram of a merge cell using full-buffer two-phase handshaking and

a dual-rail select channel.

(a)

VARW R

(b)

VARW R

R/W

Figure 2.20. Illustration of VAR modules for data storage (a) with mutually exclusive read
and write channels, (b) with a one-bit read or write control channel.
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one-bit control the environment need not ensure mutual exclusivity on the read

and write channels.

Another way to implement the memory of a single variable is by not generating

an acknowledge signal on the channel in which the associated token is sent. This

prevents reset of the data, which can then be re-used in multiple computations.

Although this technique can be used for specific problems such as loop control [5],

it is very limited.

Other memory modules are designed to hold more than one variable [18]. Such

modules use additional address channels to identify which location to read to or

write from the data. A one-ported memory has a single address channel and can

either write to or read from distinct input and output channels, as illustrated in

Figure 2.21(a). Note that it is also possible to combine read and write channels

into a common bi-directional channel if access to the channel can be guaranteed to

be mutually exclusive. Dual-ported memories have two address channels and a

three-way R/W/C control channel that indicates whether the memory should read,

write, or simultaneously read and write to different addresses, as illustrated in

Figure 2.21(b). In both cases, the only active channel is associated with the read

port, which generates the resulting memory token.

Another form of memory in an asynchronous system is a finite-state machine

(FSM). An FSM is a state-holding circuit, which only changes state when the

expected inputs for that state become available. To build an asynchronous FSM,

we create distinct blocks for output and next-state logic and feed the outputs of the

next-state logic back to the inputs using pipeline buffers to hold the data [5]. This

technique is similar to synchronous FSM design, but the flip-flops are replaced

with pipeline buffers, as illustrated in Figure 2.22.

In this figure, each channel either is an input or output or holds a state. The

blocks labeled C are COPY buffers. The next-state and output logic blocks may

involve complex logic. For efficient implementation, these blocks may be decom-

posed into multiple leaf cells interconnected with additional channels. In addition,

the input and next-state bits may be decomposed into multiple channels. For

example, one strategy is to design the FSM using one-hot-state encoding, in which

each different state is represented by a different 1-of-1 next-state channel. In this

case, the next-state logic will conditionally write to the specific output channel

corresponding to the desired next state. Moreover, next-state logic cells may

(a)

SP
MEM

W R

R/WAddr

(b)

DP
MEM

W R

RAWA
R/W/C

Figure 2.21. Multi-variable (a) single-ported (SP) and (b) dual-ported (DP) memories.
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conditionally read primary input tokens on the basis of the state inputs. Thus,

these cells may exhibit the conditional reading of input channels and writing of

output channels, similarly to the non-linear pipeline templates described earlier.

The simplicity of this method for designing FSMs enables synchronous design

techniques for generating Boolean next-state and output expressions to be used

for asynchronous design. In particular, synchronous output and next-state logic

can be readily implemented with an acyclic network of pipelined leaf cells.

Notice that at least one buffer in the feedback path must be a token buffer, which

generates a token upon reset and acts as a buffer in all other respects. The initial

token identifies the initial state of the controller. Token buffers will be described in

more detail in subsequent chapters.

2.4 Arbiters

Arbiters are often used to provide mutually exclusive access to a resource shared

by two or more requesters. In asynchronous systems, the access to shared resources

is typically given to the earliest request; however, implementing a notion of priority

among requesters is also possible. In this section we discuss first non-pipelined

arbiters, which can handle only one arbitration event at a time, and then

pipelined arbiters, which can simultaneously support multiple arbitration events.

2.4.1 Non-pipelined arbiters

Typically, two types of two-way arbiters are used in non-pipelined designs, as

illustrated in Figure 2.23. The simplest form has two synchronization channels,

Next-
state
logic

Output
logic

Buffers

C

Cin

out

Figure 2.22. An abstract asynchronous FSM.
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connected to passive ports R1 and R2 as illustrated in Figure 2.23(a), and is

typically implemented using a four-phase protocol. If the request on R1, say, is

received first, it wins the arbitration and is acknowledged. Any request on the non-

winner remains pending until the winning channel is reset. In this way, the winner

can be guaranteed access to a shared resource until it resets its request, as

illustrated in Figure 2.24.

An important facet of all two-way arbiters is that if the requests on R1 and R2

arrive sufficiently close together then the winner is randomly determined. More-

over, in this situation, the time to resolve arbitration may be arbitrarily long and

its delay has an exponential distribution.

Arbiters that are N-way can be generated using the two-way tree arbiters shown

in Figure 2.23(b), in which the 1-of-1 output T is the input of subsequent two-way

arbiters. In this arbiter the winner is not acknowledged until the output T is

generated and acknowledged, which occurs only when it wins the N-way arbitra-

tion. Once the output T is acknowledged, the tree arbiter waits until after the

winning request is reset before resetting T, guaranteeing mutually exclusive access

to the resource. A balanced tree yields fair arbitration but unbalanced trees are

needed if certain request inputs should have higher priority.

A four-way arbiter is shown in Figure 2.25. Note that if the output T is

generated at the same time that the winner of the arbitration is decided, the

four-way arbiter will typically choose the request that arrives first. If T is

R1

R2

(a)

R1
T

R2

(b)

Figure 2.23. Non-pipelined arbiters: (a) two-way, (b) multi-way tree.

R1req

R1ack

R2req

R2ack

R1 has
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Figure 2.24. Timing diagram of the two-way arbiter in Figure 2.23(a).
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generated only after a winner is decided, however, the four-way arbiter may not

always choose the first-arriving request. In particular, if two requests arrive at one

arbiter and one request arrives slightly later at the other arbiter, this later request

may win because it can generate a request on T while the first arbiter decides

between the two other requests. This tree arbiter is non-pipelined or slackless,

because it can operate only on one arbitration event at a time.

2.4.2 Pipelined arbiters

In pipelined systems, the two-way arbiter often has an active one-bit output port,

W, that identifies who has won the arbitration, as illustrated in Figure 2.26(a).

In this case, the input environment can reset the winning request concurrently

with the sending of the output token on W, in contrast with the arbiter in

Figure 2.23(a), which delays the resetting of input channels until the shared

resource is released. This is possible because the winner token captures the infor-

mation about who won the arbitration event and will control access to the shared

resource. This will be illustrated in a simple crossbar design in Section 2.5.

Figure 2.26(b) shows an extension to the basic pipelined two-way arbiter that

includes a one-bit nonput channel. This is useful for pipelined tree arbiters, such as

that illustrated in Figure 2.27. Here, the nonput ports O of the two first-level

arbiters are connected to a second-level arbiter. To identify which of the four

requests wins the arbitration, the first-level one-bit winner tokens are re-coded

into two bits by the addition of an appropriate most significant bit (MSB). The

output of the second-level arbiter controls a final MERGE, which selects between

R1
T

R2

R1
T

R2

R1

R2

Figure 2.25. Non-pipelined four-way tree arbiter.
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R1 W
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Figure 2.26. Two-way arbiters used in (a) pipelined designs and (b) pipelined multi-way tree

arbiters.
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the two-bit tokens and identifies the overall winner. The key feature of this tree

arbiter is that it can operate on more than one arbitration request at a time. In

particular, assuming that each handshake is implemented with full buffers, after

the first arbitration event is processed by the first-level arbiters and propagated to

the second level of the tree a new set of input requests can arrive and be arbitrated.

2.5 Design examples

This section uses the building blocks described above in two slightly more complex

design examples.

2.5.1 Two-place FIFO

As mentioned earlier, pipelining can be implemented explicitly via parallel oper-

ators. As an example, consider the simplest form of a pipeline, a two-place FIFO,

as illustrated in Figure 2.28.

The two-place FIFO has capacity 2 because it can hold a maximum of two

tokens. The bottom row of handshake components includes two variables, x and y,

and three transferer elements. The control is implemented with a parallel operator

that triggers the operation of the two halves (i.e. places) of the two-place FIFO. In

particular, each half of the pipeline is controlled by a repeater (denoted by an

asterisk) and a sequencer. The two halves are synchronized using the join element,

denoted by the large solid circle. The repeaters are indicated by question marks.

To understand the operation of this FIFO better, we first describe the hand-

shaking behavior of the repeater and join elements in more detail. Upon receiving

a request on its request channel R, the repeater element indefinitely repeats

handshaking with its active nonput channel O. The request on R is thus never

acknowledged. This is illustrated in Figure 2.29(a), which shows four complete

two-phase handshakes on O, labeled T1–T4 following the initial request on R.
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Figure 2.27. Four-way pipelined tree arbiter.
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Figure 2.28. Two-place FIFO using explicit parallelism [6].

R

O

T1 T2 T3 T4

Rreq

Oreq

Oack

(a)

A B

O

T1

T1

T1

T1

T1

Areq

Breq

Oreq

Oack

Aack

Back

T2

T2

T2

T2

T2

(b)

Figure 2.29. (a) A repeater element and its two-phase timing diagram. (b) A join element and

its two-phase timing diagram.
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The join element synchronizes communication among two input passive ports

by enclosing a handshake on the active output port O after receiving requests

from both A and B and before acknowledging A and B. This is illustrated in

Figure 2.29(b), which shows two complete two-phase handshaking cycles.

In the case of the two-place FIFO, the left-hand repeater repeatedly handshakes

its active nonput channel, which is tied to the left-hand sequencer. This sequencer

is responsible for first transferring the input to the variable x and then to the

variable y. The right-hand repeater repeatedly handshakes its active nonput

channel, which is tied to the right-hand sequencer. This sequencer is responsible

for transferring the variable x first to y and then to the output. The join element is

responsible for synchronizing the two sides in such a way that the transfer from x

to y occurs only when data is stored in x and when the variable y is empty. In

particular, notice that the left-hand sequencer sends a request to the join only after

it knows that the data is stored in x. Moreover, the right-hand sequencer sends a

request to the join either the first time the FIFO is triggered (when y is known to

be empty) or after the old value of y is transferred out.

Notice that the transfer of data is strictly control-driven and the transfer

elements have active (pull) inputs. This is in contrast with the pipelined handshak-

ing we described in subsection 2.2.2, which is data-driven, consisting of pipeline

buffers that have passive (push) inputs.

The 2 � 2 asynchronous crossbar

The top-level view of a simple 2 � 2 asynchronous crossbar with representative

sending and receiving environments is illustrated in Figure 2.30. The general idea

is that the two senders will intermittently send data to either Receiver 0 or

Receiver 1, as specified by an associated one-bit address channel. The receivers

will intermittently consume the data sent to them but are not required to do this

immediately upon its arrival. That is, senders may be idle and receivers may stall

the communication. Notice that the senders will always send out a data token with

an address token.

The key feature of the crossbar is that parallel communication is allowed when

it is possible. For example, Sender 0 can communicate with Receiver 0 at the

same time as Sender 1 communicates with Receiver 1. Similarly, Sender 0 can

communicate with Receiver 1 at the same time as Sender 1 communicates with

Receiver 0. Another important feature of this system is that it never drops any

data packet. In particular, any sender must be stalled to prevent it from over-

writing its data when the addressed receiver does not consume the data. Finally,

this system should never deadlock. In other words, communication can always

progress.

A straightforward implementation of a crossbar based on a split and merge

pipelined handshaking architecture is illustrated in Figure 2.31. There is one merge

element per output and one split element per input. The splits send data to the

appropriate merge on the basis of a copy of the associated address token. Each

“special split” accepts one-bit address tokens and converts them to requests on its
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1-of-1 output channel connected to the corresponding arbiter (see Figure 2.26).

The arbiter resolves any simultaneous receiver requests and sends the winner-

information to the output merge. The merge uses this control data to determine

which input token to wait for and to route to the output.
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Figure 2.30. Top-level diagram of a crossbar and its environment.
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Figure 2.31. Straightforward implementation of a 2 � 2 asynchronous crossbar.
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Because all elements in the design use pipelined handshaking, the design is

pipelined. While tokens are flowing through the design, new tokens can be

processed at the inputs. Nevertheless, the design does not drop any token

because it consists of leaf cells that by definition cannot overwrite tokens on their

output channels. If a leaf cell output is for some reason stalled and a generated

output token is not consumed (i.e. acknowledged), the leaf cell will not consume

new input tokens. In particular, assuming that each element uses full-buffer

interleaving, one token can exist between each pair of split and merge elements

while another token waits to be consumed by the output environment. Thus, the

design has capacity or static slack 2. This asynchronous pipelined behavior yields

a built-in notion of flow control, which makes system design using a crossbar for

module-to-module communication somewhat easier than using synchronous

alternatives.

With some effort it can also be shown that this implementation is deadlock-free.

If the channels can be arbitrarily pipelined to optimize performance while preserv-

ing correctness then the design is called slack elastic [16]. Unfortunately, the simple

design described above is not slack elastic. We will discuss enhancements that

address this issue in Chapter 6.

2.6 Exercises

2.1. Draw the timing diagram of a merge element with 1-of-1 inputs A and B and

output O. Assume that S is attached to a dual-rail channel. Assume full-

buffer interleaving between input and output handshakes. Assume that there

is a two-phase protocol on all channels, that tokens on A and B arrive nearly

simultaneously, and that two tokens arrive on S in succession with alternate

bit values. Repeat for the case when S is implemented with the two-phase

bundled-data protocol.

2.2. Draw the timing diagram of the VAR module in Figure 2.20(a). Assume a

two-phase one-bit bundled-data protocol and that the environment performs

a write followed by two reads.

2.3. Draw the timing diagram of the four-way slackless arbiter shown in Figure

2.25 when simultaneous requests from the two R1 inputs arrive.

2.4. Design a four-way arbitrated merge with N-bit inputs A, B, C, and D and

output O. As the basis of your design, use two-way merge elements, the two-

way arbiters shown in Figure 2.26(a), and special copy elements that produce

1-of-1 tokens on one output rather than a duplicate N-bit data.

2.5. Using four four-way arbitrated merge blocks as a basis, design a 4 � 4

crossbar. Assume each of the four senders has a two-bit address and an

N-bit data output channel.

2.6. Repeat Exercise 2.5 but instead use the pipelined tree arbiters shown in

Figure 2.26(b).
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2.7. Label all internal channels in Figure 2.28. Draw a timing diagram showing

the two-place FIFO inFigure 2.28 consuming two tokens. Assume a two-phase

handshaking protocol. Lastly, assuming that each action takes two time units,

what is the cycle time of the design (i.e. the time between the consumption of

each token)?
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3 Modeling channel-based designs

Digital system designers usually use hardware description languages (HDLs) to

design and model their circuits at several levels of abstraction; Verilog and VHDL

have been the most popular. Asynchronous circuit designers, however, often use

some form of communicating sequential process (CSP) [1] to model the intended

architectural behavior because it has two essential features: channel-based com-

munication and fine-grained concurrency. The former makes data exchange

between modules abstract actions. The latter allows one to define nested sequen-

tial and concurrent threads in a model. Thus, a practical HDL for high-level

asynchronous design should implement the above two constructs. Furthermore,

as found in many standard HDLs, the following features are highly desired:

� Support for various levels of abstraction There should be constructs that

describe the module at both high and low levels of abstraction (e.g. at module

level and at transistor level). This feature enables the modeling of designs at

mixed levels of abstraction, which provides incremental verification as units are

decomposed into lower levels and also enables arrayed units (e.g. memory

banks) to be modeled at high levels of abstraction in order to decrease simula-

tion run-time. Also, this enables the mitered co-simulation of two levels of

abstraction, in which the lower-level implementation can be verified against

the higher-level, golden, specification with a common input stream [12].
� Support for synchronous circuits A VLSI chip might consist of both synchron-

ous and asynchronous circuits [10]. The design flow is considerably less complex

if a single language can describe both, so that the entire design can be simulated

using a single tool. Consequently, the modeling of clocked units should be

straightforward.
� Support for timing Modeling timing and delays is important at both the module

level and low levels of the design. Early performance verification and analysis of

the high-level architecture using estimated delays is critical to avoid costly

redesign later in the design cycle. Later, it is useful to be able to verify the

performance of the more detailed model of the implementation that is now

available, using accurate back-annotated delays.
� Use of supporting CAD tools In addition to powerful simulation engines, hooks

to debugging platforms (e.g. graphical-user-interface-based waveform viewers),

synthesis tools, and timing analyzers should also be available. Many powerful



CAD tools are available in these areas, but in most cases they only support

standard hardware design languages such as VHDL and Verilog.
� A standard syntax The circuit description should be easily exchangable among

a comprehensive set of CAD tools. Using a non-standard syntax causes simula-

tion of the circuit to become tool dependent.

We will begin this chapter by outlining CSP. We then review several languages

that have been used for designing asynchronous circuits and cover in more detail

one specific application of Verilog for modeling CSP and channel-based commu-

nication that we have adopted for this book.

3.1 Communicating sequential processes

A process is a sequence of atomic or composite actions. In CSP, a process P that

is composed of a sequence of atomic actions s1, s2, . . . , sn repeated forever is

shown as follows:

P ¼ *[s1; s2; . . . ; Sn].

Usually, processes do not share variables but communicate via ports connected by

channels. Each port is either an input or an output port. A communication action

consists of either sending a variable to a port or receiving a variable from a port.

Suppose that we have a process S that has an output port “out” and a process R

that has an input port “in”, and suppose that S.out is connected to R.in via channel

C. The “send” action is defined to be an event in S that outputs a variable to the out

port and suspends S until R executes a “receive” action. Likewise, a receive action in

R is defined to be an event that suspends or blocks R until a new value is put on

channel C. At this point, R resumes activity and reads the value. The completion of

the send action in S is said to coincidewith the completion of the receive action in R.

In CSP notation, sending the value of the variable v on the port “out” is denoted as

(out!v).

Receiving a value v from the port “in” is denoted as

(in?v).

Notice that the S and R processes are thus synchronized at their respective points

of send or receive communication. In CSP there is no notion of time and commu-

nication is performed instantaneously. Synchronization between processes can

also occur with no data transfer by having paired communication actions with

no data, i.e. out! and in?.

Another abstract construct, called a probe, is also defined. In this construct

a process p1 can determine whether another process p2 is suspended on the

shared channel C waiting for a communication action to happen in p1 [2]. Using

a probe a process can avoid deadlock by not waiting to receive from a channel on
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which no other process has a send pending. A probe also enables the modeling of

arbitration [2]. The probe construct is an additional primitive to CSP and the

resultingCSPvariant is sometimes called communicating hardware processes (CHP).

For two processes P and Q, the notation P||Q is used to denote that processes

P and Q operate concurrently. The notation P;Q denotes that Q is executed after P.

We can also use a combination of these operators; for example

*[(p1 || (p2; p3) || p4); p5].

Here the process p1 will be executed in parallel with p4. At the same time p2;p3 will

be executed. Finally, once all the processes p1, p2, p3, and p4 finish, p5 will be

executed. These nested serial and concurrent processes enable the modeling of fine-

grained concurrency. Selection in CSP is implemented with a guarded command

[g1 -> p1 □ g2 -> p2],

where “□” is the alternate operator. This command process executes p1 if the

Boolean guard g1 is true and p2 if the Boolean guard g2 is true. If both are true

then the process non-deterministically chooses to execute p1 or p2.

An illustrative application of CSP is its model of the dining philosophers’

problem, originally proposed by E. W. Dijkstra. The general idea is that a number

of philosophers surround a dining table on which is a large plate of food, to be

eaten with chopsticks as illustrated in Figure 3.1. Adjacent philosophers share one

chopstick. They spend time either thinking or trying to eat. A philosopher must

have both the chopstick on the left and the chopstick on the right to eat. Conse-

quently, adjacent philosophers cannot eat at the same time. The dining philoso-

phers’ problem consists of finding an algorithm for sharing chopsticks that

prevents deadlock and starvation.

The CSP formulation shown in Figure 3.2 is a simpler version than that

described in [1] and consists of three different process types: the philosopher, the

chopstick, and the table. The table process is a combined process which includes

four philosophers and four chopsticks and connects the ports of these processes

through channels. The philosophers request and release access to a chopstick

p4

p1 p2

p3

Figure 3.1. Illustration of four dining philosophers, four chopsticks, and a plate of Chinese

potstickers.
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through successive synchronization actions with the chopstick. Chopsticks com-

municate only to synchronize data, not to send or receive data. If two philosophers

want to access a chopstick at the same time then the chopsticks non-deterministically

arbitrate among requesting philosophers, using the alternate operator □.

3.2 Using asynchronous-specific languages

Several new languages with syntaxes similar to CSP have been created, including

LARD [2], Balsa [11], and Tangram [13]. The simulation of these languages has

been dependent on academic simulation environments, which generally have

PHILOSOPHER = process(leftChopStickPort: syncport,
rightChopStickPort: syncport)

*[
THINK; // THINK command
leftChopPort!; // send sync on left ChopStick port
rightChopPort!; // send sync on right ChopStick port
EAT; // EAT command
leftChopPort!; // send sync on left ChopStick port
rightChopPort!; // send sync on right ChopStick port

]
end

CHOPSTICK = process(left PhilospherPort: syncport,
rightPhilospherPort: syncport)

*[
[
PROBE(leftPhilPort) -> // if left philosopher sent sync
leftPhilPort?; // then, receive sync from left

// philosopher for pick up
leftPhilPort?; // and one more timefor putdown

[] // alternate operator

PROBE(rightPhilPort) -> // If right philosopher sent sync
rightPhilPort?; // then, receive sync from left

// philosopher for pick up
rightPhilPort?; // and one more time for putdown
]

]
end

TABLE = process
[
p(i:0..3)::PHILOSOPHER // p(i) is a process of type PHILOSOPHER

|| // parallel operator

c(i:0..3)::CHOPSTICK // c(i) is a process of type CHOPSTICK

chan<i:0..3:(p(i).leftChopStickPort, c(i).rightPhilospherPort>
chan<i:0..3:(p(i).rightChopStickPort, c((i+1)%5).leftPhilospherPort>

]

end

Figure 3.2. Communicating sequential process (CSP) for the dining philosophers.
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limited capabilities and support. Also, these languages do not support circuit

modeling at lower levels of abstraction such as the transistor and logic levels.

Tangram has evolved into the commercially supported language HASTE [17],

which can be translated into Verilog for simulation and integration purposes.

In addition, a commercial variant of CSP called CAST has the captured

semantics of CSP and has developed into a front-end design environment [20].

CAST has evolved to include a wide range of object-oriented refinement and

inheritance features that yield compact specifications. It features built-in environ-

ments at all levels of abstraction to support verification and includes user-specified

integrated-design directives to support a semi-automated design flow that guides

simulation, transistor sizing, and physical design. Like HASTE, CAST can be

translated to Verilog for simulation and integration purposes.

Although both CAST and HASTE are efficient new languages that work quite

effectively in the context of their respective start-up companies, convincing devel-

opers that they should adopt a new language remains a stumbling block to

widespread adoption.

3.3 Using software programming languages

Java has been enhanced with a new library, JCSP [5][10], in order to support CSP

constructs in Java. However, this approach does not support timing and mixed

level simulation. Furthermore, integration with commercially available CAD tools

is challenging.

3.4 Using existing hardware design languages

Because of the popularity of VHDL (Very High Speed IC hardware description

language) and Verilog among hardware designers, as well as the wide availability

of commercial CAD tool support, several approaches have been used to enhance

these languages to model channel-based asynchronous circuits. Works by Frankild

and Sparsf [6], Renaudin et al. [7], and Myers [8] have employed VHDL in the

design of asynchronous circuits. In VHDL, however, implementing fine-grained

concurrency is cumbersome because modeling the synchronization between

VHDL processes requires extra signals. Moreover, in some cases the native design

language must be translated into VHDL [6]. This makes the debugging phase

more cumbersome, because the code that is debugged in the debugger is different

from the original code. Signals may have been added, and port names may have

been changed, forcing the designer to be familiar with the details of the conversion.

Bjerregaard et al. [15] proposed using SystemC to model asynchronous circuits

and have created a library to support CSP channels. As in VHDL, implementing

fine-grained concurrency in SystemC is cumbersome. Also, the modeling of timing

is not addressed in their approach.
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In [8], Verilog together with its programming language interface (PLI) was

proposed. Using Verilog, modeling fine-grain statement-level concurrency can

be done via the built-in fork and join constructs. The PLI is used to interface

Verilog and precompiled C-routines at simulation. Using the PLI, however, has

two disadvantages: first, the PLI interface significantly slows down the simulation

speed and, second, the C-code must be recompiled for all system environments,

making compatibility across different system environments a challenge. Addition-

ally, in the Verilog–PLI approach, handshaking variables are shared among all

channels of a module. Unfortunately, this scheme breaks down for systems such as

non-linear pipelined circuits in which multiple channels of a module are simultan-

eously active.

More recently, Saifhashemi and Beerel proposed the development of Verilog

macros to model send and receive primitives [18]. This set of macros, called

VerilogCSP, provides the benefits of a channel-based model in Verilog without

the computational costs of the PLI interface. These macros can also be extended

to capture both pipelined and enclosed handshaking, which enables designers to

model not only specifications based on CSP but also architectural decisions

involving sequencing and pipelining decisions between modules.

The use of Verilog automatically includes support for adding timing to the

design, enabling performance modeling and efficient debugging based on existing

waveform viewers. In addition, support for the back-annotation of delays after

placement and routing is also provided. Furthermore, using Verilog also enables

one to migrate to SystemVerilog [15], a superset of Verilog that commercial CAD

tools are beginning to adopt.

3.5 Modeling channel communication in Verilog

In this book we will adopt VerilogCSP macros for the high-level modeling of

channel-based designs and Verilog for the behavioral description of leaf cells.

3.5.1 Using send and receive macros

In particular, the VerilogCSP macros for send and receive are SEND(_port_,

_value_) and RECEIVE(_port_, _var_). The INPORT and OUTPORT macros

declare the input and output channel ports and CHANNEL declares the channel.

The macros require an accompanying USES_CHANNEL macro, which declares

a signal used internally to the macros.

The application of these macros to model a linear pipeline is illustrated in

Figure 3.3. This model does not yet include any delays. Consequently, all events

happen in zero time and time does not progress. In simulation, this will appear as

an infinite loop. However, delays can be easily added to the module using the

standard Verilog #delay construct [14]. In Chapter 4, we will use VerilogCSP and

delays to model the performance of asynchronous pipelines.
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module BitGen(R);

`OUTPORT(R,width);

`USES_CHANNEL;

parameter width = 8;

reg [width-1:0] d;

always

begin

d = {$random}%256;

`SEND(R,d);

end

endmodule

module BUF(L, R);

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL;

parameter width = 8;

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

`SEND(R,d);

end

endmodule

module BitBucket(L);

`INPORT(L,width);

`USES_CHANNEL;

parameter width = 8;

reg [width-1:0] d;

always

begin

`RECEIVE(L,d);

end

endmodule

module top;

`CHANNEL(C0,8);

`CHANNEL(C1,8);

`CHANNEL(C2,8);

`CHANNEL(C3,8);

BitGen #8 BG0(C0);

BUF I1(C0,C1);

BUF I2(C1,C2);

BUF I3(C2,C3);

BitBucket #8 BB1(C3);

endmodule

Figure 3.3. Example of linear pipeline in VerilogCSP.
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Notice that in Figure 3.3 each buffer is a full buffer. Modeling half buffers

requires more intricate connections between input and output handshaking; this,

while possible, is beyond the scope of this text.

3.5.2 Using synchronization channels and probes

Supporting synchronization channels requires macros different from SEND and

RECEIVE because there is no value to be sent or received. The modified macros

are SEND_SYNCandRECEIVE_SYNC. In addition, the twomacros PROBE_IN

and PROBE_OUT provide the ability to identify pending communications on

INPORTS and OUTPORTS.

These macros enable one to model the pipelined arbiter with a winner output, as

described in Chapter 2 and illustrated in Figure 3.4. The arbiter first probes its two

input ports, AccessReqPort1 and AccessReqPort2, to see whether any

other process is trying to gain access by sending a sync message on these ports.

If only one process is sending a sync message then the arbiter performs a RECEI-

VE_SYNC with that process and then sends the winner process number on

WinnerNumPort. If both processes request access at the same time, i.e. the

probes on both AccessReqPort1 and AccessReqPort2 are evaluated as true,

then the arbiter randomly chooses one process and declares it as the winner.

Notice that the port definitions for synchronization channels are simply zero-

width INPORT and OUTPORT channels. Moreover, at this level of modeling the

active or passive nature of the ports is abstracted; in other words, ports are not

specified as active or passive, this decision is being left as a lower-level implemen-

tation detail.

3.5.3 Using enclosed handshaking macros

The SEND/SEND_SYNC, RECEIVE/RECEIVE_SYNC, and PROBE macros

are sufficient to model most CSP processes in Verilog and thus are effective for the

specification of asynchronous designs. However, as described in Chapter 2, chan-

nel-based architectures have concurrency and sequencing properties beyond these

applications of atomic communication actions.

In particular, in this subsection we discuss extensions to VerilogCSP that

model enclosed handshaking. In enclosed handshaking, one communication

action is split into two parts and other communication actions occur in

between these two parts. In order to support this type of communication, split

communication action macros are defined in VerilogCSP; they include

SEND_P1, SEND_P2, RECEIVE_P1, and RECEIVE_P2. In addition, similar

macros are defined that split SEND_SYNC and RECEIVE_SYNC communi-

cation actions.

As an example, an application of a two-part RECEIVE_SYNC macro is

illustrated in a sequencer and parallel module in Figure 3.5. In the SEQ module,
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after receiving a request on input port R the SEQ module performs a complete

handshake first on output port S1 and then on the second output port S2, before

completing the handshake on R. In the PAR module, the Verilog fork and join

construct is used to complete the handshakes on ports P1 and P2 concurrently

within the full handshake on input port R.

module PipelineArbiter (AccessReqPort1, AccessReqPort2,

WinnerNumPort);

`USES_CHANNEL;

`INPORT(AccessReqPort1,0);

`INPORT(AccessReqPort2,0);

`OUTPORT(WinnerNumPort,1);

always

begin

wait(`PROBE_IN(AccessReqPort1)||`PROBE_IN(AccessReqPort2));

if (`PROBE_IN(AccessReqPort1) && `PROBE_IN(AccessReqPort2))

begin

//Both ports have tokens: select one randomly

if ({$random}%2==0)

begin

`RECEIVE_SYNC(AccessReqPort1);

`SEND(WinnerNumPort,0);

end else

begin

`RECEIVE_SYNC(AccessReqPort2);

`SEND(WinnerNumPort,1);

end

end else if (`PROBE_IN(AccessReqPort1))

begin // Only AccessReqPort1 has a token

`RECEIVE_SYNC(AccessReqPort1);

`SEND(WinnerNumPort,0);

end

else

begin // Only AccessReqPort2 has a token

`RECEIVE_SYNC(AccessReqPort2);

`SEND(WinnerNumPort,1);

end

end

endmodule

Figure 3.4. Arbiter with one-bit output modeled in VerilogCSP.
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3.5.4 Modeling the dining-philosophers problem in VerilogCSP

Our VerilogCSP model is slightly different from the CSP version. As in CSP, the

chopstick is a resource that determines which philosopher gains its access. It has

one channel per right-hand and left-hand philosopher, with which a philosopher

requests access. However, as illustrated in Figure 3.6, the philosophers request and

release access via split synchronization communication rather than via two succes-

sive synchronization communications. This allows the chopstick to be implemented

with the pipelined arbiter module described in Chapter 2. In particular, the philoso-

pher is modeled by first a wait for a random length of time (while the philosopher is

thinking about some deep concept), then a request for access to the left-hand and

right-hand channels (to obtain the chopsticks), then a wait for another random

module SEQ (R, S1, S2);

`USES_CHANNEL;

`INPORT(R,0);

`OUTPORT(S1,0);

`OUTPORT(S2,0);

begin

`RECEIVE_SYNC_P1(R);

`SEND_SYNC(S1);

‘SEND_SYNC(S2);

`RECEIVE_SYNC_P2(R);

end

endmodule

module PAR (R, P1, P2);

`USES_CHANNEL;

`INPORT(R,0);

`OUTPORT(P1,0);

`OUTPORT(P2,0);

begin

`RECEIVE_SYNC_P1(R);

fork

`SEND_SYNC(P1);

`SEND_SYNC(P2);

join

`RECEIVE_SYNC_P2

end

endmodule

Figure 3.5. Application of an enclosed handshake in SEQ and PAR modules.
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length of time (while the philosopher is eating), and finally the release of both

channels. The entire process then repeats. Notice that the {$random}%N [14] line

is used to create a random length of time equal to between 0 and N � 1 time units.

The model correctly illustrates the dining philosophers problem – it will deadlock

if all philosophers simultaneously access their left-hand chopstick as then they will

all be waiting for their right-hand chopstick and no philosopher will make progress

module ChopStick(L,R);

`INPORT(R,0);

`INPORT(L,0);

`USES_CHANNEL;

`CHANNEL (W,1); // Winner

// Implemented with arbiter

// and bit bucket

PipelineArbiter ARB1(L,R,W);

// Winner token not needed

BitBucket #1 BB1(W);

endmodule

module Philosopher(L,R);

`OUTPORT(L,0);

`OUTPORT(R,0);

`USES_CHANNEL;

always

begin

#({$random}%10);    // think

// get left chopstick

`SEND_SYNC_P1(L);

// get right chopstick

`SEND_SYNC_P1(R);

#({$random}%5);     // eat

`SEND_SYNC_P2(L);   // release

`SEND_SYNC_P2(R);

end

endmodule

module top;

`CHANNEL(P1_L,0); `CHANNEL(P1_R,0);

`CHANNEL(P2_L,0); `CHANNEL(P2_R,0);

`CHANNEL(P3_L,0); `CHANNEL(P3_R,0);

`CHANNEL(P4_L,0); `CHANNEL(P4_R,0);

ChopStick CS0 (P3_R, P0_L); Philosopher P0 (P0_L, P0_R);

ChopStick CS1 (P0_R, P1_L); Philosopher P1 (P1_L, P1_R);

ChopStick CS2 (P1_R, P2_L); Philosopher P2 (P2_L, P2_R);

ChopStick CS3 (P2_R, P3_L); Philosopher P3 (P3_L, P3_R);

endmodule

Figure 3.6. VerilogCSP model of the dining-philosophers problem.
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in eating. If and when the Verilog simulator reaches this condition, it will terminate

the simulation as there are no more events to process. In addition, this model can

lead to the starvation of slow philosophers as there is no guarantee that they will

ever gain access to the chopsticks. Thus, solutions to the dining-philosphers prob-

lem must avoid deadlock [19]. (See Exercise 3.12 at the end of this chapter.)

3.5.5 Modeling a 2 � 2 asynchronous crossbar in VerilogCSP

Modeling the crossbar implementation presented in Chapter 2 is a straightforward

instantiation of all leaf cell components along with channels that properly connect

module Sender(Addr,Data);

parameter width = 8;

`OUTPORT(Addr,1);

`OUTPORT(Data,width);

`USES_CHANNEL;

always

begin

‘SEND(Addr,{$random}%2);

#({$random}%100);

end

always

begin

`SEND(Data,{$random}%256);

#({$random}%100);

end

endmodule

module Testbench;

`USES_CHANNEL;

parameter width = 8;

`CHANNEL(A0,1);

`CHANNEL(A1,1);

`CHANNEL(D0, width);

`CHANNEL(D1, width);

`CHANNEL(R0, width);

`CHANNEL(R1, width);

Xbar XbarImpl #width (A0, D0,

A1, D1, R0, R1);

Sender S0 #width (A0,D0);

Sender S1 #width (A1, D1);

Bit Bucket BB0 #width (R0);

Bit Bucket BB1 #width (R1);

endmodule

Figure 3.7. A simple X-bar testbench.
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them. Modeling an environment to test the implementation is more challenging. It

is recommended that each port be modeled as a concurrent process so that

unintended synchronization between independent ports can be avoided.

A simple testbench is shown in Figure 3.7. The testbench uses a process called

Sender that randomly sends data to a random destination port via separate

“always” blocks, allowing addresses and data tokens to flow independently. The

crossbar output ports are connected to simple bit buckets but more complicated

alternatives, which can verify whether the data received on each output port is

expected, are also possible.

3.6 Implementing VerilogCSP macros

The challenge in implementing CSP macros is to overcome the limited syntax and

semantics of Verilog macros. Verilog macros only support textual substitution

with parameters; they do not support the creation of new variables via parameter

concatenation, as is available in software languages like C.

Our approach is to make the macros implement an underlying four-phase

handshaking protocol in zero time. Because there are many possible handshaking

protocols, there are a variety of different possible macro implementations. How-

ever, it is important to emphasize that the purpose of the macros is to abstract the

underlying handshaking, so that the architecture can be modeled without regard

to the specific handshaking protocol. Thus a particular underlying handshaking

protocol should not be interpreted as a requirement or specification for the more

detailed circuit implementation.

In this section we will describe a set of macros that use an active–active protocol.

This protocol is not appropriate for most circuit implementations but does enable

efficient debugging by providing more visibility of the state of the various

channels.

3.6.1 Send and receive macros

The send and receive macros SEND(_port_, _value_) and RECEIVE (_port_,

_var_) are shown in Figure 3.8. Note that the backslashes “\” are required to

concatenate lines, as the macros by default end at the next new line.

The two least significant bits of _port_ hold the concrete handshaking signals

and the remaining MSBs hold the transmitted data. The RECEIVE macro uses a

two-bit “dummy” signal as a convenience for extracting the transmitted data bits

of _port_ into the _var_ variable using the line {_var_,dummy} ¼ _port_. Note

that users should not use variables named _port_, _value_, _var, or dummy when

using these macros.

The keyword “force” in the macros is needed to set the value of the dummy

handshaking signals. This is necessary because Verilog does not allow inputs to

be assigned [14]. The alternative of making these signals “inout” does not
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work either, because writing to an inout port is also illegal in a Verilog “always”

block [14]. The #0 delays are necessary in some simulators to ensure that the

potential zero-delay pulse in the handshaking signals releases any corresponding

pending waits.

As mentioned earlier, we hide the dummy signal definition and input or output

port declarations, as shown in Figure 3.9.

The designer should use the USES_CHANNEL macro in modules that incorp-

orate any communication macro because it declares the dummy signal. The

INPORT, OUTPORT, and CHANNEL macros declare the ports with two more

bits added for handshaking. Notice that an OUTPORT port is declared as an

output and supports the SEND macro, while the INPORT port is declared as an

input and supports the RECEIVE macro. This is necessary because the port

variable in the RECEIVE macro is used on the left-hand side of a Verilog

assignment statement.

3.6.2 Synchronization macros

As mentioned earlier, the support of synchronization channels requires macros

different from SEND or RECEIVE because there is no value to be sent or

received. The modified macros, SEND_SYNC and RECEIVE_SYNC, are illus-

trated in Figure 3.10.

`define USES_CHANNEL reg [1:0] dummy

`define OUTPORT(port,width) output[width+1:0] port

`define INPORT(port,width) input[width+1:0]  port

`define CHANNEL(c,width) wire[width+1:0]   c

Figure 3.9. Dummy signal definition and port declarations.

`define SEND(_port_, _value_)\

begin \

force _port_ = \

{_value_,_port_[1],1'b1}; \

#0; \

wait (_port_[1] == 1'b1); \

force _port_ = \

{_value_,_port_[1],1'b0}; \

wait(_port_[1] == 1'b0); \

end

`define RECEIVE(_port_, _var_) \

begin \

force _port_[1] = 1'b1; \

wait (_port_[0] == 1'b1); \

{_var_,dummy} = _port_; \

wait(_port_[0] == 1'b0); \

force _port_[1] = 1'b0; \

#0; \

end

Figure 3.8. SEND and RECEIVE macros.

56 Modeling channel-based designs



3.6.3 Probe macros

Because send and receive macros both use an active protocol, the implementation

of these probe macros is straightforward. In particular, PROBE_IN tests _port_[0]

¼¼¼ 1 and PROBE_OUT tests _port_[1] ¼¼¼ 1, as illustrated in Figure 3.11.

PROBE_IN returns “true” when a pending SEND/SEND_SYNC exists on an

INPORT, and PROBE_OUT returns “true” when a pending RECEIVE/RECEIVE_

SYNC exists on an OUTPORT.

3.6.4 Enclosed handshaking macros

It is straightforward to split the RECEIVE/RECEIVE_SYNC macros into two

parts to model enclosed handshakes, as illustrated in Figure 3.12. Again it is

`define SEND_SYNC(_port_) \

begin \

force _port_[0]=1'b1; \

#0; \

wait (_port_[1]==1'b1); \

force _port_[0]=1'b0; \

wait (_port_[1]==1'b0); \

end

`define RECEIVE_SYNC(_port_) \

begin \

force _port_[1]=1'b1; \

wait (_port_[0]==1'b1); \

wait (_port_[0]==1'b0); \

force _port_[1]=1'b0; \

#0; \

end

Figure 3.10. The SEND_SYNC and RECEIVE_SYNC macros.

`define PROBE_IN(_port_) (_port_[0]===1'b1)

(_port_[1]===1'b1)`define PROBE_OUT(_port_)

Figure 3.11. The PROBE_IN and PROBE_OUT macros.

`define RECEIVE_SYNC_P1(_port_)

begin \

force _port_[1]=1'b1; \

wait (_port_[0]==1'b1); \

end

`define RECEIVE_SYNC_P2(_port_)

begin \

wait (_port_[0]==1'b0); \

force _port_[1]=1'b0; \

#0; \

End

`define SEND_SYNC_P1(_port_)

begin \

force _port_[0]=1'b1; \

#0; \

wait (_port_[1]==1'b1); \

end

`define SEND_SYNC_P2(_port_)

begin\

force _port_[0]=1'b0;\

wait (_port_[1]==1'b0);\

end

Figure 3.12. Two-part RECEIVE_SYNC and SEND_SYNC macros.
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important to emphasize that the specific partition of the four-phase handshake

into two parts is arbitrary and should not be considered as a specification of the

circuit implementation.

3.7 Debugging in VerilogCSP

In comparison with the debugging of traditional software programs, such as C,

debugging VerilogCSP and CSP can be significantly more challenging. The main

reason is that there are usually multiple processes in a CSP program that run in

parallel, which makes the system more complicated than a traditional single-

threaded software program. Often, the designers need to keep track of the state

of multiple processes and understand how the processes interact to understand the

overall system behavior and find and resolve bugs.

One of the most common bugs in VerilogCSP, as well as in other parallel

programming languages, is deadlock. Formally proving that a program is dead-

lock-free is usually very difficult if not computationally impossible. Therefore,

usually designers must rely on multiple (random) simulations to gain sufficient

confidence that the design is deadlock-free under all possible environments.

In this section we introduce a few debugging tools designed to make the debug-

ging task simpler and more efficient.

3.7.1 When does deadlock happen?

Deadlock happens when a set of processes in the system cannot progress, no matter

how much time passes. Consider the example in Figure 3.13. Modules M1 and M2

are not able to progress, because they are both blocked on the respective SEND

actions. Thus M1 is waiting for M2, andM2 is waiting for M1. This is illustrated in

the wait graph of Figure 3.14. In a wait graph each node represents a module, and

there is an edge between two nodes if one is waiting for the other.

One source of deadlock occurs when a cycle is generated in a system’s wait graph.

To fix such a deadlock, a designer must first determine where and under what

conditions the cycle appears. To do so, he or she must understand the state of the

processes involved in the cycle, determine the necessary conditions for the cycle to

form, and find a solution that prevents the cycle from forming. Keeping track of the

state of each process, however, is cumbersome. Alternatively, we propose keeping

track of the state of the process ports. This is helpful because processes synchronize

with each other by communicating on their ports. If a designer knows the status of

the communication action on the ports, he or she can find the source of the deadlock.

In the next subsection we show how to monitor the state of the process ports.

3.7.2 Monitoring the state of ports and channels

As explained in the previous section, VerilogCSP uses an active–active protocol.

This allows us to monitor the state of each port and channel on the basis of the

58 Modeling channel-based designs



values of the handshaking signals. Table 3.1 shows these states. Notice that the

SYNC_PENDING case exists for zero time during SEND and RECEIVE syn-

chronization. However, it may last longer during split communication actions,

when both processes have finished the first part of the communication action and

before the second half of the split communication is complete.

module M1(inP1, outP2);

`INPORT(inP1,1);

`OUTPORT(outP2,1);

`USES_CHANNEL;

reg a,b;

always

begin

#10;

`SEND(outP2,a);

`RECEIVE(inP1,b);

end

endmodule

module M1(outP1,inP2);

`INPORT(inP2,1);

`OUTPORT(outP1,1);

`USES_CHANNEL;

reg a, b;

always

begin

#20;

`SEND(outP1,a);

`RECEIVE(inP2,b);

end

endmodule

module top;

`CHANNEL(C0,1);

`CHANNEL(C1,1);

M1 mod1(.inP1(C0), .outP2(C1));

M2 mod2(.outP1(C0), .inP2(C1));

endmodule

Figure 3.13. An example of deadlock in VerilogCSP.

M1 M2

Figure 3.14. Wait graph for the example in Figure 3.13.
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Commercial Verilog simulators allow the user to assign mnemonic values to

certain values on signals. For example, one can assign the mnemonic value IDLE

to signals whose two least significant bits are zero. In this section we show how to

define these mnemonics in ModelSim [21]. This simulator lets the user assign

mnemonic values to signals by using virtual types and functions. Similar methods

are possible using other simulators.

First we define a new virtual type, which consists of four different values: IDLE,

SEND_PENDING, RECEIVE_PENDING, SYNC_PENDING. To do so, we

use the following Modelsim command:

virtual type {IDLE SEND_PENDING RECEIVE_PENDING

SYNC_PENDING} VerilogCSPType.

Then, for each channel or port of interest, we define a new virtual function that

creates a new signal whose value is a function of other signals. For example, the

following command creates a new virtual signal of Boolean type that shows

whether bit 0 of channel C0 in module top is 1:

virtual function {(/top/C0[0]¼¼¼10b1)} C0_IS_ONE.

Similarly, the command that defines a new virtual function for the status of

channel C0 is

virtual function {(2*(int)(/top/C0[1]¼¼¼10b1) þ
(int)(/top/C0[0]¼¼¼10b1))} TOP_C0_STATUS.

In particular, the above command creates a new signal TOP_C0_STATUS, which

has two bits. Bit 0 is 1 if bit 0 of C0 is 1, otherwise it is 0. Bit 1 is 1 if bit 1 of C0 is 1,

otherwise it is 0. What we really want, however, is to type cast these values to the

virtual type VerilogCSPType. Figure 3.15 illustrates the complete simulator

Table 3.1 VerilogCSP port states

State Bit 1 Bit 0 Description

IDLE 0 0 No pending communication
SEND_PENDING 0 1 Blocked on SEND

RECEIVE_PENDING 1 0 Blocked on RECEIVE
SYNC_PENDING 1 1 Blocked on SEND and RECEIVE

virtual type {IDLE SEND_PENDING RECEIVE_PENDING SYNC_PENDING}

VerilogCSPType

virtual function {(VerilogCSPType)  (2*(int)(/top/C0[1]===1'b1)+

(int)(/top/C0[0]===1'b1) )} TOP_C0_STATUS

virtual function {(VerilogCSPType)  (2*(int)(/top/C1[1]===1'b1)+

(int)(/top/C1[0]===1'b1) )} TOP_C1_STATUS

Figure 3.15. Defining virtual functions for channel status.
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commands to achieve this goal, yielding new virtual signals that show the status on

channels C0 and C1. The resulting waveforms are shown in Figure 3.16.

3.8 Summary of VerilogCSP macros

Table 3.2 gives a summary of the action of all the VerilogCSP macros introduced

in this chapter and can be used as a reference.

Table 3.2. Summary of the actions of the VerilogCSP macros

Macro Description

USES_CHANNEL Must be used in variable declaration of any module that uses
VerilogCSP macros.

INPORT(p,l) Defines an input port p of size l þ 2. The extra two least
significant bits are used by the macros for handshaking.

OUTPORT(p,l) Defines an output port p of size l þ 2. The extra two least
significant bits are used by the macros for handshaking.

CHANNEL(c,l) Defines a channel c of size l þ 2. The extra two least significant
bits are used by the macros for handshaking. Channels should
be used to connect two modules that perform communication

actions.
SEND(p,v) Sends value v on port p
RECEIVE(p,v) Receives the value of port p and copies it into variable v

SEND_SYNC(p) Sends a sync message on port p
RECEIVE_SYNC(p) Receives a sync message from port p
SEND_P1(p,v) Splits SEND, part 1
SEND_P2(p,v) Split SEND, part 2

RECEIVE_P1(p,v) Split RECEIVE, part 1
RECEIVE_P2(p,v) Split RECEIVE, part 2
SEND_SYNC_P1(p,v) Split SEND_SYNC, part 1

SEND_SYNC_P2(p,v) Split SEND_SYNC, part 2
RECEIVE_SYNC_P1
(p,v)

Split RECEIVE_SYNC, part 1

RECEIVE_SYNC_P2
(p,v)

Split RECEIVE_SYNC, part 2

PROBE_IN(p) Returns true if the process connected to input port p is trying to

SEND.
PROBE_OUT(p) Returns true if the process connected to output port p is trying

to RECEIVE.

Figure 3.16. Waveforms illustrating the channel status.
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3.9 Exercises

3.1. Implement a Boolean one-bit register in VerilogCSP with the CHP descrip-

tion given in Figure 3.17. Assume that the environment always communicates

on only one of the register’s ports, D, Q, or Q_bar. Write a testbench to test

your design.

3.2. Implement an unconditional merge module. This module has two input

ports, called inPort1 and inPort2, and one output port, called outPort. Input

data comes on either inPort1 or inPort2 (not both). The module receives the

input data and sends it to outPort. Write a testbench to test your design.

3.3. Implement a merge module that is similar to the unconditional merge but has

an extra input port, called controlPort. The module first receives a value from

controlPort. If the value is 1, the module receives a value from inPort1. If the

control value is 2, it receives a value from inPort2. Finally, it sends the

received value to outPort. Write a testbench to test your design.

3.4. Implement a split module. This module has two input ports, inPort and

controlPort. The module receives a value from controlPort and inPort in

parallel. If the value on controlPort is 1, the module sends the input value to

outPort1. If the value on controlPort is 2, it sends the input value to outPort2.

Write a testbench to test your design.

3.5. A lazy stack of depth n > 0 is a linear chain of n modules called stackElement

defined as follows [3] (a lazy stack of depth 3 is illustrated in Figure 3.18).

The environment communicates with the stack using the “in” and “out”

ports of the first stack element (on the left). The stack element module has a

state variable called “state.” If “state” is empty and there is an input request

on the port “in” then the data is stored; otherwise it is passed to the next

element using the port “put.” If there is an output request on the port “out”

then this is sent to the next module using the “get” port. Observe that there is

no attempt to reshuffle the full stack of elements. Hence it could arise that

data is scattered in different stack elements with empty stack elements in

between (that is why we call it a lazy stack). Write the VerilogCSP description

of a stack element, and then connect eight of these modules to form a stack of

depth 8. Assume that stack overrun or underrun never happens. Write a

testbench to test your design.

3.6. Design a channel combiner module which has four eight-bit input ports and

one 32-bit output port. The function of the module is to receive data from all

input channels in parallel, make a 32-bit value, and then send it to the output.

Write a testbench to test your design.

3.7. Design a one-bit arithmetic logic unit (ALU) with input ports operand1,

operand2, cin, and opcode and output ports result and cout. The ALU can

perform four different operations on the basis of the value it receives from the

opcode port: AND, OR, XOR, ADD. The opcode for the AND operation is

0, for OR is 1, for XOR is 2, and for ADD is 3. The ALU first receives a value
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from the opcode port, and then receives the values from operand1 and

operand2. If the operation is ADD, it also expects to receive a value from

the port cin. After calculating the result, the ALU sends the value to the result

port. If the operation is ADD, it also sends the value of the carry-out to the

cout port. Write the VerilogCSP code of the ALU and a testbench to test

your design.

3.8. Use the one-bit ALU of the previous problem to design an eight-bit ALU.

The top module has similar ports, except that operand1, operand2, and result

are each eight-bit ports. Hint First design the following modules:
� a module to split the input eight bits of each operand to eight one-bit ALU

modules;
� a module to split the opcode to all one-bit ALU modules;
� a module to combine the results from eight one-bit ALUs.

Draw a schematic of your design and then implement it in VerilogCSP. Write a

testbench to test your design.

3.9. Implement a four-stage two-bit linear pipeline driven by a bit bucket and bit

generator. Add a random delay in the range 1 to 10 between the receive and

*[[

[]

[]

_ _

]]

D D?x

Q Q!x

Q bar Q bar!(~x)

→

→

→

Figure 3.17. CHP of a one-bit register.

*[[

(state = empty) ®

(in ® in?x;state = full

(state = full) ®

(in ® put!x;in?x
]]

stackElement º

out ® get?x;out!x)

out ® out!x;state = empty)

getout

in put

getout

in put

getout

in put

[]

[]

[]

Figure 3.18. A linear chain of three stack elements.
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send commands in the buffers. Add a random delay in the range 1 to 20

between successive sends in the generator and receives in the bucket. Verify

via simulation that the linear pipeline propagates data as expected and does

not deadlock.

3.10. Repeat Exercise 3.9 but add statistics in the bit-bucket module to determine

the long-term average rate at which tokens are received. Repeat with the

delay in generator and bit bucket between 1 and 5. Repeat with a 10-stage

pipeline. Explain how and why the numbers change.

3.11. Implement a dining-philosophers simulation with four philosophers, using

VerilogCSP. Change the random delay setting in such a way that deadlock

occurs within a reasonable amount of simulation time.

3.12. Implement a solution to the dining-philosphers problem in VerilogCSP by

introducing a waiter at the table. Philosophers must ask the waiter permis-

sion to access a chopstick, and the waiter tells a philosopher to wait when

deadlock might otherwise be likely. Show that even with random delays

your simulation does not deadlock over a reasonably long period of time.

3.13. Implement a simple 2 � 2 crossbar having eight-bit datapaths and its

environment using VerilogCSP. Verify via simulation that data streams

through the crossbar are as expected and that deadlock does not occur.

3.14. Request Exercise 3.13 but add cells to the crossbar to create two one-bit

“from” channel outputs indicating from which sender the data comes.

3.15. Repeat Exercise 3.14 with a more complex sender and receiver such that the

receiver verifies that all the data received was expected. Hint This can be

done by creating shared circular queues for each input–output pair in the

testbench.

3.16. Repeat Exercise 3.13 but modify your implementation to add some statistics

logic that counts the number of packets sent to each output channel. Design

some means for the environment to read and reset these counters.
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4 Pipeline performance

In the synchronous world, the performance of a pipelined design is straightfor-

ward and is characterized by throughput and latency. Throughput is measured in

terms of results per second. It is the inverse of the clock frequency for a synchron-

ous system that generates a new result every clock cycle. It can be a multiple of this

value if the synchronous system generates multiple results every clock cycle, and it

is a fraction of this value if it requires multiple clock cycles between the generation

of results. Latency is measured as the number of clock cycles required to generate

a result after the associated primary inputs are made available. In pipelined

synchronous systems, the latency is a measure of the pipeline depth of the system.

The cycle time in an asynchronous system is the period between two results.

Unlike in a synchronous circuit it is not dictated by a clock frequency but rather

by the time between successive output tokens. Because this time can vary between

tokens, it is often taken to be the average time between output tokens. Since

asynchronous systems often have a warm-up period during which there is irregular

or no generation of output tokens, the average measured cycle time is typically a

long-term average for which the behavior during the warm-up period is insignifi-

cant. An asynchronous system’s throughput is simply the inverse of its cycle time.

The latency of an asynchronous system is the time between input tokens being

consumed at the primary inputs and output tokens being generated. Latency is

measured by the presentation of one set of primary input tokens in isolation, to

avoid the possibility of congestion caused by previous tokens impacting the

measurement.

Both the latency and cycle time of an asynchronous system can be data depend-

ent, for multiple reasons. The delay of specific units may be data dependent in,

for example, an asynchronous adder that completes faster when one operand is

zero. Moreover, the data flow within an asynchronous system may also be data

dependent because the system includes asynchronous blocks that exhibit choice

behavior such as arbitration, splits, and merges. Such a system is called non-

deterministic. Even in a deterministic system, which has no data-dependent token

flow, determining the cycle time can be challenging for two reasons. First, the

handshaking interaction between neighboring components is complex and has

many local cycles that dictate throughput. Second, asynchronous architectures

exhibit performance bottlenecks when blocks are starved by the lack of input

tokens or stalled due to the backing up of tokens in their output channel(s).



We will mathematically formalize these metrics, along with techniques to model,

analyze, and optimize cycle time, in Chapter 5. In this chapter, however, we will

provide the intuition behind these metrics, using simple design examples to illus-

trate the issues.

4.1 Block metrics

The performance of an asynchronous system is depends upon the performance of

the communication blocks that make up the system and the performance of the

protocols that guide the communication.

4.1.1 Forward latency

The forward latency of a block is the time difference between tokens enter the

block and when they are subsequently generated at the block outputs. Like the

latency of the system, the input tokens must be presented in isolation to ensure

that congestion due to previous tokens does not influence this measurement.

Moreover, it is assumed that the output channels are free to accept new tokens,

ensuring that the measurement is independent of the output environment. For

blocks with multiple input and output channels, the forward latency from differ-

ent input channels to different output channels may vary. Even for an input–

output channel pair, the delay may be dependent on the state of the block or the

specific data values of the input and output tokens.

The latency of a system is the sum of the forward latencies along the critical

path through the blocks where tokens flow. As for critical path analysis in

synchronous combinational circuits, the causality among the tokens in each block

should be taken into account. In particular, for blocks with multiple input chan-

nels the earliest arriving token may cause the generation of the output token, as in

an arbiter. Alternatively, it may be the latest arriving token that causes the

generation of an output token, as is the case for a generic join cell such as an

asynchronous two-input XOR. Consequently, a simple worst-case path analysis

that sums forward latencies and does not consider causality can lead to a conser-

vative estimate of the forward latency.

In fact, this issue arises even when one is modeling small asynchronous blocks.

Consider the VerilogCSP model of an OR gate shown in Figure 4.1. The Verilog

fork–join construct [1] enables the module to receive on both L1 and L2 input

channels concurrently. The Verilog construct “#FL” [1] after the fork–join con-

struct makes the module wait FL time units after input tokens arrive at both input

channels before sending the output result to output channel R. This model is not

always accurate because some designs do not wait for a second input token to

arrive if the result is known, e.g. the other input channel received a 1. For such

implementations, this model sends some tokens later than in reality and in this

way is conservative. More accurate models are possible but are more complex.
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4.1.2 Local cycle time

The handshaking system between neighboring cells limits the rate at which the

cells process tokens. The shortest length of time needed by neighboring cells to

complete a handshake on a channel c, i.e. the time between the generation (or

consumption) of two successive tokens on c, is referred to as the channel’s local

cycle time. When back-to-back communication on a channel is required, as is

typical in deterministic systems, the local cycle time is a lower bound for the

system cycle time. For example, the cycle time of a linear pipeline is no smaller

than the worst-case local cycle time of all channels in the pipeline.

The local cycle time may be a function of the sender and receiver of a single

channel or the senders and receivers of neighboring channels. In the latter case this

arises because it is sometimes necessary for a block to receive the acknowledge-

ment of an output channel before resetting the acknowledgement of a correspond-

ing input channel. This possible interleaving between input and output channel

handshaking, which is typical in many four-phase half-buffer blocks, causes the

local cycle time to be a function of three blocks in sequence.

To generalize this point, we say that each block contributes specific delays to a

complex function that represents all the various cyclic dependencies associated with

the handshaking protocol and their interleaving. Techniques to model the perform-

anceof this interleavingbehavior using graph structureswill be described inChapter 5.

4.1.3 Backward latency

The time difference between the local cycle time and the forward latency of a

channel is often referred to as the channel’s backward latency. For example, in a

module OR(L1, L2, R);

`INPORT(L1,1);

`INPORT(L2,1);

`OUTPORT(R,1);

`USES_CHANNEL

parameter FL = 2;

reg d1,d2;

always

begin

fork

`RECEIVE(L1,d1)

`RECEIVE(L2,d2)

join

#FL;

`SEND(R,d1 | d2)

end

endmodule

Figure 4.1. Example of VerilogCSP OR with forward latency.
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typical four-phase protocol it is the time difference from the output request to a

subsequent input request. The notion of backward latency captures the time

elapsed after the receipt of a token on a channel while the receiver resets and

becomes able to accept new tokens on that channel. Thus, if the input tokens are

sufficiently spread apart in time, the backward latency does not create a system

bottleneck. If the input tokens are presented quickly, however, it is the backward

latency that prevents new input tokens from being processed, stalling the system.

In fact, owing to the possible interleaving nature of the input and output

channel handshaking, the calculation of the backward latency can be very com-

plex. Nevertheless, approximate models of performance that reduce this complex

interaction are often very useful in estimating and optimizing system performance.

For example, an abstract VerilogCSP model of a buffer including forward latency

FL and backward latency BL is shown in Figure 4.2 [2]. As with the VerilogCSP

model of the OR gate in Figure 4.1, this model uses the Verilog parameters to set

default values for FL and BL which can be overridden when instantiating this

module. Because FL and BL are constants, this abstract model does not capture

the data-dependent characteristics of delays. Moreover the local cycle time, which

is FL þ BL, implies an upper bound on how fast this buffer can send or receive

tokens. Consequently, the time between successive sends or receives along any

channel is implicitly bounded by the maximum of the local cycle times of the

associated senders and receivers.

4.2 Linear pipelines

As mentioned earlier, one of the simplest configurations of asynchronous blocks

that make up a system is a linear pipeline. We first analyze the performance of a

module BUF(L, R);

parameter width = 8; parameter FL = 2; parameter BL = 4;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

reg [width –1:0] d;

always

begin

`RECEIVE(L,d)

#FL;

`SEND(R,d)

#BL;

end

endmodule

Figure 4.2. Example of VerilogCSP buffer with forward and backward latencies.
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homogeneous pipeline in which each pipeline stage has the same forward and

backward latency. We then generalize it to non-homogeneous pipelines before

discussing techniques to improve performance.

4.2.1 Homogeneous linear pipelines

To describe the throughput of a homogeneous linear pipeline, a throughput versus

token graph is often used [3], as illustrated in Figure 4.3. This graph shows the

throughput of a linear pipeline as a function of the number of tokens in the

pipeline. For both throughput and number of tokens, long-term averages are used

to account for the fact that both these quantities may vary as the pipeline operates,

even assuming fixed delays among all components. The left-hand side of the graph

shows the characteristic of an asynchronous pipeline operating in a data-limited

region. In this region, as the data tokens are inserted more frequently the pipeline

operates at a higher throughput. The speed of the pipeline is limited by how fast

data can be inserted into the pipeline, i.e. the speed of the input environment. The

right-hand side of the graph shows the characteristic of an asynchronous pipeline

operating in a bubble-limited region [6]. In this region the output environment

cannot consume the data provided by the asynchronous pipeline sufficiently fast

and the data tokens start to accumulate in the pipeline. To help understand this

behavior, we often view the places into which tokens can move as bubbles.

A bubble is inserted into the pipeline when the output environment consumes a

token and moves backwards through the pipeline as tokens move forward.

Notice that the two extreme points on the horizontal axis yield zero throughput.

When no tokens are in the pipeline then by definition the pipeline is yielding 0

Peak
throughput

Bubble
limited
region

Token
limited
region

Dynamic
slack

Static
slack

Number of
tokens

Throughput

Figure 4.3. Graph of throughput versus number of tokens for a linear pipeline.
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tokens per second and thus has throughput 0. In addition, when the pipeline is full

of tokens the throughput is 0. This is counterintuitive to most students of the

subject and deserves some explanation. When a token leaves the pipeline, it takes a

non-zero time for a new token to move into the bubble created. Thus, there will be

some time during which the number of tokens in the pipeline is less than the

maximum number of tokens, the static slack. In other words, the only way for the

long-term average number of tokens in the pipeline to be equal to the static slack is

for the pipeline to be full and for no tokens to leave the pipeline. This can happen

if the bit bucket is not operating during the time period of interest. Notice this is

true for both half buffers and full buffers. The only difference is that for N full

buffers the static slack is N whereas for N half buffers the static slack is N/2

(assuming that N is even).

A related counterintuitive feature of asynchronous pipelines is that the through-

put is not correlated with the number of tokens in the pipeline. Whereas readers

can often appreciate the argument that if the pipeline is full the throughput must

be zero, it still seems intuitive that, up to this full point, the more tokens in the

pipeline the higher throughput the pipeline will have. This counterintuitive result

again stems from the non-zero backward latency of asynchronous buffers.

For example, for a linear pipeline of full buffers, as the number of tokens that

reside in the pipeline increases, the number of consecutive buffers that are blocked

on send commands increases. As the last stage of this chain of full buffers

completes its send command it waits a time BL before receiving its next token

and unblocking the next to last stage of the chain. This stage then waits an

additional time BL before the next token arrives, and the receipt of this token

unblocks the second to last stage. This continues until the end of the chain, where

a stage not blocked on send is reached. Thus, in the extreme case where there is

only one bubble in the pipeline, the time between new tokens is the sum of the

backward latencies of all pipeline stages, i.e. N � BL, where N is the number of

pipeline stages. A similar behavior occurs with a linear pipeline of half-buffers;

however, the extreme case typically has a smaller total backward latency because

of the alternating empty buffers.

The pipeline’s throughput is thus maximized when the number of tokens is

somewhere between 0 and the static slack of the pipeline. This number is referred

to as the dynamic slack [3]. The throughput corresponding to the dynamic slack

is the inverse of the maximum local cycle time of any buffer stage. For the

VerilogCSP full buffer shown in Figure 4.2, this is 1/(FL þ BL). The value of the

dynamic slack can be computed as the forward latency of the entire pipeline

divided by the maximum local cycle time. The dynamic slack is

N � FL

FLþ BL
¼ N

1þ BL=FL
:

Thus if BL ¼ FL then the dynamic slack equals N/2. Typically BL is larger than FL,

as asynchronous blocks are typically optimized for forward latency. The larger

the ratio BL/FL, however, the smaller the dynamic slack, meaning that peak
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throughput occurs with fewer tokens in the pipeline. For half buffers the same

underlying logic holds. In particular, the dynamic slack is the total forward

latency divided by the local cycle time. As an example, the precharged half-buffer

template to be described in Chapter 11 has FL ¼ 2 and cycle time 18 when

approximated to unit delays. Consequently, for an N-stage pipeline constructed

from these half buffers the dynamic slack is N/9.

4.2.2 Series composition of linear pipelines

The throughput of a series composition of two linear pipelines with different

performance characteristics is limited by the slower pipeline and can thus be no

larger than the minimum of their respective peak throughputs. Assume that, for a

given throughput t, the series composition of two pipeline can support a range of

tokens [dmin(t), dmax(t)]. Then dmin(t) and dmax(t) are respectively the sums of

the smallest and largest numbers of tokens capable of achieving a throughput t in
the two constituent pipelines. In other words, dmin(t) is obtained by summing the

number of tokens in each constituent pipeline for the data-limited region and

dmax(t) is obtained by summing the number of tokens in each pipeline for the

bubble-limited region.

More generally, for a non-homogeneous linear pipeline in which each stage i is a

full buffer with different FLi and BLi values, the pipeline throughput is limited by the

maximum local cycle time of all stages and the throughput versus token graph is a

trapezoid, as illustrated in Figure 4.4. The slopes of the lines in the data-limited

(bubble limited) regions generalize to the inverse of the sum of the forward (back-

ward) latencies of all stages. The dynamic slack is the range of tokens (dmin, dmax) that

can reside in the pipeline when maximal throughput is achieved. More specifically,

dmin ¼
P

i FLi
max

i
ðFLi þ BLiÞ ;

dmax ¼ s�
P

i BLi
max

i
ðFLi þ BLiÞ ;

where s is the static slack of the pipeline.

Number of
tokens

Throughput

(max(FLi + BLi))
–1

Slope = (ΣiFLi)
–1

Slope = –(ΣiBLi)
–1

Dynamic slack

i

Figure 4.4. Impact of a slow stage in a linear pipeline of full buffers.
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For half buffers the slope in the data-limited region is the same as in the

full-buffer case but the slope of the line in the bubble-limited region is higher than

in the full-buffer case owing to the reduced slack. We refer the reader to [3] for

more details.

4.2.3 Improving throughput

There are several ways to improve the throughput of a linear pipeline. If the

throughput is limited by either the left-hand or right-hand environment then no

change in the pipeline itself can improve performance. When the limiting factor is

the local cycle time of a particular stage, however, the throughput can often be

improved by splitting the bottleneck stage into smaller pipeline stages, which may

have smaller forward and backward latency components.

Notice that this optimization increases the slack of the pipeline. A natural

question to ask is “Does adding slack affect the behavior of the system?” In fact,

in most carefully designed asynchronous systems, slack can be added to any

channel without affecting correctness. The class of systems for which this is true

has been studied and coined slack-elastic by Manohar and Martin [4]. In particu-

lar, they showed that all asynchronous systems that do not exhibit arbitration

behavior are slack-elastic. In systems that are not slack-elastic, however, care must

be taken as adding slack can cause deadlock. This will be explored further in

Chapter 6.

One practical use of adding slack to a channel is to combat the impact of long

channel wires in the layout. Adding slack essentially pipelines long wires without

needing to change the environment, whereas in synchronous circuits it would

effectively change the clock edge at which the receiver would expect the data. If

the design were not latency-insensitive, such a change would require a redesign of

its FSM control and this would make the pipelining of long wires late in a chip’s

design-cycle prohibitively time consuming. Herein lies a significant advantage of

latency-insensitive design and in particular slack-elastic asynchronous design.

In addition, because the backward latency is a function of the design of neigh-

boring pipeline stages, adding a fast buffer in between two relatively slow pipeline

stages can also improve throughput. This happens because the long local cycle

time associated with the handshaking between the two slow stages is effectively

replaced with two shorter local cycle times, each involving handshaking between

one slow stage and the fast buffer.

4.3 Pipeline loops

Pipeline loops, also called rings [5][7], comprise a set of pipeline stages arranged in

a loop. In most cases, the ring implements an iterative algorithm and each token

in the ring operates independently of other tokens, representing an independent

thread of execution.
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4.3.1 Design example: implementation of Euclid’s algorithm

As an example, consider the implementation of Euclid’s algorithm to find the

greatest common divisor of two numbers. The algorithm can be stated as follows:

function gcd(A, B)

while A 6¼ B

if A > B

A: ¼ A � B

else

B: ¼ B � A

return O ¼ A

One possible implementation is shown in Figure 4.5; this performs both subtrac-

tions in parallel, using two sub elements, and conditionally updates both variables

using two mux elements that are controlled by the result of a single “>” element.

Note that the mux elements each consume both data input tokens independently
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Figure 4.5. Pipeline ring-based implementation of Euclid’s algorithm.
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of the control value whereas in the merge element only one data input token is

consumed. In this way, unwanted tokens do not pile up at the inputs of the mux

elements. Note also that, to simplify the figure, we have omitted the necessary

copy elements (they are implied by the forking of channels).

All loops in the design are restricted to having only one token, i.e. operating on

only one problem instance at a time, via the single token buffer, denoted TB. Upon

initialization TB generates a token and acts as a regular buffer for the rest of the

time. This enables a single token from each of the external inputs A and B to enter

the pipeline upon initialization. Once the end of the algorithm is reached, the

corresponding tokens represent the results of the algorithm and leave the loop

through the split elements and a new set of inputs is allowed to enter the loop.

In particular, notice how this behavior is controlled by the value of the one-bit

output token of the “! ¼ ” (equality operator) module. When the value is “false,”

the split elements send the result tokens out to the environment and the merge

elements concurrently accept new inputs token from the environment. When the

value is “true,” however, the action of the merge and split elements recirculates

the tokens around the loop in order to perform another iteration on the old data.

Interestingly, this design can be made to multi-thread many problem instances

simply by the addition of token buffers after the equality operator. The inherent

token flow ensures that the different problem instances remain independent as

they are iteratively processed along the ring and outputted to the environment.

A VerilogCSP model of a token buffer is shown in Figure 4.6. Notice how

the Verilog “init” block [1] is used to send out the initial token upon reset.

module TOK_BUF(L, R);

parameter width = 8; parameter init = 8’b0;

`INPORT(L,width);

`OUTPORT(R,width);

`USES_CHANNEL

parameter FL = 2; parameter BL = 4;

reg[width -1:0] d;

initial

begin

`SEND(R,init)

end

always

begin

`RECEIVE(L,d)

#FL;

`SEND(R,d)

#BL;

end

endmodule

Figure 4.6. VerilogCSP model of a TOK_BUF.
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In implementations of a TOK_BUF this initialization is often triggered by a

global reset signal. However, the use of the initial block allows us to model this

reset behavior abstractly in our architectural model.

4.3.2 Performance analysis of rings

For the purpose of understanding the underlying performance bottlenecks in such

architectures, simple rings of buffers, including some token buffers, are an effec-

tive abstraction that we can more easily analyze. For example, consider the

behavior of a four-stage ring with three token buffers, illustrated in Figure 4.7,

in which the token buffers are labeled T and the buffer is labeled B.

One can think of a ring as a linear pipeline where the input and output channels

are tied together. As in a linear pipeline, the performance of a ring is optimal if no
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Figure 4.7. Bubble-limited performance bottleneck in a ring.
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buffer in the ring starves owing to a lack of tokens on its input channel or stalls

because the output channels are busy. If there are too few data tokens in a ring

(the data-limited case), the cycle time is determined by the sum of the forward

latencies around the ring divided by the number of data tokens in the ring. If there

are too many data tokens in the ring (the bubble-limited case), the cycle time is

determined by the sum of the backward latencies around the ring divided by the

number of bubbles in the pipeline. Notice, however, that after initialization the

number of tokens in a ring is constant and equals the number of token buffers in

the ring, in this case 3.

In Figure 4.7, all buffers are assumed to have FL and BL equal to 2 and 4

respectively, yielding a local cycle time equal to 6. Because the pipeline is bubble-

limited, however, the cycle time is much larger. In particular, after token 3 is sent

to on received by a new buffer at time 2, a new token cannot be sent to on received

by the vacated buffer until BL time units later, i.e. at time 6. A similar stall occurs

after token 2 is sent and received and subsequently after token 1 is sent and

received. This leads to a cycle time equal to 16, as can be seen from the figure.

For an N-stage ring of homogeneous full buffers, the optimal number of tokens

or dynamic slack is determined by finding when these two conditions yield the

same value. This occurs when the number of tokens in the pipeline equals

N

1þ BL=FL
:

As an example, if BL ¼ FL then the dynamic slack is N/2. A similar analysis works

for half buffers, remembering that the number of bubbles is N/2 minus the number

of tokens, assuming an even number of stages. With this assumption, the optimal

performance occurs at

N=2

1þ BL=FL
:

We leave the analysis and simulation of the more general case of a non-homoge-

neous ring as an exercise for the reader.

This performance analysis can be illustrated in a throughput versus token number

graph, as for linear pipelines. However, unlike in the linear-pipeline case, a non-

integral dynamic slack is not achievable. Thus on the throughput versus token

number graph we use dots to highlight the feasible points, as shown for a four-stage

ring inFigure 4.8. Inparticular, the dynamic slack equalsN/(BL/FLþ 1)¼ 4/(2þ 1)¼
4/3. Because this is non-integer, the optimal throughput (FLþBL)�1¼ 1/6 associated

with the inverse of the local cycle time cannot be achieved and the best throughput

achievable is actually 1/8, with either one or three tokens in the ring.

4.3.3 Improving ring throughput

If a ring operates in the bubble-limited region, its performance can be improved by

adding more pipeline buffers to the ring. This result may be counterintuitive to
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some readers because it seems to suggest that by adding delay to the pipeline

performance can be improved. However, the addition of a pipeline stage also adds

slack to the ring, which provides more bubbles and so shortens the backward

bubble propagation that can otherwise stall the pipeline. This is illustrated in

Figure 4.9. Here two buffers have been added to the ring shown in Figure 4.7,

and this improves the cycle time from 16 to 8.

If the ring operates in the data-limited region then to improve throughput

either more tokens must be inserted into the ring or the latency around the ring

1/16
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4/3 4

Number of
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Figure 4.8. Throughput versus token number graph for a four-stage ring with FL¼2 and
BL¼4.
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must be shortened. Shortening the latency around the ring can be done with logic

optimization and transistor sizing but is inherently limited by the complexity of

the operations in the ring. Adding tokens to the ring implies an architectural

change that involves increasing the number of parallel executing threads within

the ring, because each ring token represents a distinct problem instance. In

practice this optimization must be done in the context of designing the entire

system to handle the added complexity associated with these additional threads

of execution. This is not always trivial or possible and, for this reason, analyzing

the delay of algorithmic loops and determining the number of tokens in the

associated rings should be part of the early architectural analysis for any pipe-

lined asynchronous design.

4.4 Forks and joins

A reconvergent fanout path occurs when a pipeline forks, has multiple independ-

ent paths, and then rejoins. It is a common pipeline structure and can be part of a

loop. As an example, in the implementation of the Euclid algorithm in Figure 4.5,

both the variables A and B fork to the comparator “>” and the two subtractors

SUB before rejoining at merge elements.

We illustrate the performance issues in fork–joins using the more abstract and

straightforward fork–join pipeline shown in Figure 4.10. The fork S0 outputs

tokens to both the top and bottom pipeline branches. The join S8 waits for a

token to arrive at each of its inputs before consuming both and generating an

output. As with the linear pipeline and pipeline rings, multiple tokens representing

different problem instances can reside in each branch of the fork, but in this case

a problem instance is represented by a pair of tokens, one in each branch.

In Figure 4.10 the fork–join pipeline is processing three pairs of tokens.

From a performance perspective, the key feature of this fork–join pipeline is

that the number of tokens in each branch is identical. In particular, one way to

view the throughput versus token number graph for this structure is first to

analyze the performance of each branch independently as a linear pipeline and

then to add the constraint that the number of tokens in the branches must be the

same. In particular, at each value for the number of tokens in the pipeline, the

throughput is limited by the lowest throughput of both branches. Consequently,

the throughput versus token number graph for a fork–join structure can be

obtained by taking for each value of the number of tokens, on the horizontal axis,

the minimum of the throughputs associated with each branch.

Figure 4.11 illustrates some important points. First, notice that the static slack

of the fork–join pipeline is equal to the lower static-slack value of its two branches.

Second, notice that the peak throughput of the fork–join structure can be lower

than the peak throughput of either branch taken separately. This happens because

individually the branches can have different dynamic slack values and forcing

them to work in parallel can force the shorter fork to operate with more tokens
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than specified by its dynamic slack. In this example, the FL and BL values of of all

pipeline stages are 2 and 4, respectively. Ideally, then, we would be able to insert a

new token into the pipeline every 6 time units, i.e. at the rate of the local cycle

time. However, because of the differences in slack, the bottom (shorter) branch is

forced to operate in its bubble-limited region and the overall throughput becomes

1/11. This can also be seen from Figure 4.10, as it takes 22 time units to receive two

new tokens into the fork–join pipeline, corresponding to an (average) cycle time

equal to 11.

A simplifying design constraint aimed at avoiding this bottleneck is to require

that the slacks along both branches are identical. This heuristic is reasonable
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Figure 4.10. A fork–join pipeline at five different times.
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because disparate slacks will cause the branch with the larger slack to operate with

far fewer tokens than the optimal value identified by its dynamic slack. Neverthe-

less, the heuristic is not ideal when the peak throughputs or dynamic slacks of each

branch are different. For example, a shorter branch with less slack but higher

peak throughput may not be the cause of the bottleneck when paired with a

slower longer branch, as illustrated in Figure 4.12(a). In addition, adding pipeline

buffers to a branch may increase the fork–join throughput despite causing a slack

imbalance, as illustrated in Figure 4.12(b).

4.5 More complex pipelines

We hope from these examples that the reader can appreciate that the analysis and

optimization of asynchronous pipelines has several clear differences from the

synchronous pipeline case. In general, it is important to identify bottlenecks and

to consider adding slack (so-called slack matching) or redesigning existing stages to

remove them. However, when one is dealing with more complex fork–join struc-

tures, conditional communication, and the avoidance of long wire delays in an
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Figure 4.12. Fork–join performance characteristics.

1/16

1/6

2/3 2

Number of
tokens

Throughput

1/8

7

1/11

Bottom
branch Top

branch

Fork–join

Figure 4.11. Throughput versus token number graph for a fork–join pipeline.
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automated place-and-route flow this can be challenging to achieve manually [8].

Thus more mathematical approaches that can lead to automated techniques for

performance optimization are needed. We will study these in Chapter 5.

4.6 Exercises

4.1. Generalize the analysis presented in this chapter to find the dynamic slack of

a non-homogeneous ring of N full-buffer stages.

4.2. Design in VerilogCSP a 20-stage homogeneous full-buffer linear pipeline with

FL¼ 4, BL¼ 2, and configurable local cycle times on the bit generator and bit

bucket. Add statistics logic to either your bit generator or bit bucket that will

measure and display the long-term average throughput of the pipeline. Now

add Verilog code to your bit generator and bit bucket and to the environment

that includes both of these, in order to measure and display the long-term

average number of tokens in the pipeline.

Run simulations with a variety of bit-bucket and bit-generator delay values

in the data- and bubble-limited regions. Use the points to plot the throughput

versus token number graph. Explain any deviations from the theory. What is

the dynamic slack? For which values of the local cycle times of the bit

generator and bit bucket does the pipeline run at maximum throughput?

4.3. Repeat Exercise 4.2 with a 30-stage ring of full buffers instead of a linear

pipeline. In this case modify the token-buffer logic to measure the throughput

statistics. Will it matter from which token-buffer instance you take your

measurements?

4.4. Draw the throughput versus token number graph for the six-stage ring shown

in Figure 4.9. What is the dynamic slack and the optimal throughput? Verify

that the theory yields a cycle time of 8 when three tokens are in the ring.

4.5. Verify your analysis in Exercise 4.4 by simulating the ring with different

numbers of token buffers using VerilogCSP.

4.6. In Figure 4.9, the two additional buffers were placed between the token

buffers. Would the result change if instead the three buffers were in a group

in between two token buffers? Verify your analysis by simulating both cases

in VerilogCSP.

4.7. Consider the fork–join pipeline in Figure 4.10. Identify the times at which

the first 10 pairs of tokens enter the join stage S8. Analyze the resulting

throughput and confirm that the (long-term average) cycle time is 11, as

suggested by the corresponding throughput versus token number graph in

Figure 4.11.

4.8. Consider a fork-join pipeline with seven buffers in the top branch and four

buffers in the bottom branch. Let each fork or join and buffer have FL ¼ 2

and BL ¼ 8. Draw the throughput versus token number graph for this fork–

join pipeline. Consider adding special pipeline buffers with FL¼ 2 and BL¼ 4
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to the short fork. How many are needed to achieve the optimal throughput,

1/10? How many are needed to achieve a throughput of 1/12?

4.9. Design a VerilogCSP model of Exercise 4.8 with fast bit generators and bit

buckets connected to the input and output of the fork–join structure. Print

out waveforms and identify the critical cycle of operations that leads to the

original cycle time. Repeat for the optimized design, which achieves a

throughput of 1/12.

4.10. Design a VerilogCSP model of the implementation of Euclid’s algorithm in

Figure 4.5. Assume that each block has FL ¼ 2 and BL ¼ 4. Slack-match the

design to achieve optimal throughput.

4.11. Repeat Exercise 4.10 but with a second token buffer added to the design that

enables the pipeline to operate on two independent greatest common divisor

problem instances simultaneously.
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5 Performance analysis
and optimization

Many different mathematical tools have been used for modeling concurrent

systems. One of the most common is Petri nets. This chapter focuses on their

use in architectural performance analysis and the optimization of asynchronous

pipelines. In later chapters we will discuss the more specific forms of Petri nets

used in specifying asynchronous controllers for automated synthesis. In addition,

we will also use Petri nets to describe the abstract behavior of various implemen-

tation templates. More extensive analyses of Petri nets can be found in references

[1]–[3].

5.1 Petri nets

A Petri net is a four-tuple N ¼ (P, T, F, m0), where P is a finite set of places pi and T

is a finite set of transitions ti (see Figure 5.1); F � ðP� TÞ [ ðT � PÞ is a flow

relation and m0 2 NjPj is the initial marking (see below), where N is the set of

natural numbers. As can be seen in the figure, a Petri net is usually represented as a

bipartite graph in which the pi and ti are the nodes. For any two nodes x and y, if

(x, y) 2 F then there is a directed arc from x to y. An arc runs between a place and a

transition or between a transition and a place, but arcs do not run between two

places or two transitions.

In the example Petri net in Figure 5.1, P¼ {p1, p2, p3, p4, p5, p6}, T¼ {t1, t2, t3, t4},

F ¼ {(t1, p1), (t1, p2), (p1, t3), (p2, t4), (t2, p3), (t2, p4), (p3, t3), (p4, t4), (t3, p5), (p5, t1),

(t4, p6), (p6, t2)}, and m0 ¼ [0 0 0 0 1 1].

A marking is an assignment of tokens to places and represents the state of the

system. Formally, a marking is a |P|-vector m, where the number of tokens in

place p under marking m, denoted by m(p), is a natural number. We say for a place

or transition x2 P[T that �x is the preset of x, defined as �x¼ {y2 P[ T | (y, x)2 F}

and that x� is the postset of x, defined as x� ¼ {y 2 P[ T | (x, y) 2 F}.

A transition t is enabled at marking m if each place p from which an arc comes

into t (these places constitute its preset, �t) is marked with at least one token.

When the transition is enabled, it can fire by removing one token from each

place in its preset, �t, and adding one token to each place in its postset, t�. For
example, in Figure 5.1 the transition t1 can fire, and in doing so removes the

token from p5 and adds it to p1 or p2.



5.1.1 Petri net types

A state machine (SM) is a type of Petri net where every transition has at most one

input and one output place, which is represented as | �t | � 1 ^ | t�| � 1, 8t 2 T.

A marked graph (MG) is a type of Petri net in which every place has at most one

input and output transition, which is represented as | �p | � 1 ^ | p�| � 1, 8p 2 P.

A state machine can model choice but not concurrency, whereas a marked graph can

model concurrency but not choice. Notice that the Petri net in Figure 5.1 is not a

state machine because, for instance, t1� ¼ {p1, p2} and thus has size 2. It is, however,

a marked graph, because all the places pi have presets and postsets of size 1.

When a place p has more than one postset transition, that is | p�| >1, we say

that p is a choice place. There are a several types of choice place. A place p is an

extended-free-choice place if all transitions in p� can be enabled regardless of

external influence, in other words, if the selection of the transition to fire is non-

deterministic. A special case of extended free choice is a free-choice place p for

which all output transitions reached from p have only one input place, as illus-

trated in Figure 5.2(a). More mathematically, extended-free-choice places satisfy

the constraint that all such places p2P have either the same postset or non-

intersecting postsets. As an example, the places p2 and p3 in Figure 5.2(b) are

both extended-free-choice places because they have exactly the same postset

transitions and no other place has an intersecting postset transition. A place p is

a unique-choice place if no two output transitions of p can be enabled at the same

time. In this case, the selection of the transition to be fired is deterministic. This is

illustrated in Figure 5.2(c), in which, despite the fact that place p1 is a choice place

with two postset transitions t1 and t2, only one of these two transitions can be

enabled to fire at a time. Any choice place that is neither extended-free-choice

nor unique-choice is classified as arbitration-choice, as illustrated by place p5 in

Figure 5.2(d). It has two postset transitions, t2 and t4, which are simultaneously

enabled if tokens exist both at places p1 and p4. This implies, however, that the

choice also may depend on the relative arrival time of tokens at places p1 and p4.

Namely, if a token exists only in one of these places, say p1, then only one

transition, in this case t2, is enabled to fire. Moreover, if t2 does not fire

t1 t2

t3 t4

p1p5 p4 p6p2 p3

Figure 5.1. An example of a Petri net: the open circles indicate places and the short lines
indicate transitions.
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immediately and in the meantime a token arrives at p4 then the choice of which

transition will be fired at that point becomes non-deterministic.

5.1.2 Reachability graph

A marking m0 is reachable from m if there is a sequence of firings t1 t2 . . . tn that

transforms m into m0; this sequence is denoted m[t1t2 . . . tn> m0. The set of

reachable markings from m0 is denoted by [m0>. By considering the set of

reachable markings as the set of states of the system and the transitions between

these markings as the transitions between the states, a reachability graph can be

obtained representing the underlying behavior of the Petri net. A Petri net is

k-bounded if no marking in [m0> assigns more than k tokens to any place of the

net. It is safe if it is 1-bounded. In contrast, an unbounded net allows an

unbounded number of tokens to accumulate at some place. It is live if and only

if (iff) all transitions can eventually be enabled from every m 2 [m0>.

As an example, the reachability graph for the Petri net in Figure 5.1 is shown in

Figure 5.3. Each node in the graph is a 6-ary (six-dimensional) vector of natural

numbers [p1, p2, p3, p4, p5, p6] identifying the number of tokens in each place. Each

edge represents a state transition and is labeled with the transition that fired.

Notice that this Petri net is not safe because some reachable markings have more

than one token in places p2 and p3. It is however 2-bounded and live.

For the purpose of modeling asynchronous designs we typically restrict our-

selves to k-bounded live Petri nets because the designs have limited memory but

never-ending behavior in which all transitions can repeatedly fire.

5.1.3 Modeling delays in Petri nets

In some variants of Petri nets, each transition or place can be annotated with delay

information, such as (i) a single value representing a fixed delay, (ii) a pair of

values denoting the lower and upper bounds of the delay, or (iii) a more general

stochastic delay distributions [2][7][23]. These Petri nets with timing constraints

are often called timed Petri nets and are further classified as timed-place Petri nets

(TPPNs) or timed-transition Petri nets (TTPNs), depending on whether the timing

bounds annotate places or transitions.
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Figure 5.2. Petri nets with choice.
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When, on the one hand, delays are associated with places, a token flowing into a

place p experiences a delay d(p) before it can be consumed by an output transition

of p. The delays experienced in different places are independent. The actual firing

of a transition is assumed to be instantaneous. When, on the other hand, delays are

associated with transitions, the transition takes a delay d(t) to fire.

We will focus on modeling and performance analysis using timed marked

graphs with fixed delays, for which there is a rich set of analysis and optimization

techniques. While such timed marked graphs are sufficient to analyze determinis-

tic pipelined systems, they cannot model pipelines that have choice-behavior.

Consequently, our analysis and optimization techniques will often be limited to

analyzing one specific or typical mode of operation (which can be modeled with

marked graphs) at a time. More advanced techniques that handle more general

timed Petri nets will be briefly discussed in Section 5.5.

As with all Petri nets, the delay information in a timed marked graph can be

associated with transitions or places; however, associating delays with places is

less constrained than associating them with transitions. The reason is that every

MG with delays associated with transitions can be translated into one in which

these delays are instead associated with all places in its preset. Because there is no

choice in marked graphs, there is no significant difference between the two types

of marked graph model [7]. The semantics of a timed MG state that a transition t

fires after the tokens in places p 2 �t have resided in p for at least d(p) time units.

5.1.4 Cycle time

A cycle c is a sequence of places p1 p2 . . . p1 connected by arcs and transitions,

whose first and last places are the same. The cycle time CT(c) of a cycle c is the sum

d(c) of the delays of all associated places (or transitions) along the cycle c divided

[000011]

[101001] [010110]

[111100]

[001110] [110001]

[102100] [120100]

t1 t2

t1t2

t4t3

t4 t3

t1 t2

t4 t3

Figure 5.3. Reachability graph for the Petri net shown in Figure 5.1.
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by the number m0(c) of tokens that reside in the cycle, i.e. CT(c) ¼ d(c)/m0(c). The

cycle time of an MG is defined as the largest cycle time of all cycles in the MG, i.e.

max 8c 2 Y O CT(c), where Y is the set of all cycles in the timed MG [19]. The

intuition behind this well-known result is that the performance of any computa-

tion modeled with a timed MG is dictated by the cycle time of the timed MG and

thus the largest cycle time for a cycle in the MG.

5.2 Modeling pipelines using channel nets

5.2.1 Full-buffer channel nets

We will model a network of leaf cells with a novel timed marked graph called a

full-buffer channel net (FBCN), a specific form of pipelined Petri net (see e.g. [14]).

It is defined as N ¼ ðP [ P;T;F;m0Þ and satisfies place symmetry, i.e. jPj ¼ jPj. It
also satisfies channel connectivity, i.e. F satisfies the property that for every p 2 P

there exist (ti, p) and ðp; tjÞ 2 F and a p 2 P such that (tj; p) and ðp; tiÞ 2 F. Finally

the channels are single-token i.e., for every p 2 P;m0ðpÞ þ m0ðpÞ ¼ 1. The idea

behind a channel net is that each leaf cell is modeled as a transition and each

channel between the ports of cells becomes two places. Four arcs in the flow

relation connect the places to the relevant leaf cell transitions.

The performance of the network is represented by modeling the performance of

the channels according to how they are connected to the leaf cells. In our model,

the local cycle time is attributed to the output channels to which the leaf cell is

connected. The delay d(p) represents the forward latency of a channel while the

corresponding dðpÞ value represents its backward latency. Intuitively, the forward

latency represents the delay through an empty channel (and associated leaf cell)

and the backward latency represents the time it takes for the handshaking circuitry

within the neighboring leaf cells to reset, enabling a second token to flow. The

cycle time cðp � pÞ associated with the cycle defined by p and p represents the local

cycle time of the channel and equals the sum of the two place delays, i.e.

cðp � pÞ ¼ dðpÞþdðpÞ=½mðpÞ þ mðpÞ�
¼ dðpÞ þ dðpÞ:

As an example, we illustrate two channel nets in Figure 5.4. The open circles

represent forward places p 2 P and the open boxes represent backward places

p 2 P. In this example, both channels have forward latency 2 and backward

latency 8 and thus local cycle times equal to 2 þ 8 ¼ 10. We have choosen the

forward latency to be significantly smaller than the backward latency since this is

the case for many asynchronous templates, as will be described in the second part

of the book. In Figure 5.4(a) (Figure 5.4(b)), the forward (backward) channel is

marked, indicating that immediately after reset this channel is full (empty). For

illustrative purposes only, the forward places are represented by circles and the

backward places by squares. Note that this model implies that every channel can
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hold at most one token and thus that the leaf cells are full buffers [11]. An

extension to model half buffers [11] more accurately is an area of research and

development.

Notice that in any marking (see Figure 5.1), if the forward place is marked then

it represents a state in which there exists a token in the channel. Otherwise, the

backward place is marked. This configuration guarantees that only one data or

control token can reside in the channel and that the marked graph is safe.

5.2.2 Cycle time and throughput

The cycle time of an asynchronous pipeline is captured by the cycle time of its

FBCN model (see the previous subsection). The throughput of the circuit is the

reciprocal of this value. Very often additional buffers, also known as slack, must

be added to the model to balance the pipelines and thereby improve the cycle time.

We model the addition of slack between leaf cells by creating new transitions,

places, and arcs that represent buffer leaf cells and their corresponding channels.

As an example, consider a homogeneous non-linear pipeline fork–join channel

structure in which there are three buffers (represented by vertical bars) in one path

and one buffer in the other path. The FBCN model of this structure is illustrated

in Figure 5.5. Notice also that the forking transition t0, which represents the leaf-cell
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Figure 5.4. Full-buffer channel nets.
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Figure 5.5. Full-buffer channel-net model of a homogeneous unbalanced fork–join pipeline.
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fork has both output channels initially full, whereas all other channels are initially

empty, indicating that this leaf cell is the only token buffer in the system. The cycle

yielding the cycle time consists of the forward latency path through the long

fork and the backward latency path of the short fork. Its cycle time is (2 þ 2 þ
2 þ 2 þ 8 þ 8)/2 ¼ 24/2 ¼ 12.

Note that if a second buffer is inserted in the short forked path at t5, as

illustrated in Figure 5.6, the cycle time reduces to (2 þ 2 þ 2 þ 2 þ 8 þ 8 þ 8)/3

¼ 32/3.

5.3 Performance analysis

There are a variety of ways to determine the cycle metric of timed marked

graphs. The most obvious approach is to enumerate all cycles, evaluate their

individual cycle times, and identify the maximum value. While sometimes effi-

cient, the worst-case complexity is poor because the number of cycles in a

marked graph may be exponentially larger than its size. Consequently, this has

been a research topic for which several more efficient approaches have been

identified. We first review two direct approaches and then an approach based on

solutions to a related problem, called the maximum cycle mean problem, for more

general directed graphs.

5.3.1 Shortest-path-based algorithm

Ramamoorthy and Ho were among the first workers to propose an efficient

algorithm for the performance analysis of timed marked graphs [6]. In particular,

their algorithm verifies whether a timed marked graph has a cycle time no larger
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Figure 5.6. Adding a pipeline buffer can improve the cycle time of an FBCN.
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than a given value C. Their approach applied to timed marked graphs having

delays associated with transitions and involved creating two n � n matrices P and

Q, where n is the number of places in the Petri net. Each entry (i, j) in P has the

value m0(i) if there is a transition between i and j. All other entries of P have a zero.

Each entry (i, j) in Q has the value d(i) if there is a transition between places i and j.

Otherwise the entry is �1.

Using the matrix CP � Q as a distance matrix between place pairs, a matrix S is

derived that represents the shortest path (in terms of cumulative delays) between

any two places. If all diagonal entries in S are positive then the system’s cycle time

is less than C. If some diagonal entries are zero but none are negative, the cycle

time is C. Otherwise, the cycle time is greater than C.

As an example, the matrix CP – Q for the timed marked graph in Figure 5.7 for

C ¼ 11 is as follows:

CP� Q¼

1 1 1 1 5 1 5 1
1 1 7 1 1 1 1 1
1 1 1 �3 1 1 1 1
1 1 1 1 1 �2 1 1
1 1 1 1 1 �2 1 1
�2 �2 1 1 1 1 1 1
1 1 1 1 1 1 1 7
1 1 1 1 �6 1 �6 1

2
66666666664

3
77777777775

:

In particular, the (2, 3) entry equals 7 because it corresponds to p2 and p3, which

are separated by the transition x with d(x) ¼ 4 and 11 – 4 ¼ 7. Notice also that

for any pair of places (i, j) that are not directly connected via a transition the
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Figure 5.7. Example of a timed marked graph.
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distance matrix has an entry 1. The corresponding all-pairs shortest path matrix

is as follows:

S ¼

1 1 8 5 5 3 5 12
0 0 7 4 5 2 5 12

�7 �7 0 �3 �2 �5 �2 5
�4 �4 3 0 1 �2 1 8
�4 �4 3 0 1 �2 1 8
�2 �2 5 2 3 0 3 10
�3 �3 4 1 1 �1 1 7

�10 �10 �3 �6 �6 �8 �6 1

2
66666666664

3
77777777775

:

As an example, S(1, 3) ¼ 8 because the shortest path between p1 and p3 goes

through p5, p6, and p2, yielding the cumulative delay 5 þ (�2) þ (�2) þ 7 ¼ 8.

Note that because no diagonal sums in S are negative and some are zero, the cycle

time of the marked graph is exactly 11.

The distance matrix can be computed with any all-pairs shortest-path algo-

rithm, including the well-known Floyd–Warshall algorithm, which takes O(n3)

time. This is substantially lower than the worst-case exponential time complexity

for computing the cycle times of all cycles individually. Readers interested in the

details of all-pairs shortest-path algorithms can refer to [15] for a more in-depth

analysis of various algorithms and their complexities.

5.3.2 Linear-programming-based approaches

Magott [5] proposed determining the cycle time of a timed marked graph using

linear programming. He created arrival-time variables ai for every transition i and

also the following set of constraints for every pair of transitions (i, j) connected by

a place p:

aj 	 ai þ dðiÞ � tm0ðpÞ:
Maggot proved that when this set of constraints is satisfied, the cycle time of the

marked graph is no greater than t. With this result, he proposed a linear

programming (LP) problem based on these constraints and an objective func-

tion that minimizes t. This is a useful problem formulation for several reasons.

First, there are many freely available LP solvers (e.g. [18]), including those built

into MATLAB. Second, many of these solvers are very computationally effi-

cient. The most common are based on the simplex algorithm developed by

Dantzig [16] and in practice often take a linear time to solve the problem but

have worst-case exponential complexity. Other algorithms have been developed

that have polynomial worst-case complexity but often take longer in practice.

Interested readers are referred to [17] for a more thorough review of various

algorithms.

As an example of the LP approach, the formulation for the example in Figure 5.7

is as follows:
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minimize t subject to

ax 	 av þ 2� t;

az 	 av þ 2� t;

az 	 au þ 15;

au 	 az þ 6� 2t;

ay 	 ax þ 4;

aw 	 ay þ 3;

av 	 aw þ 2;

aw 	 az þ 6:

Running this algorithm through an LP may provide many different results for the

arrival times but always generates a minimum t equal to 11, corresponding to the

one-token cycle < v, x, y, w >.

Extending this result tomarked graphswithdelays on places is also possible. The

only change is that the arrival-time constraint for a pair of transitions (i, j) connected

by place p uses the delay on the place rather than on the transition i, as follows:

aj 	 ai þ dðpÞ � tm0ðpÞ:
The proof of this result can be trivially obtained from [25], which proves a similar

result using equality constraints that include a non-negative slack variable.

Burns and Martin proved similar results, using a slightly different formalism

called event-rule systems rather than timed marked graphs [12][13].

With this modified formulation we can now use linear programming to find the

cycle time of full-buffer channel nets. As an example, the linear program for

finding the cycle time of the FBCN in Figure 5.5 is:

Minimize t subject to

a1 	 a0 þ 2� t;

a0 	 a1 þ 8;

a2 	 a1 þ 2;

a1 	 a2 þ 8� t;

a3 	 a2 þ 2;

a2 	 a3 þ 8� t;

a4 	 a3 þ 2;

a3 	 a4 þ 8� t;

a0 	 a4 þ 2;

a4 	 a0 þ 8� t;

a0 	 a5 þ 8;

a5 	 a0 þ 2� t;

a4 	 a5 þ 2;

a5 	 a4 þ 8� t:

935.3 Performance analysis



The minimum t is 12, matching the value described in Subsection 5.2.2. One

solution to the arrival times is [a0 a1 a2 a3 a4] ¼ [10 0 2 4 6]. The specific values

for the arrival times are, however, not unique. For example, adding a constant k to

all arrival times also leads to a valid solution.

5.3.3 Relation to maximum-cycle-mean problem

Let G ¼ (N, E, w) be a weighted directed graph with n nodes N and m edges

E�N � N. A cycle in G is a sequence of nodes in N in which the first and last

nodes are identical. Let C represent the set of all cycles of nodes in G. The weights

are then described by the function w: E[C ! r, applied to both edges and cycles.

In particular, the weight w(c) of the cycle c is equal to the sum of the weights of the

edges in c. The (cycle) mean of c is defined as w(c)/|c|. This is the average weight of

the edges in c. The maximum cycle mean is simply the largest cycle mean.

We can use this maximum-cycle-mean problem to solve for the cycle time of

marked graphs with a maximum of one token per place, as follows. Create a vertex

for each marked place in the marked graph. Create an edge between every pair of

vertices for which there exists at least one path between their corresponding places

that does not go through other marked places. Now associate with each such path

the sum of the delays on its places and transitions. Then let the weight of the edge

be the largest such sum for the various possible paths. For timed marked graphs

with delays associated with places, this sum should include the delay of the source

place but exclude the delay of the sink place. The maximum cycle mean of this

graph equals the cycle time of the marked graph.

Marked graphs with more than one token per place in the initial marking can

also be supported by expanding the multi-marked place into a sequence of dummy

places and zero-delay transitions with one token per place. The cycles in this new

marked graph are in one-to-one correspondence with the original marked graph

and have the same cycle time. As an example, the marked graph in Figure 5.7 has

two tokens in place p7. Expanding the graph with a dummy transition and creating

a second place p07 and distributing these two tokens between p7 and p07 yields the
marked graph shown in Figure 5.8(a).

The associated weighted graph is shown in Figure 5.8(b). The maximum cycle

mean of this weighted graph corresponds to the self loop at place p2 with mean

weight 11. As a second example, the directed graph that corresponds to the FBCN

model shown in Figure 5.5 is shown in Figure 5.9. Notice that the maximum cycle

mean, 12, arises from the two-edge cycle < p01, p45, p01>.

5.3.4 Karp’s algorithm

In this subsection we briefly review Karp’s well-known algorithm for automatic-

ally finding the maximum cycle mean [4]. We refer the interested reader to [9][10]

for in-depth reviews and analyses of Karp’s algorithm among others.
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Let s be an arbitrary node, called the source, in a weighted directed graph G. For

every v in N and every non-negative integer k, define Dk(v) as the maximum weight

of a path of length k from s to v; if no such path exists then Dk(v) ¼ �1. Then, the

maximum cycle mean l* of G is given by the following formula, as proven in [4],

l
 ¼ max
v2V

min
0�k�n�1

DnðvÞ � DkðvÞ
n� k

:

v

z

w

x

y

6

4

3

2

15 u

2

0

dummy

p1

p2

p3

p6

p4

p5p7

p8

p′7

p′7

p7

p1 p2

11

11
6

021

10

25

10

25

(a) (b)

Figure 5.8. (a) A marked graph and (b) its corresponding weighted directed graph.
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If G is not strongly connected then we can find the maximum cycle mean l* by

finding the strongly connected components of G (in linear time), determining the

maximum cycle mean for each component, and then taking the largest of these as

the maximum cycle mean. Unless stated otherwise, we will consider only strongly

connected graphs, so that to n � m. The weights Dk(v) can be determined by the

following recurrence relation [4]:

DkðvÞ ¼ max
ðu;vÞ2E

½Dk�1ðuÞ þ wðu; vÞ�; k ¼ 1; 2; . . . ; n;

with the initial conditions D0(s) ¼ 0 and D0(v) ¼ �1 for all other vertices v.

As an example, consider the application of Karp’s algorithm to the directed

weighted graph shown in Figure 5.8(b) (which has one strongly connected com-

ponent) and let the source node s be p1. The calculation of the weights Dk(v) is

shown in Table 5.1. As can be seen, the maximum cycle mean is l* ¼ 11. As

expected, this equals the cycle time for the corresponding marked graph, as

determined in Section 5.2.1.

5.4 Performance optimization

5.4.1 Slack matching: an intuitive analysis

An intuitive understanding of the slack-matching problem can be obtained by

analyzing further the unbalanced fork–join pipeline in Figure 5.5. In particular, a

key observation is that if tokens arrive at a join stage at different times then the

early token will stall and the stall will propagate backwards and slow the entire

system down. We illustrate this intuition by annotating the FBCN in Figure 5.5

with token arrival times, as illustrated in Figure 5.10. The unbalanced nature of

the pipeline causes the first token processed by the top “short” fork, stage t5, to

stall for 4 time units while waiting for the lower “longer” fork to propagate its first

token. Because t5’s backward latency is 8, the output channel of t5 can accept a

second token no sooner than t ¼ 16, i.e. t5 fires for the second time at t ¼ 16. This

means that the second token that arrives at the input channel of t5 is stalled for

4 time units during this reset period. This stall delays the time at which t0 generates

Table 5.1. Calculation of the maximum cycle mean for the graph in Figure 5.8(b); Dk(v) is the maximum
weight of a path of length k from the source node to v

k Dk (p1) Dk (p2) Dk (p7) Dkðp07Þ
0 0 �1 �1 �1
1 10 10 6 �1
2 21 21 16 6
3 32 32 27 16
4 43 43 38 27

min0�k�4�1
D4ðvÞ � DkðvÞ

4� k 10 3
4 11 10 2

3 10 1
2
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the third token by 4 time units, starving t1 by 4 time units. This propagation of

starving on stalling continues and every other token processed by every channel is

delayed by 4 time units. Consequently, instead operating at a peak local cycle time

of 10 time units, each channel operates at an average cycle time of 12 time units.

The intuition gained from this example is as follows: for the global cycle time to

equal the local cycle time, all tokens must arrive at all join stages at the same time.

The above intuition is a necessary condition for the global cycle time to be equal

to the local cycle of the channels in a homogeneous pipeline in which all channels

have the same cycle time. However, it is not sufficient. To see this, consider

another important case, that of a short loop of leaf cells, when a token can

propagate around the loop faster than the local cycle time. In this case a token

will be stalled while the local channel resets.

Like the above case, this stall will propagate backward and increase the global cycle

time. In particular, it is the backward propagation of bubbles into which a token can

leads to a move that throughput bottleneck. This is illustrated in Figure 5.11.

Alternatively, if the latency around a one-token loop is larger than t, the cycle
time will be greater than t. Consequently, another necessary condition is that for
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Figure 5.10. Annotation of Figure 5.5 showing how an unbalanced fork–join pipeline causes
pipeline stalls.
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one-token loops the propagation delay along every cycle is equal to the local cycle

time. Multi-token loops, with multiple token buffers, yield a generalization of this

condition. Specifically, for the global cycle time to equal the local cycle time the

latency along any m-token loop must be mt.
This intuition must be modified when considering the case in which one channel

resets faster than others, i.e. it has a smaller backward latency. If a token is stalled

in this channel by a small amount, the channel may still be able to reset in time to

accept the next token within the desired global cycle time. If the forward latency

plus stall time plus backward latency equals the desired global cycle time then this

stall will not bottleneck the design. We call the difference between desired global

cycle time and the local cycle time the free slack.

For example, if the channel driven by the top buffer in Figure 5.4 had backward

latency of 4 instead of 8, it would have a local cycle time of 6 and a free slack equal

to 10 – 6 ¼ 4. This free slack would be able to absorb the stall, and the worst-case

cycle metric of the pipeline would be 10, matching the worst local cycle time.

Similarly, if the added pipeline buffer in Figure 5.6 has a free slack of 2 rather than

0, the worst-case cycle metric would be 10.

Note that this intuition also applies to cases when the desired global cycle time is

larger than the homogeneous local cycle time, in that then all channels have free

slack. Similarly, tomeet the desired global cycle time, stalls caused by the backward

propagation of bubbles must be less than the sum of the free slack around the cycle.

5.4.2 Slack matching: an MILP optimization framework

One possible goal of slack matching is to maximize throughput. A more general

goal is to minimize the number or cost of adding slack buffers while achieving a

target throughput. In [25], a mixed-integer linear program (MILP) for this

problem was developed based on the FBCN model of the circuit:
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Figure 5.11. Illustration of how a short loop can cause pipeline stalls.
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Minimize the sum sc subject to

aj ¼ ai � mþ fc þ lc þ lssc ðchannel constraintsÞ;
fc � t� tc þ scðt� tsÞ ðfree slack constraintsÞ;
ai 	 0 and fc 	 0 ðvariable boundsÞ;
sc 2 N ðintegral constraintsÞ;

for all transitions ti and channels c between leaf cells i and j, where

� lc, tc, and fc are the latency, local cycle time, and free slack of channel c between

leaf cells i and j,
� the ai are free variables representing the arrival time of tokens at leaf cells, where

there are as many variables ai as leaf cells,
� the sc are independent variables that identify the amount of slack added to

channel c between leaf cells i and j,
� ls and ts are the latency and local cycle time of a pipelined buffer,
� m¼ 1 if this channel upon reset has a token and m ¼ 0 otherwise.

The channel constraints guarantee that the density of data tokens along a loop of

leaf cells is sufficiently low that no token is stalled waiting for a channel to reset

and that the latency along the loop is not too high, so that leaf cells are never

starved. In addition, the constraints guarantee that the sum of the free slack along

the short path of a fork–join path is sufficient to balance the two paths. Notice

that the free slack of a channel, as constrained by the free-slack constraints, is

upper bounded by the sum of two components. The first of these is the free slack

associated with the difference between the cycle time of the channel and the target

cycle time, t – tc. The second component of the free slack is that obtained by

adding sc pipeline buffers, each contributing slack t – ts. Note that we restrict sc to

be an integer because a fraction of a pipeline buffer cannot be added to a channel.

A simple extension that accounts for the differing costs of channels – these may

depend on the physical size of the pipeline buffer and/or the width (i.e. number of

rails) of a channel – is described in [25].

As an example, the MILP for the non-homogeneous fork–join pipeline

described in Figure 5.5 (with local cycle time of the channel driven by the top

buffer of 6 rather than 10) is as follows:

Minimize s0a þ s0b þ s1 þ s2 þ s3 þ s4 þ s5 subject to

a1 ¼ a0 � 8þ 2s0a;

a5 ¼ a0 � 8þ 2s0b;

a2 ¼ a1 þ 2þ 2s1;

a3 ¼ a2 þ 2þ 2s2;

a4 ¼ a3 þ 2þ 2s3;

a4 ¼ a5 þ 2þ f5 þ 2s5;

a0 ¼ a4 þ 2þ 2s4;

4 	 f5 	 0:
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An optimal solution to this MILP is a ¼ [8 0 2 4 6 0], f5¼ 4, and s ¼ [0 0 0 0 0 0 0]

with minimum objective function 0. That is, no slack is needed in this example,

which is consistent with our intuition in subsection 5.4.1.

A fundamental problem with an MILP formulation is its computational com-

plexity, which can be exponential in the size of the formulation [17]. While in some

special cases the problem can be reduced to a linear program (LP) without losing

exactness [25], an exact solution to most large-sized problems is often too compu-

tationally challenging to obtain. A practical approach that addresses this issue is

to simply relax the integral restriction on the variables sc, use an LP solver and

round up the slack results to the nearest integral number of buffers. Then,

if necessary, the buffer latencies are tuned further by transistor sizing or by

constraining the physical design placement and/or routing to address any

remaining performance bottlenecks. This approach may not lead to the minimum

number of buffers or the optimal performance but experience has shown that it

performs reasonably well in an industrial setting [30].

Other techniques for slack matching have also been proposed in the literature.

Kim and Beerel analyzed the complexity of more general pipeline optimization

problems and proposed a branch and bound algorithm that also was able to

optimize the degree of pipelining of datapath units [24]. Prakash and Martin

proposed a more complex MILP formulation based on a more exact model

of the handshaking protocol [26]. Venkataramani and Goldstein proposed a

simulation-based approach which, while not optimal, appears to work well in

practice and can be applied to circuits with choice [27].

5.5 Advanced topic: stochastic performance analysis

More sophisticated performance-analysis techniques use random variables to

model the delays. For a place p, we write X(p) as the random variable denoting

the delay associated with it and FX(p): Rm ! [0m 1] as the distribution function of

X(p), i.e., FX(p)(x) ¼ Prob(X(p) � x).

For Petri nets with free or unique choices, these assumptions imply that there is

no race condition among transitions in structural conflict, i.e. those in the postset

of a choice place. For each free-choice place p, we assume there is a probability

mass function (p.m.f) m(p, ·) to resolve the choice. That is, for t 2 p�, m (p, t) is

the probability that t consumes the token each time p is marked. Of course,

St2p�m(p, t)¼ 1.

We call such Petri nets stochastic timed Petri nets (STPNs) [88] and STPNs in

which only fixed delays are allowed are called probabilistic timed Petri nets (PTPNs)

[43]. Figure 5.12 shows an example of a PTPN in which p8 is a free-choice place

with a given probability mass function.

In a run of an STPN or PTPN, called a timed execution, choices are resolved and

places are assigned delay values. In particular, we call the firing of a transition an

event. A timed execution can be described as a sequence of events and their
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occurrence times. Alternatively, it can be depicted as an acyclic timed event graph

in which the choice decisions are resolved, the causality among events is shown,

and the place delays are shown.

As an example, Figure 5.13 shows the timed event graph of a timed execution of

the PTPN in Figure 5.12. In particular, the numbers above the places denote the

delay values. For convenience, we write tk and pj to denote the kth event due to the

firing of t and the jth place, respectively.

Given a timed execution, the time separation of an event pair (TSE) is the time

between the two events s(k), t(kþe). The average TSE due to the separation triple

g(k)(s, t, e) is the average over k of the corresponding TSEs of an infinite timed

execution of the STPN. Note that there are cases where an average TSE does not

exist. The difference between the numbers of occurrences of two transitions could

tend to infinity as time progresses. However, for a wide class of event pairs, their

average TSEs do exist [23].
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Many system performance metrics can be expressed directly as the average

TSEs of some indicator event pairs. For example, the latency of a linear pipeline

can be measured as the average difference between the time tr
i of the ith generation

of an output token at the output of the pipeline and the time tl
i at which the

corresponding input token is consumed at the input. Similarly, the cycle time

of the pipeline can be measured as the long-term average difference between

tr
i and tr

iþ1.

Consequently, the TSE framework is a very general framework for analyzing

performance and many techniques have been developed in connection with it.

However, modeling the delays as random variables and modeling choice increases

the complexity of the approaches designed to solve for the TSEs.

One approach is based on discretizing time and then producing a reachability

graph in which every state transition represents the advance of one time unit. In

the presence of choices, the graph can be modeled as a Markov chain and

Markovian analysis can be used to find the TSEs. The difficulty is that the

reachability graph can have millions of states and the Markovian analysis quickly

becomes computationally intractable. Techniques using symbolic methods to

address the computational challenges of this approach were explored in [21].

For marked graphs, however, McGee, Nowick, and Coffman suggest using their

periodic nature to simplify the required Markovian analysis [29].

Another approach uses Monte Carlo simulation to find the TSEs; more specific-

ally, this technique analyzes the longest path of independently generated segments

of timed executions to find bounds on average TSEs. This approach has been shown

to be successful for very large STPNs but is limited to free-choice nets [22][23].

Extensions to nets that model arbitration is an interesting area of future work.

Lastly, Chakraborty and Angrish simplified the problem by analyzing only

moments of distributions rather than detailed distributions [28].

5.6 Exercises

5.1. Draw the reachability graph for the marked graph in Figure 5.7 (ignoring

delays). Is the marked graph safe? Is it live? Is it 2-bounded?

5.2. Illustrate Karp’s algorithm for the weighted directed graph shown in Figure 5.9.

5.3. The cycle time of amarked graphwill be identical for any initial markingm0¼m,

where m is any reachable marking, i.e. m2 [m0 >. Consider the timed

marked graph in Figure 5.7 with an alternative initial marking m0 ¼ [1 0 1 0

0 0 2 0], i.e. where place p3 is marked instead of p2. Show the corresponding

weighted directed graph and illustrate Karp’s algorithm by finding the new

cycle time. Verify that it is the same as the original cycle time.

5.4. A possible half-buffer model is shown in Figure 5.14. Notice how the

addition of BL2 placed between alternating transitions constrains the neigh-

boring channels to not hold distinct tokens.
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Consider the fork–join loop structure shown in Figure 5.6 but with each full

buffer replaced by a half buffer (include fork and join modules). Model the

performance of this modified circuit using the above half-buffer model.

Assume that FL ¼ 2, BL1 ¼ 8, and BL2 ¼ 6. What is the cycle time of this

timed marked graph model? Is it the same as that with full buffers?

5.5. Write the LP formulation for the half-buffer model in the above problem.

Solve with any available LP solver.

5.6. Write an LP formulation to find the cycle time of the timed marked graph in

Figure 5.15. Notice that the delays are associated with the places. Show a

solution to your LP that yields the cycle time. Explain your answer.
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6 Deadlock

With new technology come new challenges. Deadlock is an important issue that

can manifest itself far more commonly in asynchronous circuits than in their

synchronous counterparts.

Deadlock is the failure or inability of a system to proceed and arises when two

or more processes expect a response from each other before completing an

operation and thus mutually block each other from progressing. A more formal

definition is as follows: a set P of processes is said to be deadlocked if

� each process pi in P is waiting for an event e 2 E,
� each event e 2 E is generated only by a process pj 2 P.

The dining-philosophers problem, covered in Chapter 3, is a classic problem

illustrative of deadlock. The general idea is that a number of philosophers sur-

round a dining table with a big plate of food (in this case Chinese pot stickers) in

the middle, as illustrated in Figure 6.1 for four philosophers. They spend time

either thinking or eating, but because adjacent philosophers share one chopstick,

they cannot eat simultaneously. A philosopher must have both the chopsticks to

his or her left and right in order to eat. The philosophers never speak to each

other, an aspect that introduces the possibility of a deadlock in which every

philosopher holds, say, the chopstick on the left and is waiting for the chopstick

on the right. This system has reached deadlock because there is a cycle of ungranted

requests. In this case philosopher p1 is waiting for the chopstick held by philoso-

pher p2, who is waiting for the chopstick of philosopher p3, and so forth, making a

circular chain.

The lack of available chopsticks is analogous to the locking of shared resources

in computer programming. Locking a resource is a common technique to ensure

that the resource is accessed by only one process at a time. When a resource in

which a process is interested is already locked by another process, the first process

waits until it is unlocked.

For the purposes of considering deadlock in asynchronous circuits we will cover

a number of examples from four categories:

1. deadlock caused by incorrect implementation of the handshake protocol;

2. deadlock caused by architectural token mismatch;



3. deadlock caused by arbitration;

4. deadlock caused by delay: depending on the delay value, deadlock may or may

not occur.

In the following subsections we will discuss each deadlock category in turn.

6.1 Deadlock caused by incorrect circuit design

A poorly designed pipeline unit, which does not implement the intended commu-

nication protocol on its channels, can easily cause deadlock. Figure 6.2 illustrates

such a case. It shows the waveform for a four-phase handshaking protocol that

has been implemented incorrectly by a stage in the pipeline illustrated in Figure

6.3. Because the ack signal generated by stage S3, which acknowledges that the

inputs are consumed, is not set back to 0 (see Figure 6.2), the sender, stage S2,

cannot send a new data token. Thus the sender has data to send but is waiting for

the ack signal to go low and the receiver, S3, is expecting new data because it

thinks it has implemented the protocol correctly. Therefore this pipeline will

deadlock and no data transmission will occur. All the tokens before S3 will sit

there forever or until the system is reset. If the system is restarted and another

token arrives, deadlock will occur again. While the cause of the deadlock in this

particular example may be obvious and easy to spot, as a cell becomes more

complicated, with conditional multi-inputs and multi-outputs and with internal

states, verification to ensure that the four-phase protocol is implemented correctly

on all channels can be a daunting task, which can easily be let slip. The detection

of deadlock may require either exhaustive simulation, if a simulation-based verifi-

cation method is used, or a cleverly implemented formal verification tool to ensure

deadlock-free operation.

p1

p4 p3

p2

Figure 6.1. A set of processes, consisting of four dining philosophers, four chopsticks, and a
plate of Chinese potstickers, which is liable to deadlock.
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The deadlock introduced because the pipeline stage has been implemented

incorrectly will be observed independently of the relative delays or data values

chosen in the environment or arbitration within the circuit. This type of deadlock

can also happen at the behavioral level, in for example VerilogCSP, if the under-

lying handshaking macros are incorrect.

If the incorrect handshaking was implemented as part of a conditional commu-

nication then the deadlock may appear to be data dependent. In other words, the

block in which this pipeline stage is instantiated may deadlock only when the

faulty conditional channel is used.

6.2 Deadlock caused by architectural token mismatch

The modules typically found in large designs expect to receive or generate a

particular sequence of tokens. In general these tokens are used to initialize storage

elements such as random access memory (RAM) or configuration registers, as

part of a boot process. When the modules involved in this initial configuration

process disagree on the number of tokens that must be exchanged, this often leads

to deadlock. An insufficiency of data tokens in the system can cause deadlock via

a starvation of data tokens to be processed, and having more tokens than the

system can handle can cause deadlock via a starvation of empty space, i.e. bubbles

enabling the system to move tokens around. Both situations can occur, depending

on the data values used in the system. We will cover the two cases with examples.

6.2.1 Data token starvation

Consider the system illustrated in Figure 6.4. In this system the left-hand environ-

ment initializes the first 100 entries of SRAM_A with consecutive values

12

S1 S2 S3

3

Figure 6.3. Stage S3 deadlocks the pipeline.

data_0

data_1

ack

1st token = 0

Figure 6.2. An incorrect four-phase handshake.
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increasing from 0 to 99. Then the right-hand environment reads these 100 values,

multiplies them by a certain number, and stores them in SRAM_B. A deadlock

may occur if the registers in the left- and right-hand circuits, Constant_A and

Constant_B respectively, are initialized with different numbers while the system is

expecting the same number of tokens to be exchanged.

The left-hand environment initializes SRAM_A with a set of numbers. It first

sets the CTRL_A module, via control channel B to write to SRAM_A. The

CTRL_A module drives the rw input of SRAM_A, thus setting SRAM_A to be

read from or written to. The left-hand environment writes to the addresses 0–99.

The register Constant_A is compared with the counter value and set to 100. Once

the left-hand environment has completed the initialization of SRAM_A, it sets the

block CTRL_A to read from the SRAM. The CTRL_A module increments the

counter via control channel C. The counter value is compared with the value 100

stored in Constant_A. If they are not equal then the counter output is provided as

the address input to SRAM_A. In this way the SRAM_A contents are read from

addresses 0 to 99. Once the counter reaches 100, the comparison results in equality

and thus the operation stops. The output of SRAM_A is multiplied by the data

provided by the right-hand environment via the data channel E. Then this multi-

plication result is stored in SRAM_B. Again the results are stored from addresses

0 to 99. However, the register on the right-hand side, Constant_B, is initialized to

200 rather than 100. Therefore this part of the design expects 200 data tokens to be

multiplied and then stored from 0 to 199. The CTRL_B module generates a data

token to the right-hand environment via control channel G to indicate that it has

stored all the received and multiplied data. In response to this, the right-hand

environment should send a token to the left-hand environment to indicate that the

initialization process is complete. However, because the design on the right-hand
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Figure 6.4. Deadlock caused by an incorrect value in a register.
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side expects more tokens than are being provided by the design on the left, the

system will deadlock. The deadlock could have been avoided by setting the

registers to have the same value and therefore is data dependent. This type of

deadlock is known as an architectural deadlock.

6.2.2 Bubble starvation

The previous example illustrated the case where there are no more data tokens in

the system and therefore no more processing is done. This token starvation

corresponds to the leftmost point in the throughput versus token number graph

presented in Chapter 4. At this point the performance of the system is 0. There is

another point on such a graph for which the performance is 0, the rightmost point

of operation where there are too many tokens and not enough space or bubbles for

the tokens to move.

Consider the design in Figure 6.5, which consists of four stages connected as a

loop. The environment will insert a number of tokens into the system using a

merge unit. The environment provides the ctrl channel to the merge. Once the

environment has finished inserting tokens, it will set the merge unit to accept

tokens from stage S3 and send them to S1. However, if the environment inserts

more tokens than the system can handle and, therefore, there are no places to

which the tokens can move then the system will deadlock and will be incapable of

processing any data.

Let us reconsider the example in Figure 6.4. This time we will assume that the

register on the left, Constant_A, is set to 200 and the register on the right,

Constant_B, is set to 100. In this case, the left-hand part of the design will try to

send more tokens than the right-hand part expects. The tokens will not be able to

pass the multiplier. They will back up all the way to CTRL_A and the counter,

causing the system to deadlock.

It is also possible to design systems that do not depend on any programmable

data yet can result in such a deadlock. These cases can still be considered as

examples of deadlock caused by incorrect design, however. Such a case is illus-

trated in Figure 6.6. Here there are four stages in the loop and all are capable

of inserting a token immediately after reset. The loop is illustrated before and

after reset.

6.3 Deadlock caused by arbitration

Sometimes the use of arbiters is unavoidable in a design. While they give the

benefit of reducing control circuitry and increasing parallelism, they typically

introduce non-determinism into the system that can cause deadlock. We will

explore how deadlock due to arbitration can occur, using two examples.
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6.3.1 Arbiter deadlock Example 1

Consider the basic 2 � 2 crossbar presented in Chapter 2. Assume that in this

arbiter the *_Data and *_ToAddr channels, where the asterisks represent S0 or S1,

are independent of each other and that the tokens illustrated in Figure 6.7 arrive at

S3

S2

S1

MERGE

(1)

S3

S2

S1

MERGE

(5)

Environment

S3

S2

S1

MERGE

(3)

Environment

S3

S2

S1

MERGE

(2)

S3

S2

S1

MERGE

(4)

Environment

Figure 6.5. Deadlock due to bubble starvation.
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the inputs of the crossbar. In this case, the tokens A1, B1, C1 should be sent from

S0 to R1, the tokens G0 from S0 to R0, the tokens D0, E0, F0 from S1 to R0, and

the tokens H1 from S1 to R1. The subscripts 0 and 1 indicate the destination ports.

We assume that all tokens are sent back to back and as fast as possible.

Because of the unpredictable delays of the internal wires of the crossbar, the

arbiter of output R1 may see token H1 arriving before token A1 and so grant

token H1 first. Similarly, the arbiter of output R0 may see token G0 before D0 and

grant token G0 first. These events may happen even though A1 was sent before H1

and D0 was sent before G0.

The merge block of output R1 is waiting for data token H1 and the merge block

of output R0 is waiting for data token G0. Until these data tokens are consumed,

all the other tokens, waiting on the other input of this block, will stall. However,

because S0 sent all its data tokens (A1, B1, and C1) even before they were granted

access to output R1, now S0 cannot consume G0. The output of the split block is
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Figure 6.6. Static deadlock of four token buffers T due to bubble starvation, (a) before and
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stalled because of the data token C1 sitting on the 02 output channel. Similarly, the

split block of input S1 cannot consume the data token on its inputs, H1, because

the pipeline between its output and the input of the R0 merge block is full of data

tokens. As illustrated in Figure 6.8, the data tokens that need to be consumed by the

output merge blocks cannot be consumed because there is not enough slack in the

pipeline and therefore the system deadlocks. Note that the buffers on the channels

to provide slack to store multiple tokens are not shown explicitly.

6.3.2 Arbiter deadlock Example 2

Assume that, for the same crossbar as above, the *_Data and *_ToAddr channels

are independent of each other and that there are two requests arriving back to

back on the S0 input channel, one requesting output R0 and the other requesting

output R1, and only one request arriving on the S1 input channel, requesting

output R0 (see Figure 6.9). Notice that while the data for input S1 is arriving at the

inputs, none of the data tokens for input S0 is present. This can happen if the

latency on this channel is longer than on others, or it may be a design requirement.

Assuming that there is enough slack in the design, it is possible that input S0 can

win both arbitrations, since it can issue them one after another even if its data has

not been sent to the first winning output or has not arrived. In this case input S0

will monopolize both inputs and hold access to them, even though its data is

absent. This is illustrated in Figure 6.10.
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Even though S1 has both address and data tokens on its inputs it cannot send to

either output since they are both allocated for the use of input S0. Ideally the data

tokens (two needed for each output) will arrive some time later, allowing S0 to

release the outputs, and then S1 can win the arbitration and send its data to output

R0. However, depending on the system in which this crossbar is used, it is possible

that the arrival of the data tokens at input S0 actually depends on the data input at
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S1 being sent to output R0 first. In this case the output will be used by the system

that instantiates this crossbar to generate the data for S0, which corresponds to

the address tokens that have already arrived. This system will deadlock because S0

has pre-emptively or prematurely requested resources, even though it was not

ready to use them, and this request was granted by the arbiter. However, now it

cannot release them because its data token will never arrive since it depends on S1

sending its data. This is a typical case of the incorrect use of this particular arbiter,

which is too flexible for this system. It is possible to make either the crossbar

stricter or the system that uses it cleverer in order to avoid this deadlock; for

example, one can ensure that the data is not requested until both the address and

the data are ready.

Reference

[1] C. L. Seitz, “System timing”, in Introduction to VLSI Systems, C. A. Mead and L. A.

Conway, eds., Addison-Wesley, 1980.
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7 A taxonomy of design styles

In addition to the various types of handshaking protocol discussed in Chapter 2,

there is a variety of other means to characterize asynchronous design styles, which

provide insight into the relative advantages and challenges associated with each

design style. In this chapter we discuss several of these forms of taxonomy.

7.1 Delay models

The delay model dictates the assumptions made about delays in the gates and

wires during the design process. Generally speaking the less restrictive the delay

assumptions, the more robust is the design to delay variations caused by a variety

of factors such as manufacturing process variations, unpredictable wire lengths,

and crosstalk noise. This robustness, however, often comes at a cost such as larger

area, lower performance, and/or higher power.

7.1.1 Delay-insensitive design

Delay-insensitive (DI) design is the most robust of all asynchronous circuit delay

models [44]. It makes no assumptions on the delay of wires or gates, i.e. they can

have zero to infinity delay and can be time varying. Delay-insensitive circuits are

thus very robust to all forms of variations.

Although this model is very robust, Martin showed that no practical single-

output gate-level delay-insensitive circuits are possible [2]. This result has pro-

found significance. First, to build delay-insensitive circuits the smallest building

block must be larger than a single-output gate. As one example, a network of leaf

cells that communicate with delay-insensitive channels (e.g. 1-of-N channels) is a

delay-insensitive circuit if we consider each leaf cell to be an atomic multi-output

gate. This model is realistic if each leaf cell is a library cell that is physically

designed as a single unit, because the delays within the cell are then small or at

least well verified to be hazard-free under all environmental conditions including

slewed input rates, output loading, and cross-talk due to over-the-cell routing.

Second, Martin’s result motivates the need for less restrictive delay models

appropriate for gate-level design, such as those described below.



7.1.2 Quasi-delay-insensitive design

Martin proposed a compromise to delay insensitivity for gate-level design called

quasi-delay-insensitive (QDI) design [3]. In a QDI circuit, as in a DI circuit, all

gates and wires can have arbitrary delays, except for a set of designated wire forks

labelled as isochronic. Isochronic forks, as the name suggests, have the additional

constraint that the delay to the different ends of the fork must be the same.

This strict and unrealistic definition is often interpreted to mean that the

difference in the times at which the signal arrives at the ends of an isochronic

fork must be less than the minimum gate delay. In fact, the underlying timing

assumption related to an isochronic fork is often much less restrictive. The

purpose of the isochronic-fork assumption is to ensure that the ordering of

transitions at the various inputs of a gate, necessary to preserve hazard freedom,

can be guaranteed. Consider the reconvergent circuit depicted in Figure 7.1. If the

fork F is isochronic, it is guaranteed that the rising transition at B arrives before

the falling transition at A. This means that there is no glitch at C. If the fork were

not isochronic then a glitch at C could occur and the circuit would be hazardous.

In other words, the isochronic-fork assumption can be relaxed to mean that

the delay from one end of the fork to its terminal gate G must be less than the

delay of any reconvergent fanout path through any other end of the fork that also

terminates at G.

The isochronic-fork concept has also been extended in a different way to

consider isochronic timing through a number of logic gates [4]. As in the isochronic-

fork case, the practical timing assumption often relates to the relative delays of

reconvergent paths but, unlike the isochronic-fork case, the shorter path may now

include gates.

Another interesting feature of a QDI design is that, practically speaking,

primary inputs to the design should be unordered. The reason is that, even if the

specification indicates they are ordered, because of the unbounded wire delays to

the gates that they drive the ordering is not guaranteed at these gates.

7.1.3 Speed-independent design

In the speed-independent (SI) delay model, all gate delays can be arbitrarily large

but all wire delays are taken to be negligible [13]. This means that all forks are

isochronic and, unlike a QDI circuit, the transitions of primary inputs to the circuit

F
A

B C

Figure 7.1. Illustration of the isochronic-fork assumption.
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can be ordered. Consequently, the specifications for speed-independent circuits may

include an ordering of inputs that makes little sense for a QDI circuit.

In today’s processes, wire delays can represent a large fraction of the total delay;

thus this delay model is very difficult to guarantee for large circuits. Like a QDI

circuit, however, the underlying delay assumptions in an SI circuit necessary for

correct operation often reduce to the relative delays of reconvergent fanouts,

which are much more likely to be satisfied. Thus, the SI model may be a practical

model from which to do synthesis as long as a more detailed analysis of the

underlying timing assumptions is used to verify correctness after physical design.

In particular, methods to synthesis SI control circuits are well covered in the text

book by Myers [1] and will be briefly reviewed in Chapter 8.

7.1.4 Scalable delay-insensitive design

In the scalable delay-insensitive (SDI) model, a large chip is divided into many

small blocks that communicate using the delay-insensitive (DI) model. Similarly to

the QDI model, the SDI model is an unbounded delay model, i.e. no upper bound

is assumed on the gate and wire delays. However, unlike the DI or QDI models,

in the SDI model it is assumed that the ratio of the delays between any two

components (gates and wires) is specifically bounded [5][6].

7.1.5 Bounded-delay design

In the bounded-delay model, values are assumed for the minimum and maximum

bounded delays of all gates in the circuit. The circuit is guaranteed to work

correctly if these bounds are satisfied. Such timed circuits can have the advantages

of being faster, smaller, and lower in power than their more robust counterparts,

but their design and synthesis procedures are generally more complex. In addition,

extensive post-physical-design analysis is needed to ensure that all bounds are met.

In contrast with QDI and SI, the underlying timing assumptions are explicit in the

form of delay bounds rather than implicit in the form of the relative delays of

reconvergent fanout paths.

7.2 Timing constraints

As we have already discussed, the delay model used during designs has a direct

influence in the timing assumptions necessary to ensure correctness. The more

relaxed these timing constraints are, the more likely it is that the design will work

or can be modified to work. We will describe three categories of timing constraint.

The first is the one-sided timing constraint, which states that the delay of a gate,

wire, or path must be less than or greater than some fixed value. The second is the

two-sided timing constraint, which states that the delay of a specified gate, wire,

or path must be smaller than some value D and larger than another value d.
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Two-sided timing constraints are in general less attractive than one-sided timing

constraints because it is possible that the constraint will not be satisfied in the case

where d is larger than D. In contrast, one-sided timing constraints can usually be

satisfied by adding delays to the design, typically at the cost of some area, power,

and/or performance.

The third type of common timing constraint is referred to as relative timing and

was introduced by Stevens et al. [8]. It constrains the relative delay of two paths in

a circuit, such as the reconvergent paths shown in Figure 7.1. The essential aspect

of this constraint is that the bounds on the paths are not fixed numbers and

consequently correlation between path delays is an integral feature of these

constraints. This form of constraint is also well suited for highlighting the under-

lying constraints associated with a design that, typically, relates to a necessary

ordering among the inputs of a gate. Relative timing constraints can be used to

guide synthesis [9], can be automatically generated from circuits [7], and may be a

good basis for post-layout verification.

7.3 Input–output mode versus fundamental mode

Another fundamental difference between forms of asynchronous circuits is in the

assumptions placed on the environment. In one form of design, the environment

is assumed to satisfy the fundamental-mode assumption, which states that the circuit

is allowed to stabilize before a new set of inputs is applied to the circuit. This

assumption simplifies design and is typically easy to satisfy, particularly if the

environment is slow-changing. However, the assumption must be verified through

post-layout analysis and adjusted as necessary. This assumption is integral to the

burst-mode control-synthesis algorithms to be discussed in Chapter 8, where its

significance will be assessed in more detail.

Alternatively, asynchronous circuits may operate in input–output mode. In this

case, an input transition is causally associated with other transitions on inputs and

outputs. In other words, an input transition can occur as soon as other specified

input and/or output transitions occur. As we described in the context of speed-

independent design, input transitions may be ordered among themselves and can

also be concurrent with expected output transitions. This is a more explicit means

of defining when input and/or output transitions can occur and leads to very

different design and synthesis approaches. In particular, speed-independent cir-

cuits are typically designed assuming this input–output mode, as will be described

in Chapter 8.

7.4 Logic styles

Another significant dimension to asynchronous design is in the style of logic used.

As mentioned in Chapter 1, the two most common logic styles are static and
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dynamic. We provide a brief introduction to these styles in this section and refer

the reader to classic VLSI textbooks for a more complete review [10][11].

7.4.1 Static logic

Static logic units comprise complementary networks of N- and P-transistors. The

N-network ties the output to ground and the P-network ties the output to the

drain supply Vdd. The networks are designed so that for every input combination

there is either an electrical path from the output node to ground or to Vdd.

Moreover, it guarantees that that no input combination yields an electrical path

between ground and Vdd, which would cause static short-circuit current. Consider,

for example, the static three-input NOR gate shown in Figure 7.2(a). The output

O is connected to Vdd when all inputs are 0 and to ground otherwise.

Static logic is robust to noise, because the switching threshold for the gates is

typically around Vdd/2, and they can recover from transient glitches on the input

or output nodes. Moreover, while the sizes of the individual transistors may

impact performance, they will not impact correct functionality.

7.4.2 Dynamic logic

Dynamic logic can have non-complementary N and P networks and may rely on

the output capacitance to hold the output value temporarily. Consider the

dynamic logic implementation of the three-input NOR gate in Figure 7.2(b). In

this implementation the N and P transistors connected to the enable (en) signal

control the precharge and evaluate phases of the gate. When en is high and all

inputs are low, there is no path from the output to Vdd or ground and the output

value is held solely by the output capacitance to ground. The intention is that after

the output is precharged high by en going low, en will go high and the output will

only discharge if at least one of the three inputs is high, thereby implementing the

three-input NOR function.

A

A B C

B

C

O

en

en

A B C

O

(a) (b)

Figure 7.2. Three-input NOR gate implementations: (a) static logic, (b) dynamic logic.
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Most forms of dynamic logic rely on the output being precharged high and then

conditionally discharged. For example, in the dynamic NOR gate it is expected

that the evaluation cycle, i.e. the period for which en is high, is sufficiently small

that the output capacitance on O is large enough to prevent the output high signal

going low via a leakage current through the N-stack. Notice also that a dynamic

gate is more sensitive to noise than its static logic counterpart because glitches on

the input or output of the dynamic gate may accidentally discharge the output,

which will not recover its charge. As we will see later, dynamic logic can be made

pseudo-static by adding a small staticizer to the output, which is designed to

prevent leakage current and hold the state.

The principal advantage of dynamic logic is performance. If the precharge cycle

can be hidden from the critical path, the discharge path uses only N-transistors.

Because N-transistors have a significantly higher mobility factor than P-transistors

they can drive more current for the same transistor width. Consequently, by

removing the P-transistors from the critical path the latter has less gate capacitance,

enabling a 30%–50% increase in performance [10].Moreover, removing P-transistors

can sometimes lead to area savings.

7.4.3 Muller C-element implementations

To illustrate further the differences between static and dynamic logic, we will use

different implementations of the Muller C-element, a common memory element

found in many asynchronous control circuits [13]. It has the next-state logic

function

C0 ¼ ABþACþ BC

where A and B are inputs and C is the output. Thus, when both inputs A and B go

high, the output C goes high. It then stays high until A and B both go low, at which

time it goes low and the process repeats. Illustrations of the abstract C-element

and a pseudo-static logic implementation are shown in Figures 7.3(a),(b). Two

static logic implementations, one in the form of a complex gate and one using

gates typically found in standard cell libraries, are shown in Figures 7.3(c),(d).

Notice how, in the pseudo-static implementation of the C-element, when A and

B do not have the same value there is no direct path from the output to ground or

to Vdd and the output state is held via the staticizer in the form of a weak feedback

inverter. The latter is typically designed to be between one-fifth and one-tenth the

strength of the driving logic (the main N- and P-stacks) because it needs to be

sufficiently weak to be easily overcome by the driving logic when the output

C switches values. If the size of the staticizer is too small then the value on the

internal node may leak away and the state of the C-element may be lost. If the size

of the staticizer is too large then the C-element may not switch values when

required. Consequently, unlike in static logic, the relative size of transistors is

important in ensuring correctness. This also means that the functional correctness
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of dynamic implementations is sensitive to the process variations that often impact

transistor strengths.

Another concern with the dynamic implementation is charge sharing. Charge

sharing occurs when transistors turn on in the N- or P-network but it is not

intended that the output should switch values. In particular, the charge on the

output node must equalize with all nodes electrically connected to it and thus

the output node may change from its nominal Vdd or ground value. If the change is

too great, the output node may inadvertently switch. Again, careful transistor

sizing and post-layout simulation and verification is necessary to ensure that the

degree of charge sharing is manageable. During this analysis it is important to

account for or leave margins for other noise events that may simultaneously make

the output node switch [10].

The complex-gate static implementation shown in Figure 7.3(c) avoids the

charge-sharing problems arising with dynamic logic and is somewhat compact.

The standard-cell alternative is substantially larger but has the advantage of using

readily available library cells. The standard-cell implementation also has an

implicit fundamental-mode timing assumption: the feedback path must stabilize

before subsequent input transitions can occur. This timing assumption is generally

easily satisfied, but care must be taken if it cannot be ensured that the feedback

delay will be relatively small.

C
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B
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C

A

B

C
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Figure 7.3. An abstract C-element and its various descriptions: (a) abstract symbol,
(b) pseudo-static implementation, (c) static complex-gate implementation, (d) static
standard-cell implementation.
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7.4.4 Asymmetric C-elements

Another common form of an asynchronous latch is the asymmetric C-element,

in which some inputs are involved only in the rising or falling transition, but not

both. In this book we indicate asymmetric C-elements as in Figure 7.4, in which

signals required for a positive transition of the output are labeled with a plus

and signals required for a negative transition are labeled with a minus (this is

similar to what was proposed in [17]). In addition, inverted inputs and outputs

are denoted as usual with a small empty circle at the associated ports. In

particular, in a pseudo-static implementation of an inverted C-element, the

output can be taken directly after the dynamic logic and the output inverter

becomes part of the staticizer, as illustrated in Figure 7.4(d). Extending the

asymmetric input convention to invertedC-elements, as illustrated in Figure 7.4(c),

a plus (minus) on an input port means that an input is required for the inverted

output to fall (rise).

7.5 Datapath design

Datapath design in asynchronous circuits is different from that in synchronous

circuits, in that often it must be accompanied with circuitry that indicates when

the computation is complete and the output is valid. The methods to accomplish

this vary and provide tradeoffs in robustness, area, power, and performance.

(a)
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(c)
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_

B
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B

C
D

C
CC

Figure 7.4. Asymmetric C-element gate notation and pseudo-static implementations.
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7.5.1 Bundled data

The simplest form of datapath design uses standard static logic as in synchronous

ASIC design. This has the advantage that standard libraries and synthesis tools

that can automatically generate the datapath logic can be employed. The logic is

accompanied by a delay line triggered when the input data is valid, the output of

which signals that the computation is complete and that the output of the logic is

valid and should be stored, as illustrated in Figure 7.5. Various forms of delay line

and storage element have been developed and these will be explored in Chapter 9.

In some high-performance full-custom synchronous designs, the datapath is

designed using domino logic. Domino logic comprises alternating stages of

dynamic and static logic gates. It has the benefit that data input to the dynamic

gates has 0-to-1 transitions during the evaluation mode. As early stages of the

logic evaluate, this triggers the evaluation of later stages. In the example illustrated

in Figure 7.6, when Clk goes high, the domino logic enters the evaluation mode. If

A is 1 then the first dynamic stage will discharge, causing D to rise. This in turn

will cause the second stage to discharge, if G is also 1, thereby causing H to rise.

This successive discharging can be seen as dominoes falling in a cascading fashion.

Notice that in Figure 7.6 the static gate is simply an inverter; however, more

complex static gates are also possible as long as they are still inverting. This is

essential to ensure that the inputs to the domino logic satisfy the monotonicity

Clk

A B C

Clk

D Clk

E F

Clk

G

H

Figure 7.6. Example of two stages of domino logic.
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Comb
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Lack

Ldata

Rreq
Rack

Rdata

Figure 7.5. A bundled-data pipeline stage.
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requirement, according to which inputs can only make transitions from 0 to 1 during

the evaluation period. Violations of this requirement, transitions from 1 to 0 on

inputs, would cause an accidental discharge of the domino logic [10].

When domino logic is applied to asynchronous design, the Clk signal is replaced

with a local asynchronous control signal and staticizers are sometimes added to

internal nodes to avoid the need for explicit latches or flip-flops. Specific templates

that use domino logic will be discussed in Chapters 11 through 13.

7.5.2 Quasi-delay-insensitive design

The most robust form of datapath design uses delay-insensitive or quasi-delay-

insensitive techniques. This involves designing the datapath using dual-rail or

1-of-N encoding and building completion sensing to establish when the outputs

are valid. The 1-of-N logic can be implemented statically or dynamically using

domino or other dynamic logic families. The key difference from synchronous

design is the requirement that the inputs and outputs are in the form of 1-of-N

channels and that completion-sensing circuitry is used to determine the validity of

the channels. A 1-of-N channel can be completed by a simple ORing of the

channels. The OR gate goes high when one channel goes high, indicating validity,

and stays high until that channel is lowered, indicating neutrality. Determining

when a bundle of channels is valid or neutral can be done by combining the OR

gate output’s with a tree of C-elements. Figure 7.7 illustrates a simple completion-

sensing circuit for three channels: A and B are both dual-rail 1-of-2 channels and C is

a 1-of-3 channel. Of course, bubble shuffling can be used to map the design to

typical library cells, take inverted channel inputs, or simply optimize the design.

A typical problem with completion-sensing logic is that it adds significant

amounts of delay to the design that can overshadow the performance advantages

of the 1-of-N logic. For example, for a 32-bit datapath consisting of 32 dual-rail

channels, the C-element tree would be responsible for merging 32 two-input OR

gate outputs, which requires five levels of two-input C-elements. Fortunately, the

completion-sensing delay can be largely hidden from the forward latency of a

series of computations if the next computations are performed in parallel with the

completion sensing. In particular, if the control logic ensures that the next block in

the series of computations is in evaluation mode, so that it can evaluate as soon as

it receives valid data from the previous block output, the only overhead in latency

is the extra side load associated with the completion-sensing logic. In fact, this is a

common theme of many QDI and timed pipeline templates, which will be dis-

cussed in later chapters, and consequently many templates achieve close to pure

domino logic latency.

That said, a large completion-sensing delay can limit throughput. One means of

mitigating this throughput limitation is to build blocks that operate on only a

small number of bits by decomposing wide datapaths into communicating parallel

blocks. This means that, in addition to pipelining the datapath via its function (i.e.

vertically), the datapath is also pipelined via its bitwidth (i.e. horizontally),
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forming a two-dimensional pipeline of asynchronous blocks. This technique is also

common in many of the design templates that we will see in later chapters.

7.5.3 Hybrid techniques

It is also possible to have a hybrid approach that combines the completion-sensing

and timing assumptions associated with the delay lines or, more generally, the

control delay. A good example of this is the adders presented by Yun et al. [17].

The carry logic is implemented in dual-rail domino logic and has completion-

sensing circuitry that identifies whether the carry signals are valid. The sum logic,

however, is implemented by normal domino logic, and there is a timing assump-

tion that ensures that the sum logic is valid before the completion-sensing circuitry

triggers a “done” signal. Yun et al. also proposed to hide the completion-sensing

delay in the delay due to static routing of the output signals to the next functional

unit [17]. These techniques require a post-layout verification that valid data arrives

at its destination only after the associated control signal has indicated its validity.

In addition, Yun et al. proposed to precharge the completion-sensing unit.

In this way the unit checks validity, but checking neutrality is not explicitly

performed and reliance is placed on a safe timing assumption. With removal of

P-transistors, the completion-sensing logic turns into a precharged OR–AND

circuit. Consequently the falling transition of the valid signal, V, can be relatively

quick, reducing cycle times and thereby improving performance. An optimized

transistor-level design of a precharged completion-sensing circuit for the carry

outputs of a 32-bit adder from [17] is illustrated in Figure 7.8. This type of timing

assumption has also been called implied neutrality [45].

7.5.4 Indictability

Another means of describing datapath logic is based on the concept of indict-

ability – the relationship between valid outputs and valid inputs. There are three

possibilities. First, if when the outputs go valid (neutral) this indicates that

all inputs have become valid (neutral) then the function block is said to be

V

C

C

A0

A1

B0

B1

C0
C1
C2

Figure 7.7. A simple completion sensing circuit for three channels.
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weak-conditioned or strongly indicating [12][14][16]. Second, if when the outputs

go valid this indicates that all inputs are valid but that the outputs can go neutral

before all the inputs go neutral then the function block is said to be semi-

weak-conditioned [15]. Third, if when the outputs go valid (neutral) this indi-

cates that only some, but not necessarily all, inputs have become valid (neutral)

then the function block is said to be weakly indicating [12][14] or not weak-

conditioned [16].

As an example, consider three transistor-level implementations of a two-input

dual-rail OR gate, as shown in Figure 7.9. The implementation in Figure 7.9(a) is

weak-conditioned because (i) the output cannot go valid until both dual-rail input

channels have become valid and (ii) the output cannot go neutral until both dual-

rail inputs channels have gone neutral. Condition (i) is guaranteed because every

path to ground through the N-network goes through an N-transistor connected to

either the 0 or the 1 rail of both input channels. Condition (ii) is guaranteed by the

stack of four P-transistors. The domino-logic implementation in Figure 7.9(b) is

not weak-conditioned, because the P-network has been replaced with a single

precharge transistor. Consequently, if the “enable” input is lowered before all

other inputs become neutral, the output will immediately become neutral. In fact

this implementation is semi-weak-conditioned, because the N-network has not

changed and consequently the output cannot become valid until all inputs (includ-

ing the enable) have become valid. The last implementation, in Figure 7.9(c), is

more efficient in terms of the transistor count but is only weakly indicating,
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Figure 7.8. Precharged completion sensing unit.
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because if one input channel becomes valid and the enable signal is high then

the domino logic will evaluate without waiting for the second input channel to

become valid.

While we have illustrated indictability for a single-level dual-rail function block,

the concept extends naturally to multi-level function blocks with no cycles and no

dangling internal nets. Moreover, it has been shown that if every gate is strongly

(weakly) indicating then the multi-level function network is also strongly (weakly)

(b)
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Figure 7.9. Three implementations of a two-input dual-rail OR gate: (a) weak-conditioned,
(b) semi-weak-conditioned, (c) not weak-conditioned. The enable inputs are indicated by en.
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indicating [12]. We believe that the result extends to semi-weak-conditioned logic

but this has not been formally proven yet.

The indictability of the logic has an important consequence in the design of the

control circuits surrounding the function blocks that generate acknowledgement

signals. In general, it is necessary that an input channel is not acknowledged until

valid data is received on it. Consequently, in semi- or weakly indicating function

blocks, additional completion sensing on the input channels (in addition to the

output channels) is sometimes needed to ensure that the input channels are valid

before sending their associated acknowledgement. The role of the input comple-

tion-sensing block will be discussed in more detail in the QDI templates described

in Chapter 11.

7.6 Design flows: an overview of approaches

A variety of different design flows have been proposed for asynchronous circuits,

and this section describes the more popular approaches.

7.6.1 Communicating sequential process language refinement

Martin and coworkers pioneered a correct-by-construction approach for the

design of quasi-delay-insensitive circuits. The process begins with a sequential

specification in communicating hardware processes [3], a variant of the CSP [19]

that we described in Chapter 3.

This sequential specification is decomposed into concurrent processes commu-

nicating via asynchronous channels. The decomposition introduces both parallelism

and pipelining. Because the target is a high-speed QDI design, the decomposition

often introduces two-dimensional pipelining, i.e. pipelining is added both vertically

and horizontally.

Once a leaf-cell communicating sequential process (CSP) is achieved, the next

step is to expand the handshaking on the channels and synthesize the control

circuits into gates and transistors. Many different templates of leaf cells and

handshaking expansions have been used in Caltech designs; Martin and Burns

developed a synthesis procedure to generate QDI designs from any possible

handshake interleaving [24]. Lines analyzed these expansions and concluded that

only a few templates are practically useful [16]; all these studies focused on 1-of-N

delay-insensitive channels. We will discuss template designs in Chapter 11. Beerel

and coworkers adopted this decomposition procedure for other types of channel

and timed template, including single-track templates, which will be discussed in

Chapter 13.

Efforts to automate CSP decomposition have been made by Wong and Martin

[30][31] and are called data-driven decomposition. In this approach, a sequential

CSP process is decomposed into a set of smaller concurrent CSP processes on the

basis of the data dependencies and a projection technique proposed in [31].
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Similarly, Teifel and Manohar demonstrated data-driven decomposition that

efficiently maps CSP processes into predefined pipelined circuit blocks imple-

mented in a field-programmable gate array (FPGA) [29].

7.6.2 Syntax-driven translation

In a similar way, Philips developed a synthesis tool using the CSP-like program-

ming language Tangram [21][20]. A behavioral description expressed by Tangram

is translated using syntax directed translation into an intermediate form based on

handshake circuits, which represent abstract asynchronous blocks. The key differ-

ence from the data-driven decomposition in Martin’s decomposition-based

approach is that the “;” in CSP is translated explicitly as sequencing even if the

implicit data dependencies allow more parallelism. This provides a level of trans-

parency between the specification and final implementation but makes achieving

high-performance designs more challenging.

Handshake circuits can map to multiple design back-end implementations,

i.e. QDI and/or bundled-data [22][23]. Additionally, peephole optimizations have

been proposed to further improve the area and speed of a design. Bardsley and

Edwards adopted the syntax-directed translation approach of Tangram and built

a new synthesis tool called Balsa [33][34][35], which is freely available for down-

loading. Additionally, Nowick and coworkers developed controller optimizations

targeting a burst-mode oriented back-end implementation for Balsa [37][38].

7.6.3 Gate-level netlist translation

Linder and Harden developed a synthesis approach that uses commercial synthe-

sis tools to generate a netlist and then translates this netlist to the delay-insensitive

asynchronous implementation called phased logic [39]. Each gate in the netlist is

replaced with a dual-rail gate using a special encoding called level-encoded two-

phase dual-rail (LEDR) [40]. This encoding scheme is beneficial for reducing

power consumption, since fewer transitions are required per data token propagat-

ing through a stage. However, it requires additional feedback connections to be

inserted in the original netlist to ensure safeness [39].

Theseus Logic introduced a design flow that uses a new logic family called null

convention logic (NCL) [27][41]. In this design flow, large designs are synthesized

using commercial synthesis tools. Then synchronous registers in the datapath

netlist are replaced by asynchronous registers that communicate using a delay-

insensitive handshaking protocol. However, this design flow produces pipelined

circuits that are architecturally equivalent to the synchronous register transfer-

level (RTL) implementation and typically coarse-grained. Thus, large completion-

detection circuits slow down the speed of the design. Another key drawback is that

the behavioral specification is extended to include the notion of channels to

implement handshake mechanisms between datapath and control. This requires
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designers to specify manually some handshake signals in the specification, which

makes the existing RTL hard to reuse [41].

Another gate-level-translation approach that automates the design of asyn-

chronous circuits from synchronous netlists is de-synchronization, proposed in

[25][26]. This approach translates synchronous netlists synthesized by commercial

synthesis tools to asynchronous implementation by replacing the global clock

network with a set of asynchronous controllers. Several new and existing four-

phase handshaking protocols for latch controllers are proposed. The benefits of

this de-synchronization approach are that it provides a fully automated synthesis

flow, does not require any knowledge of asynchronous design by the designer, and

does not change the structure of synchronous datapath and controller implemen-

tation since it only affects the synchronization network. However, the target

architecture of this method is restricted to micropipeline design.

None of the above approaches can support the synthesis of automatic pipelining

and yield a performance on the level of the original specification. Smirnov and

coworkers proposed a design flow that translates the behavioral specification to

QDI pipelined asynchronous circuits by synthesizing a synchronous implementa-

tion using commercial tools and translating (“weaving”) it into an asynchronous

pipelined implementation [28]. The advantage of this approach is that it demon-

strates a general framework for the automated synthesis of pipelined asynchron-

ous circuits. However, fine-grained pipelining can eliminate opportunities for

resource sharing in low-performance applications and also incurs a high area

penalty.

Furthermore, none of the approaches so far discussed includes slack elasticity,

implying that further performance optimization may be needed. Moreover, these

approaches do not fully address the development of conditional communication

and/or gated clocking. Consequently, unnecessary tokens may be generated and

transmitted between blocks, which causes unnecessary power consumption and

also may limit system performance. Thus, adding conditional communication in

this approach is an interesting area of active research.

7.6.4 High-level synthesis-based approaches

Many synthesis procedures utilize commercial synchronous high-level synthesis

engines, which translate behavioral hardware description languages to gate-level

netlists as the front end of their tools. The back-end tools map and optimize

such netlists to asynchronous designs. The key drawback of this approach is that

the netlists generated may not be optimally synthesized for the required targets,

since current commercial synchronous synthesis tools do not support several key

parameters that can profoundly impact such targets. In particular, the tools

typically do not understand the notions of global and local cycle time, thus

disabling an opportunity to share resources. We briefly describe these approaches.

Jacobson and coworkers proposed a synthesis framework called ACK [36]. This

approach utilizes existing synchronous synthesis flow and tools for datapath
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synthesis. Control circuits are modeled and synthesized using distributed burst-

mode specifications [42]. Yoneda and coworkers synthesized a high-level C-like

language using SpecC to generate asynchronous timed gate-level circuits, where

the control is modeled and synthesized using a signal transition graph (STG) -based

approach allowing global timing optimization [43]. Theoretical work was performed

by Tugsinavisut et al. [46] to explore algorithms for resource sharing in multi-

threaded applications.

7.7 Exercises

7.1. Design a two-input AND gate in (a) weak-conditioned, (b) semi-weak-

conditioned and (c) non-weak-conditioned logic.

7.2. Is a dual-rail domino block by definition semi-weak-conditioned? Why or

why not?

7.3. Design a three-input XOR gate in domino logic and in dual-rail domino

logic, using two-input domino and dual-rail domino XOR gates. Compare

the numbers of transistors needed in your two implementations.

7.4. Design a three-input AND gate in domino logic and in dual-rail domino logic

out of two-input domino and dual-rail domino AND gates. Compare the

numbers of transistors needed in your two implementations.

7.5. A function f is positive unate if, for any two n-bit inputs a� b, f(a)� f(b). Here

a�bmeans ai�bi for all n bits. Consider two functions f1 and f2, one of which

is positive unate and another which is not. What can you say about the

transistor count ratios of dual-rail domino and domino implementation of

these two functions?
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8 Synthesis-based controller design

This chapter focuses on synthesis-based asynchronous controller design. Such

designs use a bounded delay model, similarly to synchronous circuits. In this par-

ticular design methodology the datapath is decoupled from the control logic. Often

the very same synchronous datapath can be used directly, withminormodifications.

Figure 8.1 below illustrates a synthesis-based controller in a synchronous pipe-

line, providing the clock (Clk) to the flip-flops. A separate synthesis-based con-

troller can be designed uniquely for each stage of the pipeline, or a more general

circuit can be specified and synthesized to fit all pipeline stages. Figure 8.1(a)

illustrates a standard synchronous pipeline. In Figure 8.1(b) the Clk signal has

been stripped out of the pipeline, and the controllers are placed so as to provide

the latching signal for the flip-flops.

In this chapter we will first present some background on burst-mode circuits

and on ways to build these controllers. We will then review approaches for

building input–output circuits from signal transition graph specifications.

8.1 Fundamental-mode Huffman circuits

In the fundamental-mode style [1], circuits consist of a network of combinational

gates that take inputs, move the circuit from one state to another, generate

outputs, and also generate the next-state logic, similarly to the way in which

standard synchronous circuits operate. The next-state outputs feed back through

the delay elements and arrive at the inputs of the controller as the current state.

Sometimes delays on feedback paths are necessary, however, they are not shown

explicitly in Figure 8.2.

The circuit is traditionally expressed as a flow table, which has a row for each

internal state and a column for each combination of inputs, as illustrated on the

left inFigure 8.3.The entries indicate the next state entered and the output generated

when the column’s input combination is seen while the circuit is in the row’s state.

States where the next state is identical to the current state are called stable states. It is

assumed that each unstable state leads directly to a stable state, with at most one

transition occurring on each output variable. As in finite-state-machine synthesis

in synchronous systems, state reduction and state encoding are performed on the

flow table and Karnaugh maps are generated for each resulting signal.



Several points need to be considered for this design method. The system

responds to input changes rather than clock ticks. A new set of inputs is allowed

to change only after the circuit has responded to the previously applied input and

settled down in a stable state. Circuits where only one input is allowed to change

are known as single-input-change (SIC) circuits; the more flexible versions, where

multiple inputs are allowed to change, are known as multiple-input change (MIC)

circuits.

1 , 0 2, 0

2 , 0 3, 1

3 , 11, 0

00 01 11 10
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Figure 8.3. Fundamental-mode Huffman circuit flow table.
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Since hazards, static or dynamic, can cause the circuit to enter an unstable state,

they must be eliminated. One way to achieve this is for the designer to add a sum-

of-products circuit that has a functionally redundant product. Hazards will be

covered further in subsection 8.2.2.

8.1.1 Burst-mode design

Advanced synthesis tools to optimize burst-mode designs have been pioneered by

Steven Nowick and his group at Columbia University. This includes various logic

synthesis and state assignment techniques that tradeoff algorithmic complexity,

area, and latency [2][3][4]. They have included many of these techniques in a public-

domain downloadable package called MINIMALIST [5]. Professor Nowick has

also developed various interesting designs using burst-mode techniques, including

low-latency “relaystations” for network-on-chip systems [6] and applications to

peep-hole optimization of syntax-directed-translation-based circuits [7][8].

8.1.2 Burst-mode circuits

The burst-mode design style is a generalization of the traditional multiple-input

change (MIC) mode, developed in [9][10]. This design style is based on the earlier

work at the Hewlett–Packard laboratories by [11] and is an attempt to move even

closer to synchronous design than the Huffman method. In burst-mode circuits,

a number of inputs can change simultaneously; hence, in a burst fashion, and in

response, a number of output signals can also change. In this method circuits are

specified via a standard state machine, in which each arc is labeled by a non-empty

set of inputs (an input burst) and a set of outputs (an output burst). The assumption

is that, in a given state, only the inputs specified on one of the input bursts leaving

that state can occur. The inputs are allowed to occur in any order. The state reacts

to the inputs only when all the expected inputs have occurred. The state machine

then fires the specified output bursts and enters the specified next state. New

inputs are only allowed to occur after the system has reacted completely to the

previous input burst. The fundamental-mode assumption must still hold between

transitions occurring in different input and state bursts. Figure 8.4(a) shows a

block diagram for a burst-mode machine. Figure 8.4(b) illustrates the burst-mode

state diagram specification.

8.1.3 Burst-mode specification

To design or synthesize burst-mode circuits successfully, the user-defined burst-

mode specificationmust satisfy a number of important restrictions. These are under-

stood more easily from the examples given in Figures 8.5–8.7 and discussed below.

Starting in a given state, the machine remains stable in that state until a

complete input burst arrives. Individual inputs within that burst may arrive in

any order and at any time. Once the last such input arrives, the burst is complete.
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The machine then generates the corresponding output burst, if any, and moves to

the specified next state. The environment allows the machine to settle, and the next

cycle begins.

1. The input bursts cannot be empty but the output bursts can be empty In the

absence of input changes, the machine remains stable in its current state. This is

illustrated in Figure 8.5. The transition from state 5 to state 0 requires the input

to go low; however, none of the outputs have changed and therefore the output

burst is empty.

2. Maximal set property No arc leaving a given state may possess an input burst

that is a subset of any other arc leaving that state. This property ensures that,

at all times, the state machine can decide unambiguously whether to follow a

transition or remain stable. This is illustrated in Figure 8.6. If this property is

violated then the problem is that there will be ambiguity when only Aþ arrives.

What happens in this case? Does the state machine wait for Cþ and then

output Z� and go to state 1 or does it immediately output Z�, Yþ and go

to state 2? There is an ambiguity here that has to resolved.

Hazard-free
combinational

network

Inputs Outputs

Next
state

Output burstInput burst

(a)

1

2Next state

Current state

Input burst / Output burst
A+, C– / X+, Y–

Burst-mode specification

(b)

Figure 8.4. (a) Burst-mode circuit diagram and (b) state diagram.
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3. Unique entry point Each specification state must be entered by a unique set of

input values. In the example illustrated in Figure 8.7, there are two paths from

the initial state 0 to state 3. Assume that at state 0 the initial values of the input

signals are given by ABCD ¼ 0000. Then A must go high to go to state 1 and

from there C must go high to go to, or in other words enter, state 3. Now

consider the other path. Starting at the initial state 0, the input signals again

being set to all zeros, B must go high to enter state 2 and from there D must go

high to enter state 3. While no matter which path we take we end up with the

same output signals high or low, this is not the case for the input signals. This

constitutes a violation of the burst-mode specification: there must be a unique

set of inputs to reach or enter a given state. One solution is illustrated below, in

0

1 2

3

4

5

A+, B+ /
Y+, Z–

A+, C+ / Z–

C– / Z+

C+ / Y–

B– /
C+, Z+

A– / Y– C– / – –

Initial values
ABCYZ = 00001

Figure 8.5. Burst-mode specification (see Figure 8.4) with empty output burst.
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1 2

A+ / Y+, Z–A+, C+ / Z–

Illegal:
{A+} is a subset of {A+, C+}

0

1 2

A+, B+ / Y+, Z–

Legal:
{A+, B+} is not a subset of {A+, C+}

A+, C+ / Z–

Figure 8.6. Burst-mode specification: maximal-set property.
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which more states are inserted on the path by splitting state 3 to states 4 and 5.

Now we have at least one more state on each path to allow us to unify the

entry point.

4. The burst-mode specification of the state machine must capture all expected

input events. For example, in the specification illustrated in Figure 8.5 Bþ, Cþ
is not specified and therefore is an unexpected event. If this input burst should

happen, it would be a violation of what the state machine expects and so there

is no way to predict how the state machine would behave.

8.1.4 Hazards

One of the biggest differences between asynchronous and synchronous circuits

is the importance of hazards and the way these circuits deal with them. In a

synchronous system, the signals are free to transition as much as the logic in

between the flip-flops permits, as long as they become stable before the rising edge

of the clock or setup time is reached. In other words the only requirement is that

the signals be stable around the point at which they are sampled.

A synchronous pipeline is illustrated in Figure 8.8. The shaded area indicates

that signal b is allowed to change in response to a change in signal a. At the rising

edge of the clock, signal a starts feeding the combinational logic. Signal b has

almost the whole clock period to stabilize before it is sampled.

However, in an asynchronous system, since there is no clock, signals are not

always sampled at discrete intervals but, rather, their transition from 0 to 1 or

from 1 to 0 is used to communicate events. Therefore a glitch in the control logic

of asynchronous circuits may be interpreted as a request to transition state,

making the state machine go to an unexpected state and causing the system to

malfunction. Therefore, it is important to eliminate hazards in asynchronous

control circuits.

0

1 2

B+ / Y+A+ / Z+

Entering state 3 from state 1 : ABCD = 1010, YZ = 11
Entering state 3 from state 2 : ABCD = 0101, YZ = 11

Illegal: two different input or output signal values
when entering state 3

0

1 2

A+, B+ / Y+, Z–A+, C+ / Z–

3 4 5

C+ / Y+ D+ / Z+

Legal: split state 3

Figure 8.7. Burst-mode specification: unique entry point.
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Static hazards

A static hazard occurs when a single-variable change at the input causes a

momentary change on the output(s). Consider the example in Figure 8.9.

If the signal D goes from 1 to 0, the output of the top fast AND gate will go to

0 faster than the output of the bottom slow AND gate goes to 1 (see Figure 8.10).

For this reason, for a short time the output of the OR gate will go low and then it

will go high again. If both AND gates operated at the same speed then we would

not observe this static hazard.

One way to eliminate such a hazard is to change the sum-of-products to the

alternative illustrated in the Karnaugh map in Figure 8.11. In this case the signal

D is no longer an input to the slow AND gate and therefore the resulting circuit is

hazard-free.

Dynamic hazards

A dynamic hazard occurs when an output changes more than once, unlike a static

hazard, which occurs when an output changes only once. Dynamic hazards exist

when there are multiple paths with multiple delays from the changing input to the

changing output. Figure 8.12 illustrates a Karnaugh map and the resulting circuit,

which has a dynamic hazard.

In this example the initial value of ABCD is 0101. As signals A and C transition

from 00 to 11, they propagate through the wires and gates at different rates

a

Clk

b

Setup time

Figure 8.8. Synchronous pipeline.
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Figure 8.9. Static hazard example.
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because of different delays. As A transitions to 1, the outputs of AND1 and AND2

go low. However, if AND3 is slow then its output will remain at 0 and in this case

the output of the OR gate will go low. As the C input goes high the output of

AND3 will go high, pulling the output of the OR gate high. After a while, finally

the A input to AND3 will go low, transitioning the output of AND3 low, and the

output of the OR gate will go low again. Therefore even though the output of the

OR gate is finally 0, it has experienced a dynamic glitch by going first low, then

high, and finally low again. The timing diagram is illustrated in Figure 8.13.

This dynamic hazard can be removed by rearranging the sum-of-products as

indicated in Figure 8.14.

8.1.5 Burst-mode design example

In this subsection a four-phase controller for an asynchronous linear pipeline

that satisfies the fundamental-mode requirement will be implemented as a design

example. A three-stage synchronous pipeline is illustrated in Figure 8.15(a). The

pipeline consists of three basic parts, BitGen, Incrementer, and eight-bit registers.

BitGen generates tokens of value 0, 10, 20, and so on, one time unit after the clock
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Input change: D1 → 0
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Figure 8.11. Static hazard removal.
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Figure 8.10. Static hazard timing diagram.
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goes high. The delay through the register is also one time unit. In this asynchro-

nous design the clock signal Clk is replaced with controllers created using MIN-

IMALIST, a tool that can synthesize burst-mode circuits. These asynchronous

controllers are placed as illustrated in Figure 8.15(b).

The first step in building the main pipeline controller is to design a state

machine. First we will consider a basic three-state bust mode specification, as

illustrated below in Figure 8.16. In the three-state solution the machine waits at

state S0 until there is a request from the left-hand channel on Lreq. When such a

request is present Lreq is pulled high by the preceding stage. The state machine

moves to state S1 and forwards the request to the following stage by pulling

the right-hand request signal, Rreq high. At the same time it pulls the left-hand

acknowledge signal Lack high to indicate to the preceding state that it has received

the request. It also latches the D flip-flop (DFF) to store the data from the

incrementer or the previous stage by pulling the en signal high.

The potential problem with this solution is that after Lack� fires and before

Rack� occurs, Lreqþ may occur. Also, even if Rack� occurs first, Lreqþ may

00 01 11 10
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Figure 8.12. Dynamic hazard example.
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Figure 8.13. Dynamic hazard example timing diagram.
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occur before the circuit settles down again. The former is a violation of the

specification and the latter is a violation of the fundamental-mode assumption.

It is possible to argue, however, that a sufficiently large asymmetric delay line

after Rreq guarantees that Rack� will come well before the next Lreqþ signal.

Therefore, using such a delay and making sure that the implementation satisfies

this assumption, this machine should work.

Figure 8.17 illustrates the same controller specified using a two-state burst-mode

machine and Figure 8.18 illustrates the circuit synthesized from the state machine.

The primary inputs to the controller are Lreq and Rack. The Rack, en, and Rreq

outputs are all generated from the same logic; note how the feedforward logic

creates the primary outputs and the next-state data. The above implementation

lacks reset logic, however. Upon reset the circuit must be forced to go to a

deterministic initial state, upon which it can begin operation. Ideally, reset is added

to the feedback path rather than the forward path, so that the forward path’s delay,
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Figure 8.14. Dynamic hazard removal using a new sum-of-products.
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which is typically critical, is not increased. However, applying this approach to the

case above will have the result that the path from the top-most AND gate, AND

(Lreq, Rack), to the primary outputs (Rack, en, andRreq) cannot reset properly. In

particular, consider the case where the bit-generator controller is not reset. Then,

there is a cycle, from the buffer’s Lack output back to the buffer’s Lreq through

the bit-generator controller, that is not broken by reset. In fact, at initialization and

even during reset the logic values of these gates are unknown. In simulation the

signals along this cycle and all following nets will be an “X” throughout the wave-

form. Simply put, after reset the circuit will be in an unknown state.

To avoid this, we can add reset to the bit-generator controller. In particular, at

reset the first Lreq coming from bit generator as Rreq should be 0. This will make

all the outputs of all buffers go to 0. Reset should be asserted long enough for this

0 to trickle to the end of the pipeline.

8.2 STG-based design

An alternative means of specifying asynchronous control circuits is using signal

transition graphs, first introduced by Chu 1985. STGs are interpreted Petri-nets,

in which each Petri-net transition represents a rising or falling transitions of an

S0

S1

Lreq+, Rack– /
Rreq+, Lack+, en+

Lreq–, Rack+ /
Rreq–, Lack–, en–

Figure 8.17. A two-state burst-mode state machine.
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S1S2

Lreq+ /
Rreq+, Lack+, en+

Lreq–, Rack+/
Rreq–, Lack–, en–

Rack–

Figure 8.16. A three-state burst-mode state machine.

146 Synthesis-based controller design



input or output signal. STGs can exhibit greater concurrency than burst-mode

machines as they allow greater concurrency between inputs and output transi-

tions. Instead of relying on notions of fundamental mode in which the control

circuit must stabilize before a new input transition is allowed, STG-based circuits

operate on the input-output mode described in Section 7.3. The STG defines when

new input transitions are allowed to occur, typically in response to some output

transition. The basic requirements for STG specifications to be implementable is

that transitions on every signal alternate between rising and falling and the

underlying Petri-net be safe.

8.2.1 STG example

As an example, the linear pipeline controller described as a two-state burst mode

machine can be reformulated as an STG specification with the same concurrency

as the burst-mode diagram illustrated in Figure 8.19 {FIXME}, with a few notable

exceptions. First, for simplicity, we excluded the enable signal that in practice

this could be implemented with a buffered version of Rreq. Secondly, the STG

explicitly shows the causality between the signal transitions that is less obvious

in the burst-mode diagram. In particular, the STG shows that the input signal

Lreq

Rack
Rack
en
Rreq

Fundamental-
mode

controller

Inputs Outputs

Next
state

Next state

Figure 8.18. A burst-mode circuit synthesized from the two-state specification.
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transitions on Lreq depends only on the output transitions of Lack and not on any

signal in the right environment. Similarly, the input signal transitions on the input

Rack depend only on the output transitions of Rreq and not on any transition of

the left environment.

Notice also that the initial marking of the STG, indicates the initial state of the

controller, which in this case is where Lack=0, Lreq=0, Rreq=0, and Rack=1,

the latter indicating that the right hand environment. As in burst-mode design, an

implicit reset signal input may be necessary to guarantee that the circuit initializes

in this state.

8.2.2 CAD tools for STG-based controller design

Using STG specifications both bounded-delay circuits as well as speed-

independent circuits can be synthesized. In addition, explicit and relative-timing

assumptions, if known, can be used to further optimize these circuits [12][13].

Early work in synthesis of STG-based circuits relied on the entire state space of

the STG to be enumerated from which binate-covering algorithms can be used

to generate two-level logic structures and C-elements [14]. Later work use

structural and partial-order techniques to address the complexity issues [15] and

more powerful theory of regions that enabled more practical multi-level-logic

implementations [16]. Much of this work has been made incorporated in the

public-domain downloadable tool Petrify developed by Professor Cortadella and

his colleagues [17].

Lreq–

Lreq+

Lack–

Lack–

Rack+

Rack–

Rreq+

Rreq–

Figure 8.19. STG-based specification of a linear pipeline controller.
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A speed-independent implementation of the specification in the above figure, is

simply a Muller C-element with an inverted input on Rack that drives both Lack

and Rreq, as shown in Figure 8.20.

8.3 Exercises

8.1. State whether the signal transition graph (STG) in Figure 8.21 is in violation

of the burst-mode-specification. If so correct the STG.

8.2. State whether the STG in Figure 8.22 is in violation of the burst-mode

specification. If so correct the STG.

8.3. State whether the STG in Figure 8.23 is in violation of the burst-mode

specification. If so correct the STG.

Lack Rreq

Rack
C

Lreq

Figure 8.20. A speed-independent implementation of the STG in Figure 8.19.
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Figure 8.21. Signal transition graph for Exercise 8.1.
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9 Micropipeline design

One of the earliest and most widely used asynchronous design styles is

micropipelines. The basic concept and name was presented in Ivan Sutherland’s

1989 Turing award lecture [1]. Since then, the basic design style has been extended

in a variety of ways to support more sophisticated control and datapath styles. As

illustrated in Figure 9.1, a micropipeline is now characterized as any pipelined

design that uses bundled-data channels implemented with a delay line matched to

the worst-case delay of single-rail combinational logic fed by a register element

that is controlled by an asynchronous control circuit. The setup and hold require-

ments on the register element are similar to those in synchronous design and are

often called bundling constraints. Thus, micropipeline design is also known as

bundled-data design, owing to the use of these bundling constraints (see Chapter 7).

In practice, there are several micropipeline variants: the handshaking protocols

can be two-phase or four-phase and data-validity schemes can be broad or early.

In addition, the register element may be edge-triggered (e.g. it could be a flip-flop)

or level-sensitive (e.g. a latch) and the datapath can be designed using static or

dynamic logic. The following section first reviews the original templates proposed

by Sutherland before describing several extensions.

9.1 Two-phase micropipelines

As originally proposed the storage element is implemented with a capture–pass

latch formed by connecting two master–slave flip-flops in parallel [1], as illustrated

in Figure 9.2. The upper flip-flop is controlled by C and P and their inverted

counterparts C and P. This arrangement can be viewed as a conventional double

edge-triggered master–slave flip-flop, in which the C and P signals correspond to a

clock and its inverted counterpart. In conventional master–slave flip-flops, C and

P switch nearly simultaneously, i.e. the closing of the master latch (capture) and the

opening of the slave latch (pass) occur simultaneously. However, in capture–pass

latches, the latches become transparent when a pass event occurs (thus releasing the

previously captured data) and become opaque when a subsequent capture event

occurs. The intervals between pass and capture events may be indefinite.

Each stage of a linear micropipeline without data is formed as shown in

Figure 9.3. Note that each stage’s capture signal toggles (transitions) only after



the corresponding pass signal toggles, owing to the C-element. When an input

request occurs, the stage captures the newly available data and generates a

capture-done signal as an amplified and delayed version of the capture signal (not

shown in Figure 9.2). Note that the slave latch of the flip-flop, which captures the

data, remains transparent for the data to flow through. The capture-done signal is

Lreq
Lack

Ldata

Rreq
Rack

Rdata

Delay line

REG

CTRL

Comb
logic

Figure 9.1. Basic organization of a micropipeline stage.
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CC P P

weak

outin

Figure 9.2. Capture–pass latch.

C

CD

PD

P

CP

C

Lreq

Lack

Rack

Rreq

RdataLdata

Figure 9.3. Two-phase micropipeline stage (without logic) using capture–pass latches.
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used to acknowledge the previous stage and also to request the next stage to accept the

data.When thenext stage captures thedata andacknowledges, thepass signal toggles,

allowing the alternate flip-flop to drive the output. The pass-done signal, an amplified

anddelayedversionof thepass signal, primes theC-element for thenext input request.

Because capture–pass latches are large (four transmission gates, a pair of cross-

coupled inverters and an output inverter) and consume significant power, the

AMULET group from the University of Manchester suggested using transparent

latcheswith level-sensitive enables.While this reduces power, it comes at the expense

of latency and throughput; this is largely due to the control overhead associatedwith

the two-to-four-phase interface around the level-sensitive enables. A simple imple-

mentation using an XOR and a TOGGLE element is illustrated in Figure 9.4 [3][4].

An alternative two-phase implementation that uses double-edge triggered flip-

flops (DETFFs) instead of transparent latches was proposed [5] (see Figure 9.5).

The DETFFs yield substantially higher performance but at the cost of increased

area and power consumption in comparison with alternative templates. A timing

optimization, sometimes called control kiting [10], can be used to remove the delay

of the buffer driving the DETFFs from the cycle time. In particular, if the delays

of the buffers driving the DETFFs of neighboring stages are equal then the input

data and the latching signal are equally delayed and the control overhead reduces

to that of the C-element delay.

One of the highest-throughput two-phase pipelines that has been developed

is the MOUSETRAP pipeline, one stage of which is illustrated in Figure 9.6.

Lreq

Lack

Rack

Rreq

RdataLdata

C

T
en

TOGGLE

Figure 9.4. Two-phase micropipeline stage (without logic) using transparent latches.
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Lack

Rack
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RdataLdata
D

E
T

FF

C
Figure 9.5. Two-phase micropipeline stage (without logic) using DETFFs.

154 Micropipeline design



The data and the request are both latched at every stage, with latches that are

controlled by a local XNOR gate. The latches are initially transparent, while

waiting for data to arrive. Since the requests of successive tokens have alternating

values, when a request goes through the latch it will change the value of the

XNOR output and the latch is made opaque. When the next stage also fires and

the data has been latched in this stage, the XNOR will change value again and the

latch is made transparent again, allowing new data to arrive. The protocol has a

cycle time of 5–6 transitions and has been simulated to operate at over 2.1 GHz in

a 0.18 micron process [6]. This approach is very promising and sophisticated

applications of it to more complex architectures that include conditional commu-

nication are being actively researched.

Since the design is not just a FIFO, single-rail bundled data logic can be added

to the data path between the latches. Moreover, as usual, the request signal is

delay-matched with the slowest combinational path in order to avoid latching the

values that will not meet the bundling constraint. A significant advantage of this

design style is that both control and datapath can be designed from standard gates

found in any synchronous library, making adoption by industry easier. The

interested reader is directed to [15] for detailed performance and timing analysis

along with a description of additional circuit optimizations.

9.1.1 Non-linear pipelines

More complicated pipelines are designed using control circuits that operate on

request–acknowledge control signals called event modules. Sutherland proposed

LT

RreqLreq

Ldata Rdata

Lack Rack

LT

en

Figure 9.6. Ultra-high-speed MOUSETRAP pipeline stage without logic. The diagonal

slashes indicate that Ldata and Rdata are multi-bit signals.
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a small set of event modules from which a large range of complex systems could

easily be designed [1].

The first type of event module to be considered is one that we have already

encountered, the C-element. It acts as an AND gate for transition signaling events

since only when there are events on both inputs of the C-element will there be an

event on the output. This is useful in a pipeline join, as illustrated in Figure 9.7 for

two-phase control and registers. The requests of both incoming stages are the

inputs to a C-element that feeds the delay line in the join stage. This guarantees

that all data inputs to the join stage are valid before the delay line is triggered,

ensuring that the corresponding register captures valid outputs.

Another originally proposed event module is the select element (see the square

in Figure 9.8 with ports A, T, F, S). Depending on the value of a sampled one-bit

input, the select element conditionally steers transition-signaling events on its

input port to one of two different output ports. This is useful in creating condi-

tionally communicating pipeline stages. As an example consider Figure 9.8, in

which, depending on the conditional input, the output token is sent to one of two

different destination channels. The acknowledgement events from the two successor

stages are mutually exclusive. Thus they can be combined with an XOR gate, which

acts as an event module, producing an event on its output if an event occurs on either

input. Notice that the select input S must be stable before the input event on terminal

A of the select module arrives; this is guaranteed by the length of the delay line.

9.1.2 Resource sharing

The CALL event module has two request–acknowledge pairs associated with two

input channels and one request–acknowledge pair associated with an output
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Figure 9.7. Example of the use of a C-element event module in a micropipeline join stage.
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channel, as illustrated in Figure 9.9(a). The events on the input requests are treated

as mutually exclusive and transferred to the output request. The module then

waits for an acknowledgement on the output channel, which it routes as an

acknowledgement to the requesting input channel. This is designed to enable

resource sharing among the different input channels.

Using terms from Chapter 2, the CALL module encloses the handshake on the

output synchronization channel within that of the input channel. This is useful

because receipt of the acknowledgement tells the initiator that the called procedure

is complete. However, it is also important to understand that in an otherwise

pipelined system it can have a profound impact on performance. In particular, the

input pipeline may be stalled until the acknowledgement is received.

9.1.3 Arbitration

The final event module proposed in [1] is a two-phase arbiter, as illustrated in

Figure 9.9(b). It has two request inputs and two request–acknowledge pairs

associated with the two output channels. Similarly to the arbiters discussed in

Chapter 2, the arbiter routes the first incoming request to the corresponding

output request, non-deterministically choosing the winner when inputs requests

arrive simultaneously. After the winner is chosen and the corresponding acknow-

ledge event is received, the arbiter can choose a new winner. Interestingly, the

proposed arbiter module does not have corresponding acknowledge signals for the

input requests. These must be generated from other signals in the system.
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Figure 9.8. The select and XOR event modules in a pipeline stage that conditionally
communicates with two successors.
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9.1.4 Event-module implementations

Initially, hand-designed transistor-level implementations of event modules were

proposed. With the advent of both burst-mode and STG-based synthesis, however,

a variety of synthesized implementations have demonstrated more efficient designs.

As an example, the extended burst mode format (XBM) specification and corres-

ponding synthesized transistor-level implementation of a toggle is shown in Figures

9.10 and 9.11 [5]. Synthesis tools also enable more complex event modules, which

can yield significant reductions in control overhead, to be defined and implemented.

The specification of the burst-mode event module highlights a disadvantage of

event-based micropipelines for complex systems. In particular, the toggle has to

support input requests from four different states that depend on the current values

of the input and output signals. This is more complex than in the case of four-

phase controllers, whose input and outputs always reset to a known value. In

particular, the two-phase nature implies a symmetric transistor-level implementa-

tion that will generally have a PMOS network that is as complex as the NMOS

network. Because PMOS transistors are inherently weaker than NMOS
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Figure 9.9. Call and arbitration module used for resource sharing.
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Figure 9.10. Extended burst-mode specification of a select event module. The input signals
are separated from the output signals by slashes. The notation <sel> indicates that the
signal is sampled and the associated edge can only be taken when the sampled value of sel

is 1; likewise an edge labeled <sel0> can only be taken when the sampled value of sel is 0.
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transistors, two-phase event modules are typically slower than the corresponding

four-phase components.

9.2 Four-phase micropipelines

Another advantage of four-phase-based micropipelines over the original two-

phase schemes stems from the level-sensitive nature of the latch commonly used

as the register element. As mentioned previously, the two-phase micropipelines

described above often use TOGGLE and XOR elements as two-phase-to-four-

phase converters in order to interface with a latch-based datapath. Adopting a

control scheme that is four-phase avoids this significant overhead [4].

A simple four-phase control scheme uses a C-element as the latch controller, as

illustrated in Figure 9.12. Again using the terminology of Chapter 2, it is a half

buffer because it cannot support distinct tokens on both its input and output

channels. Thus N-stage pipelines using this controller can support only N/2 tokens.

This half-buffer nature is disadvantageous when many tokens need to be stored, as

in a FIFO.

Several full-buffer alternatives have been proposed [2]. In particular, a semi-

decoupled latch controller has been proposed and is illustrated in Figure 9.13.
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Figure 9.11. Synthesized transistor-level implementation of a select module.
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Figure 9.12. Simple four-phase micropipeline without logic.
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The full-buffer nature enables the use of more area-efficient FIFOs. However,

when logic is used, the processing delays associated with the datapath on the input

and output sides of the controller are both included in its local cycle time.

This performance bottleneck can be illustrated by examining the marked graph

description of three back-to-back semi-decoupled FIFO stages [4], as illustrated in

Figure 9.14. In particular, notice that the bold-line cycle contains only one token

but two “arcs” labeled P between the Rreqþ and Lreqþ transitions. Each arc

represents the location in which a matched-delay line is present, suggesting that

the cycle time includes two matched-delay line delays. Interestingly, this implies

that full-buffer controllers, if not carefully designed, can in principle have the same

performance bottlenecks as half buffers.

A higher-performance full buffer is the more complex fully decoupled latch

controller [4] illustrated in Figure 9.15. This controller enables the input and

output handshakes to reset completely independently, thus requiring only the

delay associated with a single matched-delay line to be included in the local
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Figure 9.14. Performance bottleneck in semi-decoupled controller based pipelines.
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Figure 9.13. Semi-decoupled four-phase latch control.
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cycle time. This represents a significant benefit in performance. However, note

that now the reset delay of the associated delay line becomes a critical element

in the local cycle time. Consequently, the use of an asymmetric rather than

symmetric delay line becomes important, as otherwise the cycle time would

again have effectively two function unit delays in its local cycle time.

Several implementations of asymmetric delay lines will be discussed later in this

chapter.

As in two-phase micropipelines, four-phase micropipeline fork stages need

to wait for all output enable signals to set or reset before setting or resetting

the output tokens. The simple solution is to insert a C-element to combine

all output enable signals. If the number of fork stages is small then the

C-element functionality can be integrated into the circuit element that generates

the output request. Similarly, four-phase join stages need to wait for all input

data to be set or reset before setting or resetting the input enable. The solution

is the same as that in the two-phase join stage, i.e. to combine the requests of

all input channels with a C-element to detect the availability of all input data.

More complex pipeline stages that involve channels that conditionally read and

write are also possible. In the absence of predefined controllers, synthesis tools

such as those described in Chapter 8 can be used to generate the desired control

circuits. The biggest design challenge is to ensure that the burst-mode or STG

controllers in a network for a complex architecture work together to create a

correct design. In particular, each controller’s specification identifies when to

expect different input transitions, and its implementation may fail if its environ-

ment does not adhere to these assumptions.

In the absence of the automated generation of the network of controllers needed

for a complex architecture, sophisticated formal verification may be necessary to

ensure that the such a network mutually guarantees these assumptions and is

deadlock-free [7].
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Figure 9.15. Fully decoupled latch controller.
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9.3 True-four-phase pipelines

To reduce the overhead associated with delay lines, pipeline control templates that

follow the true-four-phase handshaking protocol have also been proposed. In

particular, these templates wait for the left-hand token to arrive, the left-hand

enable to be sent back, and the left-hand token to reset before generating a right-

hand token. In other words, they explicitly decouple the control by essentially

forcing the handshaking with the left-hand environment to finish before communi-

cation with the right-hand environment begins. Consequently the forward latency

includes both phases of the delay line, enabling the use of either asymmetric or

symmetric delay lines. In particular, the symmetric delay line can be half the size

needed for other templates, reducing the area and power consumption overheads.

A proposed implementation of a true-four-phase micropipeline stage (without

logic) is shown in Figure 9.16 (from [14]). Upon reset, the internal signals lt and en

are low and the acknowledge signals Lack and Rack are high. When a left-hand

token arrives, signaled by Lreqþ , the internal signal lt is raised and Lack is

lowered. The environment then lowers Lreq, causing en and subsequently Rreq

to rise, thereby triggering the positive-edge-triggered FF to latch the data token

and the transmission of the output token to the right-hand environment. In

addition, Rreqþ causes the signal lt to reset and Lack to rise, allowing the left-

hand environment to send a new input token. Concurrently, after the right-hand

token is consumed, Rack and Rreq will fall in succession. The right-hand environ-

ment will finally reassert Rack, allowing en to reassert and thereby enabling the

circuit to latch a new input token.

In terms of power consumption, one disadvantage of this type of true-four-

phase pipeline is the need for edge-triggered FFs instead of smaller latches having

less input capacitance. In fact, adapting these templates for use with latches that

are normally opaque is an interesting area of future work, as such templates

can combine the low-power benefits of a small symmetric delay line with that of

latch-based pipelines.
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Figure 9.16. True-four-phase micropipeline stage (without logic).
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Complex true-four-phase controllers can be supported by extending the

one-wire communicating Rreq control signals to 1-of-N wires and using 1-of-N

control templates to generate the local clock signal lClk used in the single-rail

datapaths. Each pipe stage can operate on these control tokens and support data-

dependent behavior. Specifically, this 1-of-N extension includes input and output

completion-sensing units internal to the control-and-separate output generation

logic for each output rail [14]. An abstract circuit template for a true-four-phase

full-buffer (T4PFB) join stage supporting multiple input channels and one output

channel is shown in Figure 9.17.

Join stages need to wait for all input tokens to arrive and reset before setting or

resetting the input enable. An example of a true four-phase for a join stage

implementing the OR of two dual-rail control channel inputs, L1 and L2, is

depicted in Figure 9.18. The inverted LCD circuit is shown in Figure 9.18(a); each

of the four channel wires are latched with the circuit illustrated in Figure 9.18(b),

and the OR functionality is precomputed within the combinational blocks shown

in the broken-line boxes in Figure 9.18(c). The left-hand combinational logic (CL)

block, driving d_f, is asserted only when the “false” rails of lt1 and lt2 are asserted.

The right-hand CL block driving d_t is asserted when either “true” rail of lt is

asserted. These two signals are fed into the Rgen circuitry to generate the dual-rail

outputs, as illustrated in Figure 9.18(c).

Extending this template to support fork stages with multiple output channels is

straightforward. In particular, fork stages need to wait for all output enable

signals to set or reset before setting or resetting the output tokens. As with other

four-phase templates, one solution is to insert a C-element to combine all output

acknowledge signals. Moreover, supporting conditional reading and writing is

CLack

Rack

rcdlcd

lt0

lClk

CL Rgen

RCD

C

en

CIslt1

L0

L1 LT

LT

LCD

+

_

Rreq

Figure 9.17. A T4PFB control template for join stages: CL is the combinational logic and
the modules labeled LT are blatches.
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only slightly more complex. To conditionally read a channel, the associated Lack

generation block generates a left-hand enable only if a channel is read. To condi-

tionally write a channel, the Rgen block must conditionally evaluate and hand-

shake with the right-hand enable only when it evaluates its output. For instance, a

skip can be implemented by triggering the evaluation of a separate output signal

(not routed out of the controller), which acts like an extra output rail, and then

immediately sending an acknowledgement back to the left-hand environment

without waiting for the right-hand environment.

The interested reader is directed to [14] for a detailed analysis of the associated

timing assumptions necessary for correct operation, along with other performance

optimizations.

9.4 Delay line design

A delay matching element (delay line) consists of combinational logic whose

propagation delay is matched with the worst-case logic delay of some associated

block of logic. Generally, a delay line is implemented by replicating portions of the

block’s critical path.

en

Rack

RtRf

dtdf

en

lt1t
lt2tlt1f

lt2f

C
lt1f

lt1t

lt2t
lt2f

lcd

(a) (b)

wk

L it/f

rcd

lt it/f

lcd

(c)

Figure 9.18. True-four-phase circuits implementing the OR of two dual-rail inputs: (a) input
completion sensing, (b) one-bit latch, (c) combinational logic and R_gen circuitry
(see Figure 9.17).
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To optimize performance for the average case, a more complicated delay

line design based on speculative completion sensing can be adopted [8].

The speculative delay line uses data-dependent abort signals to select between

several delay lines on the basis of the expected delay of the operation, as

illustrated in Figure 9.19. To save area, it possible to reuse previous delay

elements to generate the next-larger matched delay [8]. However, in the original

formulation the input req signal can propagate through the entire delay line

independently of the selected delay, thereby potentially expending unnecessary

power.

9.4.1 Asymmetric delay line templates

Two improved speculative delay-matching templates that are compact and

power saving, one for an asymmetric delay line and one for a symmetric delay

line, have also been proposed [13]. The asymmetric template adapted from [9]

creates a set of delay line controllers, one per delay element, as shown in

Figure 9.20. Each controller functions similarly to an asynchronous split, in that

its input signal is routed to one of its output signals on the basis of the Select

control line values. If the Select lines indicate that the target delay has been

obtained, the controller generates the “done” signal by routing the input to LDi.

Otherwise, it propagates the input signal to the next delay element via NRi.

Because the input signal stops at the target delay element, the power consumption

is significantly reduced.

The operation begins with the set phase. When startþ arrives, it propagates to

the first asymmetric delay line (ADL) asserting a delayed signal d0. This delayed

signal and the select lines sel provide the input signals for an asymmetric controller

Delay line 1

Delay line 2

Abort detection
network 2

req

req
ack

Delay line n

Abort detection
network n

req

Figure 9.19. Speculative completion-sensing architecture.
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(ADLC), whose implementation is shown in Figure 9.20(b). This controller

decides to assert either a “local done” signal LD0 or the next request signal

NR0. If one of the local done signals LDi is asserted then the done signal is

asserted, finishing the set phase. Otherwise, a next request signal NRiþ activates

the next delay element. Note that the last controller (ADLC*) is actually not

required; it merely generates a local done signal, LDn.

The reset phase is typically minimized to reduce control overheads when it is

used with four-phase micropipeline controllers. This phase begins when the start

signal is reset. Since all delay elements are bypassed with an AND gate, the done

signal resets quickly, i.e., in a one-gate delays. Simultaneously, the start signal

actively resets all delay elements and controllers.

Two timing constraints associated with the delay line must be satisfied. First,

the select lines of each controller must be set up and valid before their associated

delay signal diþ arrives, in order to avoid a wrong routing decision. This con-

straint is referred to as a select line setup constraint [13]. Second, all internal signals

must be reset before the next start signal arrives; this is referred to as the delay line

reset constraint.

ADLC

ADLC

ADLC*

ADL

ADL

ADL

LD0

LD0

LDn–1

NR0

NR1

d0

d1

dn–1

sel

start

start

done

start

LDiNRi

di

sel

start

di

~sel

(a)

(b)

Figure 9.20. Efficient asymmetric delay line implementation.
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9.4.2 Symmetric delay line templates

The symmetric delay line depicted in Figure 9.21 utilizes both the set and reset

phases to match the worst-case logic delay. It is well suited to the T4PFB control

protocol since it transfers data to the next stage after it has passed through both

the set and reset phases of the delay line.

There are two timing constraints associated with the symmetric delay line. First,

the select line setup constraint described for the asymmetric delay line also applies

to the symmetric delay line. Notice, however, that this setup constraint is more

stringent than in the asymmetric delay line case because now the matched delay

elements are only half as long. In addition, the select lines must be stable until after

the end of the reset phase; this is referred to as the select line hold constraint.

Satisfying both these constraints, however, is significantly easier than satisfying

the reset constraint of the asymmetric delay line. In particular, the lack of a reset

constraint allows us to eliminate the final AND gate and alleviates the heavy

load of the start signal in the symmetric delay line controller (SDLC) shown in

Figure 9.21(a). The symmetric delay line is also approximately half the length of

the asymmetric delay line, saving both area and power. These advantages make

the use of a symmetric template very attractive.

di

LDiNRi

sel

di

~sel

(a)

(b)

SDLC

SDLC

SDLC*

SDL

SDL

SDL

LD0
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LDn–1

NR0
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dn–1

sel

start

done

Figure 9.21. Efficient symmetric delay line implementation.
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9.4.3 Power-efficient asymmetric delay line

A power-efficient asymmetric delay line can be constructed using a combination of

a symmetric delay line and aD-element [11][12], as illustrated in Figure 9.22(a). The

D-element operates as follows. After receiving a left-hand request it completes a full

handshake on the right-hand environment before acknowledging the left-hand envir-

onment, enabling the use of a symmetric delay line on its right-hand environment.

In the reset phase, the D-element, shown in Figure 9.22(b), can reset in four gate

delays. The forward latency includes both phases of the delay line plus a small delay

from the D-element (six gate delays in total). Additionally, the overhead is independ-

ent of the delay line delay, but it is still large owing to the combined overhead from the

controller and the reset delay from the D-element (four gate delays).

In comparison with other asymmetric delay lines, this delay line can reduce both

the area and the power by approximately half. However, owing to the large

forward latency, it is not suitable for shallow pipeline stages.

9.5 Other micropipeline techniques

In many templates an attempt has been made to combine the simplicity of the

micropipeline technique with the performance advantage of dynamic datapaths

[17][18][19]. In most of these templates, the control is four-phase and the datapath

components generate a data-dependent done signal, which removes the need for

delay lines. These techniques can more readily support data-dependent delay and

are more robust to process variations than single-rail techniques, which have to

rely on a matched delay line. However, this robustness comes at the cost of the

increased area and, often, increased switching activity associated with dual-rail

logic. One promising approach is to combine static and dynamic datapaths, using

a 1-of-N dynamic datapath only for the critical path. This has been used effectively

SDL

D-element
Rack

RL

Lack

start

done

Lack

L
R

Rack

(a)

(b)

Figure 9.22. Power-efficient asymmetric delay line.
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in adders in which the carry chain is implemented in domino dual-rail and the less

critical sum logic is implemented in static logic. Area is thus saved and the complex-

ity of the required completion tree is reduced [7]. A hybrid approach was also used

in an iterative asynchronous divider and square root circuit in which static selector

circuits act as the interface between dynamic dual-rail and static single-rail logic

[21]. In this latter work, it was shown that dual-rail datapaths can actually save

power, despite switching one output every cycle, if the significant glitching activity

that would otherwise be present in the static logic alternative can be avoided.

Finally, an advanced micropipeline design style that has been proposed is the

single-track two-phase controller known as GasP [16]. This will be discussed in

Chapter 13, along with other single-track templates.

9.6 Exercises

9.1. Design a non-linear two-phase bundled-data pipeline for the implementation

of Euclid’s GCD algorithm described in Section 4.3. Use capture–pass latches

and identify all non-linear pipeline stages and the associated control elem-

ents. Optionally, design each hardware component behaviorally in a hard-

ware description language and use simulation to verify correctness. Include in

your model estimated integral delays for each hardware component. Try to

use a VerilogCSP testbench, and design shims to interface the bundled-data

design to the CSP testbench.

9.2. Repeat Exercise 9.1 using any four-phase micropipeline template. Compare

the cycle times of the two and four-phase designs.

9.3. Consider the 10-stage linear pipeline depicted in Figure 9.23. Assume an

eight-bit datapath, that each incrementor has a delay of 30, that the bit

B
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e 1

S
tag

e 9

B
it b
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Lreq
Lack

Ldata

Rreq
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CTRL

Incrementor

Figure 9.23. Ten-stage incrementor pipeline.
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generator produces random eight-bit data tokens with zero delay, and that

the bit bucket consumes data tokens with zero delay. Also, assume that all

primitive gates have pin-to-pin delays equal to 1. Design a two-phase

micropipeline based on the transparent latch-based register illustrated in

Figure 9.3. Design the circuit with the smallest symmetric delay lines (having

a chain of inverters of even length) necessary for correct operation. Design

and simulate your gate-level circuit using a hardware description language

such as Verilog or VHDL and include a behavioral model of the incremen-

tor block. Add behavioral performance monitors to the circuit to measure

the average cycle time. What is the average cycle time of the circuit?

9.4. Repeat Exercise 9.1 using the MOUSETRAP micropipeline scheme.

9.5. Repeat Exercise 9.1 using the simple four-phase micropipeline scheme.

9.6. Repeat Exercise 9.1 using the semi-decoupled micropipeline latch controller.

9.7. Repeat Exercise 9.1 using the fully decoupled micropipeline latch controller.

9.8. Design an asymmetric delay line with inverters and distributed NAND gates

tied to the input signal. Repeat Exercise 9.7 with this asymmetric delay line.

9.9. Verify through simulation that the simple four-phase controller is a half

buffer by making the bit bucket arbitrarily slow and counting the number of

tokens that can enter the pipeline.

9.10. Repeat Exercise 9.9 with a semi-decoupled latch controller and verify that it

is a full buffer.

9.11. Replace the symmetric delay line in Exercise 9.7 with the power-efficient

asymmetric delay line shown in Figure 9.22. How much shorter is the delay

line needed? What is the revised cycle time?

9.12. Design an efficient speculative completion-sensing circuitry for each incre-

mentor. Replace the delay in the two-phase controller in Exercise 9.1 with

your speculative delay design and find the average cycle time improvement.
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10 Syntax-directed translation

As discussed in Chapter 3, a common means of describing asynchronous design

is with a high-level language that includes primitives for communication along

channels, as described in Hoare’s Communicating Sequential Processes [1][2].

Syntax-directed translation is a synthesis process that generates an asynchron-

ous circuit from such a high-level language specification by translating each

language construct in the specification into a hardware component. Thus the

structure of the circuit corresponds closely to the syntax of its program

specification.

Phillips pioneered this approach in the early 1990s with the development

of the Tangram language and compiler [10]–[12]. An intermediate set of com-

ponents called handshake circuits formed the building blocks of Tangram

implementations. Initially, quasi-delay-insensitive (QDI) versions of each hand-

shake component were developed [11] and, subsequently, single-rail versions;

these were faster, smaller, and consumed significantly lower power [14]–[16].

This approach, referred to as VLSI programming, has been commercialized by

an offshoot of Phillips called Handshake Solutions. A similar language and

academic synthesis tool called Balsa has been developed by Manchester

University [17]–[21].

The benefit of the syntax-directed approach is that it provides a tighter con-

nection between the input language and the resulting circuits. Designers can

easily map circuit bottlenecks back to the circuit design and improve the

language-level specification, quickly exploring the design space by altering

parallelism, pipelining, and resource sharing. The perceived disadvantage with

the syntax-directed approach is the lack of optimality. However, peephole

optimizations, akin to compiler optimizations, can identify common hand-

shake circuit structures and replace them where necessary with known efficient

implementations.

This chapter begins with a review of the Tangram language and its commercial

incarnation Haste. A description of syntax-directed translation into a handshake

circuit then follows. After that we discuss both dual-rail and single-rail implemen-

tations of handshake components, highlighting their key differences. The chapter

closes with a review of successful chip designs using the syntax-directed approach,

with an emphasis on its potential benefits and limitations.



10.1 Tangram

A Tangram program has the form P. (T) or L | P. (T), where P. is a set of external

ports, T is a command, and L is an optional list of definitions used in P. and T.

The list P defines the ports of handshake channels through which the program

communicates with its environment. The ports can be of input or output type, to

receive on send data, respectively, or they can be undirected, to support synchron-

ization. An output port can be connected to many input ports, supporting broad-

cast communication. The program is defined by T.

In this section we first describe the data types for variables in Tangram and then

discuss the variety of different commands that make up a program.

10.1.1 Data types

Tangram defines channels and variables and also their types, e.g. Boolean, integer,

range, and structures [11]. In Haste, the type set also includes bit vectors, arrays,

and enumerate types as well as both signed and unsigned data types [22]. Unlike

other hardware description languages, support for explicit delays or other types of

time is not included. In addition, Haste does not support C-like types of float,

double or real.

10.1.2 Primitive commands

The primitive commands supported in Tangram are:

� Assignment, x: ¼ E. The value of the expression E is assigned to variable x.
� Input command, A?x. A token on port A is received and its value is placed

in variable x. The types of variable x and port A must be the same.
� Output command, A!E. The value of the expression E is sent as a token on port A.
� Synchronization command, B�. All computations connected to the channel

associated with port B are to be synchronized.

10.1.3 Composite commands

Tangram defines more complex commands as the inductive composition of primi-

tive commands. The composition has several forms [10][11]:

� Sequential composition, R;S. First R is executed then S. Ports in both commands

must have the same direction.
� Concurrent composition, R||S. The commands R and S are executed in parallel;

the composite command terminates after both R and S terminate. They com-

municate only via channels. Thus when one command assigns an expression to a

variable x, the other command cannot access x.
� “While” looping, do G then C od. While the guard expression G evaluates to

true, repeat the command C.
� Infinite repetition, forever do C od. Infinitely repeat command C.
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� Conditional statements, if B then C else D fi. If the Boolean expression

B evaluates to true then execute C else execute D.
� Block command, |[D|S]|. Port and variable declarations in D apply to the ports in

S but are concealed from the environment.

As an example, the greatest common divisor program based on Euclid’s algorithm

is shown below [4].

int ¼ type [0..255]

& gcd: main proc (in? chan �int,int
 & out!chan int)

begin x,y: var int

| forever do

in?hhx,yii # get input values for x and y

# from channel in

# while x and y differ do the following

; do x<>y then

# if x smaller than y subtract x from y

# otherwise subtract y from x

if x<y then y:¼ y�x

else x:¼ x�y

fi

od

# output the resulting value of x on channel out.

; out!x

od

end

Notice that the functionality of this Tangram program is equivalent to the
abstract description of the greatest common divisor (GCD) specification pre-
sented in Chapter 4.

The Haste program enhances this set of commands with more sophisticated

constructs, including support for input and output probes on channels and a

mechanism for the user to specify whether shared resources require arbitration [22].

10.2 Handshake components

Several handshake components were described in Chapter 2, including a sequen-

cer with a parallel component. The compiled handshake circuit for the GCD

specification above is shown in Figure 10.1 [4].1

This circuit includes a handshake component “do,” which has one passive-

synchronization port, one active-input port, and one active-synchronization port.

1 As mentioned in Chapter 2, for consistency throughout the book, when depicting an abstract channel

in our figures we omit the open circle associated with the passive port typically seen in other

publications on handshake circuits.
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Upon the arrival of a request at its passive-synchronization port, the do

component receives Boolean data on its input port. If the value is a 1, it executes

a handshake on its active synchronization port and repeats by reading new data

on its input port. If the value read is a 0, however, it terminates by acknowledging

its passive-synchronization port. In the GCD application, the Boolean input

value comes from a comparator labeled “< >” and the active synchronization

port is attached to a transferer that eventually triggers the update of variable x or

variable y.

The GCD handshake circuit also contains multiplexer (MUX) and de-multiplexer

(DMX) handshake components, which are responsible for routing datapath

®

SEQ

x
R

R

RWMUX

y
R

R

RWMUX

*

DMX–

DMX

DMX <>

DMX <

do

@

〈〈 〉〉

out

in

–

®

®

Figure 10.1. Handshake circuit for GCD program [4].
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values. The multiplexer element connected to variable x accepts data inputs

from the environment along one passive port and from inputs internal to the

loop along its second passive port. It is the responsibility of the control to

ensure that these two communications are mutually exclusive, as is the case

here. The demultiplexing element simply forks the input data to multiple output

channels. The handshake component, labeled “hh ii,” splits the input channel

2-tuple into two distinct channels for x and y and an “@” case component

implements the if–then–else statement, triggering the update of either x or y on

the basis of the transferred output value of the comparator labeled “<.”

10.3 Translation algorithm

The syntax-directed translation algorithm for a Tangram program can be

described graphically using the structural induction of the program text. As men-

tioned earlier, a Tangram program has the top-level structure P.(T). If, for

example, P is a single synchronization port a, the implementation has the form

illustrated in Figure 10.2, where T is a compound command that will be expanded.

In one of the simplest programs possible, T is a synchronization on a channel a.

In this case, the translation can be depicted as in Figure 10.3. The empty circuit is

called a connector and encloses the handshake on its active port within the

handshake on its passive port. Consequently, upon being initiated by the special

channel Start the program handshakes on channel a and then terminates by

acknowledging Start.

When T is a do-while-loop in which the synchronization channel a is referenced

in a command C, the expansion is as depicted in Figure 10.4; G and C are

expanded subsequently, depending on their structure.

When T is of the form R;S, where R and S both access the synchronization

channel a, the expansion is as depicted in Figure 10.5(a) and includes a mixer

element, indicated by a vertical line, that merges the mutually exclusive synchroni-

zation requests from R and S to channel a. Similarly, when T is of the form R||S

then the common synchronization on channel a is handled using a “join” hand-

shake component, as illustrated in Figure 10.5(b). In the join component, the

handshake on channel a is enclosed by both the handshakes on its two passive ports.

(a~).T T
Start a

Figure 10.2. Graphical translation of top-level program.

(a~).a~
Start a

Figure 10.3. Translation of a trivial program synchronizing on channel a.
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A detailed expansion for the ternary semaphore Tangram program

(A�, B�). A�; forever do [B� || A�] od

is shown in Figure 10.6 [10]. Notice that, as part of the last transformation step,

the connector component is removed because it is functionally redundant.

A more formal treatment of this translation process can be found in [11].

10.4 Control component implementation

As mentioned in Chapter 2, most efficient implementations of handshake com-

ponents use four-phase handshaking. Examples of four-phase implementations of

the repeater, join, and mixer components are shown in Figure 10.7. (Note that the

basic QDI design technique for such small components was originally developed

by Martin and his students throughout the 1980s and 90s; see e.g. [3].)

(a~).R;S
Start

SEQ

R

a
|

SS

(a~).R||S
Start

PAR

R

a

SS

(a)

(b)

Figure 10.5. Translation of sequential and parallel commands. The double circles represent a
compound command (see Figure 10.2).

(a~).do G then C od

Start

DOG C
a

Figure 10.4. Translation of the “do-while-loop” command.
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Sequencing and parallel operators rely on enclosed handshaking. A four-phase

implementation of an S-element (also known as a Q-element [3]) that employs

enclosed handshaking is shown in Figure 10.8. Initially Areq, Aack, Breq, and

Back are all 0 and the output of the inverting C-element is 1. When Areq rises,

it performs a complete four-phase handshake on B, before driving Aack high.

(The inverting C-element goes low after Breq goes high.) This causes Areq to reset,

which returns the output of the inverting C-element to a 1, which causes Aack to

fall, returning the S-element to its initial state.2

The application of an S-element in four-phase sequencer and in parallel com-

ponents is shown in Figures 10.9(a), (b).

As an example of how these components fit together, the implementation of the

final handshake circuit in Figure 10.6 is illustrated in Figure 10.10.

10.5 Datapath component implementations

Both QDI and bundled-data implementations of datapath components have been

developed. Initially, QDI implementations were created because there was a need

for the robustness that they can provide, but bundled-data implementations lead

T = forever do B~ || A~ od
U = ~A

T

A
|

U

Start
SEQ

R = B~ || A~

*

A
|

Start
SEQ

R

PAR

|

Start
SEQ

B

A

Start

S = ~A;forever do B~ || A~od

S

A

B

0

1

1

0

1

0

*

B

B

Figure 10.6. Sequence of syntax-directed translation steps for a simple Tangram program.

2 Note that it is also possible to build an S-element with a symmetric rather than asymmetric

C-element. However, the symmetric C-element would lead to SEQ and PAR elements that are not

self-initializable, as defined in Section 10.7, and is thus less useful.
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to smaller, lower-power, and faster implementations. To understand the differ-

ences, we consider the compiled handshake components associated with the

assignment statement z: ¼ x � y, where � is an abstract binary operation,

illustrated in Figure 10.11. We assume that the variable z is also written elsewhere

in the program, thereby requiring the multiplexer component. Using this ap-

proach we will discuss both the QDI and the bundled-data implementations of

the variable, transferer, and datapath multiplexer components and how they work

together to implement this type of assignment.

I O

A

B

(c)

C

C

Areq

Breq

Back

Aack Oack

Oreq

(b)
C

Areq

Aack

Breq

Back

Oreq Oack

A B

O

*

R

(a)
Rreq Rack

Oreq OackO

Figure 10.7. Four-phase implementations of (a) the repeater, (b) the join, and (c) the mixer
components.

S
Areq Breq
Aack Back

Areq

Aack

Breq

Back

C

+

Figure 10.8. Implementation and symbol for an S-element.
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10.5.1 QDI implementations

Quasi-delay-insensitive arithmetic units in Tangram use dual-rail weak-

conditioned implementations of the datapath. In the University of Manchester

implementation of Balsa, delay-insensitive minterm synthesis (DIMS) was initially

used. In this approach each minterm of each output is implemented with a

S
Areq Breq

Creq

Back

SEQA

B

C
CackAack

(a)

Breq

Creq

Back

PARA

B

C Cack

S

S

C

Areq

Aack

(b)

Figure 10.9. Four-phase implementations of SEQ and PAR components.
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Startack
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Gack
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S

S

C

Freq

Fack

EreqEack

*

PAR

|SEQ

Figure 10.10. Implementation of the final compiled handshake circuit in Figure 10.6.
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C-element. Each C-element is then mutually exclusively triggered and all minterms

associated with an output are safely combined with an OR gate. As an example,

a DIMS implementation of a full-adder operator is shown in Figure 10.12.

Alternatively, speed-independent logic decomposition theory can be used to

develop more efficient multi-level speed-independent combinational logic [20]

[21]. Dual-rail inputs and outputs are typical, although 1-of-N logic blocks can

also be used. The latter often reduce switching activity but can sometimes require

more complex logic. For example, using 1-of-3 logic in kill–propagate–generate

(KPG)-based adders can be very efficient (see e.g. the KPG tree-adder in

C

C

C

C

C

C

C

C

A1 A0 B1 B0 C0C1

Sum1

Sum0

Carry

Carry

+ Sum/Carry

Aack

Back

Cack
Sum/Carry A

Figure 10.12. Delay-insensitive minterm synthesis implementation of a full adder.

⊗

x

y

® MUX z

Figure 10.11. Compiled handshake circuit for a simple assignment statement.
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Chapter 13), whereas experiments with 1-of-4 datapaths have produced unclear

power benefits [20].

Dual-rail datapaths require dual-rail variables. A one-bit variable consists solely

of a one-bit dual-rail latch, as depicted in Figure 10.13 [12]. A multi-bit variable

requires a number of such latches and a C-element tree to combine the “write”

acknowledgements for the bit. Extensions to 1-of-4 variables can be found in [20].

A 1-bit dual-rail transferer can be implemented just with wires, as illustrated in

Figure 10.14 [11]. Extending this to multi-bit dual-rail datapaths simply involves

adding an additional pair of true and false wires per additional datapath bit. This

means that the request and acknowledge signals are shared among all bits.

Notice that the B channel is a pull channel (see Chapter 2) and responds to a

rising Breq by producing valid data on its dual-rail wires. The C channel, however,

is a push channel and initiates the data transferer by placing valid data on its

dual-rail wires. The transfer is initiated when Areq rises and it completes when

Aack falls.

A dual-rail one-bit multiplexer is shown in Figure 10.15. Notice that there are

two OR gates that combine the mutually exclusive input data rails into corres-

ponding output data rails and two OR gates that act as completion-detection units

for each input channel. Extending this to a multi-bit multiplexer involves adding

two additional OR gates per bit in the forward path and enhancing the completion-

detection units for multiple dual-rail channels. In particular, as mentioned in

Chapter 7, a dual-rail completion detection unit consists of one two-input OR gate

per dual-rail bit, which feeds a multi-level C-element tree.

x R q1

q0

Write
section

Storage
section

R1 R0

W0
Rreq

RreqW1

Wack
q0

Read section

R

Figure 10.13. A 1-bit dual-rail handshake variable.
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Breq
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Cack

Aack
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Figure 10.14. A 1-bit dual-rail transferer.
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Now all the component associated with the assignment statement in Figure 10.11

have been described, we will discuss their operation in this context. The assignment

is triggered when the transfer element requests data through the Boolean operator

from both the x and y variables. The variables present valid dual-rail data to the

dual-rail operator. The results propagate through the transferer and multiplexer

elements and individual bits get written into their respective one-bit latches in

the variable z. The completion of these individual “writes” propagates through a

C-element tree in the variable, thus generating its acknowledgement. The acknow-

ledge signal propagates backward through the C-element in the multiplexer and

finally back to the transferer. The transferer then resets its request signal, which

propagates through the Boolean operator and resets the variables x and y. This in

turn resets their individual data wires to the neutral state, which propagates

through the Boolean operator, through the transferer, through the multiplexer,

and finally arrives at the latches. Each one-bit latch resets its acknowledgement,

which then again propagate through the C-element tree to reset the variable’s

acknowledge signal. The reset of the acknowledge signal then propagates through

the multiplexer before finally arriving at the transferer, completing the entire

assignment.

It is important to note that if the assignment operation is triggered by the

sequencer described in Figure 10.8 then this entire four-phase handshake must

complete before the next operation in the Tangram program can begin to

execute. Thus, the entire reset phase of the assignment becomes part of the

program’s critical path. This is in contrast with pipeline templates, in which

the reset of the multi-level dual-rail datapath and the completion-sensing

overhead is largely hidden from the critical path. This will be covered in

Chapters 11 through 13.

C

C

A0

A1

Aack

B0

B1

Back

Cack

C0

C1

MUX

A

B

C

Figure 10.15. A 1-bit dual-rail multiplexer.
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Dual-rail datapaths in Tangram also suffer from area and power overheads.

Dual-rail datapaths have twice as many wires as the single-rail alternatives and

generally have about twice the number of transistors. Moreover, unlike single-rail

datapaths, which incur no switching if the input data does not change from cycle

to cycle, each dual-rail channel incurs two switching events every cycle owing to

the embedded four-phase protocol. This incurs substantial power penalties.

10.5.2 Single-rail implementations

Single-rail bundled-data datapaths have been proposed as an alternative imple-

mentation of datapath handshake components as a way of addressing the over-

heads associated with dual-rail design. As mentioned in Chapter 7, single-rail

datapaths are identical to those used in synchronous design (they both have one

wire per bit) and can make use of synchronous logic synthesis and optimization

tools. The single-rail datapath is coupled with request and acknowledgement wires

to form the single-rail datapath handshake component with active inputs. This is

illustrated for a multi-bit adder in Figure 10.16. Interestingly, the same circuitry

also implements a multi-bit adder with passive inputs. The only difference is what

initiates the communication – the acknowledgement or the request.

Single-rail variables can also employ synchronous storage elements. In parti-

cular, single-rail handshake variables use synchronous latches [16], as illustrated in

Figure 10.17. A requirement for the single-rail handshake variable to operate

properly is that the latches close before the data-validity period of the input data

completes. We require this “write” data to follow the broad data-validity protocol,

meaning that the data is valid from when the request goes high to when the

acknowledgement goes low. This guarantees that the data is valid until after the

latch closes. In addition, note that the “read” acknowledgement is immediately

generated upon a “read” request. The reason is that in Tangram the “read” and

“write” actions on variables are guaranteed to be mutually exclusive; thus, upon a

“read” request, the “read” output data is guaranteed to be stable.

Many types of standard latch can be used in a single-rail handshake. Two

common latches are shown in Figure 10.18. The latch shown in Figure 10.18(b)

Single-rail
adder

Adata

Bdata
Sdata

C
Areq

Breq
Sreq

Sack

Aack

Back

+

A

B

S

Figure 10.16. Bundled-data handshake component for a multi-bit adder.
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has less capacitive load on the enable signal than its alternative, shown in

Figure 10.18(a), but it has a staticizer on the internal �q signal that must be

overcome during a write. Both latch implementations are substantially smaller

and lower-power than the dual-rail counterpart shown in Figure 10.13.

The data validity scheme for the pull output channel of the latch deserves some

additional discussion. The data is valid as soon as the latch closes upon a write

action and becomes invalid at the beginning of a second write action. Because the

write and read actions on a handshake variable are guaranteed to be mutually

exclusive, the read data-validity signal is provided by the read acknowledge signal

going high (Rackþ); the data is then valid through the reset of the acknowledg-

ment (Rack�) until a subsequent write action occurs. This is shorter than the

broad protocol discussed in Chapter 2, which requires the data to be valid until

after the next read request (Rreqþ). Consequently, this protocol is called the

reduced-broad-validity protocol.

The wire-only transferer shown in Figure 10.19 converts the reduced-broad-

validity protocol on its input channel B into a broad validity protocol on the push

channel on C. That is, the data on C is valid from Creqþ to some time after

Cack� (which enables a subsequent write on B).

A single-rail multiplexer is illustrated in Figure 10.20. The datapath driving the

n single-rail output rails is similar to a synchronous, MUX shown on the left for

comparison. The select signals As and Bs are generated via cross-coupled NOR

gates, which store the select signal value in between handshakes. The output

request on channel C is generated with the same AND–OR circuit as the datapath

d

(a) (b)

dq q
q

en
en en

q

Figure 10.18. Two different implementations of a one-bit latch.
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Wreq
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Figure 10.17. Single-rail handshake variable.
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bits and goes low when the input requests go low. Two AND gates are responsible

for routing channel C’s acknowledge signal back to the requesting channel on

the basis of the stored select signal. Note that if the input data channels satisfy the

broad validity protocol then the data on the output channel C also satisfies the

broad-data validity protocol, as needed by the single-rail latches described above.

More specialized versions optimized to fast-forward the output request can be

found in Peeters’ thesis [16].

As with the dual-rail implementations, we now discuss the operation of these

single-rail component implementations in the context of the assignment circuit

shown in Figure 10.11. The assignment is triggered by the transferer, which routes

the request through the datapath element to the single latches. Because the variables

are guaranteed to have valid data, the data is known to be valid at the outputs

and the requests can be converted into acknowledgements by a simple wire. The

acknowledgement then goes through the symmetric delay line in the datapath

operator. The result passes through the transferer, sets up the select signal in the

®

A

B C

Areq Aack

Breq

Bdata

Back Creq

Cdata

Cack

Figure 10.19. Wire-only implementation of a single-rail transferer.
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Figure 10.20. Single-rail two-input n-bit multiplexer.
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multiplexer, and continues on to the destination variable, opening its latches. The

latches raise the acknowledge signal, which propagates back to the transferer.

The transferer then lowers its request, which propagates through the single-rail

operator and resets the read request to the latches. The data is left untouched but

the read acknowledge signal is reset. This reset goes through the single-rail variable

for a second time and propagates through the transferer to the multiplexer. In

particular the request to the multiplexer resets, which causes the output request of

the multiplexer to fall. The internal select signals of the multiplexer, however,

maintain their state owing to the cross-coupled NOR gates. This falling request

propagates to the output variable, which responds by latching the output data and

resetting its acknowledgement. The acknowledge signal propagates back through the

multiplexer and terminates the entire sequence at the transferer.

This protocol has multiple advantages. First, the sum of the two phases of the

delay line can be matched against the delay of the datapath operator. This means

that a symmetric delay line of approximately half the delay of the datapath operator

can be used. This saves area and power compared with bundled-data schemes, in

which only one phase of the delay line is matched against the entire pipeline. In

comparison with a dual-rail datapath, the overhead includes some margin on the

delay lines but does not involve any completion sensing or propagation of neutral

data through the datapath and multiplexers. The second advantage is that during

the first half of the four-phase protocol the select lines to the multiplexer are set up

and the latch is opened in preparation for the data. This implies that glitches that

occur earlier do not propagate through the multiplexer, saving some glitching

power. Third, this enables the latches to be closed normally, without an overly

complex write protocol involve both the opening and the closing of the latch when a

write request transition is sensed. Because all phases of the four-phase protocol do

useful work, Peeters called this protocol the true-four-phase protocol.

One performance disadvantage common to both the single- and dual-rail

implementations is the delay between the writing of the source variables and the

triggering of the transferer to start the assignment process. Attempts to reduce this

overhead by creating efficient sequencers and reducing the size of the delay line

have provided an interesting area of future work [23]. That said, a side effect of

this delay overhead is that most glitches in the datapath are likely to have settled

before the multiplexer select lines have been set, reducing the glitching power

through the multiplexer and subsequent datapath components.

10.6 Peephole optimizations

Two types of peephole optimization have been formalized by van Berkel [40]. In

the first “equals replace equals”, i.e. cheaper handshake components replace more

complex handshake components. The removal of the connector in Figure 10.6 is

an example of such an optimization but, given that the connector is implemented

with wires only, the advantages evaporate during the layout phase [11]. A more
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pertinent example is a tree of mixer, sequencer, or parallel components. Balancing

such trees can improve average performance with no other cost or change in

external behavior. In addition, optimized implementations of multi-way sequen-

cers have also been explored [32].

In other cases, peephole optimization involves replacement by cheaper subcircuits

with “almost equal” behavior, when the effect on the external behavior cannot

be observed by any possible environment. This is called refinement-in-context. An

important refinement-in-context in single-rail implementations of datapath com-

ponents is the removal of redundant C-elements associated with Boolean operators

in assignments. Because of the mutual exclusivity between reads and writes in the

pull protocol, the C-element associated with binary operators is driven by a single

source. For example, in the single-rail implementation of the handshake implemen-

tation shown in Figure 10.11, the C-element associated with the binary operand� is

redundant. The two requests come from a single source component, in this case the

transferer in, and the associated control delay associated with the two inputs is not

required for correctness. Consequently, the C-element can be removed and the delay

line remains triggered by the transferer.

10.7 Self-initialization

All VLSI circuits are designed to be driven to a known valid state upon power-up

of the IC. Synchronous circuits achieve this using a special reset signal that forces

specific flip-flops to a known state. Many asynchronous pipeline templates

similarly require a reset signal to go to every pipeline stage and force the internal

state-holding elements. Tangram circuits embody a more elegant approach by

being self-initializable [11]. They enter a known initial state when the electrical

inputs of the circuit are forced low – no extra reset circuitry is needed.

This self-initialization property comes from the fact that the activity graph of a

handshake circuit is acyclic and all component realizations have two key properties.

The activity graph is the directed graph obtained from a handshake circuit by

replacing the components by nodes and by introducing a directed arc from one node

to another if there is a corresponding handshake channel for which the component of

the first node is active and that of the second node is passive. Its acyclic nature can be

proven using properties of the translation algorithm [11]. For single-rail datapaths,

the two handshake component properties are as follows: (i) when the (request) inputs

of the passive ports are low, the (request) outputs of all active ports go low; (ii) when

all inputs (active acknowledge signals and passive requests) are low, all outputs go

low [16]. Initialization is caused by a ripple effect from the primary inputs to all parts

of the circuit. At each step, there exists either a component all of whose passive

request input ports are low, which therefore lowers its active request outputs, or a

component all of whose inputs are low, which therefore lowers all its outputs.

As an example, the initialization sequence for the circuit shown in Figure 10.10

is shown in Figure 10.21. After the lowering of the Startreq signal (at time 0),
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which is the active input to the SEQ component, the two active SEQ outputs go

low (at time 1). The Ereq signal is the only active input to the repeater component;

thus its active output request Freq goes low (at time 3). This is the only active

input of the PAR component, which thus lowers both its output requests (at time 4).

One of these outputs, Greq, is the last input to the mixer to go low, which forces

both its outputs, Aack and Gack, to go low (at time 5). Concurrently Freq goes

low, and this causes the unlabeled request output of the top S-element in the PAR

block to go low (at time 4). This forces the PAR block’s C-element finally to reset,

causing Fack to go low (at time 5). Note that the reset ripple effect starts with a

sequence of active output requests that go low and then completes as the

remaining outputs go low. On the basis of this ripple effect, it has been shown

that the length of time taken by the initialization process is proportional to the

longest acyclic path in the activity graph [11].

A more general formalization using weak and strong initialization properties of

handshake components leading to self-initialization (which capture properties

of QDI datapaths) is also described in [11].

10.8 Testability

Quasi-delay-sensitive circuits have the natural testability advantage that most

stuck-at faults on gate outputs cause such circuits to deadlock [24]. However,
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Figure 10.21. Reset sequence for the circuit illustrated in Figure 10.10. The symbols 0@0
mean “low at time 0,” etc.
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stuck-at faults on gate inputs as well as other types of faults, such as bridging

faults, can cause more unpredictable behavior. Moreover, this testability advan-

tage does not carry over to single-rail datapaths. Both scan [30] and current-based

IDDQ testing [29] have been explored to test Tangram circuits. This section

focuses on the more recently proposed scan-chain approach, which involves

adding design-for-test (DfT) circuitry that makes the Tangram circuit look syn-

chronous in test mode and adopts synchronous full-scan solutions with the goal of

getting close to 100% stuck-at-fault coverage [26]–[28].

In particular, asynchronous circuits can be characterized as combinational logic

circuits with feedback loops of two types. First, there are the feedback loops implicit

in asynchronous memory elements such as C-elements. Second, there are explicit

cycles among the gates. Both types of cycle cause problems with synchronous test

analysis and automatic test pattern generation (ATPG) tools designed for synchron-

ous flip-flop or latch-based circuits in which the combinational logic is acyclic.

One approach to address this issue is to break all loops with scan-chain latches or

flip-flops acting as buffers during normal operation. Essentially this enables the

asynchronous circuit to look like a synchronous circuit during test.

Adding latches to break explicit cycles among the gates in Tangram circuits is

straightforward since the number of these loops tends to be relatively small. How-

ever, given the large number of C-elements in a Tangram circuit, making scannable

C-elements has been accorded special attention [27]. A naı̈ve approach involves

building C-elements out of combinational standard cell logic with a feedback path,

as described in Chapter 7, and inserting the scan elements in the feedback path.

This has three disadvantages. The first is that the scan elements increase the delay of

the feedback path, making it harder to ensure the fundamental-mode assumption

necessary for correct operation. The second is that the scan circuitry delays the

output of the C-element, incurring a performance penalty. The third is that since the

number of C-elements necessary in the control of Tangram circuits is large, as

mentioned above, the resulting impact in area is quite significant.

Beest et al. proposed a more elegant approach to break C-elements, illustrated

in Figure 10.22, in which a MUX element is placed in the feedback latch and a

scan latch is attached to the C-element output [28]. During normal operation the

scan enable (SE) connects the MUX output to the output of the C-element

function block, completing the feedback path. During the scan-in operation, the

output signal Z changes as the MUX is set to pass the scan input to the output.

During the subsequent capture cycle, the scan enable is lowered and the output of

the C-element value is stored in the additional latch. The properties of the C-block

ensure that the lowering of the scan enable signal does not change its output value

during the capture cycle, so that it is properly stored by the attached latch.

In particular, if on the one hand the C-block is initialized in a set on reset state

then its output value is independent of the feedback signal and thus guaranteed

not to change when SE is lowered. Thus the value of the C-block will propagate

to the output Z and the input of the attached latch. If, on the other hand, the

C-block is in a state-retention state then its output signal value is the same as
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the value on the feedback line. This means that the C-block output is the same

as the last scanned-in value SI as well as the same as the value of Z. Thus, when the

scan enable is lowered, this value is also input to the attached latch. In both cases

the value of Z after initialization is properly stored in the latch. This argument,

however, is based on the assumption that the inputs A and B to the C-block do not

change during the capture cycle, so that the C-element remains in the same state

as that in which it is initialized. This assumption is guaranteed by connecting

the multiplexers of MUX-based C-elements connected in series to different scan

enable signals, since these are never simultaneously active during any test [28].

Once all the cycles and C-elements have been broken with latches, a Tangram

design looks similar to a latch-based synchronous circuit, the difference being that

single-rail datapaths have locally generated latch enables. Given that the latch

enables are relatively easy to control with a modest amount of test circuitry [27],

the synchronous techniques used for latch-based circuits can be readily applied to

these datapaths.

In particular, one of the most robust forms of testing synchronous latch-based

synchronous designs is level-sensitive scan design (LSSD). An LSSD element con-

tains two latches L1 and L2. These latches are connected in a scan chain where the

output of an L2 latch is connected to the scan input of the next L1 element. The L1

latch implements the observability (read) function required for testing, whereas the

L2 latch is used to control (i.e. write) the data of a feedback loop and the next element

in a chain of such elements. During testing, a two-phase non-overlapping clock is

applied to the two latches, and the circuit will behave as a normal clocked circuit.

During functional mode the L1 element operates as the normal datapath latch. The

operation during testing is independent of the rise time, fall time, or minimum delay

of the circuit.

In the LSSD approach the L2 latches are added for scan purposes and are not

otherwise needed during normal operation. Thus they represent DfT overhead
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Figure 10.22. MUX-based scanned C-element [28].
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that should preferably be minimized. An improvement upon this method is called

the L1L2* method [25][26], in which a subset of the L2 latches can be made from

existing latches in the datapath as long as different functional blocks are tested

independently. In particular, the read input latches to each functional block must

be of the same latch type and the write outputs latches of a functional block

must be of the same latch type. This allows all inputs to a functional block to be

read on the same clock phase and latched on the same clock phase. The scan chain

can thus be created by sequencing latches of different types to form master–slave

alternating latch types. Optimal methods for ordering the scan chains for single-

rail datapaths (including adding dummy L2 latches where necessary) that mini-

mize test time have also been developed [31].

This work has demonstrated that the LSSD approach can yield high test coverage

using synchronous scan and ATPG tools, with test-area overheads between 20%

and 40% for a variety of large Tangram designs [28]. Future enhancements have

been identified that are expected to reduce the overhead further. However, finding a

comprehensive DfT strategy that can approach the 5% to 10% area overhead

typical in synchronous design remains a research challenge.

10.9 Design examples

We will discuss four representative large design examples, two of which were imple-

mented with Tangram and two implemented with Balsa. The latter is described in

detail in the Ph.D. thesis of W.B. Toms [20].

10.9.1 Tangram digital compact cassette error corrector

The first example is a digital compact cassette (DCC) error corrector design. In the

DCC player, parity symbols are recorded on tape to protect the audio information

against tape errors. During play mode, a Reed–Solomon error detector accepts

code words of 24 or 32 symbols (eight bits each), including four or six parity

symbols. Each symbol has an associated one-bit erasure flag indicating the known

error status of that symbol.

Let e, r, and p denote the number of errors, erasures, and parity symbols respect-

ively. The detector is required to output the positions and values of the e errors and

the r erasures, given that 2eþ r� p. For a formal specification of the detector see [33].

The DCC application specifies a performance of 3000 code words of length 24 and

2300 codewords of length 32 per second. This implies an average input rate of 145600

symbols per second.

Two synchronous IC baselines exist. The first operates on a 6.14 MHz clock and

uses a ROM-based centralized controller and a small RAM to store intermediate

results. The ROM and RAM together account for more than 50% of the power

dissipation. In the second, a successor of the first, the clock frequency is halved
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and the RAM eliminated. Furthermore, by means of clock gating (in the enabling

of the ROM), the ROM storage power is further reduced to 6%–10% of the

entire design.

Two single-rail designs were generated, the first to a working IC and the second

to a layout that removed unnecessary single-to-dual-rail interfaces, included more

peephole optimizations, and was substantially improved. Two dual-rail designs

were also generated. The first was a QDI design and used a dedicated cell library.

The second used some timing assumptions (extended isochronic forks), a generic

cell library, and an optimized Tangram program that reduced the activity factor

for correct code words by about 50%. All asynchronous designs do exhibit data-

dependent delay but they all easily meet the target performance specification with

worst-case data. The DfT strategy in both single-rail designs was based on a

partial-scan approach that does not achieve 100% stuck-at-fault coverage but

has only 4% area overhead. Design-for-test circuitry was not added to the dual-

rail designs.

Table 10.1 shows that while the single-rail circuit is 20% larger than the syn-

chronous version it consumes only 15% of the power. Compared to the best double-

rail version, the best single-rail version is 33% smaller, 25% faster, and requires

50% less power.

The dramatic power savings of the single-rail circuit in comparison to the best

synchronous design can be attributed to two main sources. The first is the use of

single-rail latches over flip-flops, which, in synchronous circuits, has been shown to

yield a 20% savings in power. The second is that distributed and controlled data

movement and storage can provide even lower power consumption than optimal

gated clocking. In particular, the best synchronous design operates at 3.1 MHz,

which is over 30 times the input symbol rate of about 150000 symbols per second.

This implies that with perfect clock gating a large fraction of registers are gated

over 95% of all clock cycles. But achieving perfect clock gating is difficult

because the clock enable circuitry can be quite complex and, even during gated

cycles, a significant amount of power is still consumed in the shared clock tree as

well as in the individual gating logic. This residual power consumption can be

substantial and is completely avoided by the distributed nature of asynchronous

control.

Table 10.1. Single-rail, dual-rail, and synchronous DCC error correctors [16]

Quantity
1-rail 1
(IC)

1-rail 2
(Layout)

2-rail 1
(IC)

2-rail 2
(Layout)

Sync 1
(IC)

Sync 2
(IC)

Number of
transistors (1000s)

21.8 20.3 44.0 30.8 — —

Core area (mm2) 4.5 3.9 7.0 5.9 3.4 3.3
Time (ms) 50 40 83 55 — —
Power (mW) 0.5 0.35 2.3 0.8 12 2.7
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10.9.2 Balsa SAMIPS – an asynchronous MIPS R3000 processor

The synthesizable asynchronous micro-processor without interlocked pipeline

stages (SAMIPS) is an asynchronous implementation of the MIPS R3000 processor

and consists of a five-stage pipeline implemented using the Harvard architecture

with two memory ports. The five stages are: (1) an instruction–fetch stage, which

fetches instructions and updates the PC; (2) an instruction–decode stage, which

contains the instruction decoder and thirty-two 32-bit general-purpose registers

and which implements control forwarding to resolve data hazards within the

pipeline; (3) an execute stage, which contains the ALU (including a multiplier–

divider), a shifter, the forwarding unit, and a functional unit to determine whether

branches are taken; (4) a memory stage, which interacts with the memory unit; and

(5) a write-back stage, which writes the data back to the general-purpose registers

and supplies data to the forwarding unit if there is a data hazard.

Estimated sets of figures for single- and dual-rail implementations are analyzed

in [20] and illustrated in Table 10.2. The dual-rail area and energy overhead values

can be explained by the large dual-rail completion-sensing and storage elements.

In particular, the completion and storage categories account for 56% of the

transistors and 76% of the energy consumption in the dual-rail SAMIPS, as

compared with 21% and 26% in the bundled-data implementation. The perfor-

mance penalty of the dual-rail design can be attributed to its channel-wide com-

pletion sensing of valid and neutral data and its propagation of neutrality through

the dual-rail datapath that arises in the enclosed-handshaking-based implemen-

tation of assignment statements, as described in subsection 10.5.1. No comparison

with a synchronous baseline was made, however.

10.9.3 Balsa SPA – an asynchronous ARM V5T processor

A synthesizable processor amulet (SPA) core is an ARM V5T compatible core

designed to reduce the susceptibility of a circuit to power-analysis attacks by

eliminating data-dependent changes in the power consumption of the circuit. In

order to make the operation data-independent, SPA was implemented in dual-rail,

where the number of transitions required to transmit a data word is the same for all

data words. The logic was implemented using “balanced” DIMS, where “dummy

loads” are added to make the OR gate networks equal for all outputs. The SPA core

also employed return-to-zero storage, to eliminate power consumption differences

Table 10.2. Single-rail and dual-rail implementations of the SAMIPS design [20]

Single-rail Dual-rail

Area (mm) 0.9 2.1
Speed (MIPS) 15.8 6.8

Energy (mJ) 0.69 2.63
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that arise when data sometimes overwrites identical data and sometimes overwrites

different data.

The SPA core is a three-stage pipelined Harvard architecture design that includes

(i) a fetch unit that fetches instructions from memory and controls the flow of the

processor, (ii) two instruction decoders, one for regular ARMV5 instructions and

another for the compressed 16-bit Thumb® instructions, and (3) an execute unit

consisting of a memory access unit, a register bank, and a functional-execution unit.

Estimated sets of figures for single- and dual-rail SPA implementations are ana-

lyzed in [20] and are illustrated in Table 10.3. As with the SAMIPS design, the

substantial area overhead for the dual-rail version can be explained by the large

completion-sensing and storage elements. They account for 52% of the transistors

and 64%of the energy consumption of the dual-rail SPA, as comparedwith 14%and

26% for the bundled-data implementation. The performance penalty of the dual-rail

design is still significant (13% slower) but is not as great as in the SAMIPS case. As in

the SAMIPS study, no comparison with a synchronous baseline was made.

10.9.4 Haste ARM996HS: a commercially available asynchronous ARM core

The ARM996HS is a commercially available asynchronous ARM9E core developed

in a partnership between ARM and Handshake Solutions [34]. It is based on the

ARMV5TE instruction set architecture, which includes the 16-bit Thumb® and 32-bit

ARM instruction sets. The Harvard-architecture core is based on a five-stage integer

pipeline with a fast 32-bit multiply–accumulate block. It has separate instruction

and data memories, each up to 4 MB. Dual synchronous buses provide the instruc-

tion and data interfaces. Specific security enhancements for the ARM996HS core

include a memory protection unit (MPU) and the provision of non-maskable inter-

rupts (NMI).

The ARM996HS operates up to a maximum speed of 77 MHz. For comparison

purposes, a synchronous ARM968E-S counterpart was synthesized for 100 MHz in

the same Sage-X 0.13 micron TSMC process and run at 77 MHz. A performance,

power, and area comparison can bemade using Table 10.4. It shows that the areas of

the two cores are similar and the power efficiency of the asynchronous ARM is close

to three times better than its synchronous counterpart. An important secondary

advantage of the asynchronous ARM is the 2.4 times lower peak throughput, which

results in substantially lower electromagnetic interference. In particular, the asyn-

chronousARM reduces peaks by 25 dB in the wireless spectrums, ensuring that there

Table 10.3. Single-rail and dual-rail implementations of the SPA design [20]

Single-rail Dual-rail

Area (mm) 1.4 2.6
Speed (MIPS) 4.3 3.8

Energy (mJ) 0.78 4.2
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is no interference with the common GSM and Bluetooth receivers. A significant

disadvantage of the asynchronous version, however, is that it has a lower perform-

ance than that achievable by synchronous alternatives and thus can be used only for

relatively low-performance applications.

10.10 Summary

Tangram QDI circuits are very robust to process variation and provide efficient

distributed control of data movement and storage, enabling different portions of a

chip to operate at their ideal data rates. Thus Tangram circuits consume power only

where and when needed. The dual-rail DCC error corrector demonstrates substan-

tially lower power than comparable synchronous designs.However, the performance

and area overheads provide substantial room for improvement. In fact, single-rail

Tangram designs consume less than half the area and less than half the power of

their dual-rail counterparts and have significantly higher performance. Moreover,

using conservatively designed delay lines, the single-rail designs have demonstrated

robustness characteristics initially attributed to only QDI designs and they operate

correctly over a large range of voltage supplies. In addition to providing significant

low-power benefits to a variety of applications, the designs also have far smaller peak

currents and thus substantially lower electromagnetic emissions.

One of the most powerful reasons why the Tangram approach obtains these

advantages is that the syntax-directedCAD flow enables low-level circuit bottlenecks

to bemapped easily to specific characteristics of the high-level language specification.

This enables an efficient exploration of different architectural choices, including

alternatives in parallelism and pipelining, and the resulting tradeoffs in achievable

power and performance. The one disadvantage of Tangram is that the proprietary

nature of the language creates a barrier of adoption to synchronous designers

accustomed to using the existing hardware description languages such as Verilog

and VHDL. In addition, the circuits demonstrated have yielded relatively low per-

formance. Finding methods to reduce the performance overhead associated with

handshake circuits is an area of active research.

It may also be worthwhile to emphasize that dual-rail Tangram implementations

are slower than their single-rail static counterparts and this fact is somewhat

counter-intuitive. In both synchronous design and other asynchronous templates

designed for fine-grain pipelining, the opposite is true. In particular, compared with

Table 10.4. Commercially available ARM 9E cores [34]

ARM996HS ARM968E-S

Area (gate count) 89K 88K
Frequency (equiv. MHz) 50 (worst-case) 77 (nominal-case) 100

Performance (DMIPS) 54 (worst-case) 83 (nominal-case) 107
Power (mW/equiv. MHz) 0.045 0.13
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synchronous counterparts, a factor 2 improvement in speed is typically associated

with dual-rail logic when implemented with dynamic logic families such as dual-rail

domino. Moreover, dual-rail implementations can avoid the extra margin associ-

ated with conservatively set delay lines and flip-flop on latch setup times [6]. In

Tangram, however, these raw latency improvements appear to be overshadowed by

the overhead associated with the completion logic of multi-bit dual-rail channels

and the reset delay through the dual-rail logic. We will explore how other asyn-

chronous pipeline templates overcome these limitations in later chapters.

10.11 Exercises

10.1. Identify the isochronic forks in the S-element shown in Figure 10.8. Explain

what goes wrong if the isochronic fork assumption is violated.

10.2. Create an un-optimized handshake circuit for a two-stage buffer. Then,

using single-rail implementation, implement all the handshake components

and analyze the cycle time of the circuit.

10.3. Attempt to use peephole optimizations to transform the two-stage buffer

into something similar to a micropipeline-based implementation. Show your

working and include an analysis of the new cycle time. Show how the

optimized circuit remains initializable.

10.4. Implement the greatest common divisor (GCD) circuit in Figure 10.1 using

a single-rail implementation of all handshaking components. Optimize it

using peephole optimizations.
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11 Quasi-delay-insensitive pipeline
templates

As mentioned in Chapter 7, in delay-insensitive (DI) design it is assumed that the

delays of the composite gates and wires can be unbounded and thus the circuits

will work correctly for any arbitrary set of time-varying gate and wire delays [4][5].

This is the most conservative and robust delay model, but it has been shown that it

is not very practical because very few DI circuits exist [6]. Therefore the notion of

quasi-delay-insensitive (QDI) circuits has been developed [3][7]. These circuits

work correctly regardless of the values of the delays in the gates and wires, except

for those associated with wire forks designated isochronic. By definition, the

difference in the times at which a signal arrives at the ends of an isochronic fork

is assumed to be less than the minimum gate delay. If these isochronic forks are

guaranteed to be physically localized to a small region, this assumption can be

easily met and the circuits can be practically as robust as DI circuits. This chapter

covers a variety of QDI templates designed with pipelined handshaking. Note,

however, that the QDI model is also used in circuits that implement enclosed

handshaking (see Chapter 8) and has been extended to include the assumption of

isochronic propagation through a number of logic gates [8].

11.1 Weak-conditioned half buffer

The first QDI template we will cover is the weak-conditioned half buffer (WCHB).

Figure 11.1(a) illustrates the high-level WCHB template for a linear pipeline with

left- (L) and right-hand (R) 1-of-N channels and Figure 11.1(b) illustrates its gate-

level implementation assuming dual-rail channels (N ¼ 2). In Figure 11.1(b) the

WCHB is optimized for improved cycle time by using the inverting C-element

outputs to drive the output completion-detection logic rather than the outputs of

the subsequent inverters. In the WCHB dual-rail buffer, L0 and L1 and R0 and

R1 identify the false and true dual-rail inputs and outputs, respectively; Lack and

Rack are active-low acknowledge signals. Note that the staticizers that are used to

hold the state at the outputs of the C-elements are not shown explicitly.

The operation of the buffer is as follows. After the buffer has been reset, all data

lines are low and the acknowledgement lines, Lack and Rack, are high. When data

arrives, one input rail goes high and the corresponding C-element output goes low,

lowering the left-hand acknowledge signal Lack. After the data has been



propagated to the outputs through one of the inverters, the right-hand environ-

ment will assert Rack low, acknowledging that the data has been received. Once

the input data resets, the template raises Lack and resets the output.

The distinguishing feature of the WCHB template is that the validity and

neutrality of the output data R implies the validity and neutrality of the corres-

ponding input data L. As mentioned in Chapter 7 this is called weak-conditioned

logic [1], and we will review its advantages and disadvantages later.

Notice in Figure 11.1 that Rack forks to two C-elements. This fork must be

isochronic in order to guarantee correct operation. The Rack line starts high, goes

low, and then returns to high while processing the first token; this is initiated by,

for example, a rising transition from L0. If the low transition of Rack does not

reach the second C-element by the time a rising transition from L1 occurs due to

the arrival of a second token, the C-element may experience a runt pulse at its

output. Note this can only happen if the forked wire can experience multiple

transitions in transit, which assumes what is called a pure delay model. In contrast,

in an inertial delay model input pulses shorter than the delay of the wire are not

propagated.

Since the L and R channels cannot simultaneously hold two distinct data

tokens, this circuit is said to be a half buffer or to have slack of 1/2 [3].1 The

behavior of the three-stage pipeline shown in Figure 11.2 is illustrated in Figure

11.3 using a marked graph in which we have assumed that only 0 data tokens

traverse through the pipeline. Notice that Figure 11.3 does not include any model

of the environment and consequently the transitions associated with the primary

inputs and outputs are left dangling. Moreover, we focus on 0 data tokens because

modeling the inherent non-determinism associated with a mixture of 0 data tokens

and 1 data tokens traversing through the pipeline is complex and obfuscates the

parallelism in the pipeline template.

RCD

W
N N

Ldata

Lack

Rack

Rdata

(a)

C

C
L0

L1

Lack

R0

R1

Rack

(b)

R0

R1

Figure 11.1. Weak-conditioned half buffer W: (a) block diagram and (b) gate-level
implementation.

1 In Figures 11.2–11.6, and in certain other figures in this chapter, subscript notation for signals is used

for convenience.
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To analyze the pipeline parallelism independently of specific data values, we

sometimes use an abstract block diagram of the pipeline and a corresponding

marked graph. In particular, a block diagram of the three-stage pipeline is shown

in Figure 11.4. Here, we also include an abstract notion of the left-hand and right-

hand environments, which are shown as a bit generator (BG) and bit bucket (BB).

These two environments may be in reality arbitrarily complex but, for the purpose

of this pipeline, BG simply responds to the left-hand pipeline acknowledgements

by providing new data and BB responds to the pipeline output tokens by consum-

ing them and acknowledging the pipeline. The corresponding marked graph is

shown in Figure 11.5. An advantage of this marked graph is that the cycle-based

C

C
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L0,ack

R0,0

R0,1

R0,ack

R0,0

R0,1 C
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R1,1
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R1,0

R1,1 C

C
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R1,0

R1,1

R1,ack

R2,0

R2,1

Figure 11.2. A three-stage WCHB pipeline.
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Figure 11.3. Marked graph showing the behavior of the three-stage WCHB pipeline in
Figure 11.2.
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Figure 11.4. A block diagram of the three-stage WCHB pipeline surrounded by an abstract

bit-generator and bit-bucket environment. The right-hand completion detectors are
denoted RCDi.
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performance analysis based on the techniques described in Chapters 4 and 5 can

include the response time of the left- and right-hand environments.

Another abstract view of the performance of such pipelines can be obtained by

creating a marked graph in which the nodes represent block diagram events rather

than signal transitions. This is illustrated in the marked graph in Figure 11.6 in

which the evaluation and precharge events of the ith weak-conditioned function

block are denoted We
i andWp

i , respectively, and the identifications of the valid and

neutral data by the right-hand completion detector are denoted RCDþ
i and

RCD�
i , respectively.

Analyzing the longest cycle in the marked graph shown in Figure 11.6, we

can see that the local cycle time involves the delays from three evaluations,

+

+ + + +

Ldata

–

– – – –

– – –Lack

Ldata

Lack

+
C1,data

C1,ack

C1,data

C1,ack

+
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+
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Figure 11.5. Marked graph of the abstract three-stage WCHB pipeline in its environment.
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Figure 11.6. Marked graph showing a functional view of three-stage WCHB pipeline in its
environment.
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one precharge, and two completion detectors. The evaluation and precharge

delays are generally two transitions and the completion detectors are as small

as one transition (for a single input and output channel, in which we account for

the fact that the RCD inputs are taken before the datapath output inverters),

giving rise to a 10-transition cycle time. This is faster than for the buffers

designed with most other QDI templates. For WCHB circuits with more than

one input channel, the datapath contribution to the cycle time does not change

(when counting transitions) but the delay of the completion detectors increases

logarithmically. Nevertheless, the complexity of WCHB circuits is typically limited

to what can feasibly be implemented in a single level of weak-conditioned logic.

In particular, a closer look at Figure 11.1 shows that more complex weak-

conditioned function blocks can be implemented by changing the C-elements

appropriately. However, this means increasing the complexity of both the NMOS

and PMOS stacks of the C-element. The two-input C-element shown in Figure 11.1

already has two PMOS transistors in series and a general rule of thumb is not to

exceed that number. Therefore implementing any complex function with the

WCHB leads to a poor performance.

An attractive alternative is to replace the C-elements with gates in which the

number of PMOS transistors in series is independent of the function implemented.

In particular, using one level of domino logic in place of the C-elements is a

promising approach; this is the core idea underlying the precharged half buffer

template described next.

11.2 Precharged half buffer

The block-level template of the precharged half buffer (PCHB) is illustrated

in Figure 11.7(a). Like the WCHB template, the PCHB template has an

NMOS
network

wk
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wk

R0

Ldata

en

pc

en

pc

(b)
(a)

RCD

F
N N

Ldata

Lack Rack

Rdata

C

LCD
en pc

Figure 11.7. Precharged half-buffer template: (a) block diagram and (b) dual-rail domino

F block.
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output completion detector, denoted as RCD (right-hand completion detection).

However, unlike the WCHB, the validity and neutrality of the input channels

are checked using a distinct input completion detector, denoted as LCD (left-

hand completion detection). Moreover, the function block F need not be weak-

conditioned and instead can be implemented using one level of domino logic with

two control inputs en and pc, as illustrated in Figure 11.7(b). The signal pc is driven

by the right-hand acknowledgement and the signal en is driven with the inverting

C-element combination of the two completion detectors.

Note that, as in the WCHB template, the inputs to the domino inverters are

used to drive the RCD in order to improve throughput (not shown).

The PCHB template is quasi-delay-insensitive and works on the assumption

that the wire fork between the LCD and function block F is isochronic. In

particular, the falling transition of the input data should arrive at the data inputs

to the F block before it propagates through the LCD and C-element and causes a

rising transition of the en input to the F block. Otherwise, if Rack is already 1 then

the function block may incorrectly re-evaluate with old data.

Because the function block need not be weak-conditioned, it can evaluate before

all the inputs have arrived (if the logic allows). However, the template only

generates an acknowledgment signal Lack after all the inputs have arrived and

the output has evaluated. In particular, the output of the inverting C-element that

combines the LCD and RCD outputs, driving the signal en, also drives the Lack

output signal.

A few minor aspects of this template should also be pointed out. First, because

the C-element is inverting, the acknowledgment signal is an active-low signal.

Second, the Lack signal is often buffered using two inverters before being sent

out. Often, another two inverters are also added in order to buffer the internal

signal en that controls the function block.

Figure 11.8 illustrates a detailed implementation of a PCHB with dual-rail input

and output channels and includes explicitly the buffering of the acknowledge and

en signals. For simplicity, these buffering inverters will typically not be shown in

the remaining figures of this book.

Figure 11.9 illustrates the handshaking protocol using the marked graph for an

abstract three-stage PCHB pipeline. As in the WCHB marked graph, the broken

arrows represent the actions of the bit generator and bit bucket. Notice that the

evaluation of the domino logic depends on four precursors: the input data is

valid; the LCD indicates that the previous data has gone neutral; the RCD

indicates that the previous output data has gone neutral; and the acknowledge

signal has gone high. Similarly, the precharge of the domino block depends on

three precursors: the LCD indicates that the input is valid; the RCD indicates

that the output is valid; and the acknowledge signal has gone low and so indicates

that the output data has been consumed by the next stage. In particular, the

dependency between the data-input falling and the data-output falling has

been removed and, instead, the input falling is a precursor for the output’s
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re-evaluating. From the marked graph it is possible to derive the pipeline’s

analytic local cycle time:

TPCHB ¼ 3teval þ 2tCD þ 2tc þ tprech:

During to the extra buffering, the cycle time is typically at least 14 gate delays or

transitions and, for more complex instances with multiple inputs and output

channels, is often 18.
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en

pc

en
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Figure 11.8. The detailed implementation of a 1-of-2 PCHB with buffered acknowledgement.
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Figure 11.9. Marked-graph behavior of a three-stage PCHB pipeline.
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11.2.1 PCHB full adder

As an illustration of a PCHB template that supports multiple input channels, we

will consider the detailed implementation of a full adder shown in Figure 11.10.

The ABCv node is asserted when all the data inputs A, B, and C are valid. When

the functions evaluate, the dynamic nodes before the inverters will be lowered and

the output after the output inverters will be pulled high. The completion of

function evaluation is detected with the two NAND gates and therefore the Sv

and Dv nodes are asserted high. The input and output completion detection is

merged with a C-element, and the internal en signal and the signal Fe sent to

acknowledge the A, B, and C inputs are generated. (Since the PCHB template uses

an active-low acknowledge signal, the latter is often denoted with an “e.”) The Se

en

Se

A1
S1S1

(a) (b)

S0 D1 D0

A0 A0

C1
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Bv

Cv

S0
S1

D0
D1

Figure 11.10. Precharged half-buffer full adder transistor-level diagram: the logic for (a) the
sum, (b) the carry-out, and (c) the enable and acknowledgement.
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signal is used as the pc (precharge control) signal for the sum (S) dynamic gate,

and the De signal is used as the pc signal for the carry (D) dynamic gate.

11.2.2 Conditional reading and writing

The high-level PCHB block diagrams for the template supporting the conditional

reading of input channels and writing to output channels are shown in Figure 11.11.

The conditional reading template, illustrated in Figure 11.11(a), uses an input

completion detector to detect the validity of each of the conditional inputs A and B.

Depending on the condition, which is encoded in the dual-rail S input, only one

input will be sent to the output. Once the output validity is detected by the RCD,

the consumed data and select channels are acknowledged.

The conditional writing template illustrated in Figure 11.11(b), however, has

one function block for each possible output; only one of these will evaluate and

which one it will be is determined by the data on the select channel. The RCDs of

each output channel are mutually exclusively high (i.e. only one will fire) and are

ORed together before feeding an inverting C-element that drives a shared acknow-

ledgement wire for the data and select channels.

As an example, the detailed implementation of a two-way split using the PCHB

template is shown in Figure 11.12.

The L input channel is sent to either A or B depending on the select channel

S. Only one acknowledge signal, SLe, is generated for both the L and S channels,

since L and S will always be consumed and acknowledged unconditionally.

However, in the two-way merge illustrated in Figure 11.13, either the token on

channel A or that on channel B is consumed (depending on the token on the

control channel M) but not both, and separate acknowledge signals Ae and Be

must be generated. The acknowledge signal Me is derived from the acknowledge

signals Ae and Be, since the channel M must be acknowledged after a token on

RCD

F
N N

Adata
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Rack

Rdata

en pc
LCDLCD

Bdata
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Figure 11.11. Conditional communication using PCHB: (a) reading of the input channels and

(b) conditional writing of the output channels.
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either A or B is consumed. In these split and merge examples, the internal enable

signal is the same as the acknowledge signals Me and SLe and is not buffered using

two inverters. This is often necessary to limit the cycle time because, as the number

of input and output channels increases, the LCD and RCD blocks become more

complex and increase their impact on the cycle time.

11.2.3 PCHB reset

As with all systems, upon global reset the entire system should go to a known

initial state. The general methodology for resetting an asynchronous pipelined

system implemented with many templates covered in this book, including the

PCHB, involves the use of a global reset signal to lower all the acknowledge

signals to 0 during reset. Since the outgoing acknowledge signal is the same as the

internal enable signal and since the incoming acknowledge signal from the next

stage will also go low, the domino logic units in all stages will precharge and their

output data will reset. Once reset is de-asserted, all acknowledge signals will then

be allowed to return to 1 and the system will be ready to operate.

(c)

SLv

c

c SLe

ABv

L0
L1

S0
S1

Lv

S0

D1

S1
D0

A0
A0

(a)
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SLe

L1

SLe

Ae

A1 B0 B1A1

(b)

S1
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SLe

L1L0

SLe

Ae

B0 B1

Figure 11.12. Precharged half-buffer split transistor-level diagram: the logic for (a) the

A output channel, (b) the B output channel, and (c) the enable and acknowledgement.
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Forcing the acknowledge signals (Lack and Rack) to go low upon an active-high

reset can be implemented in a number of ways. The effects on cycle time, area, and

power are to be considered when different options for such an implementation are

being compared. Figure 11.14 illustrates one approach using the PCHB buffer

shown in Figure 11.8.

The sequence of signal transitions during reset is illustrated in Figure 11.15. The

signal Reset is an active high signal.WhenReset is 0, Reset will be 1 and has no effect

on the output of theNANDgate.However,whenReset is set to 1 thenReset will be 0,

and this will force the output of the NAND to go high, driving Lack low through the

inverter. Since Rack will go low through the same process in the next buffer, the

domino logic will reset, as illustrated inFigure 11.15(d). Once all acknowledge signals

have reset to 0, the reset process is completed by setting Reset back to 1, as illustrated

in Figure 11.15(e). The NAND gate will then act as an inverter, enabling normal

operation.

11.2.4 PCHB register

A register is a building block used to store data for later use.With a simple register we

can save data, read data, or do both at the same time. There are a number of ways to

Me

(a)

Xe

B0 A1
X0

A0 B1

M1M0

Xe
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X1 X1 (b)
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B0
B1

A0 Av Ae
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X0
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Figure 11.13. Precharged half-buffer merge transistor-level diagram: the logic for (a) the
X output channel, (b) the enable and acknowledgement.
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implement a register using asynchronous templates. One possible implementation is

using the FSM loopback structure covered in Chapter 2. A more compact option is

to use state-bit structures, which store the data internally rather than looping it

around with feedback buffers. In this section we will present such a register

implementation.

We will consider a 1-of-4 encoded PCHB-based register that has L and R as

input and output channels and C as a control channel. If C is 0 then the internally

stored data is sent to the output channel R. If C is 1 then the input token on L is

consumed and internally stored. Finally, if C is 2 then the token on L is consumed,

stored internally, and sent to the output channel R.

A top-level diagram consisting of the input channels L and C and the output

channel R is given in Figure 11.16(a). The implementation of the register is more

complex than most other units covered; therefore we show its implementation

hierarchically. Figure 11.16(b) illustrates the top-level partitioning. The REGIS-

TER_DATA block stores the data internally and implements the output logic,

whereas the REGISTER_CTRL block implements the conditional handshaking.

Finally, Figure 11.16(c) illustrates the partitioning of the REGISTER_DATA

block. Here there are four logic networks, labeled Rail i, for each of the four data

rails of the output channel R, two STATE_BIT blocks which store the 1-of-4 input

tokens as two 1-of-2 data bits, and a local control circuit labeled REGISTER_

DATA_CTRL.

The state-bit structure deserves some attention because of its unusual imple-

mentation and is thus illustrated in Figure 11.17. After reset, the s0 output will
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Figure 11.14. Reset circuitry for a PCHB buffer.
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Figure 11.15. Reset sequence in the PCHB buffer in Figure 11.14.
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be high and the s1 output will be low, indicating that the stored state is 0.

The stored state will only change when the internal signal en (generated by

the REGISTER_CTRL block) is subsequently lowered. The details of the pull-

down NMOS network for s0 and s1 depend on how the state-bit structure is to be

used and will vary from application to application. Consider the case where the

inputs to the NMOS networks are such that s1 goes low and s0 remains high.

Once en goes low, s1 will be pulled high. Because s0 remains high, as s1 goes high

C (1-of-3)

L (1-of-4)

REGISTER_CTRL

Internal
signals

R (1-of-4)

(c)

STATE_BIT
s[0]

STATE_BIT
s[1]
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REGISTER_DATA_CTRL
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REGISTER(1of4)
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Figure 11.16. Top-level block diagram of the 1-of-4 register.
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s0 will be pulled low, changing the stored state from s0 ¼ 1 and s1 ¼ 0 to s0 ¼ 0

and s1 ¼ 1.

The 1-of-4 register illustrated in Figure 11.16 uses two 1-of-2 state-bits s[0] and

s[1] to store the input 1-of-4 input data L. In particular, an NMOS network

controlled by the inputs C, L, and the currently stored variables s[0] and s[1] are

used to change the state by pulling down one of the four state-bit rails, as

illustrated in Figure 11.18. The output data R is similarly constructed and con-

verts these two 1-of-2 bits to a 1-of-4 output channel, as illustrated in Figure 11.19.

The REGISTER_DATA_CONTROL block is depicted in Figure 11.20. Its

function is to check the validity of all input and output channels. Notice that in

the case of a write command the controller uses the existence of a fake fifth rail R4

to indicate that the R channel is valid. This simplifies the REGISTER_CTRL

block, because now the R validity signal rv and the combined R and state validity

signal rsv are always asserted independently of a read or write.

The high-level REGISTER_CONTROL block is illustrated in Figure 11.21. Its

function is to generate the enable signal en that controls the evaluation of both the

state-bit update and the read channel R, as well as the acknowledgements to both

the C and L channels. (Recall that the use of the subscript “e” on the acknow-

ledgement wire indicates that the acknowledgements are active-low.) Notice that

the C channel is acknowledged only after the right-hand channel R and state bits s

(see Figure 11.16) become valid, indicating that the read–write command has been

fully executed. Similarly L is acknowledged upon a completed write, i.e. when

doL1 is asserted (see Figure 11.21).
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Figure 11.17. Abstract structure for a state bit s used in a register.
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Figure 11.18. Detailed implementation of the dual-rail state bits (a) s[0] and (b) s[1].
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11.3 Precharged full buffer

The PCFB template, shown in Figure 11.22, is more complicated than the PCHB

template, having two asymmetric C-elements, denoted together as aC, rather than

one regular C-element. As mentioned in Chapter 7, asymmetric C-elements are

similar to C-elements but have inputs that are required only for the falling or

rising transition. In particular, an input to an asymmetric C-element that is

denoted with a plus (minus) is required to be a 1 (0) for the C-element’s output

to rise (fall). An input to an asymmetric inverting C-element that is denoted with a

plus (minus) is required to be a 0 (1) for the C-element’s output to rise (fall). An

input with no denotation is involved in both transitions.

The two state variables enable the PCFB to be more concurrent than the PCHB

since they allow the L and R handshakes to reset in parallel. To see this, consider

the behavior of a PCFB in a three-stage pipeline, as illustrated in the marked
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Figure 11.19. Detailed implementation of the output logic of a 1-of-4 register.
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graph shown in Figure 11.23. The key difference from a PCHB is that acknow-

ledge signals can reset high without waiting for the corresponding stage to pre-

charge. Consequently, PCFB buffers have a slack value equal to 1. Moreover,

there is no cycle of transitions that includes three evaluations. In particular, the

analytical local cycle time is:

TPCFB ¼ 2teval þ 2tCD þ 3tc þ tprech:

The time tCD is at least two transitions, one C-element takes one transition, and

the other takes two transitions, yielding a typical cycle time equal to at least 12

transitions. Of course, the buffers on Lack and enable (not shown) increase this

number.

11.4 Why input-completion sensing?

A join is a pipeline stage with multiple input channels whose data is somehow

combined into a single output channel. A fork is a pipeline stage with one input

channel andmultiple output channels.Complex forks and joins can involve condition-

ally reading from or writing to channels on the basis of the value of a control channel

that is unconditionally read, as in a merge or split.
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Figure 11.20. REGISTER_DATA_CTRL: (a) block diagram, (b) gate-level implementation.
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Figure 11.21. REGISTER_CTRL: (a) block diagram, (b) detailed implementation.
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Since a fork has multiple output channels, it must receive an acknowledge signal

from them all before it precharges. A join, however, receives inputs from multiple

channels and must broadcast its acknowledge signal to all its input stages.

A join acts as a synchronization point for data tokens. The acknowledgement

from the join should be generated only when all the input data is valid. Otherwise

a stage A, feeding a join, that is particularly slow in generating its data token may

receive an acknowledge signal when it should not, violating the four-phase proto-

col. Moreover, if the acknowledge signal is de-asserted before the slow stage

A generates its token then the token is not consumed by the join, as it should

be. In fact, this token may cause the join to generate an extra token on its output,

thereby corrupting the intended synchronization. In addition, neutrality should be

checked to guarantee that the previous stages have precharged before the acknow-

ledge signal is de-asserted.
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Figure 11.22. Precharged full-buffer template.
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The templates that we will present in this section check validity and neutrality

in different ways. Because the function block in the WCHB template (see Section

11.1) is weak-conditioned, the output-completion detector implicitly checks the

validity and neutrality of the input data token. In the WCHB template the weak-

conditioned function block is a simple C-element. However, for more complex, non-

linear, pipelines, the weak-conditioned function blocks require complex NMOS and

PMOS networks. This results in slower forward latency and larger transistor sizes

and thus motivates the use of an explicit left-hand completion detector and the

PCHB template. As an example for comparison, a weak-conditioned and pre-

charged OR leaf cell with dual-rail input channels A and B and dual-rail output

channel C is shown in Figure 11.24.

LCD–RCD merging

One optimization that can be applied to the PCHB and PCFB templates is to

merge the LCD of one stage with the RCD of the other by adding an additional

request line to the channel. This is shown in Figure 11.25 for a PCHB template.

The request line indicates the assertion or de-assertion of the input data, as in a

bundled-data channel. However, in contrast with a bundled-data channel, the data is

sent using 1-of-N encoding, yielding what we call a 1-of-Nþ1 channel. The request

line, at least from the channel point of view, may appear redundant but in fact it

enables the removal of the input-completion detector, thereby saving area and

reducing capacitance on the data lines. Moreover, the request line does not signifi-

cantly impact performance, the template is still quasi-delay-insensitive, and the

communication between stages remains delay-insensitive.

We next cover two 1-of-Nþ1 QDI templates that intelligently reduce concurrency

in order to reduce the stack size of the function blocks, thereby improving

performance.

11.5 Reduced-stack precharged half buffer (RSPCHB)

The motivation for a reduced-stack PCHB template is to eliminate the need for an

enable signal en from the domino function-block control. The underlying obser-

vation is that this enable signal is only needed to support a concurrency that

typically does not improve performance.

More specifically, in the PCHB template the outputs of the LCD and RCD are

combined, using a C-element, to generate the acknowledgement signal Lack. This

supports the integration of the handshaking protocol with that for the validity and

neutrality of both input and output data, which removes the need for the function

block to be weak-conditioned; however, the use of an en signal is still required.

In particular, in the case of a join the non-weak-conditioned function block may

generate an output as soon as one input channel provides data. In response, the

RCD of the join will assert its output. Meanwhile, any subsequent stage can receive
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this data, evaluate, assert (send high) both its LCD and RCD outputs, and assert its

acknowledge signal. Although the join can receive this acknowledgement, it will not

precharge until en is asserted. In fact, the en signal delays the precharge of the

function block until after the acknowledgement to the input stages has been

asserted. This delayed precharging is critical to the correct operation of the circuit

because it prevents the RCD from de-asserting until after it has helped to assert the

left-hand acknowledgement.
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Figure 11.24. A dual-rail OR gate implemented in (a) WCHB and (b) PCHB templates.
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If, however, the generation of the acknowledge signal from any stage subse-

quent to the join can be delayed in some way until all the input data to the join has

arrived and been acknowledged, then the en signal can be safely removed. In fact,

such a delay in acknowledgement would not generally impact performance

because the join is the performance bottleneck for the subsequent stages. There-

fore, this added concurrency is typically unnecessary.

In this section we review a different pipeline template, which reduces this

unnecessary concurrency allowing the elimination of the internal en signal,

thereby reducing the transistor stack sizes in the function block. We refer to this

QDI pipeline template, illustrated in Figure 11.26, as a reduced-stack precharged

half buffer (RSPCHB) [11]. The marked graph for this RSPCHB is shown in

Figure 11.27, and a specific form of this template for a single dual-rail buffer is

shown in Figure 11.28(b). Notice that here the RCD like the PCHB, is optimized,

by tapping its inputs before the output inverter and using a NAND gate instead of

an OR gate.

The unique feature of the RSPCHB is that it derives the request line from the

output of the C-element rather than from the RCD. (In particular, since the

output of the C-element is active-low and the request line is active-high, the output

of the C-element is sent through an inverter before driving Rreq.) The impact of

this change is that the assertion and de-assertion of Rreq are delayed until after all

Lreqs have been asserted and de-asserted.
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As a consequence, the acknowledgement from a subsequent stage of the join will

be delayed until well after its data inputs and outputs have become valid. More

specifically, the stage will delay the assertion of its acknowledge signal until all

Lreqs have been asserted, and this can occur arbitrarily later than the associated

data lines becoming valid. This extra delay, however, typically has no impact on

the steady-state system performance because the join stage is the bottleneck,

waiting for all its inputs to arrive before generating its acknowledgement. In fact,

this change yields a template with no less concurrency than a WCHB.

The advantage of this type of generation of the request line is that the function

block does not need to be guarded by the enable signal. In particular, it is sufficient
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Figure 11.27. The marked graph behavior of a three-stage linear pipeline of the RSPCHB
in Figure 11.26.

Rack

L0 L1

R0R1

C

Lreq

RreqLack

(b)

R0

R0 R1

R1Rack

en

L0 L1

R0R1

C
Lack

enL0L1

en

Rack

(a)

R0

R0

R1

R1

Rack

Figure 11.28. Implementation of 1-of-2 buffers using (a) the PCHB template and (b) the

RSPCHB template.

22311.5 Reduced-stack precharged half buffer (RSPCHB)



to guard the function block solely by the Pc signal because the latter now properly

identifies when the inputs and outputs become valid. Namely, the function block

is allowed to evaluate when Pc is de-asserted, and this occurs only after all the

input and output data lines have been reset. Similarly, it is allowed to precharge

when Pc is asserted, and this occurs only after all the input and output data lines

have become valid.

The RSPCHB is still QDI; however, the communications along the input channels

to the joins become QDI instead of DI (other channels remain DI). In particular, the

requirement that must be satisfied is that the data should reset before the join stage

enters a subsequent evaluation cycle. If we assume that the fork between the function

block, the RCD, and the next stage is isochronic [9] then this requirement is satisfied.

In particular, the data line at the receiver side is then guaranteed to reset before the

request lineRreq resets because only after the data lines reset can theRCD trigger the

C-element and subsequently Rreq. An analytical expression for the timing margin

associated with this isochronic fork assumption can be derived from marked graph

shown in Figure 11.27. In particular, the delay difference between the resetting of the

data and the associated request line should be less than

Tmargin ¼ 2tinv þ tCD þ 3tc

This margin is between six and eight gate delays depending on the buffering and

can be achieved easily with modern timing-driven place-and-route tools. Notice

that this timing assumption only applies to the input channels of join stages,

because non-join stages must receive both valid data and a valid Lreq before

generating valid output data or a valid Rreq.

The analytical cycle time of the RSPCHB can be derived from the marked graph

shown in Figure 11.27:

TRSPCHB ¼ maxð3teval þ 2tCD þ 2tc þ tprech; teval þ 2tCD þ 4tc þ tprechÞ:
With bubble shuffling, RSPCHBs and PCHBs have equal numbers of transitions

per cycle. The advantage of RSPCHBs is that the lack of an LCD and the reduced

stack size of the function block, which reduces the capacitive load, yields signifi-

cantly faster overall performance. The cost of this increase in performance is that it

requires one extra communicating wire between stages. For purposes of compari-

son, Figure 11.28 illustrates both a PCHB and an RSPCHB encoded as 1-of-2

implementing a buffer function.

A fork can be implemented easily either by using a C-element to combine the

acknowledge signals from the forking stages or by combining them by means of

increasing the stack size of the function block. Similarly a join can be implemented by

combining the request lines in the C-element and forking back the acknowledge signal.

11.5.1 Conditional reading and writing RSPCHB

High-level PCHB-template block diagrams supporting conditional reading of

input channels and writing to output channels are shown in Figure 11.11(a),(b).
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Now we consider the slightly more complicated RSPCHB template for a condi-

tional join, in which a control channel S is used to select the input channel that is to

read and write a given read data token to a single output channel. This is illustrated

in Figure 11.29(a). The template has one C-element per input channel, each of which

generates the associated acknowledge signal. Each C-element is triggered by not

only the RCD output but also the corresponding control channel bit. The collection

of C-elements are simply ORed to generate the Lreqs, because the former are

mutually exclusive. This template can be easily extended to handle more complex

conditionals in which multiple inputs can be read for some values of the control.

The template for a conditional split is shown in Figure 11.29(b). Here, the

functional block, the RCD, and the C-element are repeated for each output channel.

The select data lines ensure that only one function block evaluates. All C-elements

are combined using an AND gate to generate the acknowledgement for the select

channel. (The reason is that both the C-element outputs and the acknowledge signal

are active-low.) This template can easily be extended to handle the above-mentioned

generation of multiple outputs in response to some values of the control.

A common example of a conditional fork is a skip, in which, depending on the

control value, the input is consumed but no output is generated. The implementa-

tion has a skip output acting as an internal N þ 1 output rail that is not externally

routed but is triggered upon the skip control value. Note that a skip in which no

control value generates an output has the same functionality as a bit bucket [10].

11.5.2 RSPCHB register

While the register illustrated for the PCHB can be modified to be implemented using

an RSPCHB or any other template, in this subsection an alternative implementation
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Figure 11.29. Conditional (a) join and (b) split using an RSPCHB.
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is presented. Figure 11.30 shows a one-bit memory implemented using an RSPCHB

template. It has input and output channels A and C and an internal storage

channel B. An input control channel S determines whether the memory should read

or write. When S0 is high, on the one hand, the memory stores the value at the input

channel A to the internal dual-rail storage B. When S1 is high, on the other hand,

the memory is read, that is, the stored memory value is written to the output

channel C. For a write, both the input data and control channels are acknowledged

while for a read only the control channel is acknowledged.

The write and read operations are as follows. After reset, the state stored in the

dual-rail memory unitMU (which is similar to that in [3]) is initialized to some value

and one rail of the internal dual-rail signal B is high. When a token on A arrives and

S0 is high, one rail of B is asserted high, storing the data onA. Thememory completion

detectorMCD detects that the value in the memory has been updated and asserts its

output. The output of theMCD aswell as the request lines from the data and control

channels drive aC-element, which generates the acknowledge signal LackA.When S1

is high, however, the internal data stored in B is sent to the output channel C. When

an acknowledgement is received from the output channel C, the outputs are reset but

the data stored remains unchanged. The control channel S is acknowledged for both

write and read operations, using an AND gate driven by the two C-element outputs.

Notice that the memory is actually implemented by merging two RSPCHB

units. The first is used to store data (i.e. write) and the second is used to send

the data to the outputs (i.e. read). The MCD detects the completion of the write

operation and resets when all inputs are lowered.
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Figure 11.30. An RSPCHB one-bit memory.
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The MCD can be simplified by replacing the PMOS transistors driven by A0

and A1 with a PMOS transistor driven by LackA. However, this requires that the

delay difference between the data lines of channel A and its associated request line

is not long enough to cause short-circuit current. This restriction can be removed

by controlling the NMOS stack, adding one more NMOS transistor driven by the

LackA signal. The overall benefit, however, is not clear.

11.5.3 Loops using RSPCHB

One can see from the simple buffer shown in Figure 11.28(b) that the delay from

the left-hand request Lreq to the right-hand request Rreq is two gate delays,

consisting of the delays from a simple two-input C-element and an inverter. This

closely matches the delay through the domino logic datapath. For a more complex

gate with multiple input and output channels, however, the delay from Lreq to

Rreq will increase and for some cells will be larger than the delay through the

domino logic. It is important to realize that, for RSPCHB designs with loops, this

delay may become the performance bottleneck [12].

In particular, the fact that the data moves forward faster than its request signal

causes a problem. Given a loop with L stages, assuming that both the assertion of

the data and the request signal happen to be synchronized at stage 0, let the data

move forward faster than the request signal, at a rate td/tr, where td is the forward

latency of the data and tr is the forward latency of the request signal (tr 	 td).

Pipeline stages in the loop that have evaluated will be able to re-enter the evalu-

ation phase only after the request signal is asserted, allowing them to precharge

and then subsequently be de-asserted. Therefore, as the data attempts to overtake

the request signal around the loop (which may take many loop iterations), it will

stall while waiting for the request signal of the subsequent stage to de-assert.

From this point on, the forward latency of the data will slow down to match the

forward latency of the request signal. Figure 11.31 demonstrates the slowdown in

loop performance for a large, 33-stage, loop. The loop consists of 33 pipeline

stages, where td ¼ 2, tr ¼ 4, and tc ¼ 18 (the cycle time of each pipeline stage);

simulation results of this loop show that the long-term average cycle time is

33 � 4 unit delays.

One solution to prevent this negative effect is to insert request breakers into the

loop. Request breakers are pipeline stages that generate an Rreq signal as soon as

they evaluate rather than waiting for an Lreq signal from the previous stage.

A request breaker, shown in Figure 11.32, is a modified PCHB that not only

generates a request signal from the output of the output completion sensing but

also handles the left-hand side handshake.

The period at which request breakers must be inserted into the loop depends on

the L number of stages in the loop, the forward latency tr of the request signal, the

forward latency td of the data, and the cycle time tc of the stages used. We will

compute the number of stages N needed for the data to overtake the request. In

other words, the request signal has arrived at stage N and the data is about to be
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stalled at stage L þ N � 2 (with loop index (L þ N � 2)%L ¼ (N � 2)%L). More

specifically, the time it takes for the request signal to enter stage N plus the cycle

time for the stage to complete its precharge and re-enter its evaluation phase

should be larger than the time it takes for the data to go through the loop, enter

stage N � 2, and stall. Thus,

ðLþ N � 2Þtd ¼ tc þ Ntr;

and so

N ¼ ððL� 2Þtd � tcÞ=ðtr � tdÞ:
The above formula suggests that N is 22 in our 33-stage-loop example. This means

that a request breaker should be inserted every 22 stages to prevent a slowdown, as

shown in Figure 11.33. Figure 11.34 shows the waveforms for a loop with the
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breakers inserted, confirming that a slow down is avoided. Note that if N is larger

than L, only one request breaker is needed.

11.6 Reduced-stack precharged full buffer (RSPCFB)

This section presents a 1-of-(Nþ1) QDI full-buffer pipeline template constructed

by merging an RSPCHB with a modified WCHB. A schematic illustration of this

reduced-stack precharged full buffer (RSPCFB) [11] is shown in Figure 11.35 and

a more detailed implementation for dual-rail data is shown in Figure 11.36.
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The RSPCFB has two new features. First, the inverters from both half buffers

have been removed to keep the forward latency of the new template at a two-gate

delay. The inverters between the two half buffers can safely be removed because

the RSPCHB has little gate load and the wire load can be minimized by placing

and routing this template as a single unit. The output inverters are only necessary

if the unit is driving a significant load and can be added as necessary. (However, a

staticizer, not shown, is still necessary.) Second, the WCHB has to be modified

to accept an input request signal and generate an output request signal. This input

request signal drives a C-element whose other input is the RCD output. This

C-element then triggers the internal acknowledgement to the RSPCHB part of the

circuit instead of to the RCD alone. In addition, the output request signal is

driven from the RCD output. One other difference is that the request signal is now

active-low because the inverters have changed location (this is known as bubble

shuffling [9]).

The circuit operates as follows. The completion detector of the RSPCHB part,

referred to as the internal completion detector (ICD), detects the evaluation of the
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function block and asserts its output. The output of the ICD drives the C-element,

which generates the acknowledge signal Lack to the previous stage after all the

request lines associated with the data have also arrived. If the next stage is ready to

accept new data, the acknowledgement signal Rack should already be de-asserted,

allowing the C-elements in the forward path to pass the data to the next stage.

Subsequently, the WCHB’s RCD will assert its output, thus asserting the request

signal to the next stage. The output of the RCD also drives the C-element Cb, which

asserts the internal acknowledgement back to the RSPCHB part, allowing the

function block to precharge. When the acknowledge signal Rack is de-asserted, the

C-element in the forward pathwill de-assert its outputs. This will trigger theWCHB’s

RCD to de-assert Rreq and the C-element Cb to de-assert the internal acknowledge-

ment back to the RSPCHB, thereby enabling the function block to re-evaluate.

Notice that the Rreq of the RSPCFB is taken from the output of the RCD

instead of the C-element, unlike in the RSPCHB. The reason is that the WCHB part

of the circuit has weak-conditioned logic, which will not reset until all inputs,

including inputs from the RSPCHB part, have reset. This implicitly avoids the

problem of preventing the assertion of the acknowledge signal back to the RSPCHB

part, which delaying Rreq solved in the RSPCHB case. The advantage of this is that

Rreq can be generated earlier. The disadvantage is that the timing margin on input

channels to joins is reduced to 5–7 gate delays, depending on the buffering.

The RSPCFB has a minimum of 10 transitions per cycle, less than the RSPCHB,

which has 12 transitions. The analytical cycle time, using the marked graph in

Figure 11.37, can be expressed as

TRSPCFB ¼ maxð2teval þ 2tCD þ 4tc; teval þ tprech þ 2tCD þ 4tcÞ:

The RSPCFB can be extended to handle non-linear pipeline structures in the same

way as the RSPCHB, without any additional timing assumptions.
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11.7 Quantitative comparisons

In this section we review HSPICE simulations, designed for comparison purposes,

of the precharge and reduced-stack precharge-based templates [12]. Simple digital

simulations tend not to reflect accurately the delay differences of pull-up or pull-

down logic consisting of different numbers of transistors.

Since the goal in [12] was comparison, no attempt was made to fine-tune the

transistor sizing to achieve optimum performance. In particular, all transistors

were sized in order to achieve a gate delay roughly equal to that of a small inverter

(WNMOS ¼ 0.8 mm, WPMOS ¼ 2 mm, and L ¼ 0.24 mm) driving a same-sized

inverter. For the purposes of this comparison, wire delay was also ignored.

For the half buffers, i.e. the PCHB and the RSPCHB, a linear dual-rail pipeline

of buffers with 60 stages was constructed to achieve a static slack of 30, which

means that it can hold 30 distinct data tokens. For the full buffers, i.e. the PCFB

and the RSPCFB, 30 stages were used to achieve the same static slack. All pipelines

could hold 30 distinct tokens.

HSPICE simulations were performed using a 0.25 Taiwan Semiconductor Manu-

facturing Co. (TSMC) process with a 2.5 V power supply at 25 �C. Figure 11.38(a)
shows throughput versus token number triangles for the half buffers and Figure 11.38

(b) shows corresponding plots for the full buffers. The triangles for the PCHB and

PCFB are indicated by the broken lines. Approximately 15 distinct points were

obtained per pipeline for the triangle graphs using the HSPICE simulation. One key

result obtained from this simulation is the dynamic slack (see Chapter 4) of each

pipeline,which is thenumberof tokens required to achievemaximumthroughput [2][3].

The PCHB achieves maximum throughput 772 MHz with dynamic slack 7.3. The

RSPCHB is faster, withmaximum throughput 920MHzanddynamic slack 8.25. The

throughput improvement is approximately 20%. For the full buffers, the PCFB

achieves maximum throughput 707 MHz and dynamic slack 3.7. The RSPCHB is

faster, with maximum throughput 1000 MHz and dynamic slack 5.9. The speed

improvement is approximately 40%; however, owing to the C-elements in the for-

ward path of the RSPCFB, the forward latency is about 15% slower. In both the half

and full buffers, a higher dynamic slack was achieved. This means that the reduced-

stack templates support more system-level concurrency and higher stage utilization.

Notice that although the PCFB has 12 and the PCHB 14 transitions per cycle,

the PCFB is slower. This is partially due to the heavier load on the internal wiring

in the PCFB compared with the PCHB. Clearly, careful transistor sizing and

buffering can improve the performance of all pipeline templates; nevertheless,

we expect the relative performances to remain approximately the same.

11.8 Token insertion

Sometimes it is necessary to initialize a channel with a token value. Figure 11.39

illustrates a 1-of-2 encoded buffer that inserts a logic 0 on its output channel upon
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reset. Note that, by applying additional logic to the logic-1 rail R1 rather than the

logic-0 rail R0, a 1 instead of a 0 can be inserted. The illustrated scheme also scales

to 1-of-4 data encoding.

While the R1 output is, as usual, driven by an inverter, the rail that is pulled

high upon reset, R0, is driven by a NAND2 gate. During normal operation both

data rails, R0 and R1, are pulled up by the corresponding input rails, L0 and L1,

as in a WCHB template. And finally there is additional circuitry to force a data

value on the outputs and acknowledge the previous signal as a result of the reset.

The reset and token insertion operation can be described as follows. As Reset is

an active high signal, at the resetting of the circuit Reset will go to 1 and Reset will

go to 0, pulling up the x, y, R1, and R0 signals. When y and R0 go to 1, R0 goes to 0.
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In addition, R1 is directly driven by R1, therefore R1 will also reset to 0. Since x is

a 0, the NAND3 output Rv0 will go to 1, forcing the acknowledge signal Lack also

to reset. Since Rack is tied to the Lack value of the following stage, which also will

reset, Rack will also go to 0. At this point all output rails and acknowledge signals

are 0, just like the signals coming out of a regular PCHB-based stage, as illustrated

in Figure 11.40.

However, when the Reset signal is de-asserted to 0, setting Reset to 1, the

structure of TOKEN_BUF will yield a different state from the PCHB. Since x

was 1, once Reset is 1 and Rack goes back to 1, its expected initial value, y, will be

pulled down to 0. This forces the NAND3 output to stay high and consequently the

Lack output signal to remain low. When node y goes low this causes R0 to go low

also, via the NAND2, causing node x to go low as well. In fact, node x will stay 0

forever unless another reset happens. This sequence of node changes is illustrated in

Figure 11.41. From this state, y will go high after the following stage consumes the

token provided by this stage and Rack is lowered. Moreover, y will remain high

until another reset occurs, because the NMOS stack is gated by the reset signal.

Once y is set to 1 and x is set to 1, the circuit will be equivalent to that illustrated in

Figure 11.42.

The resulting circuit above is very similar to a dual-rail WCHB. TheNAND2 now

acts as an output inverter, and the NAND3 gate also acts as an inverter. The Lack

signal is thus effectively driven by two inverters followed by a two-input NOR gate

rather than a two-inputNANDgate followed by an inverter, as shown inFigure 11.1.

In both cases, the functionality is the AND of the inverted outputs R0 and R1.
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11.9 Arbiter

As mentioned in Chapter 2, arbiters are often required to manage access to a

shared resource. In this section we will present a two-way QDI pipelined arbiter.

When two independent channels assert a request, the problem that the arbiters must

solve is which request is granted first. The main building block of an arbiter is the

mutual-exclusion element, which is used for making a non-deterministic choice

between two inputs. If only one request is available then the choice is obvious, and

the latency through the arbiter is a constant. However, if two requests arrive at the

same time (or close enough) then the time it takes for the arbiter to make a decision is

potentially unbounded due to its metastability.

The two-way arbiter covered in this section consists of two parts, the core and

the metastability filter, as illustrated in Figure 11.43.

The core part of the arbiter implements the acknowledgement generation and

the cross-coupled portion of the mutual exclusion element and is illustrated in

Figure 11.44. The classic metastability filter [1] is illustrated in Figure 11.45.

Let us review its operation. In the first scenario, assume that there is only one

request. In this case the request line of, for example, the L0 1-of-1 input channel will

go high. The acknowledge signals L0ack and L1ack are both high and the other

request line L1req is low. After reset (the reset transistors not shown), r0 and r1are

high and r0, r1 and the output signals W0, W1 are low. Now r0 will go low while r1

remains high. The filterwill raise the r0 output and, sinceWack is high, the signalswill

propagate through the C-element and the output inverter and the W0 rail will go
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Figure 11.42. TOKEN_BUF after reset under normal operation.
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high. In addition, the acknowledge signal L0ack will go low, declaring the L0 request

channel the winner and granting it access to the resource that is shared. In this

scenario the latency is four transitions, unlike most other QDI templates.

If two requests arrive at the same time (or sufficiently close), however, then the

latency can be unbounded owing to the time it takes to complete metastability

resolution. In particular, in the case when both requests L0req and L1req go high,

both r0 and r1 will try to go low. However, as r0 goes low, it will try to pull r1 high

and as r1goes low it will try to pull r0 high. After some, possibly a long, time the

slight variations due to noise in the actual implementation will allow the filter to

pull one of the outputs high and as a result only one of the requests is granted.

Either r0 or r1 will go high, therefore only one of the inputs will be acknowledged.

The remainder of the handshaking protocol remains unchanged.

11.10 Exercises

11.1. Consider an unconditional cell with 1-of-2 inputs A and B and a 1-of-2 output

channel Z. The output Z implements Z ¼ NAND(A, B).

Draw the transistor–gate-level diagrams for WCHB, PCHB, and RSPCHB

implementations of this cell. Explain why PCHB and/or RSPCHB may be

preferred over WCHB implementation.

If you also wanted an AND cell, do you need to change the design? If not,

explain how you can implement an AND cell without changing the design.

11.2. Consider a leaf cell that takes two 1-of-4 inputs A and B and produces a

1-of-2 output C. If the number of 1s in the binary form of the two inputs is

odd then it produces a 0 and if the number of 1s is even then it produces a 1.

(For example, if a 1-of-4 L[0] is 3 then the binary form is 20b11 and if a 1-of-4

L[1] is 1 then the binary form is 20b01. In this case the total number of 1s is

odd and the output should be 0.)

Draw the transistor–gate-level diagrams for PCHB and RSPCHB imple-

mentations of this cell.

11.3. Consider a leaf cell where A and B are 1-of-2 input channels, F is a 1-of-3

encoded input control channel, and X and Y are 1-of-2 output channels. It has

the following functionality:

if (F ¼ 0) then X ¼ XOR(A, B) and Y ¼ A,

if (F ¼ 1) then Y ¼ AND(A, B) and X ¼ B,

if (F ¼ 2) then X ¼ B and Y ¼ A.

Draw the transistor–gate-level diagrams for PCHB and RSPCHB

implementations.

11.4. Consider a leaf cell with conditional output behavior as follows: A is a 1-of-2

input channel, S is a 1-of-2 input channel, and O is a 1-of-2 output channel;

if S is a 1 then the token on A is consumed and copy of the value is sent

on O. If S is a 0, the token on A is consumed but no data is sent on S.

Draw the transistor/gate-level diagrams for implementations using the

WCHB, PCHB, and RSPCHB templates.
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11.5. Consider a leaf cell with a special conditional input behavior as follows: A is a

1-of-2 input channel, S is a 1-of-2 input channel, and O is a 1-of-2 output

channel. If S is a 1, the token onA is consumed and a copy of the data is sent on

O. If S is a 0, a valid token onA is awaited and then a token is sent along O but

A is not acknowledged (i.e. the token is not consumed). In this way, the token

on A is conditionally re-used, implementing a type of memory.

Draw transistor/gate-level diagrams for implementations that follow the

PCHB and RSPCHB templates. More specifically, these templates may need

to be modified slightly to accommodate this specialized input-conditional

behavior in which you always wait for the token but conditionally acknow-

ledge (i.e. consume) it.
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12 Timed pipeline templates

It is possible to achieve higher performance with pipelined templates by applying

timing assumptions rather than designing them to be quasi-delay-insensitive.

In fact, designing templates with assumptions on the relative order of certain

signal transitions can not only speed up the operation of the circuit but also lower

area and power consumption.

12.1 Williams’ PS0 pipeline

Figure 12.1 shows one stage of Williams’ PS0 pipeline [1][2], one of the earliest

proposed timed pipeline templates. The pipeline stage consists of a dual-rail

function block F and a completion detector. The output of the completion

detector is fed back to the previous stage as the acknowledge signal. The comple-

tion detector checks the validity or absence of data at the outputs. There is no

input-completion detector.

The function block is implemented using domino logic. The precharge and

evaluation control input Pc of each stage comes from the output of the next

stage’s completion detector. The precharge logic can hold its data outputs even

when its inputs are reset, therefore it also provides the functionality of an implicit

latch. Each completion detector verifies the completion of every computation and

precharge of its associated function block.

The operation of the PS0 pipeline is quite simple. Stage N is precharged when

stage N þ 1 finishes evaluation. Stage N evaluates when stage N þ 1 finishes reset.

This protocol ensures that consecutive data tokens are always separated by

bubbles also known as holes.

The complete cycle of events for a pipeline stage is derived by observing how a

single data token flows through an initially empty pipeline. The sequence of events

from one evaluation by stage 1 to the next such evaluation is: (i) stage 1 evaluates,

(ii) stage 2 completes, (iii) stage 2’s completion detector detects completion of

evaluation, and then (iv) stage 1 precharges. At the same time, after completion of

step (ii), (iii0) stage 3 evaluates, then (iv0) stage 3’s completion detector detects

completion of evaluation and initiates the precharge of stage 2. After these steps,

(v) stage 2 precharges and finally (vi) stage 2’s completion detector detects the

completion of precharge, thereby releasing the precharge of stage 1 and enabling it



to evaluate once again. Thus there are six events (some compound) in the complete

cycle for a stage, from one evaluation to the next.

The protocol for a PS0 pipeline stage is captured by the marked graph for a

four-stage pipeline illustrated in Figure 12.2. From the marked graph, it is possible

to derive the pipeline’s analytical cycle time:

TPS0 ¼ 3teval þ 2tCD þ tprech:

In particular, as illustrated in this marked graph, the PS0 pipeline has a timing

assumption that the data precharges before the corresponding acknowledgement

is reset. This corresponds to the relative timing assumption among successive

stages i, i þ 1, and i þ 2

tprech;i þ tCD;i � teval;iþ2 þ tCD;iþ2 þ tprech;iþ1 þ tCD;iþ1;

which must be verified during physical design.
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Figure 12.1. A stage of Williams’ PS0 pipeline.
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12.2 Lookahead pipelines overview

The lookahead pipeline (LP) designs use Williams’ PS0 as a starting point and

apply certain optimizations to its protocol that are targeted towards reducing the

overall cycle time. The basic strategy is anticipating the arrival of certain critical

events and optimizing the template accordingly.

In these lookahead pipelines, developed by researchers at Columbia University,

two specific optimizations are used, early evaluation and early done. In early

evaluation, a pipeline stage uses control information not only from the subsequent

stage but also from stages further down the pipeline. This information is used to

give the stage a headstart on its evaluation phase. In the second optimization,

early done, a stage signals to its previous stage when it is about to precharge or

evaluate, instead of after it has completed those actions. This information is used

to give the pipeline stage a headstart on its evaluation phase as well as on its

precharge phase. The net result of applying these two optimizations is a significant

reduction in pipeline cycle time, and consequently a dramatic increase in through-

put, with no net increase in latency. The remainder of this chapter presents three

new pipeline designs, LP3/1, LP2/2, and LP2/1, in detail. The LP3/1 pipeline uses

early evaluation, the LP2/2 pipeline uses early done, and the LP2/1 is a hybrid that

combines both optimizations [3][4].

12.3 Dual-rail lookahead pipelines

12.3.1 The LP3/1 pipeline

In the LP3/1 dual-rail lookahead pipeline design style, as mentioned above, an

early evaluation protocol is used, in which a pipeline stage receives control infor-

mation not only from the subsequent stage but also from its successor. As a result,

LP3/1 pipelines have shorter cycles than Williams’ PS0 pipelines: a complete cycle

for a stage of an LP3/1 pipeline consists of four events, as opposed to six events for

a stage of a PS0 pipeline. The new pipeline derives its name from the fact that three

out of the four events in every stage’s cycle fall in its evaluation phase, and one event

falls in its precharge phase. Using this terminology, Williams’ PS0 would be 3/3.

Figure 12.3 shows an implementation of the LP3/1 pipeline template. The key

difference is that, unlike the PS0 stages, an LP3/1 stage has two control inputs.

The first control input, pc, comes from the next stage, as in PS0. The second

control input, eval, comes from the completion detector two stages ahead. This

second input is the key to achieving a shorter cycle time.

The key idea is that stage N can evaluate as soon as stage N þ1 has started

precharging, instead of waiting until stage N þ 1 has completed precharging. This

idea can be used because a dynamic logic stage undergoing precharge is insensitive

to changes on its inputs. Therefore, as soon as stage N þ 1 begins to precharge,

stage N can proceed with its next evaluation. Now, since stage N þ 1 begins
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precharging when stage N þ 2 completes evaluation, the new condition for

evaluation is: evaluate N when N þ 2 completes evaluation. The condition for

precharge remains unchanged: precharge N when N þ 1 completes evaluation.

Therefore, stage N needs inputs from both the completion detector of N þ 1 as

well as from that of N þ 2. Figure 12.3 shows how the two control inputs are

combined inside the implementation of one stage. Evaluation is enabled when eval

is asserted high, or pc is de-asserted low, or both. The former condition, eval¼ high,

corresponds to stage N þ 2 completing its computation (i.e. stage N þ 1 starting its

precharge; see Figure 12.3). The latter condition, pc ¼ low, is identical to the

evaluation condition of PS0. Precharge is enabled when both pc is asserted high

and eval is de-asserted low.

In LP3/1, there are two distinct control inputs for a stage N, i.e. the outputs

from stages N þ 1 and N þ 2. The precharge phase of stage N begins after stage

N þ1 has finished evaluating (pc is asserted high), much like PS0. However, this

phase is now shortened: precharge terminates when stage N þ 2 has finished

evaluating (eval is asserted high). In contrast, in PS0 precharge terminates only

when stage N þ 1 has finished precharging. At this point stage N enters its evaluate

phase. In LP3/1, the evaluate phase continues until two distinct conditions hold,

which drive the stage into the next precharge: (a) stage N þ 1 has completed

evaluation (as in PS0, pc is asserted high), and (b) stage N þ 2 has completed

precharging (eval is de-asserted low). The NAND gate in Figure 12.3 (with a

bubble on its eval input) directly implements these two conditions.

During LP3/1’s evaluate phase, the early eval signal from stage N þ 2 may be

non-persistent: it may be de-asserted low even before stage N has had a chance to

evaluate its new data! However, one-sided timing constraints are imposed to

insure a correct evaluate phase: pc ¼ low will arrive in time to take over control

of the evaluate phase, which will then be maintained until stage N has completed

evaluating its inputs (as in PS0).

FLdata Rdata
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Rack1

CD

Lack2

Lack1

Figure 12.3. The LP3/1 pipeline.
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The complete cycle of events for a stage, from one evaluation until the next, can

be derived from Figure 12.4: (i) stage 1 evaluates, (ii) stage 2 evaluates, (iii) stage

2’s completion detector detects the completion of precharge, and then (iv) stage 1

precharges. At the same time, after completing step (ii), (iii0) stage 3 evaluates, and
(iv0) stage 3’s completion detector detects the completion of stage 3’s evaluation,

thereby enabling two subsequent events, the precharge of stage 2 and the next

evaluation of stage 1 (“early evaluation”). Thus, there are only four events in the

complete cycle for a stage from one evaluation to the next, which is two less than

the six events in PS0. This reduction has been brought about by the elimination of

the two events of stage 2’s precharge phase from stage 1’s cycle.

The cycle time of the pipeline is therefore

TLP3=1 ¼ 2teval þ tCD þ tNAND;

where tNAND is the delay through the NAND gate for the early evaluation signal.

Thus the LP3/1 cycle time is tprech þ tCD � tNAND shorter than that of the PS0.
The per-stage forward latency is simply the evaluation delay of a stage, as in

the PS0:

LLP3=1 ¼ teval:

12.3.2 The LP2/2 pipeline

The key feature of the dual-rail LP2/2 pipeline is that a pipeline stage is now

allowed to signal its previous stage when it is about to evaluate (or precharge)

instead of after it has completed that action. Thus, this pipeline uses an early done

protocol. The LP2/2 pipelines have shorter cycle times than PS0 and, like LP3/1,

the cycle of an LP2/2 stage consists of four events; however, unlike LP3/1, the

stages of an LP2/2 pipeline have only one control input as opposed to two, thereby

reducing the loading on the completion detectors.

Figure 12.5 shows a block diagram of an LP2/2 pipeline. The stages are similar

to those used in PS0, but with one key difference: the completion detectors are

placed before their functional blocks. The idea is to let the previous pipeline stage

know when the current stage is about to evaluate (or precharge).

RCD1
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N N

Ldata

N

RCD3

N
pc eval pc eval pc eval

Rdata

RCD2

F3

Figure 12.4. A three-stage LP3/1-based linear pipeline.
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A modified completion detector is needed in order to generate the “early done”

signal. The completion detector now requires an extra input, the stage’s control

input pc. The functionality of the completion detector is as follows. The comple-

tion detector asserts done (done goes high) when the stage is about to evaluate: the

stage is enabled to evaluate (pc is de-asserted low), and it has valid dual-rail

inputs. The completion detector de-asserts done (done goes low) when the stage

is about to precharge: pc is asserted high. Thus, the done signals are produced in

parallel with the precharge or evaluation by the associated function block, instead

of after its completion. Note that these conditions are asymmetric: a single condi-

tion (pc is asserted high) enables the stage to precharge and its completion detector

to indicate that precharge is complete.

This new completion detector is implemented using an asymmetric C-element, as

illustrated in Figure 12.6. From the figure, it is clear that this particular asymmetric

C-element is a degenerate special case: it can be regarded as simply a precharged

dynamic gate, which de-asserts done (low) whenever pc is asserted high.
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Figure 12.5. A three-stage LP2/2 based linear pipeline.
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Figure 12.6. The LP2/2 completion detector.
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As before, a complete cycle of events for stage 1 can be traced; see Figure 12.5.

From one evaluation to the next, it consists of four events: (i) stage 1 evaluates, (ii)

stage 2’s completion detector detects the “early done” of stage 2’s evaluation (in

parallel with stage 2’s evaluation), thereby asserting the precharge control of stage 1,

and then (iii) stage 1 precharges. At the same time, after completing step (i), (ii0)
stage 2 evaluates, (iii0) stage 3’s completion detector detects the “early done” of

stage 3’s evaluation (in parallel with stage 2’s evaluation), thereby asserting the

precharge control of stage 2, and (iv) stage 2’s completion detector detects the

“early done” of stage 2’s precharge (in parallel with stage 2’s precharge), thereby

enabling stage 1 to evaluate once again in the next step.

Thus, the cycle time of the pipeline is

TLP2=2 ¼ 2teval þ 2tCD;

which is teval þ tprech shorter than that of PS0. The latency is identical to that of

PS0 and LP3/1:

LLP2=2 ¼ teval:

12.3.3 The LP2/1 pipeline

The LP2/1 is basically a hybrid. It combines the “early evaluation” of LP3/1 and

the “early done” of LP2/2. Consequently, an LP2/1 pipeline has the shortest

analytical cycle time of the three LP design styles: a cycle for a stage consists of

only three events. Figure 12.7 shows the implementation of an LP2/1 pipeline.

Each stage uses information from two succeeding stages, as in LP3/1, and also

employs early completion detection, as in LP2/2. A complete cycle of events for

stage 1 can again be traced in the figure. From one evaluation to the next it

consists of three events: (i) stage 1 evaluates, (ii) stage 2’s completion detector

detects the “early done” of stage 2’s evaluation (in parallel with stage 2’s evalu-

ation), thereby asserting the precharge control of stage 1, and then (iii) stage 1

precharges. At the same time, after the completion of step (i), (ii0) stage 2 evalu-

ates, and (iii0) stage 3’s completion detector detects the “early done” of stage 3’s

evaluation, thus enabling the evaluation of stage 1 in the next step. Thus, the cycle

time is
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Figure 12.7. A three-stage LP2/1-based linear pipeline.
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TLP2=1 ¼ 2teval þ tCD þ tNAND;

which is teval þ tprech þ tCD � tNAND shorter than that of PS0. Once again, the

latency is identical to that of PS0:

LLP2=1 ¼ teval:

12.4 Single-rail lookahead pipelines

12.4.1 The LPSR2/2 pipeline

The LPSR2/2 can be thought of as a derivative of LP2/2, or of PS0, adapted to

a single-rail bundled datapath.

Figure 12.8 illustrates a single LPSR2/2 template stage and Figure 12.9

illustrates a three-stage pipeline implemented with the LPSR2/2. Each pipeline

stage has a function block and a control block. The function block alternately
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Figure 12.8. A single LPSR2/2 stage.
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Figure 12.9. A three-stage LPSR2/2-based linear pipeline.
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evaluates and precharges. The control block generates the bundling signal to

indicate the completion of evaluation (or precharge). The bundling signal is passed

through a suitable delay, allowing time for the dynamic function block to

complete its evaluation (or precharge). This signal is communicated to two stages:

(i) to the previous stage, to indicate “done”, and (ii) to the next stage, to indicate

a request (req) (i.e. for valid data).

The pipeline protocol is very similar to that of PS0. When a stage has finished

evaluating, it tells the previous stage to precharge. Similarly, when a stage has

finished precharging, it tells the previous stage to evaluate. In addition, the

done signal is passed forward to the next stage, indicating that the evaluation

(or precharge) is complete. However, there are two subtle optimizations that take

advantage of the innate property of dynamic logic. The first is aimed at reducing

the cycle time; the second is aimed at decreasing latency.

In the first optimization the done signal for the previous stage is tapped off before

rather than after the matched delay. In spirit, this optimization is similar to the

“early done” of LP2/2. The same justification applies. For footed dynamic logic, it

is safe to indicate the completion of precharge as soon as the precharge cycle begins:

during precharge, the stage is effectively isolated from changes at its inputs. Like-

wise, for a dynamic stage, it is safe to indicate completion of evaluation as soon as

the stage begins to evaluate on valid inputs; once the stage has evaluated, its outputs

are effectively isolated from a reset at the inputs. This early tap-off optimization has

a significant impact on the pipeline performance: the cycle time is reduced by an

amount equal to two matched delays.

In the second optimization an early precharge-release is allowed. In dynamic

logic, unlike static logic, the function block can be precharge-released before new

valid inputs arrive. Once data inputs arrive, the function block starts computing

its data outputs. Similarly, once the matched bundling input arrives, the bundling

output (req) is also generated. Thus, in this design the precharge-release of the

function block is completely decoupled from the arrival of the inputs. In contrast,

in other recent pipeline designs the function block is precharge-released only after

the bundling input has been received [5]; this latter requirement typically adds

extra gates to the critical forward path of the pipeline.

In LPSR2/2 the optimization results in a reduction in the forward latency.

A complete cycle of events for a stage in LPSR2/2 is quite similar to that in

PS0; see Figure 12.9. From one evaluation of stage 1 to the next, the cycle consists

of four events: (i) stage 1 evaluates, (ii) stage 2 evaluates, (iii) stage 3 evaluates,

asserting the precharge input for stage 2, and finally (iv) stage 2 precharges,

enabling stage 1 to evaluate once again. The following notation is used for the

various delays associated with this pipeline:

TLP2=1 ¼ 2teval þ tCD þ tNAND;

teval ¼ time for a stage evaluation,

tgC ¼ delay of the control block (generalized C-element),

tdelay ¼ magnitude of the matched delay.
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For ideal operation, we assume that tdelay is no larger than necessary: tdelay ¼ teval �
tgC. In this notation the delays of steps (i) and (ii) in the cycle traced above are each

teval. The delays of steps (iii) and (iv) are each tgC. Therefore, the pipeline cycle

time is

TLPSR2/2 ¼ 2 ¼ 2teval þ 2tgC, the per-stage forward latency of the pipeline,

thus

LLPSR2=2 ¼ teval:

12.4.2 The LPSR2/1 pipeline

The LPSR2/1 can be thought of as a derivative of LP2/1, or LP3/1, adapted to

a single-rail bundled datapath.

Figure 12.10 shows the structure of the LPSR2/1 pipeline. Each stage has a

function block and a control block identical to those of the first single-rail design.

However, a stage receives control inputs not only from the subsequent stage (pc)

but also from its successor (eval). Much like LP2/1 and LP3/1, the second control

input is used for “early evaluation.”

The sequencing of control is very similar to that in LP2/1 or LP3/1. A complete

cycle of events, from one evaluation of stage 1 to the next, consists of three events:

(i) stage 1 evaluates, (ii) stage 2 evaluates, and finally (iii) stage 3 evaluates,

triggering the “early evaluation” of stage 1. Thus, the cycle time is

TLPSR2 ¼ 1 ¼ 2teval þ tgC þ tNAND.
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Figure 12.10. A three-stage LPSR2/1-based linear pipeline.
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The analytical cycle time is somewhat better than that of LPSR2/2, because

tNAND < tgC. Once again, the forward latency LLPSR2/1 ¼ teval.

12.5 High-capacity pipelines (single-rail)

The LPHC pipeline combines both asynchronous and self-resetting features.

A novelty is that it decouples the control of pull-up and pull-down. A dynamic gate

is now controlled by two separate inputs, pc and eval. Note that the pc and eval

signals of this section are different from the pc and eval signals of LPSR2/1 pipelines.

Whereas the latter pc and eval were first combined using a NAND gate and then used

inside the dynamic gate, here pc and eval are used directly as two separate gate inputs.

Using these signals, unlike in traditional approaches, a stage is driven through three

distinctphases in sequence:Evaluate, Isolate, andPrecharge. In the Isolatephase, a stage

holds its outputs stable irrespectively of any changes at its inputs. As a result, adjacent

pipeline stages are capable of storing distinct data items. Figure 12.11 shows a block

diagram of a three-stage lookahead pipeline high-capacity (LPHC)-based pipeline.

Each stage consists of three components: a function block, a completion

detector, and a stage controller. Much like LPSR2/1, the function block alter-

nately produces data tokens and bubbles for the next stage, and the completion

detector indicates completion of the stage’s evaluation or precharge. The third

component, the stage controller, generates the decoupled signals pc and eval that

control the function block and completion detector. Figure 12.12 shows one gate

of a function block in a pipeline stage.

The pc input controls the pull-up stack and the eval input controls the “foot” of the

pull-down stack. Precharge occurswhenpc is asserted low and eval is de-asserted low.

Evaluation occurs when eval is asserted high and pc is de-asserted high. When both

signals are de-asserted, the gate output is effectively isolated from the gate inputs; this

is the Isolate phase. To avoid a short circuit, pc and eval are never simultaneously

asserted.As in the earlier design, an asymmetricC-element aC is used as a completion
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Figure 12.11. A three-stage high-capacity-based linear pipeline.
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detector. The detector’s output is set when the stage has begun to evaluate, i.e. when two

conditions occur: the stage is in evaluate phase (eval is high) and the previous stage has

supplied valid input (the completion-detector output of the previous stage is high). Its

output is reset when the stage is enabled to precharge (pc is asserted low). Thus,

Precharge will immediately reset the completion detector’s output, while Evaluate will

set the detector’s output only if valid data inputs have also arrived. The aC element

output is again fed through a matched delay, which (combined with the completion

detector) matches the worst-case path through the function block. As indicated earlier,

for a gate-level pipeline the matched delay is often unnecessary: the aC delay already

matches the function block delay. The resulting completion signal T (of the second stage

in Figure 12.11) is fed in turn to three components: (i) the previous stage’s controller,

indicating the current stage’s state, (ii) the current stage’s controller (through the

matcheddelay), and (iii) the next stage (through thematcheddelay). The stage controller

will be discussed shortly, after we have presented the desired protocol.

A pipeline stage simply cycles through the three phases, as shown in Figure 12.13.

After it completes its Evaluate phase, it then enters its Isolate phase and

F

pceval

Figure 12.12. Details of an HC pipeline-stage function block.
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Precharge

(pc = 1,
eval = 1)
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(pc = 0,
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Isolate

Precharge

Stage N Stage N+ 1

Figure 12.13. Sequence of phases in an HC stage cycle.
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subsequently its Precharge phase. As soon as precharge is complete, it re-enters the

Evaluate phase, completing the cycle. The novelty of the approach is seen in the

protocol that governs the interaction between stages. Unlike the PS0 and LPSR2/1

pipelines, there is now only one explicit synchronization point between stages. Once

stage N þ 1 has completed its Evaluate phase, it enables the previous stage N to

perform its entire next cycle, i.e. to precharge, isolate, and evaluate a new data item.

In contrast,Williams’ PS0 uses two explicit synchronization points between adjacent

stages: for the start of evaluation and for the start of precharge. Likewise, the

LPSR2/1 design uses two explicit synchronization points, but they are signaled

from two distinct stages, N þ 1 (to start precharge) and N þ 2 (to start evaluation).

As usual, there is one additional implicit synchronization point, the dependence of

stageNþ 1’s evaluation on its predecessorN’s evaluation.A stage cannot produce new

data until it has received valid inputs from its predecessor. The synchronization points

are shownby causality arcs inFigure 12.13. The introduction of the Isolate phase is the

key to the protocol. Once a stage finishes evaluation, it immediately isolates itself

from its inputs by a self-resetting operation – regardless of whether this stage will

soon be allowed to enter its precharge phase. Subsequently, not only can its

predecessor precharge, it can even safely evaluate the next data token since the

current stage will remain isolated. There are two benefits of this protocol: higher

throughput, since stage N þ 1 can evaluate the next data item even before N has

begun to precharge; and higher capacity for the same reason, since adjacent pipeline

stages are now capable of simultaneously holding distinct data tokens without

requiring separation by spacers.

A complete cycle of events for stage N can be traced in Figure 12.11. From one

evaluation by N to the next, the cycle consists of three operations: (i) stage N

evaluates, (ii) stage N þ 1 evaluates, which in turn enables stage N’s controller to

assert the precharge input (pc ¼ low) of N, and finally (iii) stage N precharges, the

completion of which, passing through stageN’s controller, enablesN to evaluate once

again (eval is asserted high).We assume that no extramatched delays are required for

the gate-level pipeline, i.e. that the completion detector and other delays already

match the gate’s evaluate and precharge. Then, in the notation introduced earlier, the

delay of step (i) is teval, the delay of step (ii) is taCþ tNAND3, and the delay of step (iii) is

tprech þ tINV. Here, tNAND3 and tINV are the delays through the NAND3 and the

inverter, respectively, of Figure 12.14. Thus, the pipeline cycle time is

TLPHC ¼ teval þ tprech þ taC þ tNAND3 þ tINV:

A stage’s latency is simply the evaluation delay of the stage:

LLPHC ¼ teval:

State variable LPHC pipelines require a one-sided timing constraint for correct

operation. The signal ok2pc (see Figure 12.14) goes high once the current stage has

evaluated and the next stage has precharged (Rreq, Rack¼ 10). Subsequently, Rack

goes high as a result of evaluation by the next stage. For correct operation, ok2pc

must complete its rising transition before Rack goes high:
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tok2pc00 < teval þ tINV:

In practice, this contraint is very easily satisfied.

Precharge width As inLPSR2/1, an adequate prechargewidthmust be achieved.

This constraint is partly enforced by the bundling constraint: the aC-element and the

(optional) matched delay must together have a greater delay than the worst-case

precharge time of the function block. Hence, the Rreq input to the NAND3 in

Figure 12.14 will be maintained appropriately. However, there is one additional

constraint on the precharge width: the Rack input to the same NAND3 must not be

de-asserted. Suppose that Rack has just gone high. At this point, stage F1’s NAND3

starts the precharge ofF1 (inFigure 12.5). Concurrently,Rackwill only be reset after a

path through F3’s aC-element, F2’s NAND3 and aC-element, and F1’s NAND3:

tNAND3 þ tprechN � taC þ tNAND3 þ taC þ tNAND3:

Assuming that all stages are similar, this constraint becomes

tprechN � taC þ taC þ tNAND3:

This final constraint is also easily satisfied.

12.6 Designing non-linear pipeline structures

As described in earlier chapters, the basic assumption in linear pipelines is that

each pipeline stage has a single input channel and a single output channel. Non-

linear pipeline stages, however, may have multiple input and output channels. This

section presents an overview of the challenges involved in designing non-linear

pipelines using timed templates. In particular we address the challenges presented

by synchronization with multiple destinations (for forks) and synchronization with

multiple sources (for joins). Subsequent sections provide our detailed solutions for

each of the three pipeline styles reviewed above; we then briefly describe how these

solutions are extended to channels that are conditionally read or written [7].

12.6.1 Slow and stalled right-hand environments in forks

Consider an abstract two-way fork in which the forking stage S1 drives stages S2 and

S3. For correct operation, S1 must receive (and recognize) acknowledgements from

aC
+

pc

eval Rreq

Rack

ok2pc

Stage controller

Figure 12.14. Stage controller implementation.
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both S2 and S3. A problem is that S2 and S3, and the subsequent stages of each, may

be operating largely independently of each other. One stage may become arbitrarily

stalled, thus potentially stalling its acknowledge signal from either S2 or S3.

If the pipeline templates designed for linear pipelines were naı̈vely extended to a

datapath with a fork, in the expectation that S1 will synchronize on all the

acknowledge signals from the forked stages when combined using a C-element,

then the resulting pipeline may malfunction.

In particular, the acknowledge signals generated in many linear pipeline struc-

tures are non-persistent. That is, it is assumed that after a stage asserts its acknow-

ledgement the precharge of the previous stage is fast. Therefore, it does not explicitly

check for the completion of that precharge before de-asserting the acknowledge

signal. We call this restriction or assumption the fast-precharge constraint. In the

case of a non-linear pipeline, however, if exactly one of stages S2 or S3 is slow or

stalled then the acknowledge signal of the fast stage may be de-asserted before S1

has a chance to precharge, causing deadlock. In other words, in this situation S1

violates the fast-precharge constraint. We call this problem the slow or stalled right-

hand environment (SRE) problem. In particular, Williams’ classic PS0 pipelines [1]

and the recent lookahead and high-capacity pipelines all have this problem.

We propose two general solutions. In the first only the immediate stages after a

fork are modified, so that, even after precharging, they maintain the assertion of

their acknowledge signal and are explicitly prevented from re-evaluating until

after the forking stage is guaranteed to have precharged. The key is to modify

the stages after a fork to guarantee that their acknowledgements are properly

received while still ensuring that these stages satisfy the fast-precharge constraint.

In the second solution every pipeline stage is modified in such a way that it

maintains the assertion of its acknowledge signal until after its predecessor stages

are guaranteed to have precharged. In other words, in this solution the entire

pipeline is modified so as to remove the fast-precharge constraint, implicitly

solving the SRE problem. This solution must be applied to all stages because

otherwise an unmodified stage may operate as though its predecessors satisfy the

fast-precharge constraint, which may not be the case.

12.6.2 Slow and stalled left-hand environments in joins

The second challenge mentioned at the start of this section is one of synchronization

with multiple input channels, as is needed in a join. In a two-way join structure for an

abstract pipeline, the data from each of the input stages, say S1 and S2, must be

consumed by the join stage, say S3. The data outputs of S1 and S2 are gathered

together and presented to S3 as its inputs. Subsequently, S3 sends an acknowledg-

ment to both S1 and S2 once it has consumed the input data. Thus, a two-way join

represents a synchronization point between the outputs of two senders.

A problem can arise if the logic implementation of stage S3 is “eager,” i.e. S3 may

produce an output after consuming one but not both of its data inputs (see [2]). For

example, if S3 contains a dual-rail OR function that evaluates eagerly (i.e. as soon as
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one high input bit arrives) then after evaluation it will send an acknowledge signal

to both S1 and S2, even though one of them may not have produced data at all.

As a result, if one of the input stages is particularly slow or stalled then it may receive

an acknowledge signal from S3 too soon. This can cause the insertion of a new

unwanted data token at the output of the slow stage and thus corrupt the synchroniza-

tion between the stages. We call this the stalled left-hand environment (SLE) problem.

One solution is to allow the join stages to have eager function blocks but still to

ensure that the generation of the acknowledge signal occurs only after data from

all the input stages has been consumed. This solution has been used extensively in

quasi-delay-insensitive templates [6].

12.7 Lookahead pipelines (single-rail)

Handling the joins in single-rail lookahead pipelines is straightforward, andwas initially

proposed in [4]. The join stage receives multiple request inputs (Lreqs), all of which are

merged together in the asymmetricC-element (aC) that generates the completion signal.

In particular, each additional request is accommodated by adding an extra series

transistor in the pull-down stack of the aC-element. The aC will only acknowledge the

input sources after all the Lreqs are asserted and the stage has evaluated.

To handle forks, however, a C-element must be added to the forking stage to

combine the acknowledge signals from its immediate successors. In addition, the

other stages of the pipeline must also be modified to overcome the stalled right-

hand environment problem of subsection 12.6.1. As indicated, the problem is that

the acknowledge signal from the immediate successor of a fork stage can be

regarded as a pulse that may be de-asserted before its predecessor forking stage

has precharged, causing deadlock. The following subsections give two distinct

solutions for handling such forks arising in the LPSR2/2 template.

12.7.1 Solution 1 for LPSR2/2

In the first solution, the immediate successor stages of the forking stages are

modified so as to latch their Lack acknowledge signals and delay their re-evaluation

until all predecessors have precharged. For LPSR2/2, this solution is implemented

by modifying the Lack logic and the control of the foot transistor, as shown in

Figure 12.15. We assume that the forked stage has just evaluated and the acknow-

ledge signal Lack has just been asserted. At this time, the right-hand environment

will assert Rack, causing the output of the latch, X, to be asserted (X ¼ 0, i.e. active-

low), effectively latching the non-persistent acknowledge signal. The X output is held

low even when Rack is de-asserted. In particular, X is de-asserted (X ¼ 1) only after

the done signal goes low (which is caused by Lreq going low), implying that the input

forking input stage has precharged. Effectively, the foot transistor now prevents

re-evaluation until after X goes low, delaying re-evaluation until all inputs (including

any slow inputs) are guaranteed to have precharged.
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These modifications ensure that even late acknowledgements from a stage S3

immediately after a fork are guaranteed to be properly received while S3 still satisfies

the fast precharge constraint, thereby solving the SRE problem.

The only new timing assumption that this template introduces compared with the

original LPSR2/2 is that the Rack pulse width must be long enough for it to be

properly latched. This pulse-width assumption, however, is looser than the original

timing assumption, which remains; i.e. the pulse width must be longer than the

stage’s precharge time.

12.7.2 Solution 2 for LPSR2/2

In the second solution each stage is modified so that it does not de-assert its acknow-

ledge signal until all input stages are guaranteed to have precharged. This solution

can be implemented using the modified LPSR2/2 template shown in Figure 12.16, in

which the asymmetric C-element is converted to a symmetric C-element. As suggested

earlier, this modification removes the fast-precharge constraint, implicitly solving the

SRE problem.

12.7.3 Pipeline cycle time

For the first solution, the cycle-time expressions do not change if the additional

acknowledge signals simply increase the stack height and do not add additional
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Figure 12.15. (a) Modified first stage after the fork. (b) Detailed implementation of the gates
in the broken-line box.
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gates. For multi-way forks and joins, however, the cycle time will increase owing

to the additional C-elements needed to combine them. For the second solution, the

cycle time becomes

TLPSR2=2 ¼ maxð2teval þ 2tgC; teval þ tprech þ 2tgCÞ:

12.8 Lookahead pipelines (dual-rail)

This section extends the dual-rail lookahead pipeline LP3/1 to handle forks and

joins. Since both the stalled left-hand environment (SLE) and the stalled right-

hand environment (SRE) problems of Section 12.6 can arise in dual-rail pipelines,

detailed solutions are presented for both forks and joins.

12.8.1 Joins

Unlike LPSR2/2, the LP3/1 pipeline has no explicit request line and thus may not

function correctly unless it is modified to handle the SLE problem in joins. Our

proposed solution still allows the use of eager function blocks; however, it ensures

that no acknowledgement is generated from a stage until after all its input stages

have evaluated.

In particular, in our solution request signals are added to the input channels

of the joins and fed into the join stage’s completion detector, as illustrated in

Figure 12.17. The join’s completion detector now delays asserting its acknowledge

signal not only until the function block has finished computing but also until the

input stages have all completed evaluation; thereby the left-hand environment

problem is solved. Note that the additional request signals are taken from the

outputs of the preceding stages’ completion detectors. While this modification

does not affect the latency of the pipeline, the analytical cycle time changes to

TLP3=1 ¼ 2teval þ 2tCD þ tNAND:

C
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delay

Lreq

Lack

Rreq

Rack

FLdata Rdata

Figure 12.16. The LPSR2/2 pipeline stage with a symmetric C-element.
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12.8.2 Forks

As in the case of the single-rail lookahead pipeline, LPSR2/2, we propose two

solutions for the slow or stalled right-hand environments. These solutions are

similar in essence to the solutions for the single-rail case but are adapted to dual

rails.

The implementation of solution 1 (see subsection 12.7.1) is very similar to that

for LPSR2/2, as shown in Figure 12.18. First, the completion detector (CD) is

modified in such a way that the acknowledge signal is de-asserted only after the

forking stage has precharged. In addition, the re-evaluation of the function block

is delayed until the forking stage has precharged, using a decoupled foot transistor

controlled by the Y signal.

In the second solution, a request line is added to all LP3/1 channels and

de-assertion of the acknowledge signal (Lack1 in this case) is delayed until after

all immediate predecessors have precharged, as shown in Figure 12.19. The

request line is generated via a C-element that combines the incoming request

line(s) and the output of the completion detection. The output of this C-element

becomes the new Lack1. Because the C-element de-asserts its acknowledge signal

only after Lreq is de-asserted, the fast precharge constraint is removed, solving the

SRE problem.

For solution 1, compared with the original LP3/1 template the cycle time is

slightly increased to

TLP3=1 ¼ 2teval þ 3tCD þ tprech:

For solution 2, the cycle time increases to

TLP3=1 ¼ teval þ 3tCD þ tNAND:
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Rack1
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Lreq2
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Figure 12.17. The LP3/1 pipeline with a completion detector modified to handle joins.
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12.9 High-capacity pipelines (single-rail)

Since the high-capacity pipeline template uses single-rail encoding, it has a request

line associated with the data and thus does not have the slow or stalled left-hand

environment problem in joins. However, because the acknowledge signals in high-

capacity pipelines are also non-persistent (effectively, they are timed pulses), they

do have a slow or stalled right-hand environment problem in forks.
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Figure 12.18. (a) Modified first stage after the fork. (b) Detailed implementation of the
additional gates.
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In a simple modification to the original stage controller of the high-capacity

pipeline, illustrated in Figure 12.20, de-assertion of the acknowledge signal is

delayed until after the request line goes low, thus removing the fast-precharge

constraint and solving the SRE problem using solution 2 (see subsection 12.7.2).

In particular, by replacing the NAND3 gate by a state-holding generalized

C-element, the acknowledge signal Rack triggers only the assertion of the precharge

control signal pc. The de-assertion of pc is caused by the input request signal Rreq’s

going low. Thus, pc remains asserted until after precharge is completed and is

unaffected when the acknowledge signal from the next stage is de-asserted. Further-

more, the inverter is replaced by a NOR2 gate with an additional input, in order to

delay the stage’s re-evaluation until after the stale input data is reset.

In the new version of the HC pipeline stage the state variable ok2pc belongs to the

channel between stages N � 1 and N. The reasoning is as follows. The function of

the state variable is to keep track of whether stages N � 1 and N are computing the

same token or distinct (consecutive) tokens; the precharge of N � 1 is inhibited if

the tokens are different. If there are two stages, (N� 1)(A) and (N� 1)(B), supplying

data for stage N then we propose two separate state variables, one to keep track of

whether stages (N � 1)(A) and N have the same token, and the second to keep track

of whether stages (N� 1)(B) and N have the same token. Similarly, if stage N has two

successors, (Nþ 1)(A) and (Nþ1)(B), we propose two distinct state variables, one each

for the pair N, (N þ 1)(A) and the pair N, (Nþ1)(B).

The asymmetric C-element that implements the state variable ok2pc is pulled

out of the stage controller and placed in between stages N � 1 and N (i.e. it is

moved into the channel). In addition, the generalized C-element is also moved into

the channel to avoid extra wiring.
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Figure 12.20. New high-capacity stage.
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12.9.1 Handling forks and joins

Figure 12.21 shows the implementation of a template for stage N for the case where

stage N is both a fork as well as a join. Multiple occurrences of reqin, ok2eval, and

ack are handled by simple modifications to the linear pipeline in Figure 12.20.

Multiple reqins Each additional reqin is handled by adding a single series

transistor to the asymmetric C-element that makes up the completion generator,

similarly to how joins were handled for LPSR2/2 in Section 12.7. Hence, the done

signal is generated only after all the input data streams have been received.

Multiple ok2evals Each additional ok2eval is handled by adding it as an extra

input to the NOR gate that produces the eval signal. Consequently, the stage is

enabled to evaluate (i.e. eval is asserted) only after all the ok2eval signals are

asserted, i.e. after all the senders have precharged.

Multiple acks These are handled by ORing them together. Since the acks are all

asserted low, the OR gate output goes low only when all the acks have been asserted,

thus ensuring that precharge occurs only after the stage’s data outputs have been

absorbed by all the receivers. The OR gate is actually implemented as a NAND with

bubbles (inverters) on the ack inputs. ThisNANDhas anadditional input – the stage’s

completion signal – whose purpose is to ensure that, once precharge is complete, pc is

quickly cut off. Otherwise, pcmay be de-asserted slightly after eval is asserted, causing

a momentary short circuit between supply and ground inside the dynamic gates.

12.9.2 Pipeline cycle time

If only joins are present, the cycle time is only slightly increased. Compared with

the cycle time obtained in [4], the new cycle time equation has a NOR delay

instead of an inverter delay, and a gC delay instead of a NAND3 delay:

TLPHC ¼ teval þ tprech þ taC þ tgC þ tNOR:

If forks are also present then the cycle time increases by the delay of the OR gate

needed to combine the multiple acknowledgments:

+
aC

–+

Delay
RreqN

ack1
ack2

Stage N

evalN pcN

+

ok2eval1
ok2eval2

reqin1

doneN

reqin2

Figure 12.21. Implementation when stage N is both a fork and a join.
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TLPHC ¼ teval þ tprech þ taC þ tgC þ tNOR þ tOR:

12.10 Conditionals

Other complex pipeline stages allow the conditional reading and writing of data

and can have internal states. This section briefly covers the implementation of

these cells for the LPSR2/2 template; however, a similar approach can also be

applied to the other pipeline styles.

Figure 12.22(a) shows a conditional read, in which the stage reads only one

input channel; this is determined by depends the value of the select channels. Only

the channel that is read is acknowledged. Figure 12.22(b) shows a conditional

write, in which the stage reads the input channel and outputs the data (i.e. writes)

to only one output channel; which one depends on the value of the select channel.

It receives an acknowledge signal only from the output channel where the data is

written. Note that the C-elements are symmetric only for the Rack input; they are

asymmetric for all others.

Figure 12.23 shows a one-bit memory implemented using a LPSR2/2 template.

The primary input and output channels are denoted by A and C, respectively.

Additionally, B is the internal storage and S is an input control channel that selects

the write or read operation. When S0 is high, the memory stores the value at the
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Figure 12.22. Conditional (a) read and (b) write.
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input channel A to the internal storage B. Both the input A and the select channels

are acknowledged. The the data storage implementation is shown in the broken-

line box (similar to B). Assuming that there is already data stored, one dual-rail bit

of B is high and the other is low. When an input A is applied and S0 is high, first

both rails are lowered and then one is asserted high, thereby storing the data. The

C-element, which generates the acknowledge signal of the input channel LackA
through a matched delay line, is reset using its own output, since it does not receive

an acknowledgement from an output. The delay of the delay line is matched to the

delay of writing the internal node B.

When S1 is high, however, the internal data stored in B is sent to the output

channel C. When an acknowledge signal is received from the output channel C,

the outputs are reset but the data stored remains unchanged.

12.11 Loops

In the simple LPSR2/2 buffer, the delay from the left-hand request Lreq to the

right-hand request Rreq consists of a simple non-inverting asymmetric C-element

(implemented using two gates) and an externally added delay to match the data.

For a more complex gate with multiple input and output channels, however,

the delay from Lreq to Rreq will increase and for some cells will be larger than

the delay through the domino logic. It is important to realize that, for loops

F
B0, B1

C0,C1

RreqC

RackC

A1

S0

A0

B0

A0

B1

A1
B1 B0

aC
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Matched
delay

Matched
delay

C +
+

S1LreqS LreqSS0

LackA
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Figure 12.23. A one-bit LPSR2/2 memory.
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implemented with multiple input and output channels, this delay may become the

performance bottleneck.

In particular, the fact that the data moves forward faster than its request signal

causes a problem. Given a loop with L stages, assuming that both the assertion of

the data and the request signal happen to be synchronized at stage 0, let the data

move forward faster than the request signal at a rate td/tr, where td is the forward

latency of the data and tr is the forward latency of the request signal (tr 	 td).

Pipeline stages in the loop that have evaluated will be able to re-enter the evalu-

ation phase only when the request signal is asserted, allowing them to precharge,

and then subsequently de-asserted. Therefore as the data attempts to overtake the

request signal around the loop (which may take many loop iterations), the data

will stall while waiting for the request signal of the subsequent stage to de-assert.

From this point on, the forward latency of the data will slow down to match the

forward latency of the request signal.

The LPSR2/2 modified according to solutions 1 and 2 and the LP3/1 pipeline

modified according to solution 2 will still have this problem, since the Rreq signal

is generated in the same way and therefore the delay between the Lreq and Rreq

signals increases as the number of input and output channels increases. A detailed

solution is given in Chapter 11.

12.12 Simulation results

HSPICE simulations were performed using a 0.25 Taiwan Semiconductor Manu-

facturing Co. (TSMC) process with a 2.5 V power supply at 25 �C. The purpose of
these simulations was to quantify the performance overhead of using the fork–join

structures described earlier, in comparison with that for linear pipelines. Hence, as

before, no attempt was made to fine-tune the transistor sizing to achieve optimum

performance. In particular, all transistors were sized to achieve a gate delay

roughly equal to that of a small inverter (widths WNMOS ¼ 0.8 mm and WPMOS ¼
2 mm and length L ¼ 0.24 mm) driving a same-sized inverter. For the purposes of

this comparison, the wire delay m has been ignored also.

The simulation results for all the linear and non-linear pipelines discussed in this

chapter are presented in Table 12.1. The original linear pipelines appear under the

Sol1 heading in the linear1 row because solution 1 involves only modifying the

Table 12.1. Cycle times (ns) of the original linear pipelines and the proposed non-linear pipelines

LPSR2/2 LP3/1 LPHC

Sol1 Sol2 Sol1 Sol2 Sol2

Linear1 0.99 — 1.20 — —

Linear2 — 1.06 — 1.28 0.93
Fork 1.23 1.29 1.41 1.45 1.20
Join 1.05 1.10 1.27 1.34 1.01
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Figure 12.24. HSPICE waveforms: (a) linear pipeline, (b) two-way fork, and (c) Two-way

join. The horizontal axis numbers are nanoseconds.
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first stages after a fork and forks do not exist in linear pipelines. The linear2 row

and Sol2 column gives the cycle times for linear pipelines, where each stage has

been modified according to solution 2. Note that while the joins add only �5% to

the cycle time, the forks increase the cycle time by �20% because of the additional

C-element needed.

The waveforms in Figure 12.24(a) show the data signal for an LPSR2/2 one-bit

linear pipeline. Note also that the cost difference of the more robust solution 2 and

solution 1 is generally less than 5%. Figure 12.24(b) shows waveforms for a fork

with a slow right-hand environment channel called Data4 and Figure 24(c) shows

waveforms for a join with a slow left-hand environment channel called DataB.

12.13 Summary

In this chapter, we have reviewed new high-speed asynchronous circuit templates

for non-linear dynamic pipelines, including forks, joins, and more complex con-

figurations in which channels are conditionally read and/or written. Two sets of

templates arise from adapting the LPSR2/2 and LP3/1 pipelines and one set of

templates arises from adapting the LPHC pipelines. Timing analysis and HSPICE

simulation results demonstrate that forks and joins can be implemented with a

roughly 5%�20% performance penalty over linear pipelines. All pipeline config-

urations have timing margins of at least two gate delays, enabling a good com-

promise between speed and ease of design.
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13 Single-track pipeline templates

13.1 Introduction

The single-track protocol, introduced in Chapter 2, was initially proposed by van

Berkel and Blink [2] as a communication method for bundled-data pipeline control-

lers. As an example, Figure 13.1 shows a single-track synchronization channel

implemented with a single wire between a sender and a receiver. In this example,

the sender sends a synchronization token by driving the channel wire high and the

receiver detects the token and resets the channel by resetting the wire low. This is then

detected by the sender, which may send a second token by raising the channel wire

high again and thus repeating the entire handshaking process. An alternative form of

this protocol is also possible in which the sender drives the communication wire low

and the receiver drives it high.

Unlike other two-phase protocols, the single-track protocol returns the communi-

cation wire to its initial state. This enables single-track templates to react to only one

type of transition, avoiding the need for the complex PMOS transistor networks that

are a source of area and power inefficiencies for templates that use two-phase

transition signaling, i.e. a non-return-to-zero protocol. Moreover, compared with

four-phase protocols the single-track protocol has fewer wire transitions, only two

instead of four, to complete a handshake, leading to improved power consumption

per transmitted bit. Finally, because this protocol does not use an acknowledgewire it

requires fewer wires than protocols that use distinct request and acknowledge wires.

However, the single-track protocol requires some timing assumptionswith respect to

the active phase of the sender and receiver transistors to avoid drivingoverlap (i.e. short

circuit) and to guarantee that the channel wire is driven fully to power and ground.

In [2], three possible ways to drive the channel wire are described:

� In a dynamic handshake (Figure 13.2(b)), both sender and receiver actively drive

the wire only during the transitions. In this case, the stored charge may leak

away to an indeterminate value if the channel is not frequently used. Conse-

quently, staticizer circuits must be added to the channel to hold the charge. If

the staticizers are not strong enough, however, the voltage may still be pulled to

a indeterminate or wrong value when subjected to crosstalk noise.
� In a static handshake (Figure 13.2(c)), the wire floating time is bounded. The

sender is responsible for actively holding the wire low until it raises it and the



receiver is responsible for holding the wire high until it consumes the token and

resets the channel low. Depending on the implementation, there may be a period

of time after a transition during which neither receiver nor sender actively drives

the wire. This time must be short enough not to affect the functionality.
� The overlap handshake (Figure 13.2(d)) is a special case of the static handshake in

which the channel wire is continuously driven and both the sender and receiver

help to complete each other’s transitions. That is, the receiver is responsible for

helping to drive the wire high after the high transition is initiated by the sender

and the sender is responsible for helping to drive the wire low after the channel

reset is initiated by the receiver.

/req

/ack req

ack

Sender Receiver

Channel

wire

(a)

request
(1)

acknowledge
(2)

(b)

Figure 13.1. Single-track (a) block diagram and (b) channel wire waveform. The slashes

before req and ack in the left-hand part of (a) indicate that req and ack are active-low.

request
(1)

acknowledge
(2)

(a)

Sender

Receiver

Sender

Receiver

Sender

Receiver

(b)

(c)

(d)

Figure 13.2. Typical single-track (a) waveform and the sender–receiver active drive shape for
(b) dynamic, (c) static, and (d) overlap handshakes.

268 Single-track pipeline templates



In practice the driving timing is usually made longer than the transition timing, in

order to guarantee a full swing of the voltage level, and the difference between the

static and overlap driving strategies then becomes a matter of the timing of when

the other stage will start helping to drive. Therefore, we will simply refer to both

strategies as the static single-track protocol.

In the remainder of this chapter we present single-track template implementations

and discuss their performance and tradeoffs. Sections 13.2 and 13.3 present the

GasP and pulsed logic single-track templates. Section 13.4 gives the single-track full-

buffer (STFB) template, and Section 13.6 gives an STFB standard-cell library

implementation. In Section 13.7 we describe how a conventional (synchronous)

standard-cell flow was used to implement the evaluation design presented in Section

13.8. The chapter closes with a discussion of the STFB performance and some open

issues regarding the single-track protocol in Section 13.9.

13.2 GasP bundled data

One of the most aggressive single-track templates is GasP [3][4][5]. GasP is a

bundled data channel where the request and acknowledge wires are merged into

a single-track wire. For GasP, a low level signals the presence of a request token in

the control channel, while acknowledging it is done by driving the wire back high.

Figure 13.3 shows a GasP circuit where, after reset, L, R, and A are high (the

non-active level for GasP). When L is driven low by the left-hand environment,

the self-resetting NAND will fire, driving A low. This will restore L, activate the

data latches, and drive R low, propagating the signal and avoiding re-evaluation

until after R is restored high by the right-hand environment. The self-resetting

A

L R

Self-resetting
NAND

DatapathPulse to
data latches

L R

GasP

Latches

(b)(a)

Figure 13.3. GasP circuit: (a) schematic and (b) block diagram.
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NAND will restore itself by driving A high after three transitions. The output of

the NAND controls the latches in a parallel single-rail datapath.

GasP circuits require four transitions to forward data and two transitions to

reset, i.e. two transitions to move a bubble backwards. Regarding the forward

latency of the four transitions, approximately two transitions are required for the

latency through the latches in the datapath and to satisfy the setup and hold times,

leaving approximately two transitions for computation in the datapath. Note that

the control circuit itself makes up the delay line and that it is the datapath designer’s

responsibility to pipeline it so as to match the control circuit delay while satisfying

all setup and hold times and the time margin due to process variations.

Owing to its high performance, the timing assumption associated with stability of

the datapath before latching (the bundled-data timing constraint) implies that GasP

requires full-custom design as well as new CAD flows that automatically verify this

constraint.

13.3 Pulsed logic

Single-track asynchronous pulsed logic (STAPL), proposed by Nystrom [20]–[22],

is a template for the implementation of logic stages communicating though 1-of-N

encoded single-track channels. Similarly to GasP, STAPL uses self-reset circuits to

determine the active timing of the reset and output transistors.

Figure 13.4 shows the block diagram and the template schematic of the dual-rail

STAPL. Notice that there are two types of pulse generator, one for the output

driving transistors and another for the input reset transistors. After all the neces-

sary input tokens have arrived, one side (S0 or S1) of the NMOS transistor stack

Reset

ReS

RL

RCD

R pulse
generator

F pulse
generator

xv

R4

L R

Re

(a) (b)

R4

xv

R0
R1

R1
NMOS

Network

L11L01

L01 L11 L0k L1k

L0k L1kR0

xv

S0 S1
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Figure 13.4. STAPL (a) block diagram and (b) template schematic. In (a) the acknowledge
signal is denoted Re.
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will go low, driving high one of the output signals (R0 or R1) and triggering the

reset pulse by the signal xv.

The pulse generators utilized on STAPL use five inversions in the loop, which

indicates that this template has a 10-transition cycle time, at least, and, since from

the NMOS transistor stack to the output there are two transitions, the STAPL has

a two-transition forward latency.

Similarly to GasP, STAPL offers no time margin between the drive and reset

phases of two consecutives stages. This may not be an issue if the proper transistor

sizing is performed, as shown in subsection 13.6.5. However, while requiring a

similar number of components and offering similar performance to QDI, STAPL

uses a single-track protocol, which is less robust than QDI.

The STFB template presented in the following sections offers GasP-like per-

formance with much smaller area than the QDI template.

13.4 Single-track full-buffer template

In order to keep the same cycle time as GasP (six transitions) while using 1-of-N

data encoding, the single-track full-buffer (STFB) template, proposed by Ferretti,

Beerel, and Ozdag [6]–[10], does not use pulse generators as in STAPL or a self-

rest NAND as in GasP. For STFB stages, when the output token is issued a stage

resets and disables itself. Then, when the output token is consumed (removed from

the channel), the stage is enabled again. This combination of output detection and

timing generation simplifies the template and allows a very small cycle time, as

described below.

Figure 13.5 shows a typical block diagram for an STFB cell. When there is no

token in the right-hand channel (R) (i.e. the output channel is empty), the right-

hand environment completion-detection block (RCD) asserts the signal B, enab-

ling the processing of the next token. In this case, when the next input token

arrives at the left-hand channel (L) it is processed, thus lowering the state signal S;

this creates an output token on the right-hand channel R and causes the state-

completion-detection block (SCD) to assert the signal A, removing the token from

the left-hand channel through the Reset block. The presence of the output token

Reset

B

S

RL

A

L R

RCD

SCD

Figure 13.5. Typical STFB block diagram.

27113.4 Single-track full-buffer template



on the right-hand channel resets the signal B, preventing the stage from firing

while the output channel is busy.

Figure 13.6 shows a simplified schematic of the STFB dual-rail template. The

NOR gate in this figure is the RCD, the NAND gate is the SCD, and the NMOS

transistor stack defines the cell’s main function. Note that the NMOS transistor

stack (the N-stack) is designed to be semi-weak-conditioned in that it will not

evaluate until all the expected input tokens arrive. This combination of function-

ality and input completion detection removes the need for a left-hand environment

completion-detection (LCD) circuit, thus reducing the template’s complexity, size,

and cycle time. Other alternatives that separate the N-stack and the LCD func-

tionality, such as the quasi-delay-insensitive (QDI) template and the non-weak-

conditioned STFB template [6][10], are bigger and slower and should only be used

where the application requires them.

The cycle time of the STFB template is six transitions and the forward latency is

two transitions. This implies that the peak pipeline throughput can be achieved

with just three stages per token, which allows high pipeline occupancy and the

implementation of high-performance small rings (loops of pipeline stages). The

full-buffer characteristic of the STFB stage refers to each stage’s capacity of

holding one token. The STFB template is very flexible and can be expanded to

different functionalities [10][6].

Figure 13.7 shows the timed marked graph for the presented templates. The

notation “ þ ” and “–” represents the rising and falling of the signals, respectively.
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Figure 13.6. Simplified dual-rail STFB template.
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Figure 13.7. Marked graph behavior of STFB template.
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The left- and right-hand environments drive the dotted arrows and the broken-line

arrows represent the timing constraints. The arrows are annotated with delays in

terms of numbers of transitions. The arrows from Sþ to Lþ and to R� reflect a

relative timing assumption that the source and sink transitions must be sufficiently

separated in time to avoid a hazard. In particular, if Sþ occurs too late then a

short-circuit current occurs on both the input and output wires.

As can be deduced from the timed marked graph, the STFB template has

somewhat tight timing constraints. In particular, when counting CMOS transitions,

the timing margin between the tri-stating of an output wire (one transition after Sþ)

and the earliest time at which the environment can reset the wire (R�) is zero.

Moreover, the timing margin between the tri-stating of an input wire (two transi-

tions after Sþ) and the earliest time at which the left-hand environment can drive

the wire (Lþ) is also zero. In particular, if these margins are violated, significant

short-circuit current may occur during the transitioning of the line. In addition, it is

assumed that three transitions are sufficient to fully discharge or charge a line. To

accommodate these constraints, the channel load needs to be bounded. This is

achieved by limiting the wire lengths of the channels, and it can be easily verified

after the placement and routing phase that they are satisfactory. Moreover, auto-

mated static timing analysis tools that will further improve the design robustness

and sign-off process are under development [28][29].

13.4.1 Static single-track full-buffer (SSTFB) template

One possible implementation of the static single-track (SST) line driver is shown in

Figure 13.8. The active drivers are M1 and M10. The additional transistors M2

and M11 ensure that there is no contest during transitions of the wire, allowing

M3 and M12 to be as large as desired to combat coupling noise. Therefore, each

side of the wire has complementary “drive-and-hold” circuits.

Notice that M3 and M12 are used to drive the channel wire continuously.

Consider first the case in which the sender side S is high and A is low. In this case,

the line can be low (for example after reset) or high (a token is stalled on the

channel). While it is low M2 and M3 actively keep the line low, whereas when the

S

A

Channel
wire

R LM1

M12

M2

M3

(a) (b)

M11

M10

Figure 13.8. Static single-track channel driver implementation: (a) sender and (b) receiver
“drive-and-hold” circuits.
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line is high M11 and M12 actively keep the line high. Conversely, if the sender side

S is low and A is low then M1 actively drives the wire high. Lastly, if A is high then

M10 actively drives the wire low. Thus, in all cases there is a strong path from the

wire to a power supply.

13.4.2 The 10-transition template

Figure 13.9 shows the marked graph for the alternative 10-transition STFB

template in Figure 13.10. This template offers a self-reset three-transition active

output (S� to Sþ is the period): one transition corresponds to a margin for Rþ to

hold Sþ, and two transitions correspond to a margin between the drive and reset

phases of the output and input single-track wires.

As can be seen, in the 10-transition STFB template, two more gates (two

transitions) are added to the A and B signal paths, and the signal A is used to

“self-reset” the states S0 and S1 by lowering B. Once the output has a token, the

B signal is held low even after A is restored low. These extra transitions increase

the template cycle time to 10 transitions, while the active and reset phase are still

three transitions long, which results in a two-transition (two-gate-delay) margin

on each side of the template drive (input–output).

The price for these margins is a slightly more complex circuit compared with

the six-transition template. Also, for latency-critical “token-limited” systems, the

10-transition STFB template offers the same performance as the six-transition

one. Moreover, a 10-transition STFB template is still much better than most QDI
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Figure 13.10. Ten-transition STFB template.
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templates, which require 14 to 18 transitions per cycle, and it can be used in

conjunction with the six-transition templates since the active and reset phases have

the same duration (three transitions) on both templates.

For complex stages with many inputs and outputs, as in 1-of-4 channels for

example, the 10-transistion template may need some of the added inverters in the

SCD and RCD to be changed to NAND or NOR gates to allow the easy handling

of multiple tracks. For example, a 10-transistion 1-of-4 STFB stage could have

two two-input NOR gates connected through a two-input NAND gate in order to

perform the RCD function.

13.5 STFB pipeline stages

The following diagrams represent the basic STFB pipeline stages. Many details,

explained later in this chapter, are simplified (no Reset signal, staticizers, or

transistor sizing etc. are shown) for clarity.

13.5.1 STFB buffer

Figure 13.11 illustrates a dual-rail STFB buffer template, where the N-stack is

simply implemented with two NMOS transistors. This stage just replicates the

incoming token to the output channel. It may be used to improve the drive

strength (i.e. in the middle of a long wire) and to add capacity by holding one

more token in the pipeline (i.e. adding slack).

13.5.2 STFB fork

Figure 13.12 illustrates a dual-rail STFB fork stage, whose operation consists of

replicating the incoming data to two different channels if all output channels are

ready. Otherwise, the input data must wait.

A S0
S1

R0
R1B

L1R0

S0 S1

B

B

L0 R1

A A

Figure 13.11. Simplified dual-rail STFB buffer.
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13.5.3 STFB join

Figure 13.13 illustrates a dual-rail STFB join stage, whose operation consists of

consuming two incoming data from two different channels and generating an

output token if both input tokens have arrived and the output channel is ready.

In this example, the join operation is an AND function.

This functionality of the STFB join stage is defined by the arrangement of the

NMOS transistors in the N-stack. Different functions (OR, XOR, etc.) may be

implemented by simply rearranging the N-stack transistors accordingly.

13.5.4 STFB merge

The merge operation consists of choosing one of the incoming tokens a and b, on

the basis of the value of a control token C. If the output path is busy, the input and

control must wait. After forwarding the selected data, the control token is also

consumed.

a0 a1 b0 b1

A S0
S1

c0
c1B

a1c0

S0 S1

B

B

a0 c1

b0 b1

Figure 13.13. Simplified dual-rail STFB join (here, an AND function).

S0 S1

B

B

R0a R0b R1aR1b

L0 L1

R1a
B

R1b

R0b

R0a
L0 L1

A S0

S1

Figure 13.12. Simplified dual-rail STFB fork.

276 Single-track pipeline templates



Figure 13.14 shows a two-to-one merge. If C¼ 0 then the La signals are directed

to R and if C ¼ 1 then the Lb signals are directed to R.

13.5.5 STFB split

The split operation consists of forwarding incoming tokens to one of two output

channels on the basis of the value of a control channel C. If the chosen output path

is busy, the data must wait.

Figure 13.15 shows a one-to-two STFB split circuit. In this example, if C is low

then L is directed to Ra and if C is high then L is directed to Rb. Interestingly, the

R0
R1B

C0 L1a L0a

A S0a
S1a

C1 L1b L0b

A S0b
S1b

L1bR0

S0b S1b

B

B

L0b R1

C1

L1aR0

S0a S1a

B

B

L0a R1

C0

Figure 13.14. Simplified STFB merge.
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Figure 13.15. Simplified STFB split.
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STFB split allows a token to be forwarded to one channel even if the other channel

is busy, which increases the level of parallelism.

13.5.6 STFB arbiter

The single-track full-buffer arbiter (STFB_ARBITER) uses a conventional single-

rail mutual exclusion (MUTEX) circuit surrounded by single-track interfaces.

Figure 13.16 shows a common implementation of the MUTEX circuit (see e.g.

[26]). The transistor sizing and the choice of NAND gate (NAND2B_28_12) were

derived from the STFB library [15]. The operation of the MUTEX is as follows:

initially the two inputs R1 and R2 are low, which causes both the outputs X1 and

X2 of the set–reset (SR) flip-flop (implemented with two NAND gates) to go high.

Therefore, both the MUTEX outputs G1 and G2 are low.

If one request arrives at a time, for example, if req1 goes high then the operation of

theMUTEX is trivial: for req1 high, X1 goes low, which makes G1 high as expected.

If both requests go high at the same time, the SR flip-flop may take some time to

decide which input wins (this is known as themetastability of the circuit [26]), and X1

and X2may assume some intermediate value (for example, Vdd/2). The transistors in

front of the SR flip-flop will keep both outputs (G1 and G2) low while X1 and X2

have similar voltage levels. In otherwords,G1 orG2will be driven high only after the

SR flip-flop is out of the metastable state.

Now we have the basic blocks to build the STFB_ARBITER.We just need to add

logic to drive and hold the dual-rail single-track output, as shown in Figure 13.17.

Notice that the NReset signal initializes the input channels, req1 and req2, low.

The output channels, out1 and out2, are initialized by the next STFB stage

connected to these signals. If one input arrives (for example, if the single-track

channel req1 goes high) then the respective MUTEX output (G1) also goes high,

driving its state (S1) low; this fires the STFB_POUT transistor (at top right),

inserting an output token (out1), and removes the input token (req1). Notice that,

if one output channel is busy (for example, out1) and a new request arrives at the

other side (on req2) then the other output channel (out2) can operate normally.

This means that the STFB_ARBITER above is “non-blocking,” which is a useful

performance characteristic for an arbiter.

Figure 13.18 shows the STFB_ARBITER transition graph for a single input

cycle that requires eight transitions (the broken arrows represent the number of

transitions of the neighboring stages). (Note that the transitions G� and Sþ are

not shown in the figure because they are not critical to the arbiter’s cycle time.)

Figure 13.19 shows the STFB_ARBITER timed Petri net for the system (with

most places omitted for simplicity). If both inputs req1 and req2 are continuously

sending requests, then when a token arrives in the place p, only the transition

G1þ or G2þ that was not most recently fired is now enabled to fire. In other

words, the place p will alternate between servicing G1þ and G2þ. Consequently,

the cycle time reduces to five transitions per request (10 to service both inputs), as

suggested by the boldface path in Figure 13.19.
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13.5.7 STFB kpg adder

The cell STFB3_KPG2_KPG2 utilized in the 64-bit asynchronous prefix adder

described below is an example of a cell implementation using 1-of-3 single-track

channels, with a forked output. The forked output allows the cell to generate two

output tokens in two different channels as if it had an embedded fork stage.

G2

G1

R1

R2

X1

X2

R1

R2 G2

G1

MUTEX

(a) (b)

Figure 13.16. MUTEX circuit, (a) schematic and (b) symbol.
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Figure 13.17. STFB_ARBITER diagram.
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Figure 13.18. STFB_ARBITER timed marked graph for a single request.
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The KPG (kill, propagate, or generate) carry operation uses two previous kpg

results to compute the next KPG output (which is forked), and it can be described

by the following equations:

Ka ¼ Kb ¼ RkþRp:Lk;

Pa ¼ Pb ¼ Rp:Lp;

Ga ¼ Gb ¼ RgþRp:Lg;

where (Ka, Pa, Ga) and (Kb, Pb, Gb) are the two 1-of-3 output channels and

(Rk, Rp, Rg) and (Lk, Lp, Lg) are the two 1-of-3 input channels.

Figure 13.20 shows the STFB3_KPG2_KPG2 cell. In this cell, the NMOS

transistor stack implements the KPG equations. One of the states Sk, Sp, and

Sg fires on the basis of the values of the input tokens. Then two sets of output

driver transistors are activated simultaneously, which generates two tokens, one

for each output channel. In addition, the “embedded fork operation” requires that

both output channels must be empty, which raises the signals Ba and Bb, in order

to allow the N-stack to fire again.

13.5.8 Shared channels

As shown in Section 13.1, the communicating stages read and drive both sides of a

single-track channel. Therefore, the STFB template was designed to have “point-

to-point” channels, which means that there are no forked wires. This characteristic

is also utilized to size the cells properly, as explained in Section 13.6.

In order to keep the “point-to-point” channel property, a common channel can

be used, as shown in Figure 13.21, where merge stages are utilized to multiplex

four channels into one, and split stages are utilized to demultiplex. Notice that the

rings on each side will sequentially select the input channels to route the data to

the respective output channel and that buffers may be added to the channel if

necessary. Similar MUX and DEMUX structures are utilized in the design con-

sidered below in Section 13.8 to load or unload 64-bit data through an eight-bit port.

In addition, with some modifications the STFB template allows another possi-

bility for collecting and distributing data: shared channels.

req1+

req1–

G1+ S1– out1+

out1–

33 2

1

2

2 1
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req2–
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out2–
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1

1
1

1
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Figure 13.19. STFB_ARBITER timed Petri net for multiple requests.
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Figure 13.20. STFB_KPG cell with an embedded copy, referred to as STFB3_KPG2_KPG2.
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Figure 13.21. Multiplexer to demultiplexer shared-channel approach.
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Figure 13.22 exemplifies the use of shared channels, where the shared buffers

allow their outputs and inputs to be connected in a shared-channel format (with

forked wires). The buffer modifications are basically the input–output staticizer,

which is needed to take into account the possibility of another buffer to drive the

channel, and the in–out control channels, which are single-rail single-track chan-

nels required for selection of the input–output pair of shared buffers. The select

token must be initialized, usually after reset, in order to synchronize both sides

and ensure mutually exclusive access to the channel.

One approach for the stages connected to the shared channel is simply to

remove the staticizers inside the stages and add one in the shared channel. This

means that the stages connected to the shared channel would have only to contest

the staticizer to send or remove a token, not each other.

In addition, in order not to degrade the system’s performance, the output and

input transistor drivers must be properly sized, taking into consideration the

shared channel length and the load of the other stages connected to it.

In [1], van Berkel and Bink mention the possibility of implementing “multiple

active and passive subscribers” (multiple senders and receivers), which basically

generalizes the concept of shared channels. We could represent this by connecting

together (without the common channel connection) the shared channels shown in

Figure 13.22 and adding some other form (different from the select ring shown) of

selection that indicates which stage is actively reading and which is writing to the

bus (shared channel).

13.5.9 Bit generators and buckets

A bit generator creates a data token every time the channel is empty, while a bit

bucket consumes unwanted tokens. Both are used during the testing and operation

of STFB-based circuits. Examples of an STFB bit generator and a dual-rail bit

bucket are shown in Figure 13.23.
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Figure 13.22. Forked-wire shared-channel approach.
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13.5.10 Token insertion

A token buffer Tok Buf is a buffer that, during initialization, inserts a token in the

pipeline in order to initialize it (otherwise, there would be just empty channels

after reset). For the STFB cells, in order to save area and simplify the circuit, the

input channels are forced to zero during reset (not the output, as is commonly

found in other templates and for synchronous designs). In order to have a token

inserted in the input channel, one input wire is forced high during reset.

Figure 13.24 shows a simplified Tok Buf diagram, where the input L1 is forced

high during reset.

Note that during reset (NReset is low) the NMOS transistor stack is disabled to

prevent it from firing before the reset is released (NReset goes high). This is

necessary because the token is inserted before the buffer (in the input channel)

and the output channel may be cleared (emptied) during the reset, which sets the

B signal high. After the reset signal is de-asserted, the token buffer behaves as

a conventional STFB.

13.6 STFB standard-cell implementation

In order to use the STFB template in a standard-cell place and routing flow, it is

necessary to implement a STFB cell library as described below for the Taiwan

Semiconductor Manufacturing Co. (TSMC) 0.25 mm process. In this case, the

process parameters are taken into account in order to design the cells accordingly.

Similar steps should be taken for other processes.

13.6.1 Transistor-sizing strategy

An important characteristic of the STFB architecture is that all the channels are

point-to-point channels. This means that there are no forked wires and the channel

load is a function of the wire length and the next-stage input capacitance. Conse-

quently, since the fanout is always 1, the variance on output load is even

more dominated by variations in the wire lengths than in synchronous designs.

Therefore, this initial version of the library, presented here as an example of a real

Reset

Lx

(a)

Reset

L0
L1

(b)

Figure 13.23. Single-track full-buffer (a) bit generator and (b) bucket.
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implementation, adopts a single-size strategy for each STFB function. The chosen

size can drive, with reasonable safety and adequate performance, a buffer load

through a wire up to 1 mm long and with width 0.4 mm and spacing 0.5 mm (as

found in a TSMC 0.25 mm process). Although the TSMC 0.25 mm process allows

somewhat smaller transistors, it was chosen since the minimum NMOS transistor

has width 0.6 mm. Then the minimum PMOS, with the same strength as the

minimum NMOS, is 1.4 mm wide. To balance the rise and fall slopes of each node,

the sizes of all the PMOS and the NMOS networks are implemented with a ratio

equal to approximately 1.4/0.6. Also used for sizing was a known practical scaling

rule that one inverter can drive efficiently four to five times its own input load.

Therefore, to drive a 1-mm-long line, the load capacitance would require an

8� driver transistor (a driver transistor with eight times the strength of the min-

imum transistor). This means that the PMOS driver and the NMOS reset transistor

need 10 mm and 5 mm widths respectively. Scaling the load drive, the N-stack needs

to have the strength of at least twice the minimum-size transistors in order to

activate the respective PMOS drive transistors and the SCD inputs. This means

that the width of each NMOS transistor in the N-stack should be at least 1.2k mm,

where k is the number of transistors in the path driving the state to ground.

R0

S0 S1

S1

S0

L1 R1

R1

R0

B

B

B

L0

L0 L1 L0

NReset
A

Figure 13.24. Simplified Tok Buf.
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Symmetrized transistor stacks are utilized to perform the SCD and RCD

functions inside the cell. Figure 13.25 shows the symmetrization of a two-input

NAND gate (note that the widths are in mm and all lengths are 0.24 mm). This

approach minimizes the influence of the data in the cell timing behavior.

13.6.2 Output sub-cell STFB_POUT

The output driver sub-cell STFB_POUT is utilized in all STFB cells of this library.

It includes the staticizer structure and three PMOS transistors, which restore the

state input S high, as illustrated in Figure 13.26. (Again widths are in mm and all

lengths are 0.24 mm.) If the output channel is empty then the B signal is high, R is

low, and NR is high. At the same time, M2 and M3 hold R low. When S is driven

low, the output driver PMOS transistor M1 drives the output R high, which makes

the minimum size inverter drive NR low, deactivating M3 and activating M4 and

M5. The RCD (not shown) will also make the B signal fall, activating M6. The

transistor M4 will hold the line high while M5 and M6 drive S back high, turning

off M1. The transistors M6 and M7 prevent leakage and charge-sharing. This

template also improves robustness to charge sharing in the N-stack, because this

output sub-cell has a low switching threshold voltage for the S signal. The transis-

tors M2 and M3 shift the activation threshold of S low (to around 60% of Vdd).
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Figure 13.25. Sub-cell NAND2B_28_12: (a) conventional diagram and (b) implemented
balanced input diagram.
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Figure 13.26. Sub-cell STFB_POUT (a) block diagram and (b) schematic.
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Notice that M5, controlled by the staticizer inverter (the NR signal), quickly

asserts S after its output rail is driven high. This enables M6 to be smaller, thereby

reducing the load on the B signal and enabling a very fast cycle time.

13.6.3 The RCD sizing

The NOR gate in the STFB template (the RCD) can also be implemented as a

symmetrized gate. Its function is to drive the B signal low no later than the signal

NR goes low in order to disable the N-stack and restore the signal S, as shown in

Figure 13.27. This timing assumption is satisfied by reducing the load connected

to the RCD output (WM6 ¼ 0.6 mm, which is good enough to prevent N-stack

charge sharing) and by transistor sizing, as shown in Figure 13.28, where the

NMOS transistors of the balanced RCD are 1.2 mm wide, while for a regular

minimum-sized NOR gate we would use 0.6 mm.

13.6.4 Input channel reset transistors

In the STFB template, the input token is consumed by driving the input channel

wires low. This is achieved when the signal A generated by the SCD block

activates a set of 5-mm-wide NMOS transistors connected to each input wire.

Also, to initially reset the entire circuitry, a global NReset (active-low reset) signal
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Figure 13.28. (a) Conventional 2-input NOR and (b) balanced RCD.
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Figure 13.27. Simultaneous activation of B and NR.
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is used to force all channels low. Originally, this signal was simply added as one

input to the SCD block [10]. Figure 13.29(a) shows the initially proposed three-

input SCD. Figures 13.29(b), (c) show the implemented reset structure, which uses

two-input NAND gates, allowing a smaller load on the states (S0, S1, S2) and

offering a better performance of the SCD for dual-rail and 1-of-3 channels. Notice

that the added transistors can share the same drain connections, resulting in only a

marginal increase in area and input capacitance for the STFB stage.

13.6.5 Direct-path current analysis

A perceived problem with STFB designs is the amount of direct-path current, also

known as short-circuit current, caused by violations of the timing constraint

associated with the tri-stating of a wire before the preceding or succeeding stage

drives it. Figure 13.30 shows a conventional CMOS inverter where, during the rise

time tr and fall time tf of the input voltage Vin, both transistors will be briefly active,

allowing a direct-path current from Vdd to ground. Since it has an approximately

triangular shape, we can estimate the direct-path current as Idp ¼ Ipeak/2 [1].

For our STFB pipeline stages, the NMOS transistor gate is connected to a signal

A and the PMOS transistor gate is connected to Sx (one of the states). Figure 13.31
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Figure 13.29. SCD and reset (a) initially proposed and the implemented (b) 1-of-2 and
(c) 1-of-3.
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Figure 13.30. (a) Inverter and (b) direct-path current in a conventional CMOS inverter.
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shows the direct-path current if VA occurs earlier than VSx. If the voltage difference

Vdiff ¼ VA –VSx is zero, the STFB stage Idp is similar to a conventional inverter.

However, if one of the voltage transitions occurs ahead of the other, i.e. Vdiff is

different from zero, we may observe a higher peak current during one transition

and a smaller peak current during the next transition, or vice versa.

Figure 13.32 shows the peak direct-path current versus the PMOS–NMOS gate

voltage difference Vdiff during an input rise and fall edge (Vdiff ¼ VA –VSx). These

values were obtained from DC HSPICE simulation analysis using typical para-

meters with transistors that were double our minimum size. Notice that, if VA and

VSx have similar shapes (similar width, rise, and fall times), the average peak

current is close to the inverter peak current as long as Vdiff < 1 V.

Simulations using HSPICE also show that the direct-path current of the STFB

templates is no worse than that for an inverter driving the line, and that the timing

assumption associated with the tri-stating of one stage before the other drives the

line is not a hard constraint to meet. For the STFB stages, the time difference

between VA and VSx is bounded by the wire-length constraint (subsection 13.6.1) to

ensure correct operation.
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Figure 13.31. (a) Single-track full-buffer output–input drivers and (b) direct-path current

if VA 6¼ VSx.
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13.6.6 Performance analysis

Figure 13.33 shows simulation results for two 15-buffer pipelines implemented

with WCHB and STFB buffer templates. Weak-conditioned half-buffer is the

fastest buffer implementation of the QDI templates [16][17] (precharged half-

buffer is better for more complex stages). Figure 13.33(a) demonstrates that the

smaller cycle time of the single-track full-buffer template offers higher throughput

for the same number of stages, or equivalent throughput with fewer stages, since it

can handle more tokens per stage than WCHB. Figure 13.33(b) shows the power
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Figure 13.33. (a) Throughput and (b) Et2 metric versus pipeline occupancy for two 15-buffer
pipelines.
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metric Et2 [25], where the better efficiency of STFB is evident (by a factor 10 at

peak throughput). This metric allows us to say that the STFB pipeline could

match the WCHB speed (because of the lowering of the power supply voltage)

and would require much less energy per token to perform the same job.

13.7 Back-end design flow and library development

The preliminary version of an STFB Asynchronous Standard Cell Library for

Cadence tools, which was released through the MOSIS Educational Program [15],

contains all common sub-cells for dual and 1-of-3 rail logic cells and specific cells

used in the test chip. At the time of writing, work was being done to add Verilog

behavioral views of all cells, input capacitance, delays to the library, using the

Liberty (.lib) file format [27] allowing delay back-annotation for fast and accurate

Verilog simulation [11].

For example, Figure 13.34 shows the layout and Figure 13.35 a schematic for the

STFB2_XOR2 cell. This cell is an STFB pipeline stage with two dual-rail input

channels and one dual-rail output channel. In the library, this cell has four views:

symbol, functional, schematic, and layout. The symbol view is used to instantiate

the cell in higher-level schematics. The functional view is the Verilog behavioral

description of the cell. The schematic view is a transistor-level schematic of the cell,

including the symbols of the sub-cells used to implement this cell. The layout view,

similarly to the schematic view, is composed of a cell-specific part and various sub-

cells, as shown in Figure 13.34. In this figure, we can see that the STFB2_XOR2

cell includes the eight input transistors that define the XOR function and an

STFB2_CORE4I sub-cell. This sub-cell includes four reset transistors, one

INV_28_12, one NAND2B_56_24, one NOR2B_14_12OD, which includes the

N-stack foot transistor, and two STFB_POUT sub-cells (subsection 13.6.2).

Notice that, by rearranging the input transistor connections shown in

Figure 13.34(a), we can easily implement other two-input one-output cells such

as STFB2_AND2 and STFB2_OR2 [7].

13.8 The evaluation and demonstration chip

A test chip was designed to validate the design flow and the performance of the

STFB templates. The central block of the test chip is a 64-bit STFB prefix adder,

while the input and output circuitry, both STFB blocks, were designed to feed the

adder and sample the results, enabling the checking of its performance and

correctness at full throughput.

13.8.1 The prefix adder

The prefix adder architecture, described in detail in [13], allows a high degree of

parallelism. Nevertheless, the micro-architecture was defined using equations

adapted to 1-of-N encoding [7][8]. The 64-bit asynchronous prefix adder is nine
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levels deep. This means that, with nine times the forward latency of the STFB

stage (9� 2¼ 18 transitions), 64 bits plus carry-out are available. In addition,

since the cycle time of the STFB stage is just six transitions, the 64-bit adder can

process up to three additions simultaneously (i.e. three tokens in the pipeline) at

maximum throughput.

(a)

(b)

(c)

Figure 13.34. STFB2_XOR2 cell: (a) custom layout and STFB2_CORE4I sub-cell, (b) with

STFB2_CORE4I sub-cell expanded, and (c) with all sub-cells expanded.
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13.8.2 The input circuitry

Figure 13.36 shows the INPUTGEN129BY9 input generator block, which loads

and continuously repeats a test pattern to be fed into the adder. The block is

composed of single-rail to single-track converters, split circuits, and 129 nine-stage

rings (two 64-bit numbers and carry-in). Figure 13.37 shows the nine-stage ring

diagram, where there are seven buffers, one fork cell F, one unconditional merge

M, one XOR, and the controlled bit generator BG. After the tokens are loaded into

the rings, the BG cell is enabled with the “Go” signal (not shown). Since now the

XOR stage has one token in each input, it generates a token that enters the fork

stage, where one copy is sent to the adder and another is sent back into the ring.

13.8.3 The output circuitry

In order to test the adder when it was running at full throughput, it was

connected to a programmable output circuitry that sampled the 65-bit result
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Figure 13.35. STFB2_XOR2 cell schematic.
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(64-bit sum and one-bit carry-out), forwarding to the output pins one out of

n results (0 � n � 7840). The SAMPLER65BY1000 output circuit is implemented

with three 30-stage rings, each connected to a 65-bit split structure. The 30-stage rings

are similar to the nine-stage ring in Figure 13.37; they have 27 buffers in the loop

instead of just six, and they can be individually loaded with a sequence of tokens.

Figure 13.38 illustrates the sampler circuit where each split stage, controlled by

a 30-stage ring, directs an input token either to a bit bucket BB, where the token is

destroyed, or to the next split. The 65-bit output of the last split is sent to the

output pins. The carry-out is separated, converted to single-rail, and sent to its

exclusive pin. The 64-bit sum is sent to an asynchronous mux element (M) that

routes to the output one byte at the time, starting with the most significant. The

30-stage rings can run at full throughput if loaded with 10 tokens each. This would

also result in a sample rate equal to 1 out of 1000 results. Moreover, loading the

rings with different numbers of tokens can change the sample rate. We need to be

careful, however, not to slow down the adder if we want to check its performance

at full throughput. If the first ring is loaded with 10 tokens, the other two can

be loaded with 28 tokens each, yielding a sampling rate up to 1 out of 7840 results

without limiting the adder throughput.

Note that if the external test circuit is slow in consuming the output results then

the sampler, the adder, and the input circuit will slow down to accommodate it

and no sampled data will be lost.
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Figure 13.37. Nine-stage ring utilized in the input circuitry.
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13.8.4 The chip implementation

Figure 13.39 shows the die photo of the demonstration chip (ASYNC1b), where

the STFB blocks are placed under a power grid implemented with a metal-5 Layer,

which hides the circuits underneath. The place and route for each block was

performed separately with area utilization 80%. The blocks have the same height

(1.7 mm) and the placements of the adder block pins match that of their neigh-

bors. The total area is 4.1 mm2.

Notice that performing place and route on separated blocks significantly

reduces the probability that a very long wire could compromise the performance

and functionality of the design, as discussed in subsection 13.6.1. In fact, a post-

layout check guaranteed that no STFB signal wires were longer than 1 mm. In

addition, as filler cells, a total of 1.6 nF in bypass capacitors was added to the chip.
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Figure 13.38. Block diagram showing SAMPLER65BY1000, mux 64 to 8, and single-rail

converters.

Figure 13.39. Single-track full-buffer blocks in the ASYNC1b chip.
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13.8.5 Power distribution and electromigration

Nanosim post-layout typical simulation (transistor model TT, 25 �C, Vdd ¼ 2.5 V),

running at full throughput, achieved 1.4 GHz and required a power supply current

of 3.3 A [8]. On the basis of these numbers, the voltage drop and electromigration

were taken into account in the design of the power grid [15]; 28 pins were allocated

for the power supply [7].

Regarding the single-track channels, although they also conduct unidirectional

currents, no electromigration problem was observed (subsection 13.8.8). It may

become important for higher current densities (heavier loads, faster transitions, or

a smaller process), as discussed below in Section 13.9.

13.8.6 Comparisons

Table 13.1 shows for comparison some STFB pipeline stages with PCHB [16]

stages and static standard cell CMOS gates driving another stage through a 1-mm-

long line (process TSMC, 0.25 mm, TT, 2.5 V, 25 �C). The numbers in parentheses

give the latency and cycle time in terms of the corresponding numbers of transi-

tions. The static CMOS standard-cell gates used in this comparison were designed

under the same standard-cell specification as utilized for the STFB and PCHB

pipeline stages, and they were implemented using a 2� gate (i.e. a gate having

double the minimum strength) followed by an inverter implemented with a 10-mm-

wide PMOS and 5-mm-wide NMOS in order to match the driving strengths.

As shown in the table, STFB is smaller, faster, has more capacity, and utilizes

fewer wires than PCHB. In addition, the STFB area is closer to that of static

standard-cell CMOS gates if we add to them the latch, flip-flop, and clock-tree

overheads required for fine-grain synchronous pipeline designs. Moreover, the

single track full-buffer capacity, 1-of-N data encoding, and two-phase protocol

allow close to full-custom performance in a standard-cell flow, which is not

possible with static standard-cell CMOS gates.

Goldovsky et al. [13] implemented a 32-bit full-custom static CMOS

prefix adder using the Lucent 0.25 mm process. It achieved 1 ns latency, used

Table 13.1. STFB, PCHB, and static CMOS templates

Function Cell Latency Cycle time Area (mm2) Area ratio

Buffer
STFB 189 ps (2) 463 ps (6) 415 4.5
PCHB 220 ps (2) 1.96 ns (14) 726 7.9

CMOS 165 ps (2) — 92 1.0

Two-input AND/OR
STFB 177 ps (2) 471 ps (6) 472 4.6
PCHB 176 ps (2) 2.05 ns (14) 968 9.3
CMOS 177 ps (2) — 104 1.0

Two-input XOR
STFB 177 ps (2) 471 ps (6) 472 2.6
PCHB 179 ps (2) 2.12 ns (14) 1048 5.7
CMOS 225/312 ps (2/3) — 184 1.0
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0.03 mm2, and consumed 32 mW at 400 MHz. These numbers do not include the

flip-flop, latch, and clock tree necessary for the synchronous design. On the basis

of the 64-bit STFB prefix adder, it is possible to estimate values for a 32-bit STFB

prefix adder: 1.8 ns latency, 0.43 mm2 area, and 1.44 W at 1.4 GHz. The static

CMOS version was implemented using labor-intensive full-custom transistor

sizing and layout, while the STFB version uses standard cells in an automatic

place-and-route flow. Although the area and power required by the STFB circuit

are significantly higher, the power efficiency metric Et2 [22] is about the same for

both circuits (�5 � 10�28 J s2). One may argue that, in some applications, three or

four static CMOS circuits could be used in parallel to achieve a similar throughput

with somewhat smaller area and power than STFB. However, STFB still allows

close to full-custom performance with standard-cell design time.

13.8.7 Demonstration-chip implementation and test

For the ASYNC1b chip, the package utilized is a ceramic 132-pin pin grid array in

which the STFB circuits use 56 pins: 28 power supply pins (14 Vdd and 14 ground), 12

bi-directional pins, 13 input pins, and three supply pins for the pads (3.3 V, 2.5 V,

and Vss (ground)). The remaining 72 pins of the package are taken by the QDI part

of the ASYNC1b chip [23][24]. It runs on top of an evaluation board [7] that disables

the QDI part of the chip, and it uses a field-programmable gate array (FPGA) to

setup and run the STFB part. Once programmed, the FPGA loads the STFB input

block with the operands, sets the sample rate in the output block, and runs the

ASYNC1b chip by acknowledging all requests as they come out of the chip.

13.8.8 Test results

Figure 13.40 shows the measured waveforms of chip number 3 (all 40 samples

were numbered for tracking purposes); channel 1 shows the acknowledge signal

produced by the FPGA for every carry-out request from the chip. Its frequency,

313 kHz, indicates that the 64-bit adder is running at 1.25 GHz since the sample

rate was set to 1 : 4000. The channel 2 signal shows the acknowledge signal of the

result, sent on the output one byte at a time, at a rate of 200 ns each (5 MHz). The

sampler rings, as explained in subsection 13.8.3, can be programmed with different

numbers of tokens, allowing various sample rates, and with the selecting bits in

different positions in order to define the sampling sequence.

Initially, after the rising edge of the reset (NReset) signal, configuration data is

loaded into the chip. Notice that by loading ring 0 with 11 tokens, and rings 1 and

2 with 19 tokens we have a sample rate of 1 : 3971. Also, since the input rings are

much faster than the adder, without reducing the adder throughput we can load,

for example, three carries, three 64-bit operands for A, and four 64-bit operands

for B, resulting in 12 combinations.

Figure 13.41 shows the operation of the logic analyzer demonstration chip.

After a rising “Go” signal, the input rings start feeding the adder continuously

296 Single-track pipeline templates



Tek

1

A

2

CH1

RefA 1.00 V 500 µS

2.00 V CH2 2.00 V M CH1 1.95 V1.00 µS

Stop M Pos: 1.960 µS Measure

Source

313.0 kHz

CH1

Freq

4.56 V

CH1

Pk–Pk

4.48 V

CH2

Pk–Pk

5.002 MHz

CH2

Freq

Type

Figure 13.40. Chip number 3 at 1.25 GHz (2.5 V on-chip, 2.26 A, 40 �C package, fan at
1.5 inches).

Sampled results

7 IO7
IO6
IO7
IO4
IO3
IO2
IO1
IO0

Go
Load
AckS8
Se10_ReqS8
Se11_Cout
Se12_ReqC
Se1A_CopyC
AckC
InvA
InvB
CarryRingIn
CarryLoad
LoadR0
LoadR1
LoadR2

IO bus
NRst

6
5
4
3
2
1
0
G0
16
12
13
21

10
11
20
14
15
22
23
17
18
19

8
9

Figure 13.41. Logic-analyzer-captured wave form of the running mode.

29713.8 The evaluation and demonstration chip



while the output rings sample the results, allowing the first result to go out, then

the 3972nd, the 7943rd, and so on. The resulting values and sequence are as

expected for all test cases and sample rates applied.

Figure 13.42 shows some performance measurements for samples 3 and 4 for

different supply voltages, with or without fan or the forcing of cool air. Notice

that the voltage drop from the power supply to the voltage inside the chip is

significant owing to the high level of current required. The on-chip voltage is

measured by two supply pins (one at VDD and the other at ground), which are

connected to a voltmeter instead of the power supply. This means that the entire

chip current is supplied through 13 pins at VDD and 13 pins at ground, which

represents about 170 mA per pin at full throughput (2.5 V, 1.28 GHz). At full

throughput, due to the on-chip power grid size, we estimate that the voltage at the

top of the 64-bit adder block to be approximately 0.1 V below the on-chip value.

Notice that the cooling operation yields a higher throughput and is more efficient

(lower Et2), since the power dissipation is about the same. The junction temperature

was estimated from the ambient temperature, using the package values of the thermal

coefficients, 20 �C/W with the fan (forced air) and 29 �C/W without the fan.

Comparing with the simulation results [8], we can see that the top measured

performance is close to (just 1.4% below) the TT 2.5 V 25 �C simulation case.

However, for a real chip, we have to remember that the die temperature will be

much higher and that there will be a voltage drop on the real power grid. Consider-

ing these effects, the performance of the real design is as expected. Figure 13.42 also

shows results where the cooled chip reaches 1.45 GHz, under a forcing temperature

system that blows air at �25 �C. Since the die temperature is cooler, the

0
25
50
75

100
125
150
175
200

ºC

(a) (b)

(c) (d)

Et
2  (

10
–2

7  J
s2 )

1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1

0
1
2
3
4
5
6
7
8
9

W

800

900

1000

1100
1200

1300

1400

1500

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
On-chip voltage (V)

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
On-chip voltage (V)

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
On-chip voltage (V)

1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
On-chip voltage (V)

M
H

z

with fan

without fan

–25 ºC air

with fan

without fan

–25 ºC air

with fan

without fan

–25 ºC air

with fan

without fan

–25 ºC air

Figure 13.42. Measurements of performance for chips 3 and 4: (a) throughput, (b) power
dissipation, (c) estimated junction temperature, (d) power metric. The measurements
at �25 �C in air refer to chip 4 only.

298 Single-track pipeline templates



performance gets close to the simulated performance. However, the voltage drop in

the real power grid remains. The on-chip voltage range of our test was limited by

the operation of the chip. Voltages above 2.6 V and below 1.7 V caused the chip to

stop running when it was tested with just the fan. The reason for the upper limit is

likely to be that on-chip noise induces or kills tokens, which in turn causes a

complete halt of the circuit. The lower limit is likely to be due to the assumption

that three transitions is sufficient to discharge the line (the charge operation has the

staticizer and RCD feed-back to compensate; this is not the case for the SCD). The

lower supply voltage would make the reset transistors weak and tokens would be

left on the long channels clogging the pipeline and halting the circuit.

The overall performance of the chip is very good and its operation is stable. The

tested samples were used continuously for several hours at full throughput without

presenting wrong operations or detectable performance variation.

13.9 Conclusions and open questions

Single-track full-buffer templates are proposed for high-speed area-efficient asyn-

chronous non-linear pipeline design. A STFB standard-cell library using TSMC

0.25 mm technology has been generated and is freely available through the MOSIS

Educational Program. A complete STFB design with 260k transistors has been

successfully implemented and tested, reaching a measured throughput of 1.45 GHz.

The proposed templates have higher throughput than the fastest known QDI

templates and lower latency than the most advanced GasP templates. Conse-

quently, for systems that are latency-critical, STFB templates may yield a signifi-

cant performance advantage even though GasP bundled data may have a smaller

cycle time.

The STFB templates and implementation issues have been presented. The

timing constraints and the performance of the STFB templates were compared

with QDI templates. The small cycle time of the STFB templates allows the STFB

circuits to operate at very high throughputs with small distances and periods of

time between consecutive data tokens, resulting in smaller and faster circuits than

their QDI alternatives. The power efficiency Et2 is also advantageous, as was

shown in subsection 13.6.6.

The demonstration design includes the input generating circuit, a 64-bit prefix

adder, and a programmable position-and-rate-output sampler circuit. All these

circuits were implemented using our STFB standard-cell library in a conventional

back-end flow, which resulted in a simple, fast, and efficient design process that

should be easily understood by synchronous designers.

The demonstration design chip exploits the advantages of the small STFB cycle

time. The input circuit uses 129 nine-stage rings, which are examples of high-speed

loops processing multiple data tokens. The 64-bit prefix adder represents a high-

complexity design with large STFB stages operating with dual rail and 1-of-3

channels. The sampler circuit uses multiple rings running at different rates. In
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addition, all the support logic to load the operands and unload the results is

implemented with STFB stages.

As a continuation of this work, changes could be made in the template to improve

the noise margins. In particular, if a smaller-feature-size process is targeted, differ-

ent transistor sizing and/or the use of the static single-track (SST) protocol [7][12],

discussed in subsection 13.4.1,where the single-track wires are continuously driven,

are areas of future work. The 10-transition STFB template [10], discussed in

subsection 13.4.2, may also be used to improve reliability over process variations,

because of its self-reset characteristics and larger timing margins.

13.9.1 N-stack height limit

One open issue is the height limit of the transistor N-stack for the STFB template.

Owing to its high performance, low latency, and short cycle time, the state node

S needs to be driven and restored very fast. This may impose a limit on the high of

the N-stack. Successful stages were implemented with four NMOS transistors in

series (including the foot transistors). However, QDI templates allow a much

higher N-stack since they use a left-hand environment completion detector (LCD)

and the cycle time can vary significantly to accommodate a long computation time.

13.9.2 Electron migration effect

Differently from the conventional CMOS logic line drive, the single-track protocol

charges the wires utilized in the single-track channels from one side and discharges

them from the other. This means that most current flowing through the wire is

unidirectional (as is the current in the power lines). Therefore, it becomes neces-

sary to observe the process’s current density limit in order to avoid the electron

migration effect. This limit was not reached in the design presented in Section 13.8,

but it may become an issue for deeper processes and may require the use of

channel wires wider than the minimum width, adding an extra cost of area and

power. This open issue needs to be investigated; furthermore, the electron migra-

tion limit for single-track channels may be higher since the current is not constant

(it occurs only during transitions).

13.10 Exercises

13.1. In Exercise 11.1, we considered an unconditional cell with 1-of-2 inputs

A and B and a 1-of-2 output channel Z, where Z implements Z ¼NAND(A,

B). Draw the transistor-and-gate-level diagram using the STFB template.

Compare the area with that of the PCHB template described in Chapter 11,

on the basis of the relative numbers of transistors.

13.2. In Exercise 11.4, we considered a leaf cell with conditional output behavior

as follows: A is a 1-of-2 input channel, S is a 1-of-2 input channel, and O is a

1-of-2 output channel; if S is a 1 then the token on A is consumed and copy
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of the value on O is sent. If S is a 0 then the token on A is consumed but no

data is sent on S. Draw the transistor-and-gate-level diagrams for imple-

mentations using the STFB template.

13.3. In Exercise 11.5, we considered a leaf cell with conditional input behavior

as follows: A is a 1-of-2 input channel, S is a 1-of-2 input channel, and O is a

1-of-2 output channel; if S is a 1 then the token on A is consumed and a copy

of the data is sent on O. If S is a 0, a valid token on A is awaited and a token

is sent along O but A is not acknowledged (i.e. consumed). In this way, the

token on A is conditionally re-used, implementing a type of memory. Draw

transistor-and-gate-level diagram for implementations that follow the STFB

template.

13.4. A student Fred Flip proposed the following STFB one-bit copy with dual-

rail input channel (L0, L1) and two dual-rail output channels (R0a, R1a)

and (R0b, R1b) (see Figure 13.43). It has at least one bug. Give a sequence

of events that explains why Fred’s circuit does not always work.
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14 Asynchronous crossbar

System-on-chip (SoC) technology gives the ability to place multiple functional

“systems” on a single silicon chip, cutting the development cycle while increasing

product functionality, performance, and quality. In the SoC design methodology,

complex tasks or chips are divided into several independent functional blocks and

then each block is realized using standard design methodologies with existing

CAD tools. The key for a successful SoC endeavor is implementation of the

on-chip infrastructure that connects these functional blocks to form a system.

Globally asynchronous, locally synchronous (GALS) SoC design architectures

offer a powerful way to solve the interconnect issues with SOC chips that would

otherwise arise in a bus-based system such as a globally clocked design with long

data transition times, large timing margins, and performance targets that are

usually missed.

A GALS-based SoC links islands of locally clocked synchronous logic using an

interconnect that has its own local timing, which is decoupled and independent of

the surrounding logic blocks. While many methods can be used for asynchron-

ously interconnecting disparate logic blocks, two of the most popular are shared

buses with clock domain conversion from each block to the common bus and

asynchronous crossbar switches [1].

The controversial part of GALS, which is based on asynchronous technology, is

the great unknown: the asynchronous interconnect [1]. An asynchronous GALS

architecture provides the foundation for the massive amount of transistors avail-

able in a deep sub-micron (DSM) chip. It is estimated that these devices can

support as many as two dozen IP blocks. In a bus-based GALS design, and also

in an end-to-end synchronous design, it may take several clock cycles to move data

from one end of a chip to another – introducing dozens of nanoseconds of latency

just for interblock connectivity.

However, in an asynchronous GALS design the interconnect is transparent,

acting much more like a simple wire than an arbitrated bus system where multiple

clocked buffers stand between the sending and receiving blocks [1]. Asynchronous

GALS also provides a seamless way to bridge the different speeds of each logic

block. A clockless interconnect provides speed-independent ports that allow data

to enter the interconnect at the native speed of the initiating block and to be

switched out of the interconnect at the speed of the receiving logic block, with no

attendant metastability or rate-mismatch problems.



Power is also a significant issue in SoC designs because the increased circuit

density drives up heat dissipation. When not processing data, each asynchronous

circuit consumes only its leakage current. This results in an average power con-

sumption that rises and falls with ongoing processing. It also means that clock

distribution circuitry is not needed.

14.1 Fulcrum’s Nexus asynchronous crossbar

Fulcrum’s Nexus is a crossbar-based interconnect that connects several locally

asynchronous modules to each other on the same chip [16]. Each module is

capable of supporting a different clock frequency and converts from the asyn-

chronous domain to the synchronous domain and vice versa with a clock domain

converter (CDC). Data enters Nexus from a synchronous interface, is converted to

the asynchronous domain via the CDC, propagated to its destination module, and

then converted to the synchronous domain again via the destination CDC. The

asynchronous channels carry the data across the chip via the central crossbar. The

internal asynchronous crossbar handles arbitration and routing and resolves

contention on the output ports. All ports are flow-controlled and are designed

to be delay-insensitive. A high-level configuration using the Nexus is illustration in

Figure 14.1.

Nexus transfers data from a source port to a destination port in bursts. A burst

is a variable number of data words, terminated by a tail bit. Each burst is routed

I/O

Crossbar
Control

Cache

BootTest

CPU CPU

Cache

I/O

I/O

Control

I/O

I/O

Pipelined
repeater

Figure 14.1. Typical system on chip (SoC) using Nexus.
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with a sideband “To” channel to indicate its destination. This sideband infor-

mation is conveyed into a “From” channel when it arrives at the destination port,

to indicate the source port sending the data burst. These bursts are routed

automatically and cannot be fragmented, interleaved, duplicated, or dropped.

The structure of the burst format is illustrated in Figure 14.2.

When a device connected to one port wants to send a data burst to device

connected to another port, it sends the To information alongside the first data

word of the burst. If this is not the last word then the associated tail bit will be set

to 0. Since more than one input port may want to send a data burst to the same

output port, these potential requests are arbitrated at the destination port. The

winning input port of the arbitration is granted a direct link from the source port

to the destination port, and this link will open and be available only to the source-

destination port pair until the data burst is completely transmitted and the tail bit

arrives at the destination port.

The existing versions of Nexus support a 16-bit bi-directional port with a 36-bit

datapath, plus the tail bit and a four-bit To/From channel.

14.1.1 The crossbar

The asynchronous crossbar component of Nexus, illustrated in Figure 14.3, is

implemented by decomposing it into smaller circuits that communicate on

channels.

The largest part of the crossbar is the datapath, which is responsible for

MUXing all input data channels to all output data channels. A control channel

S[i] for each input port i is used to split the incoming data to 16 possible output

SOURCE
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1

D2

0 0

To

CROSSBAR

From

DESTINATION

D1 DN D2 D1

1 0 0

Figure 14.2. The Nexus burst format.
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destinations. The data on the control channel comes form the “To” portion of the

incoming data burst and is used to direct the incoming data burst to the specified

destination. Similarly, a control channel M[i] for each output port is used to merge

data from 16 possible input ports. The merge control channel comes from the

arbiter output on the output side and is also used to generate the “From” portion

of the outgoing data burst. In between the input and output control generator

circuits and the datapath are repeat circuits, which replicate the same split–merge

control data until a tail bit 1 passes through the link, indicating that the data has

been completely transmitted and the link between the sender port and the receiver

port can be released to be used by a different source or destination port. The micro-

architectural organization of these components is illustrated in Figure 14.4.

14.1.2 Input control

Each input port has an input control unit that receives the To data and copies it to

the S control to select to which port the data should be sent. It also sends a token

on a request channel (implemented with a 1 data wire and a 1 acknowledge wire)

Crossbar

RepeatRepeat

Output
control

Input
control

256

Request

16To 16

16 16 Data

16 16

From

Tail

Figure 14.3. The crossbar high-level architecture.
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to the selected output control unit. There are 256 channels, connecting all 16 input

control units to all 16 output control units.

14.1.3 Output control

The output control unit receives requests from one or more input ports. It

arbitrates among the input requests, picks one, and sends its port number on the

From channel to the output and on the M channel to merge data from the chosen

input port. If multiple requests arrive at exactly the same time, metastability

occurs and so a metastability filter is included to enable the system to wait for it

to resolve. In a QDI circuit, such metastability introduces only minor uncertainty

in the latency of arbitration; it does not introduce the possibility of failure. It is the

fixed clock period that makes metastability a source of failure in synchronous

designs.

If an input port were able to make two requests to two output ports at once, it

might win its second request first. If another input had also requested the same

output ports, but in the opposite order, it too could have its second request win

first. Thus the two inputs would each have won permission to send to their second

destination but would have data waiting on input ports intended for their first

destination. This results in deadlock.
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There are two ways to solve this problem. Both essentially require that each

input have at most one request outstanding at a time. This means that an input

must be certain that it has won its first request before starting upon a second

request. This can be done by introducing backward-flowing grant channels from

the outputs to the inputs. A trickier approach is to remove enough of the inte-

grated pipelining that the first request token blocks the second until it has won the

arbitration. This second approach is substantially smaller in scale.

In either approach, the corresponding constraint introduces a performance

bottleneck in the control circuitry that causes it to be slower than the rest of the

system, by 25% or 100% for the two approaches, respectively. However, since

arbitration is also pipelined and occurs once per burst and not once per word, such

bottlenecks rarely affect actual performance and never matter for bursts of two

words or longer.

14.2 Clock domain converter

The clock domain converter (CDC) consists of two independent circuits:

a synchronous-to-asynchronous converter (S2A) for outbound traffic and an

asynchronous-to-synchronous converter (A2S) for inbound data. In both direc-

tions, full sender and receiver flow control is propagated across the boundary.

14.2.1 Synchronization control circuit

The S2A and A2S converters have essentially the same control circuit for data

transfer. The control circuit has an “enable” output signal to indicate that the

control unit is ready to accept more data and a “valid” input signal to indicate that

new data has arrived, to be transferred to its left-hand side. Similarly, it receives an

enable input signal from the right-hand side indicating that the next unit is ready

to accept more data and also produces a valid signal to indicate that it is sending

new data. On the asynchronous side of the converter the enable and valid signals

form an e1-of-1 channel (data rail and an acknowledge signal in the opposite

direction). On the synchronous side they are the request and grant channels. The

converter control also receives the clock form the synchronous module and

produces a “go” signal to latch the data.

14.2.2 Clock domain converter datapath

The S2A datapath uses the control output to latch the synchronous data into a flip-

flop and perform an asynchronous handshake. It works on the assumption that

the asynchronous handshake will complete within a clock cycle without blocking.

The A2S datapath is similar; it takes an asynchronous 1-of-4 code and latches it in

flip-flops. It works on the assumption that, once the transfer is started, all asyn-

chronous data is present and will complete the handshake within a clock cycle.
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To guarantee that the asynchronous datapaths are ready, a completion-detec-

tion circuit is needed to check that either all bits of an asynchronous input have

arrived or that there is enough space in the asynchronous output channel. Instead

of trying to complete all bits in a single C-element tree, a pipeline completion

circuit that can sustain a high frequency regardless of datapath width is used.

The A2S completion sends a 1-of-1 channel to the control circuit to indicate that

there is space in the output FIFO. A few extra tokens are initialized on this

channel to match the amount of storage available between the flip-flop and the

completion detector. Figure 14.5 illustrates the structure of the S2A and A2S

converters.

By checking that all input bits have arrived or that all output bits have buffer

space, the converters can safely tolerate an arbitrary amount of relative skew

between bits introduced by the asynchronous interconnect.

14.2.3 Latency

The latency is measured from when an input channel becomes valid to when the

output channel becomes valid, assuming that the link is initially empty. On the

synchronous side, the measurement point is when the request becomes valid on a

A
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Asynchronous
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A
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Figure 14.5. S2A and A2S converters (upper and lower diagrams).
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rising edge. The S2A has very little latency since the asynchronous token is created

directly from the rising clock through a small logic depth. On the A2S, there is a

similar amount of asynchronous latency in completing the incoming asynchron-

ous bits and making the control decision. However, the A2S also must wait for

metastability resolution and may be forced to wait an extra cycle if it “just misses”

the sample window.

14.2.4 Noise analysis

Asynchronous circuits are susceptible to noise glitches for a larger portion of their

cycle than a synchronous design with flip-flops and combinational logic. Although

this design never glitches, analog noise from charge sharing or capacitive coupling

can cause glitches. Dynamic logic susceptible to charge sharing is always con-

tained within a small leaf cell and can be checked locally. Various design guide-

lines and netlist (connectivity) transformations are used to fix any charge-sharing

problems without resorting to precharging the internal nodes. Capacitive coupling

tends to affect longer wires, but these are strongly driven by inverters and also

have inverters or pipeline repeater spaces at reasonable distances. The frequent use

of 1-of-4 encoding means that usually only one of a group of four wires could be

an aggressor.

14.2.5 Characterization results

The Nexus interconnect has been fabricated and characterized in numerous pro-

cesses with minor design variations. It has been found to be functionally correct

and to give a high performance in all cases. In TSMC 180 nm G, all Nexus

components operate up to 450 MHz at 1.8 V and 25 �C. In TSMC 150 nm G,

they operate at 480 MHz at 1.5 V and 25 �C. In the TSMC 130 nm low-K process

(where K is the dielectric constant) they operate at 1.35 GHz at 1.2 V and 25 �C.
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15 Design example: the Fano algorithm

In this chapter we present the Fano algorithm, a convolutional code decoder, and

its efficient semi-custom synchronous implementation [5]. The algorithm is used in

communication systems to decode the symbols received over a noisy communi-

cation channel. We also present an efficient asynchronous counterpart, which we

will use to explore the challenges in designing asynchronous chips. Figure 15.1

gives a schematic view of a communication system.

15.1 The Fano algorithm

In communication systems a convolutional code is a type of error correcting code

in which an m-bit symbol is decoded into an n-bit symbol, where m/n is the code

rate (n	m), and the decoding process is a function of the last k information

symbols, where k is the constraint length of the code. The redundancy often allows

convolutional codes to improve the performance of communication systems such

as digital radios, mobile phones, satellite links, and Bluetooth implementations.

15.1.1 Background of the algorithm

The Fano algorithm [1]–[3] is a tree-search algorithm that achieves good perform-

ance with low average complexity at a sufficiently high signal-to-noise ratio

(SNR). A tree comprises nodes and branches and associated with each branch is

a branch metric (or weight, or cost). A path is a sequence of nodes connected by

branches and the path metric is obtained as the sum of the corresponding branch

metrics. An optimal tree-search algorithm determines the complete path (i.e. from

root to leaf) with the minimum path metric, while a good but suboptimal tree-

search algorithm finds a path with a metric close to this minimum.

The Fano algorithm searches through a tree sequentially, always moving from

one node to a neighboring node until a leaf node is reached. It is a depth-first tree-

search algorithm [1], meaning that it searches as few paths as possible to obtain a

good path. Thus, the metric of a path being considered is compared against a

threshold T. The relation between T and the metric is determined by the statistics

of the branch metrics (i.e. the underlying model) and the results of partial path



exploration. The latter is reflected by dynamically adjusting the threshold to

minimize the number of paths explored.

The key steps of the algorithm are the decisions about which way to move

(i.e. forward, or deeper, into the tree, or backward) and adjustment of the threshold.

Intuitively, the algorithm should move forward only when the partial path to a node

has a path weight greater than T. If no forward branches satisfy this threshold

condition, the algorithm backtracks and searches for other partial paths that satisfy

the threshold test. If all such partial paths are exhausted, it will loosen the threshold

and continue. Morever, if the current partial-path metric is significantly above the

threshold then it may tighten the threshold. Threshold tightening prevents continual

backtracking to the root node (tracebacks) at the potential cost of missing the

optimal path. Moreover, a maximum traceback depth limit is often imposed to limit

the worst-case complexity. The details of the Fano algorithm are illustrated in the

flow chart depicted in Figure 15.2; a more detailed explanation can be found in [2] [3].

The decoding of a convolutional code with known channel parameters can be

viewed as a tree-search problem whose optimal solution is provided by the Viterbi

algorithm [2], a breadth-first fixed-complexity algorithm. The Fano algorithm is

known to perform near-optimal decoding of convolutional codes but with signifi-

cantly lower average complexity than the Viterbi algorithm.

Figure 15.3 illustrates a search path with no traceback, common in systems with

a very high SNR, where the data sent is identical to the data received and the

sequential decoding algorithm can find an optimal solution very efficiently.

Figure 15.4 illustrates a search path with a minor traceback. The search

algorithm goes deep into the search tree for a couple of branches, but eventually

backtracks and finds the correct solution.

Figure 15.5 illustrates a search path with major tracebacks. The search

algorithm wastes considerable effort by investigating many incorrect paths.

15.1.2 The synchronous design

This subsection describes the efficient normalization scheme used to optimize

the algorithm, the architecture at the register transfer level, and the statistics

of the chip.
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Normalization and its benefits

The basic idea behind normalization is to change the point of reference (e.g. from

the origin of the tree to a current node under consideration). Normalization is

often necessary to prevent hardware overflow or underflow. It is interesting that in

Root

Figure 15.3. A path with no traceback in the search tree (represented by the triangle).
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Figure 15.2. Flow-chart of the Fano algorithm: y is a state variable, A labels the net, M_F

and M_B are the actions “move forward,” “move backward.”
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traditional communication algorithms such as the Viterbi algorithm, normaliza-

tion often yields significant performance and area overheads, which hardware

designers generally avoid by using slightly larger bit widths and modulo arithmetic

[4]. In contrast, normalization in the Fano algorithm can yield a smaller, faster,

and more energy efficient design.

In particular, normalization is applied to the variables in such a way as to make

the current node’s metric always equal to zero. This is equivalent to subtracting it

from every variable in the algorithm and does not change the overall behavior of

the algorithm. The advantages of this type of normalization in the Fano algorithm

Root

Traceback

Figure 15.4. A path with a minor traceback.

Root

Figure 15.5. A search path with major tracebacks.
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are as follows. (i) Additions involving the current metric (i.e. during the threshold

check) are removed and comparisons with the current metric (i.e. during the first

visit check and the threshold-tightening steps) are reduced to a one-bit sign check.

(ii) The normalization of the next threshold (subtracting the current node’s metric

from it) can be done by the arithmetic logic unit (ALU) that compares the

threshold with the next metric and thus consumes negligible additional energy.

(iii) Lastly, normalization enables us to work with numbers with smaller

magnitudes, which can be represented with fewer bits.

Register-transfer-level design

The register-transfer-level architecture is illustrated in Figure 15.6(a). The thresh-

old adjust unit (TAU) is shown in more detail in Figure 15.6(b). At each clock

cycle, the best and next-best branch metrics are calculated using data stored in

memory. (See [3] for more details regarding the branch metric computation.) The

threshold adjust unit compares the error metric with the current threshold to

determine whether a forward move can be performed and simultaneously calcu-

lates speculatively two normalized next thresholds; the first is applicable if now a

forward move is taken and the second is applicable if the threshold is to be

loosened (the new threshold is found by the subtraction of D from T ).

On the basis of the above results, either the move will be made and the pre-

computed threshold will be stored or the threshold T will be loosened, all in one

clock cycle. Additional clock cycles are needed to compute a tightening of the

threshold if (i) a forward move is made, (ii) the first visit check is passed, and (iii)

the precomputed tightened threshold is not in the range D. Fortunately, with
reasonable choices of D, computer simulations suggest that these additional cycles

of tightening are rarely needed. Similar speculative execution allows us to perform

a look and move back in one clock cycle.

The register-transfer-level architecture shown in Figure 15.6 is controlled by the

finite-state machine (FSM) illustrated in Figure 15.7. Three states, S2–S4, make up

the main algorithm. In each state the branch metric unit computes the selected

branch metric using data stored in the sequence memory. Depending on the control

bits from the FSM (not shown), the selected branch metric is associated with the

best or worst branch. In either case the corresponding input bit is sent to the

decisionmemorywhere, if that branch is taken, it is used to update the selected path.

In state S2, the machine looks forward, moves forward if possible, and, if

necessary, performs one step of threshold tightening. More specifically, after the

selected branch metric is computed, the FSM performs a threshold check to see

whether the machine can move forward. That is, in Figure 15.6(b) ALU 3

computes T minus the selected branch metric and the FSM examines the most

significant bit. If the sign bit is a 1, the branch metric is no smaller than T and the

threshold check passes. Otherwise, the threshold check fails. Meanwhile, ALU 1

and 2 speculatively compute T þ D and T þ D minus the selected branch metric,

respectively. These values, along with a state variable y, shown in Figure 15.2,

allow the FSM to determine whether the first visit check passes. That is, the first
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visit check passes if and only if y ¼ 0 or TþD is positive or if TþD minus the

selected branch metric is positive.

On the basis of the above results, the FSM acts in one of three ways. (i) The

threshold check passes and a forward move is performed but the first visit check

fails, so that NextState is set to state S2, in preparation for another look forward.

(ii) Both the threshold check and the first visit check pass, in which case the FSM
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moves to state S3. (iii) The threshold check fails and the FSM moves to state S4 in

preparation for a look and/or move backward. In case (i) the threshold register is

updated with T minus the selected branch metric, as computed by ALU 3. In

case (ii), however, the threshold is updated with the tighter threshold TþD
computed by module 1. In case (iii) the threshold register remains unchanged.

In state S3, the FSM checks whether a subsequent tightening is needed (by

computing and checking the sign of DþT). Simultaneously, it speculatively per-

forms a threshold check (by checking that the branch metric is no smaller than T);

this is required if the threshold need not be immediately tightened. If tightening is

required then NextState is set to state S3. For the case where no immediate

tightening is needed, the FSM performs the same move, look forward, tightening,

and next-state operations as in state S2.

State S3 is entered when the threshold check fails in either state S2 or state S3. In

state S4, a look backward is performed and, if possible, a backward move is made

and the threshold is updated with the re-normalized threshold. Both the look

backward and the re-normalization are performed through ALU 3 by adding T

and the selected (backward) branch metric. Specifically, the look-backward check

is satisfied if and only if the negative of the selected branch metric is greater than or

equal to the threshold, i.e. if the result of the ALU 3 operation is negative and the

re-normalized threshold is precisely the output of ALU 3. If a backward move is

performed and it is originated from a worst node, via an additional FSM flag,

NextState is set to state S4, in preparation for another look backward. Alterna-

tively, NextState is set to state S2 in preparation for a look forward to the next-best

node; this is controlled by a LookNextBest flag not shown in order to simplify

Figure 15.7. If the backward look fails, however, the threshold is updated with a

loosened threshold value speculatively computed by module 1, and NextState is set

to state S2.

The key feature of this speculative control strategy is that each forward

move typically takes only one clock cycle, with negligible performance overhead

associated with the first visit check or tightening. In particular, with reasonable

choices of D, computer simulations suggest that additional cycles of tightening

are rarely needed.

Synchronous chip implementation

The chip that was designed all the way to gds (the file format created by the

designer for the manufacturer) supports a packet length N ¼ 128. The depth of the

search tree including seven tail bits, is thus 135. It supports a rate �1/2 convolu-

tional code (i.e., n ¼ 2) with generator polynomials 1þDþD2þD5þD7 and

1þD3þD4þD5þD6þD7 (here, for example, D5 means the fifth bit from

the last). For this prototype the chip has fixed branch metrics B(0) ¼ 2, B(1) ¼ –7,

and B(2) ¼ –16, requiring five bits for their representation. These metrics are ideal

for an SNR range 1<Eb/N0(dB)<3. In practice, they would be dynamically
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adjusted when the estimated channel SNR is outside this range; this may require

an extra bit.

Automatic placement and routing tools were used with a combination of

synthesized and manually laid-out components in the 0.5mm HP14B CMOS

process. The layout has area 1.2 mm�1.8 mm. Powermill was used to estimate

the performance of the design. At 1.5 V power supply the design successfully

operated at 15 MHz, and at 3.3 V it successfully operated at 100 MHz.

15.2 The asynchronous Fano algorithm

Deeper analysis of the Fano algorithm shows that the operation of the algorithm

can be divided into two regions, the error-free region and the error region. In

the error-free region the algorithm moves forward, while the received bits from the

sender are error free and match the expected bits. In this region of operation the

un-normalized threshold is incremented with a constant value, namely the value

given for an error-free branch of the tree. If the threshold value is known at

the time at which the algorithm enters the error-free region then the next value

of the threshold can be calculated. The normalized threshold, however, stays in

the range �D � T � 0 and rotates through a finite number of values in a

predetermined order.

Consequently, instead of calculating the threshold values explicitly, a pointer to

a lookup table containing these predetermined values is incremented. When an

error is encountered, the design enters the error region; the current value of the

threshold is accessed from the lookup table and the full algorithm is applied in

order to determine whether to move forward, move backward, or loosen the

threshold. The algorithm stays in the error region until a node in the search tree

is reached for the first time and the move by which the node was reached was a

forward move. At this point the algorithm moves back into the error-free region.

The algorithm continues until the end of the tree by alternating between the error-

free and the error regions.

For high-SNR applications, most received packets have little or no errors and

therefore the decoding process consists mostly of reading the data from the

memory, comparing it with the predicted data, and writing the decision to the

memory. The process involves few or none of the multi-bit additions, subtractions,

or comparisons associated with loosening or tightening the threshold. This fact

motivates a two-block architecture that is specifically designed to handle the two

different operating regions of the algorithm efficiently.

15.2.1 The asynchronous Fano architecture

The asynchronous architecture shown in Figure 15.8 localizes the error-free

region in a small block that is highly optimized. In particular, the branch metric

unit (BMU) is partitioned into a skip-ahead unit optimized for the error-free
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region and a threshold adjust unit and branch metric calculator that are active

only in the error region and have implementations analogous to the synchronous

version.

The data received at the decoder via the transmitted input data channel is stored

in the received memory. The fast skip-ahead unit requests data from the received

memory in eight-word chunks via the Next/Previous channel, where each data

word is two bits wide for the (7, 1, 2) code. As the skip-ahead unit decodes the

code and moves forward in the tree, it stores its decisions locally. Every eight

decisions are sent to the decision memory via the Last-eight-decisions channel.

When an error is encountered, the skip-ahead unit may need to go backward in the

tree to explore different branches, by requesting previous decisions from the

decision memory that arrive on the Previous-eight-decisions channel. The data

flow between the decision memory and the skip-ahead unit is controlled via the

Write/Read channel.

In the error-free region, the received bits are read from the received memory and

decoded in the skip-ahead unit. The resulting decisions are then sent to the
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decision memory. In this region, the main FSM, branch metric calculator, and

TAU are inactive.

When an error is encountered, the SAU informs the branch metric calculator

via the error channel and also sends to the branch metric calculator the received

branch bits and the predicted branch bits calculated using the previous decisions

and the convolutional code. Depending on the move commanded by the threshold

adjust unit via the look-forward best (LFB), look-backward (LB), look-forward

next-best (LFNB), and look-forward-best-until-error (LFBTE) channels, the

branch metric calculator calculates and compares the branches, selects the appro-

priate one, and sends it to the TAU with additional information notifying whether

the move originated from a worse branch and whether the branch had any errors

(via the additional BmuErr and BmuFwn channels). Every time the TAU is

accessed for the first time after an error has occurred, the TAU reads the normal-

ized threshold from the look-up table and updates the threshold value. The TAU

is implemented in an analogous way to the synchronous version and may move

forward, move backward, or adjust the T threshold. Upon deciding a move,

the relevant information is sent to the SAU and a new command is issued to

the branch metric calculator. Finally when a new error-free node is reached for the

first time, the TAU stores the normalized threshold, updates the pointer to the

look-up table, and resumes operation in the fast SAU. The operation switches

back and forth between the SAU and the TAU until all the data is encoded. Upon

reaching the end of the tree, the decision memory sends out the decoded data.

The fact that the asynchronous circuit has no global clock allows the asyn-

chronous architecture to be naturally divided into two blocks, each operating at

its ideal speed, that communicate, only when and where this is needed, via the

interblock asynchronous channels.

15.2.2 The skip-ahead unit

A high-level implementation of the SAU is shown in Figure 15.9. The core of the

SAU is the error detector, which compares the predicted branch bits with the

received branch bits and stores the decision. To operate at full rate, the memories

must keep up with writing and reading one data word per decoding cycle. As the

memory capacity increases, this becomes a difficult task and for this reason we

opted to use shift registers to act as caches for the bigger memories. In particular,

the fast data register stores eight words from the received memory and the fast

decision register acts as an eight-word read and write cache for the decision

memory. When the received memory sends an eight-word packet to the fast data

register, the received memory speculates that the SAU will not encounter any

errors and moves forward, thus preparing to send a new set of data. This cache

structure allows the larger memory to run at one-eighth the speed of the SAU. The

same motivation applies to the use of the fast decision register, with the difference

that it is a read and write register. Both registers have an associated controller to

request and send data to their respective memories.
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The most recent decisions in the search tree, which always reside in the fast

decision register, are sent to the code generator, which predicts the values of the

new branch bits. The predicted values of the branch bits are compared with the

received values in the error detector. If there is a match, indicating no error,

the decision is stored in the fast decision register; then an internal counter and

the pointer in the look-up table are incremented and new data is requested

from the shift registers via the Move forward/backward and Up/Down channels.

If there is no match then an error is encountered. The predicted and received

branch bits are sent to the branch metric calculator and the controls of the shift

registers are transferred to the TAU.

The critical loop in the error-free region consists of the fast shift register, the

error detector, the fast decision register, and the code generator. For high-SNR

operation, most of the time the decoder operates in the error-free region; there-

fore the goal must be to achieve high speed in this region by optimizing the

circuit. However, if the circuit encounters an error then it enters the error region,

and the critical path consists of the fast shift register and the convolutional code

generator serving data to the slow BMU. In the error region the operation is the

same as in the synchronous version, consisting of a number of sequential oper-

ations. In this region the speed is expected to be comparable with that in the

synchronous case.
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15.2.3 The memory design

Since the chip supports a packet length of only 135 bits (128 data and seven tail

bits), we opted to design the main data memory blocks of the received and

decision memories using standard PCHB templates. However, we introduced

unacknowledged tri-state buffers on the data bus as an efficient way to allow

multiple drivers of the bus. This is typical in synchronous design but does intro-

duce some minor timing assumptions not typical of PCHB-based designs. We also

used standard place and route tools for the physical design of the memories for

faster design time at the cost of more area and power consumption.

In particular, as depicted in Figure 15.10 the received memory consists of N

blocks, where each block can hold eight words. For the (7, 1, 2) convolutional code

each word is two bits. The blocks are FIFOs implemented with PCHBs. At any

time only one tri-state buffer is enabled, allowing only one block to send its data.

The Fano algorithm is a sequential tree-search algorithm, therefore SAU accesses

the memory sequentially via the Next/Previous channel. The received memory

controller responds to the request by enabling a preceding or succeeding tri-state

buffer and sending new data. The buffer captures the new data and sends it to the

requesting unit. The timing assumption for correct operation is that the delay from

the Next/Previous channel through the received memory controller and the selected

tri-state buffer should be less than the delay from the Next/Previous channel to the

output buffer. Moreover, the output buffer should only latch its input when the

enabled tri-state buffers outputs have changed and stabilized.

The decision memory has a similar structure; however, since it is a read and

write memory each block can be accessed individually to read from or to write to.

Transmitted input
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Block
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Block
N – 1

Block
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Figure 15.10. Implementation of the received memory.
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15.2.4 The fast data and decision registers

The fast data register is implemented using two eight-word one-bit shift registers, as

shown in Figure 15.11. The register consists of eight conditional-input conditional-

output one-bit memory pipeline stages. Depending on the command (cmd) it either

shifts forward by receiving new data from inF and sending the old to outF, shifts

backward by receiving data from inB and sending the old to outB, or loads eight

words in parallel from the main memory. The parallel-load command overwrites

the old data tokens inside each stage. The command channel cmd should go to all

the stages; however, to prevent the use of a large C-tree to generate the cmd

acknowledge signal the cmd signal is broadcast with a tree of copy buffers. Altough

this solution reduces the load on the cmd channel, if it were to be copied to all

stages directly then it would increase the critical loop delay of the algorithm.

The fast data register is implemented similarly.

15.2.5 Simulation results and comparison

The core layout of the chip designed in TSMC 0.25mm CMOS technology

is illustrated in Figure 15.12. Nanosim simulations on the extracted layout

inP inF inB

outF outB
cmd

inP inF inB

outF outB
cmd

inP inF inB

outF outB
cmd

Copy

CopyCopycmd

cmd: command
inF: forward input
inB: backward input
outF: forward output
outB: backward output
inP: parallel input

Data loaded in parallel

Figure 15.11. Implementation of a one-bit fast shift register.
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show that the circuit runs at 450 MHz, consumes 32 mW at 25 �C, and has

area 2600 mm � 2600 mm ¼ 6.76 mm2. The asynchronous chip runs about

2.15 times faster than its synchronous counterpart. However, it occupies five

times the area. This is partially due to the fact that both memories, which

occupy half the chip area in the asynchronous chip, are implemented with

PCHBs. Lastly, the design consumes one-third of the power of its synchronous

counterpart.

Figure 15.13(a) below shows the post-layout simulation results for the circuit

operating in the error-free region. Since the fast data and decision registers can

only hold eight words, once the data held by the fast data register is consumed

then a new set of data is requested from the main received memory. This request

and data transfer causes a slight delay, which can be observed in the waveforms as

the gaps that occur every eight pulses. Since there are no errors in the error-free
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Figure 15.12. Layout of the asynchronous Fano architecture.
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region, the nofail_f signal used to indicate an error is never asserted by the

detection logic but instead the nofail_t signal, which indicates that there are no

errors, is asserted.

However, as shown in Figure 15.13(b), in the error region, as errors are

encountered the decoder moves back and forth to find the correct path. This

can be observed with the assertion of the shiftb (shiftback) and nofail_f signals.

17971 ns

(a)

(b)

17537 ns

8 bits decoded

Error encountered

Total of 8 × 16 = 128 bits decoded

Move back 25361 ns

No error! Always shift forward 18449 ns

Figure 15.13. (a) error-free-region and (b) error-region operation waveforms.

328 Design example: the Fano algorithm



15.3 An asynchronous semi-custom physical design flow

This section focuses on the gate-level and physical design aspects of asynchronous

semi-custom physical design flow that the USC Asynchronous Design Group has

refined and used in the implementation of the asynchronous Fano design.

The basic steps of the template-based semi-custom asynchronous physical

design flow are illustrated in Figure 15.14.

A high-level schematic is developed based on the C and Verilog codes used to

describe the Fano algorithm. This high-level schematic is hierarchically imple-

mented by decomposing the design to the lowest-level communicating blocks,

namely the PCHB leaf cells. In the micro-architecture step the designer can

choose to implement the architecture with various methods, ranging from fine-

grain pipelines that are template-based and use delay-insensitive cells to com-

ponents relying on bounded-delay-based cells with no pipelining at all. The

asynchronous Fano design has been implemented with fine-grain pipelining

using PCHB templates. Slack optimization to improve performance is also

completed in this step. At the end of the micro-architecture design there are

two possible options.

One option is to pursue the decomposition and generate a leaf cell design. This

will depend on the template used (PCHB, RSPCHB, LP3/1, LPHC, or STFB,

etc.). The next step is to generate the gate-level netlist of the whole circuit as in

synchronous design. The gate library, consisting of static and dynamic gates, will
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design

Leaf cell netlist

Technology mapping

Leaf cell design

Gate-level netlist

Technology mapping

Physical P&R

Template

Gate
library
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Figure 15.14. Asynchronous circuit design flow. The final step is the physical place and route

operation.
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be mapped to the netlist and the design can be laid out using standard place and

route tools.

The other option is to generate a leaf cell netlist, rather than going any further,

and to use a leaf cell library. The leaf cell library would be mapped to the netlist,

and the automatic place and route procedure would be done at the leaf cell level

rather than at the gate level, which is lower. This option will probably yield denser

circuits with a better performance since the leaf cells would be optimized and laid

out using more of a full-custom approach, though even automatic place and route

can be applied to generate the leaf cells. Choosing the first option and applying

place and route directly to a gate netlist could lead to a number of undesired

effects. One such effect is a less dense circuit since, rather than sharing area and

optimizing leaf cells, the leaf cells will be implemented with discrete gates. Another

issue is that the handshaking circuits might not be as close to the dynamic

functional evaluation circuit when place and route is applied to the gate netlist

rather than the leaf cell netlist, thereby affecting performance.

15.3.1 Physical design flow using standard CAD tools

One of the biggest obstacles today of designing asynchronous circuits is the lack of

CAD tools specifically targeted for the design of such chips. However, it is still

possible to complete a fairly complex chip in a reasonable amount of time using

the standard CAD tools used for synchronous design. Figure 15.15 illustrates

the flow.

There is no difference in the initial specification step of the design for the

synchronous and asynchronous cases, since a specification typically describes

the expected functionality (Boolean operations) of the designed block, as well as

the delay times, the silicon area, and other properties such as power dissipation.

Usually the design specifications allow considerable freedom to the circuit
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Figure 15.15. Physical design flow using standard CAD tools.
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module Dynamic_BUFFER_Function (nBUF0, nBUF1, A0, A1, BUFe, en, BUF1, BUF0);

output nBUF0;

output nBUF1;

output BUF1;

input A0;

reg nBUF1, nBUF0, BUF1, BUF0, temp;

initial begin temp=0; end

if(BUFe==1 && en==1 && temp==0)

if(A1==1 && A0==0) begin nBUF1 <= #D1 0; nBUF0 <= #D1 1;

nBUF1 <= #D1 1; nBUF0 <= #D1 1; BUF1 <= #D2 0; BUF0 <= #D2 0;

BUF1 <= #D2 1; BUF0 <= #D2 0; temp=1; end

BUF1 <= #D2 0; BUF0 <= #D2 1; temp=1; end

parameter D1=10; //unit delay 1

parameter D2=20;

always @(BUFe or A0 or A1 or en)

begin

begin

begin

end

temp=0;

end

end

else if(BUFe==0 && en==0)

else if(A1==0 && A0==1) begin nBUF1 <= #D1 1; nBUF0 <= #D1 0;

input A1;

input BUFe;

input en;

output BUF0;

Figure 15.16. The functional description of a dynamic buffer.

nBUF0

BUFe

BUFe

BUFe

BUFe

nBUF1

BUF1

A1

A1
BUF0

A0

A0BUFe

en en en

en

en

Figure 15.17. The transistor-level view of a dynamic buffer.
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designer with regard to the choice of a specific circuit topology, the individual

placement of the devices, the locations of the input and output pins, and the

overall aspect ratio (width-to-height ratio) of the final design.

Figure 15.18. The layout of a dynamic buffer.

Figure 15.19. Cell placement in Silicon Ensemble.
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The actual implementation of an asynchronous circuit starts at the schematic

level. The traditional method for capturing (i.e. describing) a transistor-level

gate-level, or block-level design is via the schematic editor. The functional descrip-

tion of the dynamic logic circuit used as a buffer is shown in Figure 15.16. Note

that there are a number of ways to describe this behavior.

Once the design is completed and its correctness has been verified at the

behavioral level, the schematic (transistor) views of the cells are implemented for

HSPICE simulation. A transistor-level view of the dynamic buffer is shown in

Figure 15.17.

The layout view for the dynamic buffer is shown in Figure 15.18.

One important aspect of designing cells for dynamic logic is charge sharing

and transistor sizing. After a number of test simulations on individual cells we

decided to use 8� for the size of the output transistors and 2� for the pull-down

transistors. The staticizer inverters were set to approximately one-tenth the

strength of the pull-down transistors in order to balance reliability of operation

against speed. The other aspect to be taken into account for reliable operation is

charge sharing. Unlike in the schematic in Figure 15.17, if the nBUF1 and

nBUF0 signals were generated using the A, en, and BUFe signals as a stack of

Figure 15.20. Routed counter block with Silicon Ensemble.
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three transistors in series then there the internal dynamic nodes nBUF1 and

nBUF0 could lose their value owing to charge sharing. This scenario could occur

if A and en were asserted high, thus turning on their respective transistors, and

BUFe were still asserted low. To prevent this problem, we opted to use a widely

known symmetrization solution, that of doubling the pull-down logic and cross-

coupling it, as illustrated in Figure 15.17.

To reduce the load on the automatic place and route tool and to meet the

performance requirements of the circuit, we partitioned the top-level design into a

number of blocks, as shown in Figure 15.12. The place and route tool was not

*

*.GLOBAL    VDD!  GND!

.SUBCKT INC2   DATA  REQ  ACK  NRST4  LO  LI

*

MM2–XI60–XI36 XI36–A NET0432 VDD!  VDD!  PCH  L=0.24U  W=2.80U  AD=1.04P

MM3–XI60–XI36 XI36–A NR<6>  VDD!  VDD!  PCH  L=0.24U W=2.80U AD=1.04P

MM7–XI60–XI36  XI36–XI60–NET029  NET0432  XI36–A  GND! NCH  L=0.24U W=1.20U

MM1–XI59–3 NET72  XI59–NET35  VDD!  VDD!  PCH L=0.24U  W=2.50U  AD=0.93P

MM7–XI60–XI36–1  685  NET0432  GND!  GND!  NCH  L=0.24U  W=1.2OU  AD=0.24P

+          PD=3.54U  AS=1.88P PS=6.94U NRS=0.079 NRD=0.079

+          AD=0.24P  PD=1.60U  AS=0.44P  PS=1.94U NRS=0.183  NRD=0.167

+          PD=1.60U AS=0.80P  PS=3.74U  NRS=0.183  NRD=0.167

+          PD=3.24U AS=1.65P  PS=6.32U  NRS=0.088 NRD=0.088

...

...

+          PD=3.54U  AS=1.88P PS=6.94U NRS=0.079 NRD=0.079

*

*

*

*

*

.ENDS

*

******    MOS XTOR     PARAMETERS  FROM : 7MOSXREF

*-----  TOTAL # OF MOS TRANSISTORS FOUND :    2018

*-----  TOTAL # OF CAPS FOUND :    585

*-----              COMMENTED :    2

C1    NET77  GND!  8.00421E–15

C583  XI36–XI56–NET016      GND!  6.91710E-17

C584  XI29–XI50–XI50–NET016 GND!  1.85150E-17

C585  XI30–XI50–XI50–NET016 GND!  4.84647E-17

C2    NET209 GND!  1.06917E–14

C3    NET188 GND!  1.16892E–14

C4    NET121 GND!  1.34065E–14

C5    NET215 GND!  1.02445E–14

******    CORNER ADJUSTMENT FACTOR = 0.0000000

******

* CADENCE/LPE SPICE FILE: SPICE

*                  DATE : 5-JUN-2003

Figure 15.21. Extracted netlist of a block.
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timing-based, the intention being to show that a QDI-based asynchronous circuit

will work for any delays, provided that the isochronic fork assumption is met.

Figure 15.19 shows the cell placement of the counter block. The picture is a zoom

into the lower-left corner of the design for clarity.

Figure 15.20 illustrates the same cell placement, showing the full picture and

with routing completed. Each block was streamed back into the layout editor for

DRC and (layout versus schematic) (LVS) checks against its transistor-level net-

list. The LVS check also generates an extracted netlist of the design for HSPICE

simulation. A short sample of the extracted netlist is shown in Figure 15.21. The

flattened netlist consists of two parts, the transistor connections and the extracted

capacitances.

The layout of the whole design is shown in Figure 15.12. All the blocks were

individually placed and routed using the automatic tool. However, the routing

between the blocks was done manually.
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